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How to Read This Note

This note were written mostly to serve as a secondary reference with worked examples. I suspect most people
will only get something out of the worked examples, if anything.
There are three parts to this note.

I The first part of these notes attempts to clarify a common point of confusion I have noticed.
IT The second part contains a worked example and a useful illustration about concave and convex functions.
IIT The third part is just a reference for unusual indeterminate forms. It contains worked examples too.

In the index for these notes above, I have put a star * by anything that I feel is less useful for a student that
just wants to figure out what the techniques are and how to deploy them.






Part I: Unpacking MVT & IVT

Checking When a Function Satisfies the Conditions of the MVT

Let us recall the statement of the Mean Value Theorem (abbreviated as MVT).

Theorem (MVT). If f is a function continuous on [a,b] and differentiable on (a,b), then there exists a
point ¢ in (a,b) such that
f(b) — f(a)

7 =181

Conditions to Check
First, for concreteness, let’s suppose our interval [a,b] is [1, 5], so that a = 1 and b = 5. Then to check that
the conditions of the MVT theorem hold on for a function f on the interval [1,5], we must check two things:

MVT 1. f is continuous on [a, b] and hence also defined on the interval [a, b].
MVT 2. f is differentiable on (a,b).

When these two things hold, the MVT guarantees the existence of a point ¢ in (a,b) such that

R IUES (G}

Now let’s consider the case that [a, b] is any interval, where a < b so that this makes sense. Then to check
that the conditions of the MVT for a function f on the interval [a, b], we must check that

MVT 1. f is continuous on [a, b] and hence also defined on the interval [a, b].
MVT 2. f is differentiable on (a,b).

When these two things hold, the MVT guarantees the existence of a point ¢ in (a,b) such that

= 1010,

Remark. When the two conditions MVT 1 and MVT 2 fail to be true, we are not guaranteed the existence
of a point ¢ satisfying
f(b) — f(a)
/ J—
f (C) - b —a .

This does not mean that for every function f(x) which does not satisfy both MVT 1 and MVT 2 on [a, b],
there cannot exist a point ¢ in (a,b) satisfying

The MVT gives us two conditions for a function to satisfy on an interval [a, b] which are enough to conclude
that the point ¢ as above exists.
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Checking When a Function Satisfies the Conditions of the IVT

Let us recall the statement of the Intermediate Value Theorem (abbreviated IVT).

Theorem (IVT). If f is a function which is continuous on |a,b], then for each value d between f(a) and
f(b), there is a number c in (a,b) such that f(c) = d.

Based on our discussion above on the MVT, you can probably answer the following question.

Question. What is the single condition we need to check for a function f to satisfy the conditions of the
vT?e

If you're curious about this question, feel free to chat with me about it.

* What Can Happen When MVT 1 or MVT 2 Are Not True

Let us look at some examples clarifying what we’ve just discussed. For these examples, we adopt the following
convention.

Convention. In the following examples we consider the interval [a,b] = [1,5] and we consider whether or
not the given function satisfies the conditions (and/or conclusion) of the MVT on [1, 5].

First, let’s see an example where a function does not satisfy the conditions of the MVT, but the conclusion
of the MVT still holds. In figure 1 below, the function f(z) is not continuous on [a, b] = [1, 5], so item MVT
1 in our list above fails to be true, but the conclusion of the MVT still holds for the function f! This is
L 16) =7 0

b f 1 t / 2) = 0 = - = 0.
ecause, for instance, f/(2) an E 1 1
Y
2 [ ] [ J
f(=z)
1 O O
t t t t t €T
1 2 3 4 )

Fig. 1: Conclusion of MVT holds on [1,5] but f(x) does not satisfy MVT 1 on [1, 5]

Now let’s see an example where a function does not satisfy the conditions of the MVT, and the conclusion
of the MVT does not hold.

In the figure below, on the next page, we have another example of a function for which the conclusion of
the MVT does not hold and for which MVT 1 fails to be true—this time becuase the function f was not
defined on the whole interval [1,5] to begin with.
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Fig. 2: Conclusion of MVT on [1,5] does not hold and f(z) does not satisfy MVT 1 on [1, 5]

1 2 3 4 5

Fig. 3: Conclusion of MVT does not hold on [1,5] and f(z) does not satisfy MVT 1 on [1, 5]

Finally, the figure below is an example where the function f(z) is continuous on [1,5] but not everywhere
differentiable on (1,5) and for which the conclusion of the MVT on [1, 5] does not hold.
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1 2 3 4 5

Fig. 4: Conclusion of MVT does not hold on [1,5] and f(z) does not satisfy MVT 2 on [1, 5]



Part II: More on Linear Approximations

Using Linear Approximations to Approximate Values of Functions

There’s not too much to says here beyond the following.

Upshot (Approximation). Suppose f is a differentiable function. We can use the linear approximation
L(z) to f at a (see the definition in the document here) to approximate nearby values of f. Thus, if b is a
point sufficiently close a, then L(b) furnishes an approximation to f(b)

In general, the further away from a we go, the worse the approximation.

Example. Find the linear approximation L to the function f(z) = In(2z — 5) at a = 4 and use this to
estimate the value of In(3.1).

Solution. From the definition,

L(z) = f'(4)(z —4) + f(4).

We can easily compute that f(4) = In(3), so it is left to find f’(4). By the chain rule, f'(z) =

T and so,

2
IHOE 3 Putting this together, we find that

2
L(z) = g(x —4) +1n(3).
Now, we wish to estimate In(3.1) with this. If we can find a value of b for which f(b) = In(3.1), it will follow
that In(3.1) &~ L(b), so let us find such a value for b. The only way we could have In(2b — 5) = In(3.1) is

if 2b — 5 = 3.1 since the function f is a one-to-one function. Thus, we have b = 20 = 4.05. It follows that

f(4.05) = In(3.1) and since f(4.05) ~ L(4.05), that In(3.1) ~ L(4.05), where L(81/20) = In(3) + 55, after
converting everything into fractions.

Concavity & Over/Under Approximations

Theorem 1. If f(z) is everywhere concave up, then each tangent line to f lies below the graph of f.

To understand what this theorem says, let’s look at an example. Recall that f(z) = e” is everywhere
concave up—that is, its second derivative is everywhere positive. The figure below illustrates a few examples
of tangent lines to the graph of e*. Note that they all lie below the graph of e®.

Remark. If we wanted to be picky, we might say that each tangent line to an everywhere concave up function
f(z) lies below the graph of f(x) everywhere except at the point it meets the graph of f(z). For our purposes,
it is basically enough to remember figure 5 above and what it tells us (i.e., Theorem 1).

There is a similar statement for concave down functions.


https://people.math.osu.edu/carr.520/files/Differentials_and_MVT.pdf
https://people.math.osu.edu/carr.520/files/Differentials_and_MVT.pdf
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e / ;

Fig. 5: The tangent lines to e” lie below its graph.

Theorem 2. If g(x) is everywhere concave down, then each tangent line to g lies above the graph of g.

To understand what this theorem says, let’s look at an example. Recall that g(z) = —e® is a concave down
function—that is, its second derivative is everywhere negative. The figure below illustrates a few examples
of tangent lines to the graph of —e”. Note that they all lie above the graph of —e”.

S AN

Fig. 6: The tangent lines to —e” lie above its graph.

Remark. If we wanted to be picky, we might say that each tangent line to an everywhere concave down
function g(z) lies above the graph of g(z) everywhere ezcept at the point it meets the graph of g(z). For our
purposes, it is basically enough to remember figure 6 above and what it tells us (i.e., Theorem 2).

In both figure 5 and figure 6, the magenta colored tangent lines are tangent the graphs of f(x) and g(z)
at x = 2. Let’s call this tangent line L(z) and treat it as a linear approximation. In the case of L(z) being a
linear approximation to f(x), we see that this is a under approzimation and in the case that L(x) is a linear
approximation to g(z), we see that this is a over approzimation.

10



Part III: L’Ho6pital’s Rule

The Statement of L’Ho6pital’s Rule

Theorem (L’Hépital’s Rule). If f(z) and g(z) are functions differentiable near a* and

lim f(z) = lim g(x) =0 or lim f(z) = £o0 and lim g(x) = o0,

r—ra r—a Tr—a r—a
. @) . /
and limg_., 7 exists, and g'(x) # 0 for all x near a, then
lim 7f(9:) = lim F'@)

wha g(a)  ae g/(2)

Remark. The statement of L’Hopital’s Rule makes sense for one-sided limits under very similar hypotheses!
For example, using a trick below, we will consider lim,_,q+ x*.

Remark. In practice, you will almost never run into a function g for which ¢’(x) = 0 for all z sufficiently
near a. If you are always cautious about dividing by zero, you should be OK.

0
Warning. Be cognizant of the fact that L’Hopital only applies to limits having the indeterminate form 0
+o0
+00
form. We will go over some common tricks for doing this below.

. Sometimes you will have to manipulate the thing you’re taking the limit of into an expression of this

Some L’Hoépital Tricks For Unusual Indeterminate Forms

There are some standard tricks for the indeterminate forms

1. £o0 -0
2. 00— 00
3. 00
4. oo¥
5. 1

Warning (FORM: 0°°). We consider a limit of the form 0% to be determinate with limit 0. The reason
why is that if lim, 4 f(2)9®) has this form, then for all z sufficiently close to a, f(z) < 1 and g(x) > 1, so
f(2)9® < f(x) <1 (e.g., if you have half of a whole pie and take half of that half, you have one-fourth of a

pie).

! Since the limit is insensitive to any single point, we do not need to require that they be differentiable at a, in the case that
a # Foo.

11
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The Forms oo -0 and co — oo

Trick 1 (FORM: +oo - 0). If you want to find a limit lim,_,, f(x)g(z) and lim,_,, f(z) = Zoo and
lim,,, g(z) = 0, then the standard trick to convert this into a L'Hépital problem is to attack the prob-
lem as

lim f(z)g(z) = lim /(@) or lim f(z)g(xz) = lim 9(z) .

z—a z—a 1/g(x) z—a z—a 1/ f(x)
o flz) . N glx) .
The form of the limit lim,_,, ——~ is +00/ + co and the form of the limit lim,_,, ———— is 0/0, so we can
1/g(x) 1/f(x)

apply L’Hopital to either of these.

f(z) an to lim g(x)
Lg(w) O MM 1

it is the other way around. I would say that, as a rule of thumb, shoot for making your life as easy as
possible. For example, if 1/g(x) is harder to differentiate than 1/ f(z), you might consider applying L’Hé6pital

g(x)
1/f(x)
Trick 2 (FORM: oo — o0). If you want to find a limit lim,_, (f(z) — g(x)) and the form is co — o0, a

standard trick is to try and divide through by something to make the problem tractable, or put things under
a common denominator.

Remark. Sometimes, it is easier to apply L’Hopital to lim,_,, and sometimes

to lim,_,,

The Forms 0°, oo® and 1

The remaining tricks are for the indeterminate forms 09, 00? and 1°°. These all involve replacing lim, ., f(x)? (@)
by lim,_,q e9(®)10(f(#)) and then using continuity of e and the properties of logarithms conclude that

lim f(2)?® = lim 2U@7) — fim @) I @) Z Jlimasa 9@ (@),
T—a z—a T—a

Trick 3 (FORM: 0°). If you want to find a limit lim,_,, f(2)9(*) and the form is 0°, a standard trick use
the fact that e™(®) = z and try to compute

lim f(2)?®) = lim ™ 2)?®) _ iy 9(@) n(f(2))

r—a r—a r—a

Since e is continuous, lim, ,, 9@ @) is totally determined by lim, . g(z)In(f(x)). There are three
cases to consider.

1. If lim, 4 g(2) In(f(z)) = ¢, then lim, o f(z)9(®) = e°.
2. If lim,_,, g(z) In(f(z)) = oo, then lim,_,, f(x)9®
In(f( 9t

3. If lim, , g(z) In(f(x)) = —oo0, then lim,_,, f(2)9*) = O

Trick 4 (FORM: oc®). If you want to find a limit lim,_,, f(2)?*) and the form is oc?, a standard trick use
the fact that e™(®) = z and try to compute

lim f(2)!™) = lim (@) = fiy 9@ (f (@),

r—a Tr—a r—a

Since e” is continuous, lim, ,q e9® ™ @) i totally determined by lim, ,q g(x)In(f(z)). There are three
cases to consider.

1. If lim, 4 g(2) In(f(2)) = ¢, then lim, o f(z)9®) = e°.
2. If lim, 4 g(2) In(f(z)) = oo, then lim,_,, f(z )g(”f) = 0.
3. If lim, o g(z) In(f(z)) = —oo0, then lim,_,, f(x)9®) = 0.

Trick 5 (FORM: 1°°). If you want to find a limit lim,_,, f(2)9®) and the form is 1%, a standard trick use
the fact that *(®) = z and try to compute

lim f(2)?® = lim e In(f(@)7“) _ i 9@ (S (@)

r—a r—a r—a

12
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Since e” is continuous, lim, 4 e9® ™ @) is totally determined by lim, ,, g(x)In(f(z)). There are three
cases to consider.

1. If lim, 4 g(2) In(f(2)) = ¢, then lim,_,, f(z)9(®) = e°.

2. If lim,_,, g(z) In(f(z)) = oo, then lim,_,, f(x)?®) = cc.

3. If lim, 4 g(z) In(f(x)) = —o0, then lim, ,, f(2)9®) = 0.

Remark. One could also do these last few “tricks” by jumping straight to computing lim,_,, f(z) In(g(x))
and then use the fact that the logarithm is one-to-one. I would recommend doing it whatever way works best
for you—mneither is better than the other.

Some L’Hoépital Examples

Standard Examples

Example. Compute lim,_, . z — In(z).

Solution. The form of this limit is co— 00, so we should try the first trick. Divide through by x to write this as
1 1
limg oo z —In(z) = limg, 00 (1 — n(x)) By L’Hopital, lim, o <1 — n(x)) = 1 so the form of the limit
x x

1 1
limy, oo @ (1 — H(I)) is 0o+ # and the sign is 4+ so the limit lim, o z—In(z) = lim,;_, o x <1 — n(:v)) =
x T
0.

Example. Compute lim,_ o+ z*.
Solution. The form of this limit is 0°, so we’ll use the third trick. We write lim,_,o+ 2% = lim,_,o+ e™®") =

lim,_,o+ e The form of the limit z lim,_ o+ zIn(x) is 0 - —o0, so, using the first trick for limits of the
In(x)

1/x

—00
form 400 -0, we write lim, o+ 2 In(z) = lim,_,q . The form of this limit is now ——, so we may at last
00

apply L'Hopital to this. Thus,

In(z) li 71/x = lim —z=0.

z—0t 1/5!1‘ z—0t —1/.’L‘2 z—0t
Thus,
lim 2% = lim ™) = lim e*(®) = lime o+ @In(z) — 0 — 1
z—07+ x—07+ z—0t
. x
Example. Compute lim,_,q .
tan(x)

Solution. The form of the limit is 0/0, so we may apply L’Hopital directly and find that

. T LR . 1 1
lim —— =-=1.
-0 tan(z)

T a0 sec?(z) 1
Example. Compute lim,_,o+ (1 +  + 2sin(2?))1/®.

Solution. The form of this limit is 1°°, so we are in the case of the fifth trick, where f(z) = 1+ + 2sin(z?)
In(1 + z + 2sin(2?)) In(1)
0

and g(x) = 1/x. Thus, we consider lim,_,q+ . The form of this limit is . Recall that

In(1% 2sin(x))

In(1) = 0, so that, in fact, the form of lim,_,q+ is %. We are again in a position to apply

x
L’Hopital.
. In(l+az+2sin(@?)Lr . 4= In(l 4z + 2sin(z?))
lim = lim #£ .
z—0F x z—07F 1

We must compute 4= In(1 + 2 + 2sin(z?)). Let f(z) = In(z) and g(z) = 1 4+ z + 2sin(z?). Then
In(1 + 2 + 2sin(z)) = f(g(x),

since f(g(x)) = In(g(z)) = In(1 + = + 2sin(z?)). By the chain rule,

13
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L (144 28n(%) = < f(gla) = (o)) () = ——g'(2)

1 d
1+ 2+ 2sin(x? )d:z:( + o+ 25in(a?))

1 d
= 1+ —2sin(2?) ) .
1+ z + 2sin(x?) ( + dx sin(@ ))

To complete this step, we need to find, %2 sin(2?)—this is a simple application of the chain rule, and we get

%2 sin(z?) = 4z cos(z?).

Putting this together,

1 1 + 42 cos(z?)

iln(l+:1:+2sin(:v2)) = (14 4z cos(z?)) =

dx 14z + 2sin(x?) 1+ x4+ 2sin(z2)’
Finally,
i (2 2
lim In(1 + = + 2sin(z?)) LR 1+4x cos.,(x ) _ 1
T—0+ x =0+ 1+ o + 2sin(z?)
Hence,
In(1 + z + 2sin(2?)) . In(1 + 2 + 2sin(2?))
lim (14 2+ 2sin(2?))Y/* = lim e T —e x =el=e.
z—0t z—0t

Remark. If we did not know In(1), we could try to find it by remembering that 1) =1, and ¢ = 1.

* Pathological Example: Applying L’Hoépital Gives an Infinite Loop

Vaz+1

X

Example. Compute lim,_, .

Solution. The form of this limit is co/ — co. Applying L’Hopital, we find that

. Val+lwr . x/Va?+1l .
llm —_— = hm —_— = hm g
T——00 x T——00 1 T—=—00 \/g2 4+ 1

The form of this limit is —oo/co. Applying L’Hopital again gives us
lim T K lim
z——00 /2 + 1 T——00 T

which is what we wanted to compute in the first place!
We'll have to try something else. Since we are considering x — —oo, the limit is not affected by values of
x> 0, so we might as well suppose z < 0 in lim,_,_ o V22 4+ 1/z. In that case,

VZZ+1
. T +
lim = lim 5 lim —y/1+ —2
T——00 T T——00 €T T 25 00 T

Since we know that lim, , o, 1/2% =0,

241 1
lim L: lim —4/14+ — =-1.

T——00 x T——00 2

Warning. We needed to put the negative sign out front when we moved z inside the square root because,
for the purposes of the limit z — —oo, we may assume that £ < 0. This means that the entire expression

14
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V241
x

2
. - Jzo+ 1, . .
was negative in the limit  — —oo, whereas |/ ——— Is positive for all values of x < 0. This is
x
2

resolved by considering the limit of — % as x — —o0.
x
Vvr2+1 1
Remark. Let f(z) = L Applying L’Hépital told us that lim,_, f(z) = limy— 00 ) This means
x x

that if the limit of lim,_,~ f(2) = ¢ exists, then it must be that ¢ = +1, since we will have lim,_,, f(x) =
1

¢ = lim, m = 1/c. Since the sign of the limit is +/—, it will have to be that ¢ = —1. The problem
x

with this attack is in verifying that one of these limits actually exists. The argument we gave in the solution

is what, for the purposes of this class, we consider as sufficient for showing this.

Upshot. Sometimes, in applying L’Hopital, we end up where we started. This is a sign we have to do try
something else first. In other words, it can happen that L’Hopital won’t get you anywhere at first—sometimes,
like above, the method is to do some purely algebraic maneuvers to make your life easier.
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