
Power Series & Radius of Convergence TA: Matthew Carr

Definitions, Theorems and Examples

Definition (Power Series). A function of the form f(x) =
∑∞

n=0 an(x− c)n is called a power series centered at c.

Definition (Absolute Convergence). A power series f(x) =
∑∞

n=0 an(x− c)n is said to absolutely converge on an

interval [a, b] if for all a ≤ x ≤ b,
∑∞

n=0 |an(x− c)n| is a convergent power series.

Remark. This definition specializes to series in the following way—a series
∑∞

n=0 an is said to absolutely converge if∑∞
n=0 |an| <∞. If a series

∑∞
n=0 an converges absolutely, then it doesn’t matter in what order we sum the terms an. This

is not true in general—the terms in the series
∑∞

n=0(−1)n can be rearranged to sum to either ∞ or −∞.

It turns out that absolute convergence implies convergence in the usual sense.

Lemma 1. If a power series
∑∞

n=0 an(x − a)n converges absolutely, then it converges in the usual sense. If a series∑∞
n=0 an converges absolutely, it converges in the usual sense.

Theorem 1. Let f(x) =
∑∞

n=0 an(x − a)n and suppose f(x0) =
∑∞

n=0 an(x0 − a)n converges. Then for any x with

|x− a| < |x0 − a|, f(x) =
∑∞

n=0 an(x− a)n converges. In other words, the radius of convergence of the power series f(x)

is at least |x0 − a|.

Example 1. Suppose f(x) =
∑∞

n=0 an(x − 3)n is a power series centered at 3 and that f(1) converges. Does f(2) =∑∞
n=0 an(2− 3)n converge?

Solution. f(2) =
∑∞

n=0 an(−1)n converges by the Theorem 1. Explicitly, since 1 = |2− 3| < |1− 3| = 2, Theorem 1

tells us that f(2) =
∑∞

n=0 an(−1)n converges.

Theorem 2. The radius of convergence r of a power series
∑∞

n=0 an(x− a)n is given by

1
r

= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ,
should the limit exist.

Remark. If the limit limn→∞

∣∣∣∣an+1

an

∣∣∣∣ fails to exist, a more subtle analysis may be required.

Warning. While this theorem provides a general means of computing the radius of convergence of a power series, it may

not be the best approach for doing so for a particular series, since it can easily lead to mistakes. To illustrate the possible

dangers, consider the geometric series
∞∑

n=0

1
4n

x2n.

It is easy to misinterpret Theorem 2 by taking 1
r

= limn→∞
∣∣4−(n+1)/4−n

∣∣ = 1
4 and concluding that r = 4 is the radius

of convergence of this geometric series. This is wrong.

Theorem 2 only applies when an+1 is the coefficient of the term xn+1 and an is the coefficient of the term xn in the

power series. The geometric series
∑∞

n=0
1
4n

x2n can be rewritten as
∑∞

n=0 anxn where

an =


1
4k

if n = 2k is even,

0 if n is odd.
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Thus, limn→∞ |an+1/an| does not exist, so we cannot apply Theorem 2.

To remedy this, we forget about power series and apply the ratio test directly to the series in question. Fixing x0, we

compute

lim
n→∞

∣∣∣∣∣∣∣
1

4n+1 x
2(n+1)
0

1
4n

x2n
0

∣∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣x2
0

4

∣∣∣∣ = x2
0

4 .

To have x2
0

4 < 1, we must have x2
0 < 4 or |x0| < 2. Thus, we have convergence for |x| < r. Thus, the real radius of

convergence is r = 2. This is different than the incorrect answer of r = 4 we found above!

Example 2. Find the radius of convergence of the power series
∑∞

n=0
xn

n! .

Solution. Applying Theorem 2, we see that 1
r

= limn→∞

∣∣∣∣ ((n + 1)!)−1

(n!)−1

∣∣∣∣ = limn→∞ |1/(n + 1)| = 0. Thus, the radius of

convergence r =∞.

Proofs of Lemma and Theorems

Obvious the proofs are not important in this course. Since I don’t want to introduce more definitions, I will only indicate

what is needed to prove the lemma and give a proof for the theorems.

Lemma 1

Proof Sketch (Lem. 1). The idea is to use what is called the Cauchy Criterion for convergence of series.

Theorem 1

Proof (Thm. 1). Since
∑∞

n=0 an(x0 − a)n converges, limn→∞ an(x0 − a)n = 0. Hence, the sequence {an(x0 − a)n}∞n=0 is

bounded, say |an(x0 − a)n| ≤M . Thus if |x− a| < |x0 − a|, then

|an(x− a)n| ≤ |an| |x0 − a|n = |an| |x0 − a|n
∣∣∣∣ x− a

x0 − a

∣∣∣∣n ≤M

∣∣∣∣ x− a

x0 − a

∣∣∣∣n .

Since x− a

x0 − a
< 1, the geometric series

∞∑
n=0

M

∣∣∣∣ x− a

x0 − a

∣∣∣∣n
converges. But for each n,

|an(x− a)n| ≤M

∣∣∣∣ x− a

x0 − a

∣∣∣∣n
so

0 ≤
∞∑

n=0
|an(x− a)n| ≤

∞∑
n=0

M

∣∣∣∣ x− a

x0 − a

∣∣∣∣n <∞

so the series
∑∞

n=0 |an(x− a)n| converges by the monotone convergence theorem. �
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Theorem 2

Proof (Thm. 2). Fix x0. First suppose limn→∞

∣∣∣∣an+1

an

∣∣∣∣ <∞. By the ratio test,
∑∞

n=0 an(x0 − a)n converges if

lim
n→∞

∣∣∣∣an+1(x0 − a)n+1

an(x0 − a)n

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an
(x0 − a)

∣∣∣∣ < 1.

But,

lim
n→∞

∣∣∣∣an+1

an
(x0 − a)

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ |x0 − a| = |x0 − a| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = |x0 − a|
r

.

Thus, |x0 − a|
r

< 1 when |x0 − a| < r which is precisely the statement that r is the radius of convergence of the power

series
∑∞

n=0 an(x− a)n.

When limn→∞

∣∣∣∣an+1

an

∣∣∣∣ =∞, the only way we could have

lim
n→∞

∣∣∣∣an+1

an
(x− a)

∣∣∣∣ < 1

is if x = a, so that the radius of convergence is said to be r = 0. �
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