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Introduction

The purpose of these notes is to develop the analytic theory of L-functions for
cuspidal automorphic representations of GL, over a global field. There are two
approaches to L-functions of GL,,: via integral representations or through analysis
of Fourier coefficients of Eisenstein series. In these notes we develop the theory via
integral representations.

The theory of L-functions of automorphic forms (or modular forms) via integral
representations has its origin in the paper of Riemann on the (-function [72]. How-
ever the theory was really developed in the classical context of L-functions of mod-
ular forms for congruence subgroups of SL(Z) by Hecke and his school [34]. Much
of our current theory is a direct outgrowth of Hecke’s. L-functions of automorphic
representations were first developed by Jacquet and Langlands for GL5 [30,37,39].
Their approach followed Hecke combined with the local-global techniques of Tate’s
thesis [91]. The theory for GL,, was then developed along the same lines in a long
series of papers by various combinations of Jacquet, Piatetski-Shapiro, and Sha-
lika [40-47,64,66,85]. In addition to associating an L-function to an automorphic
form, Hecke also gave a criterion for a Dirichlet series to come from a modular
form, the so called Converse Theorem of Hecke [35]. In the context of automor-
phic representations, the Converse Theorem for GL, was developed by Jacquet
and Langlands [39], extended and significantly strengthened to GL3 by Jacquet,
Piatetski-Shapiro, and Shalika [40], and then extended to GL,, [9,12].

What we have attempted to present here is a synopsis of this work and in doing
so present the paradigm for the analysis of automorphic L-functions via integral
representations. Lecture 1 deals with the Fourier expansion of automorphic forms
on GL,, and the related Multiplicity One and Strong Multiplicity One Theorems.
Lecture 2 then develops the theory of Eulerian integrals for GL,. In Lecture 3
we turn to the local theory of L-functions for GL,,, in both the archimedean and
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2 J.W. COGDELL, L-FUNCTIONS FOR GL4

non-archimedean local contexts, which comes out of the Euler factors of the global
integrals. In Lecture 4 we finally combine the global Eulerian integrals with the
definition and analysis of the local L-functions to define the global L-function of an
automorphic representation and derive their major analytic properties. In Lecture
5 we turn to the various Converse Theorems for GL,. Lecture 6 is devoted to
the application of the Converse Theorem to questions of Functoriality, that is, the
lifting or transfer of automorphic representations from a group H to GL,,.

We have tried to keep the tone of the notes informal for the most part. We
have tried to provide complete proofs where feasible, at least sketches of most major
results, and references for technical facts.

There is another body of work on integral representations of L-functions for
GL,, which developed out of the classical work on zeta functions of algebras. This
is the theory of principal L-functions for GL,, as developed by Godement and
Jacquet [31,37]. This approach is related to the one pursued here, but we have not
attempted to present it here.

The other approach to these L-functions is via the Fourier coefficients of Eisen-
stein series. In the context of automorphic representations, and in a broader context
than GL,,, this approach was originally laid out by Langlands [60] but then most
fruitfully pursued by Shahidi. Some of the major papers of Shahidi on this subject
are [74-84]. In particular, in [77] he shows that the two approaches give the same
L-functions for GL,,. We will not pursue this approach in these notes, but the
interested reader should consult Shahidi’s lectures in this volume [84].

For a balanced presentation of all three methods we recommend the book of
Gelbart and Shahidi [24]. They treat not only L-functions for GL,, but L-functions
of automorphic representations of other groups as well.

We have not discussed the arithmetic theory of automorphic representations
and L-functions. For the connections with motives, we recommend the surveys of
Clozel [5] and Ramakrishnan [68].

The original version of these notes was prepared for and distributed at the
School on Automorphic Forms on GL(n) held at The Abdus Salam International
Centre for Theoretical Physics (ICTP) in Trieste, Italy, 31 July — 18 August 2000.
That version, entitled “Notes on L-functions for GL,”, is available on the ICTP
web site. Since then I have used the ICTP notes in conjunction with lectures given
in the Programme on Lie Groups 2001 at the Institute of Mathematical Research of
Hong Kong University, 20 May — 26 June 2001, and most recently the TAS/PCMI
Graduate Summer School on Automorphic Forms held in Park City, Utah, 30 June
— 20 July 2002. In the version of these notes presented here Lectures 1-4 are
essentially the same as in the ICTP notes, with some corrections and updates.
Lecture 5 has been rewritten to conform with the presentation at the PCMI school.
Lecture 6 is new and was added to give an exposition of the application of the
Converse Theorem to the question of Functoriality, which was one of the points of
emphasis for the PCMI school. The Lectures as presented in these notes, of which
there are 6, do not coincide with the actual lectures I gave at Park City, where I
gave only 4 lectures. Lectures 1 and 2 here were covered in one lecture at Park City,
Lectures 3 and 4 were covered in one lecture, and Lectures 5 and 6 were alloted one
lecture each.

Most of what I know about L-functions for GL, I have learned through my
years of work with Piatetski-Shapiro. I owe him a great debt of gratitude for all
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that he has taught me. For several years Piatetski-Shapiro and I have envisioned
writing a book on L-functions for GL,, [17]. The contents of these notes essentially
follows our outline for that book. In particular, the exposition in Lectures 1, 2, and
parts of 3 and 4 is drawn from drafts for this project. The exposition in Lecture 5
is drawn from the survey of our work on Converse Theorems in [13]. I would like
to thank Piatetski-Shapiro for graciously allowing me to present part of our joint
efforts in these notes. I would also like to thank Jacquet for many enlightening
conversations over the years on his work on L-functions for GL,,. Finally I would
like all those who provided me with comments on and corrections to the ICTP
notes.






LECTURE 1
Fourier expansions and multiplicity one

In this section we let k& denote a global field, A, its ring of adeles, and v will
denote a continuous additive character of A which is trivial on k. For the basics
on adeles, characters, etc. we refer the reader to Weil [96] or the book of Gelfand,
Graev, and Piatetski-Shapiro [26].

We begin with a cuspidal automorphic representation (m, V;) of GL,(A). For
us, automorphic forms are assumed to be smooth (of uniform moderate growth)
but not necessarily K.,—finite at the archimedean places. This is most suitable
for the analytic theory. For simplicity, we assume the central character w, of 7 is
unitary. Then V;; is the space of smooth vectors in an irreducible unitary represen-
tation of GL,(A). We will always use cuspidal in this sense: the smooth vectors
in an irreducible unitary cuspidal automorphic representation. (Any other smooth
cuspidal representation 7 of GL,(A) is necessarily of the form 7 = 7° ® |det |*
with 7° unitary and ¢ real, so there is really no loss of generality in the unitarity
assumption. It merely provides us with a convenient normalization.) By a cusp
form on GL,(A) we will mean a function lying in a cuspidal representation. By a
cuspidal function we will simply mean a smooth function ¢ on GL,,(k)\ GL,(A) sat-
isfying fU( K\ U(A) p(ug) du = 0 for every unipotent radical U of standard parabolic
subgroups of GL,,.

The basic references for this section are the papers of Piatetski-Shapiro [64,66]
and Shalika [85].

1.1. Fourier Expansions

Let ¢(g) € Vi be a cusp form in the space of w. For arithmetic applications, and
particularly for the theory of L-functions, we will need the Fourier expansion of
©(9)-

If f(7) is a holomorphic cusp form on the upper half plane ), say with respect
to SLa(Z), then f is invariant under integral translations, f(7+1) = f(7) and thus
has a Fourier expansion of the form

o0 .
f(T) — Z an627rm7"
n=1

5
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If ¢(g) is a smooth cusp form on GL2(A) then the translations correspond
1 =z
01 } and p(ng) = ¢(g) for

n € Nao(k). So, if ¢ is any continuous character of k\A we can define the 1-Fourier
coefficient or »-Whittaker function by

Wou(g) = /Mcp ((é ”j) g> ¢ Nz da.

We have the corresponding Fourier expansion

0(9) =Y Weu(g)-
v

to the maximal unipotent subgroup N, = {n =

(Actually from abelian Fourier theory, one has

¢ ((é f) g) = %:Ww,w(g)w(m)

as a periodic function of z € A. Now set z = 0.)

If we fix a single non-trivial character ¢ of k\A, then by standard duality
theory [26,96] the additive characters of the compact group k\A are isomorphic to
k via the map v € k — ¢, where 1, is the character ¢, (z) = ¥(yzr). Now, an

elementary calculation shows that W, y_(9) = W 4 <<7 1) g) if v #£0. If we
set W, = W,y for our fixed ¢, then the Fourier expansion of ¢ becomes

o0 =Wo + S W, (7))

yEEX

Ww’wO(g):/k\ASO((é T) g> dx =0

and the Fourier expansion for a cusp form ¢ becomes simply

o=z (( 1))

yekX

Since ¢ is cuspidal

We will need a similar expansion for cusp forms ¢ on GL,(A). The translations
still correspond to the maximal unipotent subgroup

1 Z1,2 *

1 Tp—1,n
0 1
but now this is non-abelian. This difficulty was solved independently by Piatetski-
Shapiro [64] and Shalika [85]. We fix our non-trivial continuous character ¢ of k\ A

as above. Extend it to a character of N,, by setting ¥(n) = ¢¥(z12 + -+ + Tp_1,n)
and define the associated Fourier coefficient or Whittaker function by

Wolg) = Wy lg) = /N oy £V ) dn
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Since ¢ is continuous and the integration is over a compact set this integral is
absolutely convergent, uniformly on compact sets. The Fourier expansion takes the
following form.

Theorem 1.1. Let ¢ € V; be a cusp form on GL,(A) and W, its associated
1-Whittaker function. Then

e w0 ))
YENn_1(K)\GLn_1(k)

with convergence absolute and uniform on compact subsets.

The proof of this fact is an induction. It utilizes the mirabolic subgroup P,
of GL,, which seems to be ubiquitous in the study of automorphic forms on GL,,.
Abstractly, a mirabolic subgroup of GL,, is simply the stabilizer of a non-zero vector
in (either) standard representation of GL,, on k™. We denote by P,, the stabilizer
of the row vector e, = (0,...,0,1) € k™. So

P, = {p = <h Z{) |h € GL,_1,y € kn_l} ~GL,—1 XY,

N Y T

Simply by restriction of functions, a cusp form on GL,,(A) restricts to a smooth
cuspidal function on P, (A) which remains left invariant under P, (k). (A smooth
function ¢ on P, (A) which is left invariant under P, (k) is called cuspidal if

/ p(up) du =0
U(k)\ U(A)

for every standard unipotent subgroup U C P,.) Since P,, D N,, we may define a
Whittaker function attached to a cuspidal function ¢ on P, (A) by the same integral
as on GL,(A), namely

W, (p) = / o(np)y~(n) dn.
N, (k)\ Ny (4)

where

We will prove by induction that for a cuspidal function ¢ on P,,(A) we have
- 7 0
e(p) = > W, <<0 1) p)
YENp_1(k)\ GLn_1 (k)

with convergence absolute and uniform on compact subsets.

The function on Y, (A) given by y — ¢(yp) is invariant under Y, (k) since
Y, (k) C P, (k) and ¢ is automorphic on P, (A). Hence by standard abelian Fourier
analysis for Y,, ~ k"' we have as before

¢(p) = Y ealp)
AE(km—T\AR—1)

where

oa(p) = / Pup)A () dy.
Yo (k)\Yn(4)
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Now, by duality theory [96], (k”mfl) ~ k"~L. In fact, if we let {, ) denote
the pairing k"~! x k"1 — k by (z,y) = Y_ x;y; we have

p) = > wu(p)
zckn—t

where now we write
02 (p) = / eyp)y =" ((z,y)) dy.
kr—1\Ar—1

GL,—1(k) acts on k"' with two orbits: {0} and k"~ —{0} = GL,—1(k) te,—1
where e, _1 = (0,...,0,1). The stabilizer of %e,,_; in GL,_1(k) is *P,,_1. Therefore,
we may write

»(p) = polp) + > Prten_s (P):
YEGLn—1(k)/*Pr-1(k)

Since ¢(p) is cuspidal and Y, is a standard unipotent subgroup of GL,,, we see
that

wo(p) = / e(yp) dy = 0.
Yo (B)\ Yo (4)

On the other hand an elementary calculation as before gives

Y 0
Prrtens (P) = Pre, <<g 1) p) :

pp) = > Pie, ((g 2) p)

YEPn—1(k)\ GLn—1(k)

Hence we have

and the convergence is still absolute and uniform on compact subsets.

Note that if n = 2 this is exactly the fact we used previously for GLo. This
then begins our induction.

Next, let us write the above in a form more suitable for induction. Structurally,
we have P,, = GL,,_1 xY,, and N,, = N,,_; xY,,. Therefore, N,,_; \ GL,,_; ~
N, \ P,. Furthermore, if we let ﬁn,l =P, 1xY, CP,, then P,y \GL,,—; ~
P,_1\ P,.. Next, note that the function ore._, (p) satisfies, for y € Y,,(A) ~ A",

Pren_y (YP) = Y(Yn—1)¢te,_, (p)-
Since 1 is trivial on k we see that ¢t _, (p) is left invariant under Y, (k). Hence
0
p(p) = > Pren_s <<g 1) p) = > e, (0p)-
YEPn_1(k)\ GLn—1(k) 6€P,_1(k)\ Pn(k)

To proceed with the induction, fix p € P,,(A) and consider the function ¢'(p') =
©p(p') on Pp_1(A) given by

¢'(p') = pre,_, ((%I (1)> p) :

¢’ is a smooth function on P,,_1 (A) since ¢ was smooth. One checks that ¢ is left
invariant by P,,_1 (k) and cuspidal on P,,_1(A). Then we may apply our inductive
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assumption to conclude that
"0
¢'(p) = > W <<% 1) p’)
7' ENn—2(k)\ GLn_2(k)

= > (E)Wer (8'p').

0'€Np_1(k)\Pr_1
If we substitute this into the expansion for ¢(p) we see

e(p) = > Pre,_1 (6P)

0EP, _1(k)\ Py (k)

= > @hp(1)

0EP, 1 (k)\ Pn (k)

Z Z Ww%p (&")-

§€P_1(k)\ Pn (k) 0 ENn—1(k)\ Pr_1(k)

Now, as before, N,,_; \P,,-1 ~ N, \Pn ;and N,, ~N,,_1 xY,,_;. Thus

W, @)= [ P08 () d
Np—1(k)\ Nn-1(4)

- / / '8 Sp) (1 o (') dy dn
Ny 1(E)\ Np—1( Y. (k)\ Yn(4)

:/ o(nd'dp)y=t(n) dn
N, (k)\ Non (

=W,(d' 6p)
and so
p(p) = > > W, (8'0p)
6€P,_1(k)\ Pp(k) 8’ €N, (k)\P, _1(k)
= Z Wnp (51))
GEN,L (k)\ Pr (k)

> (6 D))

"/eanl(k)\ GLnfl(k)

which was what we wanted.

To obtain the Fourier expansion on GL,, from this, if ¢ is a cusp form on
GL,(A), then for g € Q a compact subset the functions ¢,(p) = ¢(pg) form a
compact family of cuspidal functions on P, (A). So we have

_ 7 0
‘Pg(l) = Z W@g <<0 1))
YENn —1(k)\ GLn -1 (k)
with convergence absolute and uniform. Hence
_ 7 0
YENn —1(k)\ GLn—1(k)

again with absolute convergence, uniform for g € Q.
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1.2. Whittaker Models and the Multiplicity One Theorem

Consider now the functions W, appearing in the Fourier expansion of a cusp form ¢.
These are all smooth functions W(g) on GL,,(A) which satisty W (ng) = ¢ (n)W (g)
for n € N, (A). If we let W(m,¢) = {W, | ¢ € Vi } then GL,(A) acts on this space
by right translation and the map ¢ — W, intertwines Vi with W(m,¢). W(rm, )
is called the Whittaker model of 7.

The notion of a Whittaker model of a representation makes perfect sense over
a local field or even a finite field. Much insight can be gained by pursuing these
ideas over a finite field [28,67], but that would take us too far afield. So let k, be a
local field (a completion of k for example [26,96]) and let (7, V;,) be an irreducible
admissible smooth representation of GL,, (k,). Fix a non-trivial continuous additive
character ¢, of k,. Let W(1,) be the space of all smooth functions W(g) on
GL,,(ky) satisfying W (ng) = 1,(n)W(g) for all n € N, (k,), that is, the space of all
smooth Whittaker functions on GL,,(k,) with respect to ¢,. This is also the space
of the smooth induced representation Indﬁf" (¥y). GL,(ky) acts on this by right
translation. If we have a non-trivial continuous intertwining V,, — W(y,) we will
denote its image by W(m,, ¥,) and call it a Whittaker model of 7.

Whittaker models for a representation (w,,V;,) are equivalent to continu-
ous Whittaker functionals on V. , that is, continuous functionals A, satisfying
Ay (my(n)&y) = Wy(n)Ay (&) for all n € Ny (ky). To obtain a Whittaker functional
from a model, set A, (&) = We, (e), and to obtain a model from a functional, set
We, (9) = Ay(my(9)€y). This is a form of Frobenius reciprocity, which in this con-
text is the isomorphism between Homy , (Vz,,Cy, ) and Homar,, (Vz, , Indgf" (1))
constructed above.

The fundamental theorem on the existence and uniqueness of Whittaker func-
tionals and models is the following.

Theorem 1.2. Let (m,, V;,) be a smooth irreducible admissible representation of
GL,(ky). Let 1, be a non-trivial continuous additive character of k,. Then the
space of continuous v,—~Whittaker functionals on V., is at most one dimensional.
That is, Whittaker models, if they exist, are unique.

This was first proven for non-archimedean fields by Gelfand and Kazhdan [27]
and their results were later extended to archimedean local fields by Shalika [85].
The method of proof is roughly the following. It is enough to show that W(x,) =
Indgf" (1) is multiplicity free, i.e., any irreducible representation of GL,,(k,) oc-
curs in W(¢,) with multiplicity at most one. This in turn is a consequence of the
commutativity of the endomorphism algebra End(Ind(t,)). Any intertwining map
from Ind(%)y) to itself is given by convolution with a so-called Bessel distribution,
that is, a distribution B on GL,(k,) satisfying B(nigns) = ¥, (n1)B(g)1y(n2) for
ny,ny € N,(ky). Such quasi-invariant distributions are analyzed via Bruhat the-
ory. By the Bruhat decomposition for GL,,, the double cosets N,, \ GL,, /N,, are
parameterized by the monomial matrices. The only double cosets that can support
Bessel distributions are associated to permutation matrices of the form
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and the resulting distributions are then stable under the involution g — ¢7 =
1
wn g w, with w, = the long Weyl element of GL,,. Thus for the
1
convolution of Bessel distributions we have By By = (B1%B2)? = BJ+*B{ = ByxDBj.
Hence the algebra of intertwining Bessel distributions is commutative and hence
W(1b,) is multiplicity free.

A smooth irreducible admissible representation (7, V) of GL, (k,) which pos-
sesses a Whittaker model is called generic or non-degenerate. Gelfand and Kazhdan
in addition show that m, is generic iff its contragredient 7, is generic, in fact that
7 ~ m where ¢ is the outer automorphism ¢g* = ‘g1, and in this case the Whit-
taker model for 7, can be obtained as W(7,, ¢, ') = {W(g) = W (w, g7') | W €
W(m, o) }-

As a consequence of the local uniqueness of the Whittaker model we can con-
clude a global uniqueness. If (7, V) is an irreducible smooth admissible representa-
tion of GL,,(A) then 7 factors as a restricted tensor product of local representations
m ~ ®'m, taken over all places v of k [19,26]. Consequently we have a continuous
embedding V,, < V; for each local component. Hence any Whittaker functional
A on V; determines a family of local Whittaker functionals A, on each V6 and
conversely such that A = ®'A,. Hence global uniqueness follows from the local
uniqueness. Moreover, once we fix the isomorphism of V; with ®'V,  and define
global and local Whittaker functions via A and the corresponding family A, we
have a factorization of global Whittaker functions

We(g) = [T We. (90)

for £ € V, which are factorizable in the sense that £ = ®'&, corresponds to a
pure tensor. As we will see, this factorization, which is a direct consequence of the
uniqueness of the Whittaker model, plays a most important role in the development
of Eulerian integrals for GL,,.

Now let us see what this means for our cuspidal representations (mw,V;) of
GL,,(A). We have seen that for any smooth cusp form ¢ € V; we have the Fourier

expansion o 5 w, <<7 1) g) ‘

YENR—1(kF)\GLn_1(k)
We can thus conclude that W(m, 1) # 0 and that 7 is (globally) generic with
Whittaker functional

Ap) = W(e) = / o(ngy"(n) dn.

Thus ¢ is completely determined by its associated Whittaker function W,. From
the uniqueness of the global Whittaker model we can derive the Multiplicity One
Theorem of Piatetski-Shapiro [66] and Shalika [85].

Theorem (Multiplicity One). Let (m,V;) be an irreducible smooth admissible
representation of GL,(A). Then the multiplicity of 7 in the space of cusp forms on
GL,(4) is at most one.

Proof: Suppose that 7 has two realizations (w1, Vy,) and (w2, Vy,) in the space of
cusp forms on GL,(A). Let ¢; € Vy, be the two cusp forms associated to the vector
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& € V. Then we have two nonzero Whittaker functionals on V;, namely A;(§) =
W, (e). By the uniqueness of Whittaker models, there is a nonzero constant ¢ such
that Ay = cAs. But then we have W, (9) = A1(7(9)§) = cAax(m(9)€) = Wy, (9)
for all g € GL,(A). Thus

1(9) = > W, ((7 1) g)

YENR —1(E)\GLn_1(k)

e > wa((7)e) =

YENR —1(E)\GLn_1(k)

But then V;, and V, have a non-trivial intersection. Since they are irreducible
representations, they must then coincide. d

1.3. Kirillov models and the Strong Multiplicity One Theorem

The Multiplicity One Theorem can be significantly strengthened. The Strong Mul-
tiplicity One Theorem is the following.

Theorem (Strong Multiplicity One). Let (71, V;,) and (72, V;,) be two cuspidal
representations of GL,,(A). Suppose there is a finite set of places S such that for
all v ¢ S we have 7, ~ 7 ,. Then m = ma.

There are two proofs of this theorem. One is based on the theory of L-functions
and we will come to it in Lecture 4. The original proof of Piatetski-Shapiro [66] is
based on the Kirillov model of a local generic representation.

Let k, be a local field and let (m,,V;,) be an irreducible admissible smooth
generic representation of GL,(k,), such as a local component of a cuspidal rep-
resentation 7. Since m, is generic it has its Whittaker model W(n,,,). Each
Whittaker function W € W(n,,,), since it is a function on GL,(k,), can be
restricted to the mirabolic subgroup P, (k,). A fundamental result of Bernstein
and Zelevinsky in the non-archimedean case [1] and Jacquet and Shalika in the
archimedean case [45] says that the map &, — We,|p, (k,) is injective. Hence the
representation has a realization on a space of functions on P, (k,). This is the
Kirillov model

Ko, o) = {W()IW € W(my,1u)}-

P, (k,) acts naturally by right translation on K(m,,,) and the action of all of
GL,,(k,) can be obtained by transport of structure. But for now, it is the structure
of K(my,v,) as a representation of P (k,) which is of interest.

For k, a non-archimedean field, let (7,,V,,) be the compactly induced repre-

sentation 7, = ind;:((],z:))(wv). Then Bernstein and Zelevinsky have analyzed the

representations of P, (k,) and shown that whenever 7, is an irreducible admis-
sible generic representation of GL,,(k,) then K(m,,,) contains V; as a P, (k,)
sub-representation and if m, is supercuspidal then K(m,,,) = V;, [1].

For k, archimedean, then we let (7,,V;,) be the smooth vectors in the irre-
ducible smooth unitarily induced representation Indgi((lfcz))(wv). Then Jacquet and
Shalika have shown that as long as m, is an irreducible admissible smooth uni-

tary representation of GL,,(k,) then in fact K(m,,v,) = V;, as representations of
P, (ky) [45, Remark 3.15].
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Therefore, for a given place v the local Kirillov models of any two irreducible
admissible generic smooth unitary representations have a certain P, (k, )-submodule
in common, namely V.

Let us now return to Piatetski-Shapiro’s proof of the Strong Multiplicity One
Theorem [66].

Proof: We begin with our cuspidal representations m; and m2. Since m and m
are irreducible, it suffices to find a cusp form ¢ € V;, N V,,. Let P, = P, Z,
be the (n —1,1) parabolic subgroup of GL,. Then PJ (k)\ P, (A) is dense in
GL,(k)\ GL,,(A). (This follows from the fact that P! \ GL,, ~ P"~! and P" (k)
is dense in P""1(A).) So it suffices to find find two cusp forms ¢; € V;, which agree
on P (A). If we let w; be the central character of m; then by assumption wy , = wa
for v ¢ S and the weak approximation theorem then implies wy = ws. So it suffices
to find two ¢; which agree on P, (A). But as in the proof of the Multiplicity One
Theorem, via the Fourier expansion, to show that o1 (p) = ¢2(p) for p € P,,(4) it
suffices to show that W, (p) = W, (p). Since we can take each W, to be of the
form [], W, , then this reduces to a question about the local Kirillov models. For
v ¢ S we have by assumption that (1 4,%y) = K(72,4,%,) and for v € S we have
seen that V., C K(m1,4,%y)NK(72,0,%y). So we can construct a common Whittaker
function in the restriction of W(m;, ) to P, (A). This completes the proof. O






LECTURE 2
Eulerian integrals for GL,

Let f(7) again be a holomorphic cusp form of weight & on $ for the full modular
group with Fourier expansion

f(T) — Zane%rin'r_

Then Hecke [34] associated to f an L-function

L(s, f) = X:czn?fS

and analyzed its analytic properties, namely continuation, order of growth, and
functional equation, by writing it as the Mellin transform of f

Als, f) = @)~ T(s)L(s, f) = / " Himyrdry.

An application of the modular transformation law for f(7) under the transformation
T +— —1/7 gives the functional equation

A(Sa f) = (_1)k/2A(k -5 f)

Moreover, if f was an eigenfunction of all Hecke operators then L(s, f) had an Euler
product expansion

L(S,f) _ H(]' _ appfs +pk7172s)71‘

p

We will present a similar theory for cuspidal representations (m, V) of GL,,(4).
For applications to functoriality via the Converse Theorem (see Lecture 6) we will
need not only the standard L-functions L(s, ) but the twisted L-functions L(s, 7 x
7') for (7', V) a cuspidal automorphic representation of GL,, (A) for m < n as well.
One point to notice from the outset is that we want to associate a single L-function
to an infinite dimensional representation (or pair of representations). The approach
we will take will be that of integral representations, but it will broadened in the
sense of Tate’s thesis [91].

The basic references for the material in this section are Jacquet-Langlands [39],
Jacquet, Piatetski-Shapiro, and Shalika [40], and Jacquet and Shalika [45].

15



16 J.W. COGDELL, L-FUNCTIONS FOR GL4

2.1. Eulerian integrals for GL,

Let us first consider the L-functions for cuspidal representations (7, V) of GL2(4)
with twists by an idele class character x, or what is the same, a (cuspidal) auto-
morphic representation of GL1(A), as in Jacquet-Langlands [39].

Following Jacquet and Langlands, who were following Hecke, for each ¢ € V.
we consider the integral

a s
Hso = [ (")) @l ava
kX \ AX

Since a cusp form on GLy(A) is rapidly decreasing upon restriction to A* as in
the integral, it follows that the integral is absolutely convergent for all s, uniformly
for Re(s) in an interval. Thus I(s;¢,x) is an entire function of s, bounded in any
vertical strip a < Re(s) < b. Moreover, if we let ¢(g) = ¢(%g™!) = p(w, ig~*) then
@ € Vz and the simple change of variables a — a ! in the integral shows that each

integral satisfies a functional equation of the form

I(s;,x) =1(1— 550, x ).

So these integrals individually enjoy rather nice analytic properties.
If we replace @ by its Fourier expansion from Lecture 1 and unfold, we find

I(s;0,x :/ 4% (Wl >Xa al*~1? d%a
o= T w (" )@k

yEEX

a o
:/ W, < 1) x(@)|al*~Y? d*a
AX

where we have used the fact that the function y(a)|a|*~'/? is invariant under k*. By

standard gauge estimates on Whittaker functions [40] this converges for Re(s) >> 0
after the unfolding. As we have seen in Lecture 1, if W, € W(m, 1) corresponds to
a decomposable vector ¢ € V;; ~ ®'V, then the Whittaker function factors into a
product of local Whittaker functions

Wolg) = [T We. (90).

Since the character y and the adelic absolute value factor into local components and
the domain of integration A* also factors we find that our global integral naturally
factors into a product of local integrals

a s— Ay s—1/:
@W& Jﬂww”%w=HLW@( JMMM|Ww%

with the infinite product still convergent for Re(s) >> 0, or
I(s;0,x) = [ %ols: W, x0)
v
with the obvious definition of the local integrals
B W) = [ W (")) wlalal 2 aa,

Thus each of our global integrals is Eulerian.
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In this way, to m and x we have associated a family of global Eulerian integrals
with nice analytic properties as well as for each place v a family of local integrals
convergent for Re(s) >> 0.

2.2. Eulerian integrals for GL, x GL,, with m <n

Now let (m,V;) be a cuspidal representation of GL,(A) and (7', V) a cuspidal
representation of GL,, (A) with m < n. Take ¢ € V. and ¢’ € V... At first blush, a
natural analogue of the integrals we considered for GLy with GL; twists would be

/ . (h ) o ()] des(R)*~ "™/ dh,
GL;, (k)\ GL ., (A) In_m

This family of integrals would have all the nice analytic properties as before (entire
functions of finite order satisfying a functional equation), but they would not be
Eulerian except in the case m = n — 1, which proceeds exactly as in the GL, case.

The problem is that the restriction of the form ¢ to GL,, is too brutal to
allow a nice unfolding when the Fourier expansion of ¢ is inserted. Instead we will
introduce projection operators from cusp forms on GL,(A) to cuspidal functions
on Pp,+1(A) which are given by part of the unipotent integration through which
the Whittaker function is defined.

2.2.1. The projection operator

In GL,, let Y, ,, be the unipotent radical of the standard parabolic subgroup
attached to the partition (rmn + 1,1,...,1). If ¢ is our standard additive character
of k\A, then ¢ defines a character of Yy, ,, (A) trivial on Y,, n, (k) since Yp p, C Npy.
The group Y, is normalized by GL,,+; C GL, and the mirabolic subgroup
Pr1 C GL;,41 is the stabilizer in GL,,+; of the character .

Definition . If ¢(g) is a cusp form on GL,(A) define the projection operator P?,
from cusp forms on GL,(A) to cuspidal functions on P,,11(A) by

n—m-—1
Pre(p) = Idet(p)r( >—) / o <y (p , )) 5 y) dy
Yo, m(E)\ Yn,m(4) n—m—1
for p € P11 (A).

As the integration is over a compact domain, the integral is absolutely conver-
gent. We first analyze the behavior on P, 41 (A).

Lemma 2.1. The function P?,¢(p) is a cuspidal function on P,,11(4).

Proof: Let us let ¢'(p) denote the non-normalized projection, i.e., for p € P, 41 (4)

set,
-1

, (n=m=ly o,
¢'(p) = [det(p)|\ 2 PLe(p).
It suffices to show this function is cuspidal. Since ¢(g) was a smooth function on
GL,(4), ¢'(p) will remain smooth on P41 (A). To see that ¢'(p) is automorphic,
let v € Ppyt1(k). Then

¢'(vp) = /Yn,mw)\m,mm) ¢ <y <g ?) <€ ?)) ™ (y) dy.
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Since v € Ppy41(k) and Py,4q normalizes Y, ,,, and stabilizes ¢ we may make the

0 I

§ o5 )0
¢'(vp) /Yn‘m(k)\Ym(A)w«O 1vlo 1)) ) dy.

Since p(g) is automorphic on GL,,(A) it is left invariant under GL,, (k) and we find
that ¢’ (yp) = ¢'(p) so that ¢’ is indeed automorphic on Py, 41 (A).

We next need to see that ¢’ is cuspidal on Py, 1(A). To this end, let U C Pyq1
be the standard unipotent subgroup associated to the partition (n1,...,n,) of m+1.
Then we must compute the integral

/ ¢ (up) du.
Uk)\ U(4)

Inserting the definition of ¢’ we find

/ ¢ (up) du
U(k)\ U(A)

u 0\(p O _1
= @ (y< ) < )) Y™ (y) dy du.
/Uw)\U(A) /Yn,mw)\m,m(A) 0 IJ\0 I

The group U' = U x Y,, 1, is the standard unipotent subgroup of GL,, associated to
the partition (ni,...,n,,1,...,1) of n. We may decompose this group in a second
manner. If we let U" be the standard unipotent subgroup of GL,, associated to
the partition (ni,...,n,._1,n, +n —m — 1) of n and let Y" be the subgroup of
GL,, obtained by embedding unipotent subgroup of GL,,, 4,—m—_1 associated to the
partition (n,,1,...1) into GL,, by

I g 0
yll — < ni+ 0+nr—1 y”>

then U' = Y" x U". If we extend the character ¢ of Y, , to U' by making it
trivial on U, then in the decomposition U = Y" x U”, 1) is dependent only on
the Y” component and there it is the standard character ¢ on Y". Hence we may
rearrange the integration to give

/ ¢ (up) du
Uk)\ U(4)

nfI 0O > (p 0)) =1, n "
= plu du"p—"(y") dy".
/);”(k)\Y”(A) /U”(k)\U”(A) ( <0 y” 0 I

But since ¢ is cuspidal on GL,, and U” is a standard unipotent subgroup of GL,

then
I 0 p 0
u du" =0
/U”(Ic)\U”(A) 4 < (0 y”> (0 I>>

from which it follows that

~1
change of variable y (g ?) Yy <7 0) in this integral to obtain

/ ¢ (up) du =0
U(k)\ U(4)
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so that ¢’ is a cuspidal function on P, 1 (4). O

From Lecture 1, we know that cuspidal functions on P, 11 (A) have a Fourier
expansion summed over N, (k)\ GL,,(A). Applying this expansion to our projected
cusp form on GL,,(A) we are led to the following result.

Lemma 2.2. Let ¢ be a cusp form on GL,(A). Then for h € GL,,,(A) we have
the Fourier expansion

n h _(nzm=1 0 h
e (") =tawm CHFD 5w (G0 ) (" )
YENm (k)\ GLom (k) e e

with convergence absolute and uniform on compact subsets.

Proof: Once again let

n—m—1

() = | det(p)| ) Bn ()

with p € Py,41(A). Since we have verified that ¢'(p) is a cuspidal function on
P,.+1(A) we know that it has a Fourier expansion of the form

) — v 0
¢'(p) = > Ww<<0 1> p)
YEN (k)\ L (k)

where
Wy (p) = / @' (np)y~" (n) dn.
N1 (E)\ N 11 (4)

To obtain our expansion for P}, we need to express the right hand side in terms
of ¢ rather than ¢'.
We have

W (p) = ¢ (n'p)yp~"(n') dn'

/Nm+1(k)\Nm+1(A)

B np 0 1 du b= (") dn/
= elyl g 7))¢ W dy () dn'.
Nt 1 (B)\ N1 (A) 7 Yoo (k)\ Yo m (A)

It is elementary to see that the maximal unipotent subgroup N, of GL, can be
factored as N,, = Ny41 X Y, and if we write n = n'y with n’ € Ny,41 and
Yy € Yp,m then ¢(n) = ¢(n')(y). Hence the above integral may be written as

0 _ P 0
W:p:/ (n(p >> Yn dnzW( )
o) ORISR T R G U A v ) ?\0 Inom

Substituting this expression into the above we find that
n—m-—1
w2 () )
YEN o (K)\ GLn (k) o o

and the convergence is absolute and uniform for h in compact subsets of GL,, (A).
O
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2.2.2. The global integrals

We now have the prerequisites for writing down a family of Eulerian integrals for
cusp forms ¢ on GL,, twisted by automorphic forms on GL,,, for m < n. Let ¢ € V;;
be a cusp form on GL,(A) and ¢’ € V;r a cusp form on GL,,(4). (Actually, we
could take ¢’ to be an arbitrary automorphic form on GL,(A).) Consider the
integrals

(h 0 o
Hsigs) = | Phe () ) 0l det(i 2 an.
GLm (k)\ GLon (4)

The integral I(s; p, ') is absolutely convergent for all values of the complex param-
eter s, uniformly in compact subsets, since the cusp forms are rapidly decreasing.
Hence it is entire and bounded in any vertical strip as before.

Let us now investigate the Eulerian properties of these integrals. We first
replace P}, ¢ by its Fourier expansion.

W (b0 .
Hsigs) = | e (5 1.0 ) ol e an
GLum (k)\ GLum (A) n—m

Z W 5 0 h 0
GLyn (k)\ GL (A TN\O L) N0 T
m (RN GLm (8) L eN, (k)\ GL ... (k)

¢ (h)| det(h)[>~("=m)/2 gp,

Since ¢'(h) is automorphic on GL,,(A) and |det(y)| = 1 for v € GL,,(k) we
may interchange the order of summation and integration for Re(s) >> 0 and then
recombine to obtain

h 0 s—(n—m)/:
I(s;,9") :/ W, (0 I ) ¢ (h)| det(h)[>~(m=m)/2 gp,
Nom (k)\ GLo, (A) n—m

This integral is absolutely convergent for Re(s) >> 0 by the gauge estimates of [40,
Section 13] and this justifies the interchange.

Let us now integrate first over N,,(k)\ N,,,(A). Recall that for n € N,,,(A) C
N,.(A) we have W, (ng) = ¥(n)W,(g). Hence we have

0 \/h 0
o) = [ Lo ™o (622 6 22)
( ) N\ CLon (8) I N\ N~ \NO T ) N0 L

©'(nh) dn | det(h)|>=(*=™)/2 dp,

h 0
Lo 1)
Nom (A)\ GL,», (4) n—m

/ $(n)g' (nh) dn |det(h)|*=("=m™)/2 dp
Non (k)\ N (8)

- / W, (h Y ) W, ()| det(R)[*= (=72
N (4)\ GLon (A) 0 In-m
= U (s; W, W)
where W, (h) is the ¢»p~1-Whittaker function on GL,,(A) associated to ¢', i.e.,
Wi = [ ¢ (nh)(n) di,
N (F)\ N (4)

and we retain absolute convergence for Re(s) >> 0.
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From this point, the fact that the integrals are Eulerian is a consequence of
the uniqueness of the Whittaker model for GL,,. Take ¢ a smooth cusp form in
a cuspidal representation 7 of GL,(A). Assume in addition that ¢ is factorizable,
i.e., in the decomposition 7 = ®'m, of 7 into a restricted tensor product of local
representations, ¢ = ®¢, is a pure tensor. Then as we have seen there is a choice
of local Whittaker models so that W, (g) = [[ Wy, (9»). Similarly for decomposable
¢' we have the factorization W, (h) = [[W,, (hv).

If we substitute these factorizations into our integral expression, then since the
domain of integration factors Ny, (A)\ GL,,(A) = [ Npn(ky)\ GLy (k) we see that
our integral factors into a product of local integrals

U(s;Wy, W)

h’u 0 s—(n—m
-1/ o (6 10 ) Wl )l der(h) 02 a,
v ¢ N (ko)\ GLy, (ko)

Infm
If we denote the local integrals by
Uy (s:Wo,, Wg’a;)

-/ W, (' 10 ) Wil dettly @2 an,
N (ko) \ GLimn (ko) nom

which converges for Re(s) >> 0 by the gauge estimate of [40, Prop. 2.3.6], we see

that we now have a family of Eulerian integrals.

Now let us return to the question of a functional equation. As in the case of
GL,, the functional equation is essentially a consequence of the existence of the
outer automorphism g — t(g) = g* = g~ of GL,. If we define the action of this
automorphism on automorphic forms by setting @(g) = p(g*) = p(w,rg*) and let
P =10 P" o then our integrals naturally satisfy the functional equation

I(S: 907901) = ~(1 - S5 &7 &I)
where

™n h s—1/-
fsigs) = | Bro (") a2 an.
GL o, (k)\ GLon (4)
We have established the following result.

Theorem 2.1. Let ¢ € V; be a cusp form on GL,,(A) and ¢’ € V. a cusp form on
GL,(A) with m < n. Then the family of integrals I(s; ¢, ¢') define entire functions
of s, bounded in vertical strips, and satisfy the functional equation

1(5,80:90,) = [(]‘ - 8;9/57 (15I)

Moreover the integrals are Eulerian and if ¢ and ¢’ are factorizable, we have
I(SHP;‘P’) = H‘IIU(S; Wwng’aL)

with convergence absolute and uniform for Re(s) >> 0.

The integrals occurring in the right hand side of our functional equation are
again Eulerian. One can unfold the definitions to find first that

(1= 53,8) = ¥(1 ~ 5 plwn,m) Wy, W)
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where the unfolded global integral is
B h
U(s; W, W') = //W t Iymet dz W'(h)| det(h)|*~("=™)/2 qn
1

with the h integral over N, (A)\ GL,(A) and the x integral over M,,_,—1.,(A), the
space of (n —m — 1) x m matrices, p denoting right translation, and w, »,, the Weyl
1
element wy, ;, = <Im w ) with wp—m = the standard long Weyl
n—m 1

clement in GLy,_,,. Also, for W € W(r, ) we set W (g) = W (wng*) € W(F,1~1).
The extra unipotent integration is the remnant of F’n‘l As before, \Tl(s, W, W') is
absolutely convergent for Re(s) >> 0. For ¢ and ¢’ factorizable as before, these
integrals W(s; W,,, W) will factor as well. Hence we have

‘T’((S; W, Wg’a’) = H ‘T’v(SQ We., Wg’a;)
where

hy
{Iva(s;anwzi) ://Wv Ty [n—m—l d-’L'v Wé(hv)|det(hv)|s—(n—m)/2 dhv
1

where now with the h, integral is over N,,, (k,)\ GL,, (k,) and the z, integral is over
the matrix space M, _m_1,m(ky). Thus, coming back to our functional equation,
we find that the right hand side is Eulerian and factors as

[(1-5,3,8) = U(1 = 8 p(wn,m)We, Wh) = [] Tul1 = 85 p(wn,n) W, , WL, ).

2.3. Eulerian integrals for GL, x GL,

The paradigm for integral representations of L-functions for GL, x GL, is not
Hecke but rather the classical papers of Rankin [71] and Selberg [73]. These were
first interpreted in the framework of automorphic representations by Jacquet for
GL» x GL [37] and then Jacquet and Shalika in general [45].

Let (w,V;) and (7', Vi) be two cuspidal representations of GL,,(A). Let p € V,
and ¢’ € V;» be two cusp forms. The analogue of the construction above would be
simply

/ pl9)¢!(9)| det(9)]" do.
GL, (k)\ GL, (4)
This integral is essentially the L?-inner product of ¢ and ¢’ and is not suitable
for defining an L-function, although it will occur as a residue of our integral at a
pole. Instead, following Rankin and Selberg, we use an integral representation that
involves a third function: an Eisenstein series on GL, (A). This family of Eisenstein
series is constructed using the mirabolic subgroup once again.

2.3.1. The mirabolic Eisenstein series

To construct our Eisenstein series we return to the observation that P, \ GL, ~
k™ — {0}. If we let S(A™) denote the Schwartz—Bruhat functions on A™, then
each ® € S defines a smooth function on GL,(A), left invariant by P,(A), by
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g+ ®((0,...,0,1)9) = ®(e,g). Let n be a unitary idele class character. (For our
application n will be determined by the central characters of 7 and #’.) Consider
the function

Flg.@is.) = det(g)l” [ @(aesg)lanla) d*a.

If we let P}, = Z, P,, be the parabolic of GL,, associated to the partition (n —1,1)

then one checks that for p’ = (8 Z) € P! (A) with h € GL,,_1(A) and d € A* we

have,
F(p'g, ®;s,m) = |det(h)|*|d|= "= Den(d) ™ F(g, ®; 5,n)
= o, ()~ (d)F (g, ®;5,1),

with the integral absolutely convergent for Re(s) > 1/n, so that if we extend 7 to

a character of P, by n(p') = n(d) in the above notation we have that F(g, ®;s,n)

is a smooth section of the normalized induced representation Indg,L ("A()A) (6;,_1/ 217).

Since the inducing character 6;71/ *n of P!.(A) is invariant under P/, (k) we may
form Eisenstein series from this family of sections by

E(g,®;s,m) = > F(vg, ®;5,1n).
YEP!, (k)\ Ly (k)

If we replace F' in this sum by its definition we can rewrite this Eisenstein series as

E(g,;5,1) = | det(g) / S (atg)la"*n(a) d*a

RXAAX e cpn _ 10}
= | det(g)|* / 0 (a, 9)|a|"*n(a) d*a
k)( \AX

and this first expression is convergent absolutely for Re(s) > 1 [45].
The second expression essentially gives the Eisenstein series as the Mellin trans-
form of the Theta series

Os(a,g) = Y D(aly),
E€k™
where in the above we have written

Os(a,9) = Y, ®(alg) = Os(a,g) — (0.
gekn—{0}

This allows us to obtain the analytic properties of the Eisenstein series from the
Poisson summation formula for ¢, namely

Os(a,g) = Y ®(alg) = D Bay(€)

Eekn Eekn
=3 Bug(&) =Y la| " det(g)| ' @(a el
gekn gekn

= |a| ™" det(g)| "' O4(a™ g )

where the Fourier transform ® on S(A™) is defined by

@)= | W) dy.
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This allows us to write the Eisenstein series as

E(g,, 5,1) = | det(g)’ / 0% (a,g)la|"*n(a) d*a

la|>1

T | det(g)]*" / 0% (g Hlal"> V5 (a) d¥a + 8(s)

la|>1
where
0 if n is ramified
o(s) = {

det(g)|° T det(g)|°~' . i .
—c@(O)% + C@(O)% if n(a) = |a|" with o € R
with ¢ a non-zero constant. From this we derive easily the basic properties of our

Eisenstein series [45, Section 4].

Proposition 2.1. The Eisenstein series E(g, ®; s,n) has a meromorphic continua-
tion to all of C with at most simple poles at s = —io, 1 — i0 when 7 is unramified
of the form n(a) = |a|™°. As a function of g it is smooth of moderate growth and
as a function of s it is bounded in vertical strips (away from the possible poles),
uniformly for g in compact sets. Moreover, we have the functional equation

E(g,®;5,m) = E(g", &1 —s,n7")
where ¢* = {71,

Note that under the center the Eisenstein series transforms by the central char-

acter n— L.

2.3.2. The global integrals

Now let us return to our Eulerian integrals. Let 7 and 7' be our irreducible cuspidal
representations. Let their central characters be w and w'. Set n = ww'. Then for
each pair of cusp forms ¢ € V; and ¢’ € Vv and each Schwartz-Bruhat function
¢ € S(A") set

I(s;p,¢',®) = ©(9)¢'(9)E(g, ®;s,n) dg.

/zn (4) GL, (k)\ GLy (4)
Since the two cusp forms are rapidly decreasing on Z,,(A) GL, (k)\ GL,(A) and the
Eisenstein is only of moderate growth, we see that the integral converges absolutely
for all s away from the poles of the Eisenstein series and is hence meromorphic. It
will be bounded in vertical strips away from the poles and satisfies the functional
equation
I(S) @, 9017 (I)) = [(1 -5 ()57 (15I7 i))a

coming from the functional equation of the Eisenstein series, where we still have
?(9) = ¢(g") = p(wpg") € V& and similarly for ¢'.

These integrals will be entire unless we have 7(a) = w(a)w'(a) = |a]™ is
unramified. In that case, the residue at s = —io will be

Res I(s;p,¢, @) = —C‘P(O)/ 0(9)¢' (9)] det(g)| @ dg
=T Zon (A) GLy (A)\ GLy, (A)
and at s = 1 — i0 we can write the residue as

Res I(sips!, ) = cb(0) [ B9)F (9)| det () dg.

s Z (A) GL, (k)\ GLn (4)
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Therefore these residues define GL,(A) invariant pairings between 7 and 7' ®
|det|~% or equivalently between 7 and 7' ® |det|. Hence a residues can be
non-zero only if 7 ~ 7 @ |det|" and in this case we can find ¢, ¢', and ® such
that indeed the residue does not vanish.

We have yet to check that our integrals are Eulerian. To this end we take the
integral, replace the Eisenstein series by its definition, and unfold:

I(s;p,¢', @) = ©(9)¢' (9)E(g, ®;s,m) dg

/zn (A) GL,, (k)\ GL (4)

©(9)¢'(9)F (g, ®;5,1) dg

/Zn (8) P ()\ GL~ (4)

/ 2(9)¢' (9)] det(9)]? / B (aeng)lal"n(a) da dg
Zn (A) Pr (k)\ GL ., (4) A%

- / 2(9)¢ (9)B(eng) | det(g)]* dg.
P (k)\ GL,(4)

We next replace ¢ by its Fourier expansion in the form

o= > Wi

YEN,, (k)\ P, (k)
and unfold to find

I(s:0,¢,®) = / W, (9)¢ ()8 (eng)] det(g)]* dg
N (k)\ GL(4)

/ W,(9) o (ng)(n) dn ®(eng)] det(g)]® dg
Nn (A)\ GL, (A) Ny (k)\ Ny (&)

/ W (@)W, (9)(eng)| det(g)|* dg
N. (A)\ GL, (A)

= W(s; Wy, W, ®).

This expression converges for Re(s) >> 0 by the gauge estimates as before.

To continue, we assume that ¢, ¢’ and ® are decomposable tensors under
the isomorphisms 7 ~ ®'m,, 7' ~ @', and S(A") ~ ®'S(k}) so that we have
Ww(g) = Hv W v(g'U)7 Wé;’ (g) = Hv Wg’ogj (gv) and CI)(g) = Hv cI)v(gv)' Then; since
the domain of integration also naturally factors we can decompose this last integral
into an Euler product and now write

W(S;Wl;’:Wéy’aq)) = HTU(S;W%’I;JW;;;(I%);

where

¥y (55 W Wi 2) = [ W, (00, (90) %0 (e0g0)]| det (g, |* dgs,
Ny (ko)\ GLin (k)

still with convergence for Re(s) >> 0 by the local gauge estimates. Once again

we see that the Euler factorization is a direct consequence of the uniqueness of the

Whittaker models.

Theorem 2.2. Let ¢ € V; and ¢’ € Vs cusp forms on GL,(A) and let ® €
S(A™). Then the family of integrals I(s;p, ', ®) define meromorphic functions
of s, bounded in vertical strips away from the poles. The only possible poles are
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simple and occur iff 7 ~ 7' ® | det | with o real and are then at s = —io and
s =1 —io with residues as above. They satisfy the functional equation

I(s;0,¢',®) = I(1 — 5, W, W,,, ).

Moreover, for ¢, ¢', and ® factorizable we have that the integrals are Eulerian and
we have

I(s; 0,0, @) = [[ Wolsi W, W, , )
v
with convergence absolute and uniform for Re(s) >> 0.

We remark in passing that the right hand side of the functional equation also
unfolds as

I(]-_S;Gaala(i):

/ W0 (@), (9)(eng) | det ()] dg
N (A)\ GL, (4)

=[] w.(1 - 5W,,W,, %)

with convergence for Re(s) << 0.

We note again that if these integrals are not entire, then the residues give us
invariant pairings between the cuspidal representations and hence tell us structural
facts about the relation between these representations.



LECTURE 3
Local L-functions

If (7, Vy) is a cuspidal representation of GL,(A) and (7', V) is a cuspidal rep-
resentation of GL,,(A) we have associated to the pair (7, 7') a family of Eulerian
integrals {I(s;p, ")} (or {I(s;p,¢’,®)} if m = n) and through the Euler factor-
ization we have for each place v of k a family of local integrals {¥,(s; W,, W)} (or
{0, (s; Wy, W], ®,)}) attached to the pair of local components (m,, . ). In this lec-
ture we would like to attach a local L-function (or local Euler factor) L(s, m, x 7))
to such a pair of local representations through the family of local integrals and
analyze its basic properties, including the local functional equation. The paradigm
for such an analysis of local L-functions is Tate’s thesis [91]. The mechanics of the
archimedean and non-archimedean theories are slightly different so we will treat
them separately, beginning with the non-archimedean theory.

3.1. The non-archimedean local factors

For this section we will let k& denote a non-archimedean local field. We will let o
denote the ring of integers of k and p the unique prime ideal of 0. Fix a generator
w of p. We let ¢ be the residue degree of k, so ¢ = |o/p| = |=|~!. We fix a non-
trivial continuous additive character ¢ of k. (m, V) and (7', Vy/) will now be the
smooth vectors in irreducible admissible unitary generic representations of GL,, (k)
and GL,,, (k) respectively, as is true for local components of cuspidal representations.
We will let w and w' denote their central characters.

The basic reference for this section is the paper of Jacquet, Piatetski-Shapiro,
and Shalika [42].

3.1.1. The local L-function

For each pair of Whittaker functions W € W(m,+) and W’ € W(x',%»!) and in
the case n = m each Schwartz-Bruhat function ® € S(k™) we have defined local
integrals

T(s; W, W') = /W (h

h
U(s; W, W) ://W t Iy_mei dz W'(h)| det(h)|*~(=™)/2 qn
1

) W'(h)| det(h)|*~"=™/2 dh

In—m

27
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in the case m < n, where the h integration is over N, (k)\ GL,, (k) in both integrals
and the z integration is over the matrix space M;,,_m_1,m(k), and in the case n = m

w(s W, e) = [ W (9) W' (9)8(eng)| det(g)]* dg
N, (k)\ GLn (k)

all integrals being convergent for Re(s) >> 0. To make the notation more con-

venient for what follows, in the case m < n for any 0 < j < n—m — 1 let us

set

h
\I!j(s:W,W’)://W v I d W' ()| det(h)[*=(n=m)/2 qp,
I

n—m-—j

where the h integral is still over Ny, (k)\ GL,,(k) and now the z integral is over
the matrix space M ,,,(k), so that ¥(s; W, W') = @ (s; W,W') and U(s; W, W') =
U, —m—1(s; W, W'), which is still absolutely convergent for Re(s) >> 0.

We need to understand what type of functions of s these local integrals are. To
this end, we need to understand the local Whittaker functions. So let W € W(w, ).
Since W is smooth, there is a compact open subgroup K’', of finite index in the
maximal compact subgroup K,, = GL,(0), so that W (gk) = W (g) for all k € K'. If
we let {k;} be a set of coset representatives of GL,(0)/ K', using that W transforms
on the left under N, (k) via ¢ and the Iwasawa decomposition on GL,, (k) we see that
W (g) is completely determined by the values of W (ak;) = W;(a) for a € A, (k), the
maximal split (diagonal) torus of GL, (k). So it suffices to understand a general
Whittaker function on the torus. Let «;, i = 1,...,n — 1, denote the standard

ay
simple roots of GL,, so that if a = € A, (k) then a;(a) = a;/a;t1-

an
By a finite function on A, (k) we mean a continuous function whose translates span
a finite dimensional vector space [39,40, Section 2.2]. (For the field k> itself the
finite functions are spanned by products of characters and powers of the valuation
map.) The fundamental result on the asymptotics of Whittaker functions is then
the following [40, Prop. 2.2].

Proposition 3.1. Let m be a generic representation of GL,, (k). Then there is a
finite set of finite functions X (7) = {x;} on A,(k), depending only on =, so that
for every W € W(w,v) there are Schwartz —~Bruhat functions ¢; € S(k"~!) such
that for all @ € A, (k) with a, = 1 we have

W(a) =Y xi(@)gi(ai(a),...,an-1(a)).
X (m)

The finite set of finite functions X (7) which occur in the asymptotics near 0 of
the Whittaker functions come from analyzing the Jacquet module of 7 in the form
W(m, ) /(m(n)W — W|n € N,) which is naturally an A,(k)-module. Note that
due to the Schwartz-Bruhat functions, the Whittaker functions vanish whenever
any simple root «;(a) becomes large. The gauge estimates alluded to in Lecture 2
are a consequence of this expansion and the one in Proposition 3.6.

Several nice consequences follow from inserting these formulas for W and W'
into the local integrals ¥;(s; W, W') or ¥(s; W, W', @) [40,42].
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Proposition 3.2. The local integrals ¥;(s; W, W') or ¥(s; W, W', ®) satisfy the
following properties.
1. Each integral converges for Re(s) >> 0. For 7w and 7’ unitary, as we have
assumed, they converge absolutely for Re(s) > 1. For = and 7’ tempered,
we have absolute convergence for Re(s) > 0.
2. Each integral defines a rational function in ¢~
extends to all of C.
3. Each such rational function can be written with a common denominator
which depends only on the finite functions X (7) and X (7') and hence only
on 7 and 7'.

% and hence meromorphically

In deriving these when m < n — 1 note that one has that

h
Wiz [j 750
[n—m—j—l

implies that z lies in a compact set independent of h € GL,, (k) [42].

Let Z;(m, 7") denote the complex linear span of the local integrals ¥ ;(s; W, W')
if m < n and Z(w,7') the complex linear span of the U(s; W, W' ®) if mn = n.
These are then all subspaces of C(¢~*%) which have “bounded denominators” in the
sense of (3). In fact, these subspaces have more structure — they are modules for
Clg®,q *] C C(g~*). To see this, note that for any h € GL,, (k) we have

v, (“ (h In_m) w, vr'(h)W’> = [ det(h)|~* T2 (5, W, W)

and

W (s (W)W, ' (W)W, p(R)®) = | det ()| ~*W (s; W, W, @).
So by varying h and multiplying by scalars, we see that each Z;(w,n") and Z(w, ")
is closed under multiplication by C[g®, ¢ *]. Since we have bounded denominators,
we can conclude:

Proposition 3.3. Each Z;(m,7n') and Z(m,n') is a fractional Clg®,q~°]-ideal of
Clg™*)-

Note that C[g°,q ?] is a principal ideal domain, so that each fractional ideal
Z;(m,m") has a single generator, which we call Q; .~ (¢”%), as does Z(w,n"), which
we call Q. (g~%). However, we can say more. In the case m < n recall that
from what we have said about the Kirillov model that when we restrict Whittaker
functions in W(m,v) to the embedded GL,,(k) C P,(k) we get all functions of
compact support on GL,, (k) transforming by ¢. Using this freedom for our choice
of W € W(m,v) one can show that in fact the constant function 1 lies in Z;(w, 7").
In the case m = n one can reduce to a sum of integrals over P, (k) and then use the
freedom one has in the Kirillov model, plus the complete freedom in the choice of ®
to show that once again 1 € Z(w,7"). The consequence of this is that our generator
can be taken to be of the form Q. (¢7°) = Pjxx(¢°,q %) for m < n or
Qrx(q*) = Prw(q®,q %) for appropriate polynomials in Clg®, ¢ *]. Moreover,
since ¢° and ¢~ are units in C[¢®, ¢~ *] we can always normalize our generator to
be of the form Pj . (¢7*)~" or Py »(¢~%)~"' where the polynomial P(X) satisfies
P(0) = 1.
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Finally, in the case m < n one can show by a rather elementary although
somewhat involved manipulation of the integrals that all of the ideals Z;(m, 7") are
the same [42, Section 2.7]. We will write this ideal as Z(w,#") and its generator as
Pﬂﬂr’ (q_s)_l'

This gives us the definition of our local L-function.

Definition . Let 7 and 7' be as above. Then L(s,m x 7') = Pr . (¢7%)7"! is
the normalized generator of the fractional ideal Z (7, n') formed by the family of
local integrals. If 7' = 1 is the trivial representation of GL;(k) then we write
L(s,m) = L(s,m x 1).

One can show easily that the ideal Z(mw,7’) is independent of the character
1 used in defining the Whittaker models, so that L(s,7 x #') is independent
of the choice of 1. So it is not included in the notation. Also, note that for
7' = x an automorphic representation (character) of GL;(A) we have the identity
L(s,m x x) = L(s,m ® x) where 7 ® x is the representation of GL,,(A) on V; given

by ™ @ x(9)¢ = x(det(g))(g)¢.
We summarize the above in the following theorem.

Theorem 3.1. Let 7 and #’ be as above. The family of local integrals form a
Clg®, g *]-ractional ideal Z(mw,7") in C(q~*%) with generator the local L-function
L(s,m x7").

Another useful way of thinking of the local L-function is the following. The
function L(s,m x 7') is the minimal (in terms of degree) function of the form
P(q~%)7!, with P(X) a polynomial satisfying P(0) = 1, such that the ratios

U(s; W, W") U(s; W, W', ®)

L(s,m x 7") or L(s,m x 7")
are entire for all W € W(m, 1) and W' € W(r',4~1), and if necessary ® € S(k").
That is, L(s,m x «') is the standard Euler factor determined by the poles of the
functions in Z(m, 7').

One should note that since the L-factor is a generator of the ideal Z(m, 7'), then
in particular it lies in Z(w,n"). Since this ideal is spanned by our local integrals,
we have the following useful Corollary.

Corollary . There are a finite collection of W; € W(m, ), W/ € W(x',4~1), and
if necessary ®; € S(k™) such that

L(s,mxx') =Y ¥(s; Wi, W)) or  L(s,mxa) =Y U(s;Wi, W/, &;).

For future reference, let us set

U (s; W, W") Ui(s; W, W)

‘V n __ I ) i ‘V ! — J I )

o(s; W, W) = L(s,mx ')’ e;(s; W, W) L(s,mx ')’

I [CA LA LS e LT @)
é(s; W, W'y = Lis, 7 %)’ and e(s; W, W', ®) = L(s, 7 x 1)

Then all of these functions are Laurent polynomials in ¢**, that is, elements of
Clg®,q~%]. As such they are entire and bounded in vertical strips. As above,
there are choices of W;, W/, and if necessary ®; such that > e(s;W;, W/) =1 or
>e(s; Wy, W/, ®;) = 1. In particular we have the following result.



LECTURE 3. LOCAL L-FUNCTIONS 31

Corollary . The functions e(s; W, W') and e(s; W, W', ®) are entire functions,
bounded in vertical strips, and for each sy € C there is a choice of W, W', and if
necessary ® such that e(so; W, W') # 0 or e(so; W, W', ®) #£ 0.

3.1.2. The local functional equation

Either by analogy with Tate’s thesis or from the corresponding global statement,
we would expect our local integrals to satisfy a local functional equation. From the
functional equations for our global integrals, we would expect these to relate the
integrals W (s; W, W') and ¥(1 —8; p(Wn,m)W,W') when m < n and ¥(s; W, W', ®)
and ¥(1—s; W, W', ®) when m = n. This will indeed be the case. These functional
equations will come from interpreting the local integrals as families (in s) of quasi-
invariant bilinear forms on W(r,¢) x W(r',4~1) or trilinear forms on W(mr,¢) x
W(r',1~!) x S(k™) depending on the case.
First, consider the case when m < n. In this case we have seen that

v (s;ﬂ (h i ) W, w'(h)W’) — [ det (k)5 2 (5 W, W)

and one checks that ¥(1 — s;p(wn,m)w,W’) has the same quasi-invariance as a
bilinear form on W(m,¢) x W(x',9~!). In addition, if we let Y, ,, denote the
unipotent radical of the standard parabolic subgroup associated to the partition
(m+1,1,...,1) as before then we have the quasi-invariance

U(s;m(y)W, W') = (y)¥(s; W, W)

for all y € Y,, ;. One again checks that (1 —s; p(wn,m)w, W’) satisfies the same
quasi-invariance as a bilinear form on W(m, ) x W(r',¢~1).
For n = m we have seen that

U(s;m(h)W, ' (R)W', p(h)®) = | det(h)| U (s; W, W', ®)

and it is elementary to check that ¥(1 — S;W,W’ ,<i>) satisfies the same quasi-
invariance as a trilinear form on W(w, ) x W(r', =) x S(k™). Our local functional
equations will now follow from the following result [42, Propositions 2.10 and 2.11].

Proposition 3.4. (i) If m < n, then except for a finite number of exceptional
values of ¢~ ¢ there is a unique bilinear form Bs on W(w, 1) x W(r',1)~1) satisfying

B (x (" 1,,) W) =paesr e or
and  By(w(y)W,W') = ¢(y)Bs,(W,W")

for all h € GL,,,(k) and y € Yy, 5 (K).
(ii) If n = m, then except for a finite number of exceptional values of ¢—*¢ there
is a unique trilinear form Ty on W(m, ) x W(r',4~!) x S(k™) satisfying

T (e (W)W, 7 ()W, p(R)®) = | det(B)|~* T, (W, W, )
for all h € GL,, (k).
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Let us say a few words about the proof of this proposition, because it is
another application of the analysis of the restriction of representations of GL,
to the mirabolic subgroup P, [42, Sections 2.10 and 2.11]. In the case where
m < n the local integrals involve the restriction of the Whittaker functions in
W(m,v) to GLp(k) C P,, that is, the Kirillov model K(mw,¢) of w. In the
case m = n one notes that So(k”) = {® € S(k™) | ®(0) = 0}, which has co-
dimension one in S(k™), is isomorphic to the compactly induced representation

indlc,}j("k()k) (6F_,j/ ?) so that by Frobenius reciprocity a GL, (k) quasi-invariant trilin-
ear form on W(m, 1) x W(r',4~1) x So(k™) reduces to a P, (k)-quasi-invariant
bilinear form on K(m, ) x K(7',1 ). So in both cases we are naturally working in
the restriction to P, (k). The restrictions of irreducible representations of GL, (k)
to P, (k) are no longer irreducible, but do have composition series of finite length.
One of the tools for analyzing the restrictions of representations of GL,, to P,,, or
analyzing the irreducible representations of P, are the derivatives of Bernstein and
Zelevinsky [2,15]. These derivatives 7(" ") are naturally representations of GL,. (k)
for r < n. 7(® = 7 and since 7 is generic the highest derivative 7(") corresponds to
the irreducible common submodule (7,V;) of all Kirillov models, and is hence the
non-zero irreducible representation of the trivial group GLg(k). The poles of our
local integrals can be interpreted as giving quasi-invariant pairings between deriva-
tives of 7 and 7’ [15]. The s for which such pairings exist for all but the highest
derivatives are the exceptional s of the proposition. There is always a unique pair-
ing between the highest derivatives 7(") and 7'("™) which are necessarily non-zero
since they since these correspond to the common irreducible subspace (7, V) of any
Kirillov model, and this is the unique By or T of the proposition.

As a consequence of this Proposition, we can define the local y-factor which
gives the local functional equation for our integrals.

Theorem 3.2. There is a rational function (s, 7 x #’,¢) € C(g~*) such that we
have

V(1 — 85 p(Wm)W, W) = (=1)"y(s,m x 7', ) U(s; W,W')  ifm<n
or
V(1 —s; W, W, &) = (=1)" 1y(s,m x 7, 0)U(s; W, W', ®) ifm=n
for all W € W(w,v), W' € W(r',+4~1), and if necessary all ® € S(k").
Again, if 7/ = 1 is the trivial representation of GL; (k) we write (s, m,¢) =
~v(s,m x 1,4). The fact that y(s,7 x 7', 1) is rational follows from the fact that it
is a ratio of local integrals.

An equally important local factor, which occurs in the current formulations of
the local Langlands correspondence [32,35], is the local e-factor.

Definition . The local factor e(s,m x @’,1) is defined as the ratio
v(s,m x 7w, ) L(s,m x 7")
L(1—s,7x7)

e(s,m x ' 1) =

With the local e-factor the local functional equation can be written in the form

‘TI(]- — S;p(wmm)wawl) \II(S;Wa W’)
L(1—s,7x7) L(s,m x ')

=W (=) te(s,m x 7', 1)) ifm<n
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or
U(1—s; W, W', &) (s; W, W', ®)
L(1—s,7x7) L(s,m x x')
This can also be expressed in terms of the e(s; W, W'), etc.. In fact, since we know
we can choose a finite set of W;, W/, and if necessary ®; so that

7)W17W) . n __
Ls7r><7r zi:e(s’W“Wi)_

=w'(-1)"e(s,m x 7', 1p) fm=n.

or

U(s; W, W/, ;)
; L(s,m x «') ; els; Wi, Wi, @) =

we see that we can write either
e(s,mx ) = ' (=1)" 1Y &L — 53 p(wn,m) Wi, W)
i
or

5(877T X "T,:’l/}) = w,(_l)nil Ze(l -5 Wi; Wzla ‘iz)

and hence (s, 7 x 7',9) € Clg®,¢*]. On the other hand, applying the functional
equation twice we get

e(s,mx ', P)e(l —s,7x7 071 =

so that e(s,m x 7',1) is a unit in Clg®, ¢ *]. This can be restated as:
Proposition 3.5. £(s, 7 x 7',¢) is a monomial function of the form cq=/*.

Let us make a few remarks on the meaning of the number f occurring in the
e—factor in the case of a single representation. Assume that ¢ is unramified. In
this case write (s, ,¢) = £(0,7,1)g /(5. In [43] it is shown that f(r) is a non-
negative integer, f(m) = 0 iff 7 is unramified, that in general the space of vectors
in V; which is fixed by the compact open subgroup

Ky (pF™) = { g € GL,(0)|g = * S| (mod pf™)

*

has dimension exactly 1, and that if ¢ < f(7) then the dimension of the space of
fixed vectors for K;(p?) is 0. Depending on the context, either the integer f(m)
or the ideal f(7) = p/ (™ is called the conductor of m. Note that the analytically
defined e-factor carries structural information about 7.

3.1.3. The unramified calculation

Let us now turn to the calculation of the local L-functions. The first case to consider
is that where both 7 and 7" are unramified. Since they are assumed generic, they are
both full induced representations from unramified characters of the Borel subgroup
[97]. So let us write 7 ~ Ind$"" (11 © - - ® ) and 7' =~ Ind§2™ (p) @ - @ pl,,)
with the p; and u; unramified characters of k*. The Satake parameterization
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of unramified representations associates to each of these representation the semi-
simple conjugacy classes [A;] € GL,(C) and [Ar] € GL,,,(C) given by

i () i (@)
A = T Apr = .
fon (@) o ()

(Recall that w is a uniformizing parameter for k, that is, a generator of p.)

In the Whittaker models there will be unique normalized K = GL(0)- fixed
Whittaker functions, W, € W(m, ) and W! € W(x',4~1), normalized by W, (e) =
W/(e) = 1. Let us concentrate on W, for the moment. Since this function is right
K,—invariant and transforms on the left by ¢ under N,, we have that its values are
completely determined by its values on diagonal matrices of the form

it

in
for J = (ji,...,jn) € Z™ There is an explicit formula for W, (w”) in terms of
the Satake parameter A, due to Shintani [87] for GL,, and generalized to arbitrary

reductive groups by Casselman and Shalika [4].
Let T (n) be the set of n—tuples J = (j1,...,jn) € Z"™ with j; > --- > j,. Let
ps be the rational representation of GL,,(C) with dominant weight A; defined by

i1
Ay =]t
ln

Then the formula of Shintani says that

Wo(e) = {0 if J ¢ T+(n)

052 (@) tr(ps(Ar) i J € T (n)

under the assumption that ¢ is unramified. This is proved by analyzing the recur-
sion relations coming from the action of the unramified Hecke algebra on W,.

We have a similar formula for W/ (ww”) for J € Z™.

If we use these formulas in our local integrals, we find [45, I, Prop. 2.3]

o5 (w”)

m

wJ
(s W, W)= > W, <
JET+(m), jm>0

- Z tr(ps,0)(Ax)) tr(ps(Ag))g~ 1

JET*(m), jm >0

- Z tr(pero) (Ar) ® pJ(Aﬂ,))q—\J\s

JET+(m), jm >0

>W$(wJ)I det(wJ)Is_(n_

Infm

where we let |J| = j1 + -+ + jm and we embed Z™ — Z™ by J = (j1, - ,Jm) —
(J,0) = (41, yJm,0,---,0). We now use the invariant theory facts that

Z tr(p(LO) (Aﬂ') @ pg (Aﬂ")) = tr(Sr (Aﬂ' ® ATI"))J

JET+(m), jm >0, |J|=r
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where S"(A) is the r"-symmetric power of the matrix A, and
(oo}
Ztr(ST(A))zT =det(I — Az)!
r=0

for any matrix A. Then we quickly arrive at

U(s; Wo, Wo) = det(l =g *Ar ® Ap)™h = [J(1 = (@) (@)g )"
i,J
a standard Euler factor of degree mn. Since the L-function cancels all poles of the
local integrals, we know at least that det(] —q *A, ® A.) divides L(s,m x 7') L.
Either of the methods discussed below for the general calculation of local factors
then shows that in fact these are equal.

There is a similar calculation when n = m and ® = @, is the characteristic
function of the lattice o™ C k™. Also, since 7 unramified implies that its con-
tragredient 7 is also unramified, with W, as its normalized unramified Whittaker
function, then from the functional equation we can conclude that in this situation
we have e(s, 7 x 7', ¢) = 1.

Theorem 3.3. If 7, 7/, and ¢ are all unramified, then

U(s; Wo, W) m<n

L(s, =det(] —q A, ® A )t =
(s,mx7') =det(l —q ) U(s; Wo, W, ®:) m=n

and g(s,m x 7', ¢) = 1.

For future use, let us recall a consequence of this calculation due to Jacquet
and Shalika [45].

Corollary . Suppose 7 is irreducible unitary generic admissible (our usual as-
sumptions on w) and unramified. The the eigenvalues p;(w) of A, all satisfy
1 < ()| < g2,

To see this, we apply the above calculation to the case where 7' = 7 the complex
conjugate representation. Then A, = A, the complex conjugate matrix, and we
have from the above

det(I —q *A; @ A;)V(s; Wo, Wo, ®,) = 1.

The local integral in this case is absolutely convergent for Re(s) > 1 and so the
factor det(l — ¢~ *A, ® A,;) cannot vanish for Re(s) > 1. If y;(w) is an eigenvalue
of A, then we have 1 — ¢ 7|u;(w)|? # 0 for 0 > 1. Hence |u;(w)| < ¢*/?. Note
that if we apply this to the contragredient representation 7 as well we conclude
that ¢=/2 < |ps(@)| < ¢'/2.

3.1.4. The supercuspidal calculation

The other basic case is when both 7 and 7' are supercuspidal. In this case the
restriction of W to P, or W' to P, lies in the Kirillov model and is hence compactly
supported mod N. In the case of m < n we find that in our integral we have W
evaluated along GL,,(k) C P,(k). Since W is smooth, and hence stabilized by
some compact open subgroup, we find that the local integral always reduces to a
finite sum and and hence lies in C[g®, ¢~*]. In particular it is always entire. Thus in
this case L(s,m x ') = 1. In the case n = m the calculation is a bit more involved
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and can be found in [15,23]. In essence, in the family of integrals ¥(s; W, W', ®), if
®(0) = 0 then the integral will again reduce to a finite sum and hence be entire. If
®(0) # 0 and if sg is a pole of U(s; W, W', ®) then the residue of the pole at s = sg
will be of the form

210 / W (g)W" (g)] det(g)|*® dg
Zn (k) N (k)\ GL,. (k)

which is the Whittaker form of an invariant pairing between = and #’ ® | det |*°.
Thus we must have sp is pure imaginary and 7 ~ 7' ® | det |*° for the residue to be
nonzero. This condition is also sufficient.

Theorem 3.4. If 7 and 7’ are both (unitary) supercuspidal, then L(s,7 x 7') = 1
if m < n and if m =n we have

L(s,mx ') =[[(1 - ag )™

with the product over all @ = ¢% with 7 ~ 7’ ® | det |*°.

3.1.5. Remarks on the general calculation

In the other cases, we must rely on the Bernstein—Zelevinsky classification of generic
representations of GL, (k) [97]. All generic representations can be realized as pre-
scribed constituents of representations parabolically induced from supercuspidals.
One can proceed by analyzing the Whittaker functions of induced representations
in terms of Whittaker functions of the inducing data as in [42] or by analyzing
the poles of the local integrals in terms of quasi invariant pairings of derivatives
of m# and 7’ as in [15] to compute L(s,7m x «') in terms of L-functions of pairs of
supercuspidal representations. We refer you to those papers or [58] for the explicit
formulas.

3.1.6. Multiplicativity and stability of y—factors

To conclude this section, let us mention two results on the vy-factors. One is used
in the computations of L-factors in the general case. This is the multiplicativity of
v-factors [42]. The second is the stability of v-factors [46]. Both of these results
are necessary in applications of the Converse Theorem to liftings, which we discuss
in Lecture 6.

Proposition (Multiplicativity of ~-factors). If # = Ind(m ® ms), with m; and
irreducible admissible representation of GL,, (k), then
/7(877‘- X ﬂ-law) = 7(877‘-1 X 7‘-,711[])7(5771-2 X ﬂ-law)

and similarly for 7/. Moreover L(s,7 x 7') ! divides [L(s,m X 7')L(s,m x 7')] L.

Proposition (Stability of y-factors). If m; and 72 are two irreducible admissible
generic representations of GL,,(k), having the same central character, then for every
sufficiently highly ramified character i of GL; (k) we have

7(5771-1 X an) = 7(8771-2 X 7777/’)
and
L(s,m xn) = L(s,m xn) = 1.



LECTURE 3. LOCAL L-FUNCTIONS 37

More generally, if in addition 7’ is an irreducible generic representation of GL,, (k)
then for all sufficiently highly ramified characters n of GL; (k) we have

’7(87 (’/T1 ® 77) X ’/T’,'(/)) = ’7(87 (’/T2 ® 77) X ’/T’,’l/})
and

L(s,(my ®n) x7') = L(s,(my®n) x «') = 1.

3.2. The archimedean local factors

We now take k to be an archimedean local field, i.e., kK = R or C. We take (7, Vy)
to be the space of smooth vectors in an irreducible admissible unitary generic rep-
resentation of GL,, (k) and similarly for the representation (7', V) of GL,, (k). We
take v a non-trivial continuous additive character of k.

The treatment of the archimedean local factors parallels that of the non-
archimedean in many ways, but there are some significant differences. The major
work on these factors is that of Jacquet and Shalika in [47], which we follow for the
most part without further reference, and in the archimedean parts of [45].

One significant difference in the development of the archimedean theory is that
the local Langlands correspondence was already in place when the theory was de-
veloped [62]. The correspondence is very explicit in terms of the usual Langlands
classification. Thus to 7 is associated an n dimensional semi-simple representation
7 = 7(7) of the Weil group Wy, of k and to n' an m-dimensional semi-simple repre-
sentation 7' = 7(7") of Wj,. Then 7(m) ® 7(n') is an nm dimensional representation
of W}, and to this representation of the Weil group is attached Artin-Weil L— and
e—factors [92], denoted L(s,7 ® 7') and e(s,7 ® 7',¢). In essence, Jacquet and
Shalika define

L(s,mx ') = L(s,7(m) @ 7(n")) and e(s,m x 7',) = &(s,7(m) @ 7(7'),9)

and then set
e(s,mx ', Y)L(1 —s,7 x7')
L(s,m x ")
For example, if 7 is unramified, and hence of the form 7 ~ Ind(u; ® - - - ® uy)
with unramified characters of the form pu;(z) = |z|™ then

Y(s,mx @' ) =

n

L(s, ) = L(s,7(m)) = [ Tw(s + 1)

i=1

is a standard archimedean Euler factor of degree n, where

_frPrE) k=R
Lu(s) = {2(271')5F(s) ifk, =C"

They then proceed to show that these functions have the expected relation to
the local integrals. Their methods of analyzing the local integrals ¥;(s; W, W)
and U(s; W, W' @), defined as in the non-archimedean case for W € W(m, ),
W' e W(r',4~1), and ® € S(k™), are direct analogues of those used in [42] for the
non-archimedean case. Once again, a most important fact is [47, Proposition 2.2]
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Proposition 3.6. Let m be a generic representation of GL,, (k). Then there is a
finite set of finite functions X (7) = {x;} on A, (k), depending only on 7, so that
for every W € W(m, 1)) there are Schwartz functions ¢; € S(k"~! x K,,) such that
for all a € A, (k) with a,, = 1 we have

W (nak) = ¢(n) Z xi(@)pi(ai(a),...,an—1(a), k).

X(m)

Now the finite functions are related to the exponents of the representation 7 and
through the Langlands classification to the representation 7(mw) of Wj,. We retain
the same convergence statements as in the non-archimedean case [45, I, Proposition
3.17; 11, Proposition 2.6], [47, Proposition 5.3].

Proposition 3.7. The integrals ¥;(s; W, W') and ¥(s; W, W', ®) converge abso-
lutely in the half plane Re(s) > 1 under the unitarity assumption and for Re(s) > 0
if # and 7’ are tempered.

The meromorphic continuation and “bounded denominator” statement in the
case of a non-archimedean local field is now replaced by the following. Define
M(m x 7') to be the space of all meromorphic functions ¢(s) with the property
that if P(s) is a polynomial function such that P(s)L(s,m x ©’) is holomorphic in
a vertical strip S[a,b] = {s | a < Re(s) < b} then P(s)¢(s) is bounded in S[a, b].
Note in particular that if ¢ € M(m x 7') then the quotient ¢(s)L(s, 7 x 7)1 is
entire.

Theorem 3.5. The integrals ¥;(s; W, W') or ¥(s; W, W', ®) extend to meromor-
phic functions of s which lie in M (7w x 7). In particular, the ratios
(s W, W) U(s; W, W', @)

EWW) = T O WL e =—rm s

are entire.

This statement has more content than just the continuation and “bounded
denominator” statements in the non-archimedean case. Since it prescribes the
“denominator” to be the L factor L(s,7 x 7')! it is bound up with the actual
computation of the poles of the local integrals. In fact, a significant part of the
paper of Jacquet and Shalika [47] is taken up with the simultaneous proof of this
and the local functional equations:

Theorem 3.6. We have the local functional equations
Wyt (1= 8 p(wn,m )W, W) = W/ (=1)" (s, x 7, ) (s W, W)

or
U(L - T, 1, &) = o/ (~1)" s, x ', ) (s; W, 17, ).

The one fact that we are missing is the statement of “minimality” of the L-
factor. That is, we know that L(s,7 x ') is a standard archimedean Euler factor
(i.e., a product of I'-functions of the standard type) and has the property that the
poles of all the local integrals are contained in the poles of the L-factor, even with
multiplicity. But we have not established that the L-factor cannot have extraneous
poles. In particular, we do not know that we can achieve the local L-function as a
finite linear combination of local integrals.
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Towards this end, Jacquet and Shalika enlarge the allowable space of local inte-
grals. Let A and A’ be the Whittaker functionals on V;; and V. associated with the
Whittaker models W(r, 1) and W(x’,4~). Then A = A ® A’ defines a continuous
linear functional on the algebraic tensor product V;; ® V,+ which extends continu-
ously to the topological tensor product V, o, = V&V, , viewed as representations
of GL,, (k) x GL,,, (k).

Before proceeding, let us make a few remarks on smooth representations. If
(m, V) is the space of smooth vectors in an irreducible admissible unitary repre-
sentation, then the underlying Harish-Chandra module is the space of K,-finite
vectors Vi k. Vi then corresponds to the (Casselman-Wallach) canonical com-
pletion of Vi k [94]. The category of Harish-Chandra modules is appropriate for
the algebraic theory of representations, but it is useful to work in the category of
smooth admissible representations for automorphic forms. If in our context we take
the underlying Harish-Chandra modules V; x and Vs x then their algebraic tensor
product is an admissible Harish-Chandra module for GL,, (k) x GL,, (k). The asso-
ciated smooth admissible representation is the canonical completion of this tensor
product, which is in fact V, 5 ., the topological tensor product of the smooth rep-
resentations 7 and #'. It is also the space of smooth vectors in the unitary tensor
product of the unitary representations associated to = and 7’. So this completion
is a natural place to work in the category of smooth admissible representations.

Now let

Wi(rsn', ) = {W(g,h) = Aln(g) @ 7' (W)E)|€ € Vyg i}

Then W(r&7', 1) contains the algebraic tensor product W(m, ) @ W(r',4~!) and
is again equal to the topological tensor product. Now we can extend all out local
integrals to the space W(r®m',4) by setting

h
W(s; W) ://W z I b | da | det(h)[P~ ("™ dp,
Infmfj
and
U(s; W, @) = /W(g,g)@(eng)|det(g)|s dh

for W € W(n&7',4). Since the local integrals are continuous with respect to the
topology on the topological tensor product, all of the above facts remain true, in
particular the convergence statements, the local functional equations, and the fact
that these integrals extend to functions in M (7w x 7').

At this point, let Z;(m,7') = {U;(s;W)|W € W(r®n')} and let Z(7,7') be
the span of the local integrals {¥(s; W, ®)|W € W(r®n' 1)), ® € S(k™)}. Once
again, in the case m < n we have that the space Z;(m, ") is independent of j and
we denote it also by Z(m, 7). These are still independent of 1. So we know from
above that Z(m, ') C M(m x 7). The remainder of [47] is then devoted to showing
the following.

Theorem 3.7. Z(m,7") = M(m x ').
As a consequence of this, we draw the following useful Corollary.

Corollary . There is a choice of Whittaker function W in W(r&n',) such that
L(s,m x 7') = ¥(s; W) if m < n or finite collection of functions W; € W(r®7', )
and ®; € S(k") such that L(s,m x 7') = >, U(s; W;, ®;) if m =n.
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As afinal result, let us note that in [16] it is established that the linear function-
als e(s; W) = ¥(s;W)L(s,m x ')t and e(s; W, ®) = ¥(s; W, ®)L(s,7 x ')~ are
continuous on W(r®@', 1)), uniformly for s in compact sets. Since there is a choice
of W € W(n®n',1) such that e(s; W) = 1 or W; € W(r@n',¢) and ®; € S(k™)
such that Y e(s; W;, ®;) = 1, as a result of this continuity and the fact that the
algebraic tensor product W(m,¥) @ W(r',4 1) is dense in W(r@7',1)) we have the
following result [16].

Proposition 3.8. For any so € C there are choices of W € W(m,¢), W' €
W(n',1p~1) and if necessary ® such that e(so; W, W') # 0 or e(so; W, W', ®) # 0.

The continuity of the local integrals plays a role in proving the following result
of Stade [89,90] and Jacquet and Shalika (unpublished).

Theorem 3.8. In the cases m = n and m = n — 1 there exist a finite collection of
K-finite functions W; € W(m,v¢), W] € W(rn',1»~ 1), and ®; € S(k") if necessary
such that

L(s,mx ') =Y W(s;W;,W)) or L(s,mxa’)=> U(s;W;, W, ;).

In the case where both = and ' are unramified, Stade shows that one obtains
the L-function exactly with the K-invariant Whittaker functions (and Schwartz
function if necessary). In the general case, Jacquet has provided us with a sketch
of his argument with Shalika. First one proves that the integrals involving K—finite
functions are equal to the product of a polynomial and the L-factor. It suffices to
prove this for principal series, since the other representations embed into principal
series. For principal series one proceeds by an induction argument on n, however
one must prove the m = n and m = n — 1 cases simultaneously. The (essentially
formal) arguments needed are to be found in the published papers of Jacquet and
Shalika. The polynomials in question then form an ideal and the point now is to
show this ideal is the full polynomial ring. This is then implied by Proposition 3.8
above.



LECTURE 4
Global L-functions

Once again, we let k£ be a global field, A its ring of adeles, and fix a non-trivial
continuous additive character ¢ = ®1, of A trivial on k.

Let (m,V;) be an cuspidal representation of GL,,(A) (see Lecture 1 for all the
implied assumptions in this terminology) and (7', V,) a cuspidal representation of
GL,,(A). Since they are irreducible we have restricted tensor product decompo-
sitions 7 ~ ®'m, and 7' ~ ®'m, with (m,, V) and (m,, Vi) irreducible admissi-
ble smooth generic unitary representations of GL, (k) and GL, (k) [19,26]. Let
w = ®uw, and W' = ®'w] be their central characters. These are both continuous
characters of k*\A*.

Let S be a finite set of places of &, containing the archimedean places S, such
that for all v ¢ S we have that m,, 7}, and 9, are unramified.

For each place v of k we have defined the local factors L(s,m, x m,) and
e(s,my X @, 4by). Then we can at least formally define

L(s,m x ') HLSMXW and 5(3,7r><7r'):He(s,7rv><7r;,1/1v).
v
We need to discuss convergence of these products. Let us first consider the

convergence of L(s,m x '). For those v ¢ S, so m,, m, and ¢, are unramified, we
know that L(s,m, x ) = det(l —q; Ay, ® Ay )~! and that the eigenvalues of A,

and A,/ are all of absolute value less than qv/ 2. Thus the partial (or incomplete)
L-function
L(s,m x 7') H L(s,my x m,, H det(I —q °A,, ®Aﬂ;)71

vgS vgS

is absolutely convergent for Re(s) >> 0. Thus the same is true for L(s, 7 X 7).

For the e—factor, we have seen that e(s,m, x 7},1,) =1 for v ¢ S so that the
product is in fact a finite product and there is no problem with convergence. The
fact that e(s,7 x ') is independent of ¢ can either be checked by analyzing how
the local e—factors vary as you vary #, as is done in [9, Lemma 2.1], or it will follow
from the global functional equation presented below.

4.1. The basic analytic properties
Our first goal is to show that these L-functions have nice analytic properties.

41
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Theorem 4.1. The global L—functions L(s,7 x #') are nice in the sense that

1. L(s,m x ') has a meromorphic continuation to all of C,
2. the extended function is bounded in vertical strips (away from its poles),
3. they satisfy the functional equation

L(s,mx7')=¢e(s,m x ' )L(1 — 5,7 x 7).

To do so, we relate the L-functions to the global integrals.

Let us begin with continuation. In the case m < n for every p € V; and
¢ € V5 we know the integral I(s;, ') converges absolutely for all s. From the
unfolding in Lecture 2 and the local calculation of Lecture 3 we know that for
Re(s) >> 0 and for appropriate choices of ¢ and ¢’ we have

I(s; ‘P:‘PI) = H U, (55 Wvu:Wnp’v)
v

= (H \IIU(S;W%,W%)> L3(s,m x 7')

veS
U, (s; Wy, , Wy
= H (5 We, va) L(s,m x ")
vars L(s,my x m)

= (H ev(s;ngv,ng)) L(s,m x )

veES

We know that each e, (s; W, W/) is entire. Hence L(s,m x ') has a meromorphic
continuation. If m = n then for appropriate ¢ € Vi, ¢’ € Vi, and ® € S(A") we
again have

I(s;0,¢',® (H eo(s; Wou, W )) L(s,m x 7).

veES

Once again, since each e, (s; W,, W/, ®,) is entire, L(s,7 x 7') has a meromorphic
continuation.

Let us next turn to the functional equation. This will follow from the functional
equation for the global integrals and the local functional equations. We will consider
only the case where m < n since the other case is entirely analogous. The functional
equation for the global integrals is simply

I(S) ‘2 ()01) = i(]‘ -5 ()57 (t5l)

Once again we have for appropriate ¢ and ¢

I(s;0,¢") (HevsW%,W' )> L(s,m x ")

veS

while on the other side

I1-5@,¢ (Hev - wnm)W%,W' )) L(1—s,7x7).

veES
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However, by the local functional equations, for each v € S we have

~ i 1ir ‘le_s;pwmm WU;W’
ev(l - 5;p(wn,m)Wv;W5) = ( L(l —(S P : %,) v)

U (s; W, W))
L(s,m x ')
= th)(_l)nils(saﬂ'v X 71'1’),1/11})61}(5, Wy, W’é)

=Wl (=1)""te(s, m, x 7, 0y)

Combining these, we have

L(s,m x ") (Hw (s 7rv><7rv,1/1,,)> L(1—s,7x7).
vES

Now, for v ¢ S we know that 7}, is unramified, so w)(—1) = 1, and also that

e(s,my X m,¢,) = 1. Therefore

H wzl)(_]')n_ls(saﬂ-v X 71'1’”11[]1}) = Hw;(—l)n_lg(s,ﬂ'v X ﬂ-;:wv)

veS
=W (=1)" e(s,m x )
=g(s,mx ')
and we indeed have
L(s,mx7')=¢e(s,m x 7' )L(1 — 5,7 x 7).
Note that this implies that (s, 7 x ') is independent of ¢ as well.

Let us now turn to the boundedness in vertical strips. For the global integrals
I(s;p,¢") or I(s;p,p, ®) this simply follows from the absolute convergence. For
the L-function itself, the paradigm is the following. For every finite place v € S we
know that there is a choice of W, ;, Wv ;» and @, ; if necessary such that

L(s,myxm) Z\IISWM,W') or  L(s,myxm,) Z\I—'SWM,W;“ i)

If m = n—1 or m = n then by Theorem 3.8 we know that we have similar statements
for v € Sw. Hence if m = n — 1 or m = n there are global choices ¢;, ¢}, and if
necessary ®; such that

7r><7r legoz,cpz or 7r><7r 218%7%7 )

Then the boundedness in vertical strips for the L-functions follows from that of the
global integrals.

However, if m < n — 1 then all we know at those v € S, is that there is a
function W, € W(m,@n!,1,) = W(my, ty)@W(x!,171) or a finite collection of
such functions W, ; and of ®, ; such that

L(s,my xmy) =I(s;W,) or L(s,my X m,) = Z[(s; Wi, @)

To make the above paradigm work for m < n—1 we would need to rework the theory
of global Eulerian integrals for cusp forms in V;&®V;s. This is naturally the space
of smooth vectors in an irreducible unitary cuspidal representation of GL,,(A) x
GL,,(A). So we would need extend the global theory of integrals parallel to Jacquet
and Shalika’s extension of the local integrals in the archimedean theory. There
seems to be no obstruction to carrying this out, and then we obtain boundedness
in vertical strips for L(s,7 x ') in general.
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We should point out that if one approaches these L-function by the method
of constant terms and Fourier coefficients of Eisenstein series, then Gelbart and
Shahidi have shown a wide class of automorphic L-functions, including ours, to be
bounded in vertical strips [25].

4.2. Poles of L-functions

Let us determine where the global L-functions can have poles. The poles of the
L-functions will be related to the poles of the global integrals. Recall from Lecture
2 that in the case of m < n we have that the global integrals I(s; p, ') are entire
and that when m = n then I(s;p,¢’, ®) can have at most simple poles and they
occur at s = —io and s = 1 —io for o real when 7 ~ 7' ®|det |*”. As we have noted
above, the global integrals and global L-functions are related, for appropriate ¢,
¢', and @, by

I(s;p,¢") = (H eu(s; W‘pv7WL‘IOL)> L(s,m x ')
vES
or

I(S; 1) 90’7 (I>) = (H ev(s; W<Pv ) W(;g) ’ (I>v)> L(87 ™ X 7rl)'
veS

On the other hand, we have seen that for any s € C and any v there is a
choice of local W, W/, and @, such that the local factors e,(so; Wy, W)) # 0
or ey(so; Wy, W), ®,) #0. So as we vary ¢, ¢’ and ® at the places v € S we see
that division by these factors can introduce no extraneous poles in L(s,7 x 7'),
that is, in keeping with the local characterization of the L-factor in terms of poles
of local integrals, globally the poles of L(s,m x ') are precisely the poles of the
family of global integrals {I(s;p,¢’)} or {I(s;p,¢’, ®)}. Hence from Theorems 2.1
and 2.2 we have.

Theorem 4.2. If m < n then L(s,m x ©') is entire. If m = n, then L(s,7 x ')
has at most simple poles and they occur iff 7 ~ 7' ® | det |*” with o real and are
then at s = —io and s = 1 — io.

If we apply this with 7’ = 7 we obtain the following useful corollary.

Corollary . L(s,m x 7) has simple poles at s =0 and s = 1.

4.3. Strong Multiplicity One

Let us return to the Strong Multiplicity One Theorem for cuspidal representations.
First, recall the statement:

Theorem (Strong Multiplicity One). Let (7, V;) and (#',V) be two cuspidal
representations of GL,(A). Suppose there is a finite set of places S such that for
all v ¢ S we have m, ~ 7. Then 7 = 7',

We will now present Jacquet and Shalika’s proof of this statement via L-
functions [45]. First note the following observation, which follows from our analysis
of the location of the poles of the L-functions.
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Observation . For 7 and 7' cuspidal representations of GL,,(A), L(s, 7 x 7') has
apoleat s=1iff 7 ~ 7'

Thus the L-function gives us an analytic method of testing when two cuspidal
representations are isomorphic, and so by the Multiplicity One Theorem, the same.

Proof: If we take m and 7' as in the statement of Strong Multiplicity One, we have
that 7, ~ «} for v ¢ S and hence

L3(s,m x &) = H L(s,my X Ty) = H L(s,my x 7)) = L¥(s,m x &)
vgS v¢S

Since the local L-factors never vanish and for unitary representations they have no
poles in Re(s) > 1 (since the local integrals have no poles in this region) we see
that for s = 1 that L(s,m x 7') has a pole at s = 1 iff L(s, 7 x 7') does. Hence
we have that since L(s,7 x 7) has a pole at s = 1, so does L°(s,7 x 7). But
L3(s,m x7) = L5(s,m x @), so that both L°(s,7 x ') and then L(s,7 x 7') have
poles at s = 1. But then the L-function criterion above gives that @ ~ «’. Now
apply Multiplicity One. d

In fact, Jacquet and Shalika push this method much further. If 7 is an
irreducible automorphic representation of GL,(A), but not necessarily cuspidal,
then it is a theorem of Langlands [61] that there are cuspidal representations, say
Tiy...,Tr Of GLy,,...,GL,, with n = ny +--- + n,, such that 7 is a constituent
of Ind(m ® --- ® 7). Similarly, 7’ is a constituent of Ind(r{ ® --- ® 7/,). Then
the generalized version of the Strong Multiplicity One theorem that Jacquet and
Shalika establish in [45] is the following.

Theorem (Generalized Strong Multiplicity One). Given 7 and 7’ irreducible au-
tomorphic representations of GL,,(A) as above, suppose that there is a finite set of
places S such that m, ~ 7} for all v ¢ S. Then r = r’ and there is a permutation
o of the set {1,...,r} such that n; =nj ;) and 7; =7, ;).

Note, the cuspidal representations 7; and 7} need not be unitary in this state-
ment.

4.4. Non-vanishing results

Of interest for questions from analytic number theory, for example questions of
equidistribution, are results on the non-vanishing of L-functions. The fundamental
non-vanishing result for GL,, is the following theorem of Jacquet and Shalika [44]
and Shahidi [75,76].

Theorem 4.3. Let 7 and 7’ be cuspidal representations of GL,,(A) and GL,,(A).
Then the L-function L(s,n x 7') is non-vanishing for Re(s) > 1.

The proof of non-vanishing for Re(s) > 1 is in keeping with the spirit of these
notes [45, I, Theorem 5.3]. Since the local L-functions are never zero, to establish
the non-vanishing of the Euler product for Re(s) > 1 it suffices to show that the
Euler product is absolutely convergent for Re(s) > 1, and for this it is sufficient to
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work with the incomplete L-function L%(s,7 x ©') where S is as at the beginning
of this Lecture. Then we can write

L(s,m x 7') HLsm,xw :Hdet(I—q;sAM@bAﬁ;})*l
vgS vgS
with absolute convergence for Re(s) >> 0.
Recall that an infinite product [[(1 + ay,) is absolutely convergent iff the asso-
ciated series Y log(1 + a,,) is absolutely convergent.
Let us write

Hv,1 /1’2),1
A7r = and Aﬂ:) =

v

!
Hy,n :u‘v,m

We have seen that |p, ;| < qql,/2 and |, ;| < ¢/*. Then
log L(s, m, x ), Zlog — Moitly ;05 ")

> tr(A? )tr(A%,)

( Hv o
DIy e
Qv

i,j d=1 d=1
with the sum absolutely convergent for Re(s) >> 0. Then, still for Re(s) >> 0,
©tr Ad tr(Ad )

log(L%(s,m x 7') Z Z

vgS d=1

If we apply this to 7/ =7 = 7 we find

log(L®(s, 7 x 7)) ZZHr

vgS d=1

which is a Dirichlet series with non-negative coefficients. By Landau’s Lemma
this will be absolutely convergent up to the its first pole, which we know is at
s = 1. Hence this series, and the associated Euler product L(s,n x 7), is absolutely
convergent for Re(s) > 1.

An application of the Cauchy—Schwatrz inequality then implies that the series

©_tr Ad tr(Ad )

log(L%(s,m x 7") ZZ

vgS d=1

is also absolutely convergent for Re(s) > 1. Thus L(s, 7 x #') is absolutely conver-
gent and hence non-vanishing for Re(s) > 1.

To obtain the non-vanishing on the line Re(s) = 1 requires the technique of
analyzing L-functions via their occurrence in the constant terms and Fourier coef-
ficients of Eisenstein series, which we have not discussed. They can be found in the
references [44] and [75, 76] mentioned above.

4.5. The Generalized Ramanujan Conjecture (GRC)

The current version of the GRC is a conjecture about the structure of cuspidal
representations.
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Conjecture (GRC). Let 7 be a (unitary) cuspidal representation of GL,, (A) with
decomposition m ~ ®'m,. Then the local components 7, are tempered representa-
tions.

However, it has an interesting interpretation in terms of L-functions which is
more in keeping with the origins of the conjecture. If 7 is cuspidal, then at every
finite place v where 7, is unramified we have associated a semisimple conjugacy

Nv71
class, say Ap, = so that
,uv,n
n
L(s,my) = det(I — g, Ar,) ™" = [T (1 = g, )
i=1
If v is an archimedean place where 7, is unramified, then we can similarly write

L(s, ) = [ Tu(s + pro,i)
i=1

where
—s/20(3 if ky ~ R
Py(s)= {7 LG) ik =R
2(2r)—*I(s) ifk, ~C
Then the statement of the GRC in these terms is

Conjecture (GRC for L-functions). If 7 is a cuspidal representation of GL,(A)
and if v is a place where 7, is unramified, then |u, ;| = 1 for v non-archimedean
and Re(uy,;) = 0 for v archimedean.

Note that by including the archimedean places, this conjecture encompasses
not only the classical Ramanujan conjectures but also the various versions of the
Selberg eigenvalue conjecture [36].

Recall that by the Corollary to Theorem 3.3 we have the bounds ¢, 1z
|pew,i] < qi/ ? for v non-archimedean, and a similar local analysis for v archimedean
would give | Re(tty,;)| < 5. The best bound for general GL,, over a number field is
due to Luo, Rudnick, and Sarnak [63]. They are the uniform bounds

(i__1 1__1
Qo ) < Jpoi| <qu ™*if v is non-archimedean
and . .
Re N < = — for v archimedean.
| (IU/'Uyl)| =9 n2 + 1

Their techniques are global and rely on the theory of Rankin—Selberg L-functions
as presented here, a technique of persistence of zeros in families of L-functions, and
a positivity argument.

For function fields over a finite field, the Ramanujan Conjecture for GL,, follows
from Lafforgue’s proof of the Global Langlands Correspondence [59].

For GL; over a number field there has been much recent progress. The best gen-
eral estimates at present are due to Kim and Shahidi [56], who use the holomorphy
of the symmetric ninth power L-function for Re(s) > 1 to obtain

1 1
¢v ° < |pvi| < g5 fori=1,2, and v non-archimedean.
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A simple generalization of the method used in [56] gives the analogous estimate at
the archimedean places over any number field [54]. On the other hand, [53] and its
appendix gives that one can replace § with  at all places, but only for k = Q.

For some applications, the notion of weakly Ramanujan [10] can replace knowing
the full GRC.

Definition . A cuspidal representation 7 of GL,(A) is called weakly Ramanujan
if for every € > 0 there is a constant ¢, > 0 and an infinite sequence of places {vp,}
with the property that each ,  is unramified and the Satake parameters ., ;

satisfy
Ce un < o il < ceqf,,

For example, if we knew that all cuspidal representations on GL,(A) were
weakly Ramanujan, then we would know that under Langlands liftings between
general linear groups, the property of occurrence in the spectral decomposition is
preserved [10].

For n = 2, 3 our techniques let us show the following.

Proposition 4.1. For n = 2 or n = 3 all cuspidal representations are weakly
Ramanujan.

Proof: First, let m be a cuspidal representation or GL,,(A). Recall that from the
absolute convergence of the Euler product for L(s,7 x T) we know that the series

d y2

Z Z HrElAigs”) is absolutely convergent for Re(s) > 1, so that in particular we
vgS d T
) (A )2

ave that Z e is absolutely convergent for Re(s) > 1. Thus, for a set of

vgS v

places of pgsitive density, we have the estimate |tr(A,,)|[* < ¢§ for each e. Since
A, = A;Jl for components of cuspidal representations, we have the same estimate
for | tr(A;1)].

In the case of n = 2 and n = 3, these estimates and the fact that |det A, | =
|wy(w,)| = 1 give us estimates on the coefficients of the characteristic polynomial
for A, . For example, if n = 3 and the characteristic polynomial of A, is X% +
aX2+bX +c then we know |a| = | tr(4y, )| < ¢5'%, |b] = | tr(A71) det(Ar, )| < ¢8/*,
and |c¢| = | det(Ar,)] = 1. Then an application of Rouche’s theorem gives that the
roots of this polynomial all lie in the circle of radius ¢ as long as g, > 3. Applying
this to both A, and A;vl we find that for our set primes of positive density above
we have the estimate ¢, ¢ < |, ;| < ¢5. Thus we find that for n = 2,3 cuspidal
representations of GL,, are weakly Ramanujan. d

| 2

4.6. The Generalized Riemann Hypothesis (GRH)

This is one of the most important conjectures in the analytic theory of L-functions.
Simply stated, it is

Conjecture (GRH). For any cuspidal representation m, all the zeros of the L-

function L(s, ) lie on the line Re(s) = 1.
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Even in the simplest case of n = 1 and # = 1 the trivial representation this
reduces to the Riemann hypothesis for the Riemann zeta function!

For an interesting survey on these and other conjectures on L-functions and
their relation to number theoretic problems, we refer the reader to the survey of
Iwaniec and Sarnak [36].






LECTURE 5
Converse Theorems

Let us return first to Hecke. Recall that to a modular form
o0
f(T) — Z ane2mn-r
n—1

for say SL2(Z) Hecke attached an L function L(s, f) and they were related via the
Mellin transform

Als, f) = (20)*T(s)L(s, f) = / " fiy® d*y

and derived the functional equation for L(s, f) from the modular transformation
law for f(7) under the transformation 7 — —1/7. In his fundamental paper [33] he
inverted this process by taking a Dirichlet series

Za
D5 =3 2
n=1
and assuming that it converged in a half plane, had an entire continuation to a
function of finite order, and satisfied the same functional equation as the L-function
of a modular form of weight £, then he could actually reconstruct a modular form

from D(s) by Mellin inversion

1 oo+1i00

fliy) = Zane*my = _— (2m)*T(s)D(s)y~* ds

2mi oo —100

and obtain the modular transformation law for f(7) under 7 — —1/7 from the
functional equation for D(s) under s — k — s. This is Hecke’s Converse Theorem.

In this Lecture we will present some analogues of Hecke’s theorem in the con-
text of L-functions for GL,. Surprisingly, the technique is exactly the same as
Hecke’s, i.e., inverting the integral representation. This was first done in the con-
text of automorphic representation for GLy by Jacquet and Langlands [39] and then
extended and significantly strengthened for GL3 by Jacquet, Piatetski-Shapiro, and
Shalika [40]. For a more extensive bibliography and history, see [13].

This section is taken mainly from our survey [13]. Further details can be found
in [9,12].

51
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5.1. The results

Once again, let k£ be a global field, A its adele ring, and ¢ a fixed non-trivial
continuous additive character of A which is trivial on k. We will take n > 3 to be
an integer.

To state these Converse Theorems, we begin with an irreducible admissible
representation II of GL,(A). In keeping with the conventions of these notes, we
will assume that II is unitary and generic, but this is not necessary. It has a decom-
position II = ®'Il,, where II, is an irreducible admissible generic representation
of GL,(k,). By the local theory of Lecture 3, to each II, is associated a local
L-function L(s,II,) and a local e-factor (s, II,,1,). Hence formally we can form

) = HL(S,HU) and (s,,9) = HE s, Iy, ).

We will always assume the following two things about II:

1. L(s,II) converges in some half plane Re(s) >> 0,
2. the central character wry of II is automorphic, that is, invariant under k*.

Under these assumptions, (s, II,4) = (s, II) is independent of our choice of ¢ [9].

Our Converse Theorems will involve twists by cuspidal automorphic represen-
tations of GL,,(A) for certain m. Let 7' = ®'n’, be a cuspidal representation of
GL;,(A) with m < n. Then again we can formally define

L(s, 11 x 7') HLsH x 7y) and s(s,wa’):Ha(s,Hvxw’v,@bv)

since again the local factors make sense whether II is automorphic or not. A
consequence of (1) and (2) above and the cuspidality of 7' is that both L(s, II x 7')
and L(s,ﬁ X 7?’) converge absolutely for Re(s) >> 0, where II and 7' are the
contragredient representations, and that e(s,II x #) is independent of the choice
of 1.

We say that L(s,II x 7') is nice if it satisfies the same analytic properties it
would if IT were cuspidal, i.e.,

1. L(s, I x ©') and L(s, II x 7') have analytic continuations to entire functions
of s,

these entire continuations are bounded in vertical strips of finite width,

3. they satisfy the standard functional equation

[\

L(s, I x 7') = (s, 11 x 7")L(1 — 5,11 x 7).

For convenience, let us set A(m) to be the set of automorphic representations
of GL,,(A), Ao(m) the set of cuspidal representations of GL;,(A), and T (m) =

H Ao(d). If we fix a finite set of S of finite places, then let 7°(m) denote the

subset of 7' (m) consisting of representations that are unramified at all places v € S.
The basic Converse Theorem for GL,, is the following.

Theorem 5.1. Let IT be an irreducible admissible representation of GL,(A) as
above. Let S be a finite set of finite places of k. Suppose that L(s,II x ') is nice
for all 7' € T5(n — 1).

1. If S = () then II is a cuspidal automorphic representation.
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2. If S # () then II is quasi-automorphic in the sense that there is an automor-
phic representation II' such that II, ~ II) for all v ¢ S.

In this theorem we twist by the maximal amount and obtain the strongest
possible conclusion about II. The proof of part 1 of this theorem essentially follows
that of Hecke [33] and Weil [95] and Jacquet—Langlands [39]. It is of course valid
for n = 2 as well. Note that as soon as we restrict the ramification of our twisting
representations we lose information about II at those places. In applications we
usually choose S to contain the set of finite places v where II, is ramified.

For applications, it is desirable to twist by as little as possible. There are
essentially two ways to restrict the twisting. One is to restrict the rank of the
groups that the twisting representations live on. The other is to further restrict
ramification.

When we restrict the rank of our twists, we can obtain the following result.

Theorem 5.2. Let IT be an irreducible admissible representation of GL,(A) as
above. Let S be a finite set of finite places of k. Suppose that L(s,II x ') is nice
for all 7' € T%(n — 2).
1. If S = () then II is a cuspidal automorphic representation.
2. If S # (0 then II is quasi-automorphic in the sense that there is an automor-
phic representation II' such that I, ~ II’ for all v ¢ S.

This result is stronger than Theorem 5.1, but its proof is a bit more delicate.

The second way to restrict our twists is to restrict the ramification at all but
a finite number of places. Now fix a non-empty finite set of places S which in the
case of a number field contains the set Sy, of all archimedean places. Let Ts(m)
denote the subset consisting of all representations 7’ in 7 (m) which are unramified
for all v ¢ S. Note that we are placing a grave restriction on the ramification of
these representations.

Theorem 5.3. Let II be an irreducible admissible representation of GL,,(A) as
above. Let S be a non-empty finite set of places, containing S.,, such that the
class number of the ring og of S-integers is one. Suppose that L(s,II x #') is nice
for all 7' € Tg(n — 1). Then II is quasi-automorphic in the sense that there is an
automorphic representation II' such that II, ~ II/, for all v € S and all v ¢ S such
that both II, and II!, are unramified.

There are several things to note here. First, there is a class number restriction.
However, if £ = Q then we may take S = S, and we have a Converse Theorem
with “level 1” twists. As a practical consideration, if we let Sy be the set of finite
places v where II, is ramified, then for applications we usually take S and S to
be disjoint. Once again, we are losing all information at those places v ¢ S where
we have restricted the ramification unless II,, was already unramified there.

The proof of part 1 of Theorem 5.1 essentially follows the lead of Hecke, Weil,
and Jacquet—Langlands. It is based on the integral representations of L-functions,
Fourier expansions, Mellin inversion, and finally a use of the weak form of Lang-
lands’ spectral theory. For part 2 of Theorem 5.1 and Theorems 5.2, and 5.3, where
we have restricted our twists, we must impose certain local conditions to compensate
for our limited twists. For Theorem 5.1 and 5.2 there are a finite number of local
conditions and for Theorem 5.3 an infinite number of local conditions. We must
then work around these by using results on generation of congruence subgroups and
either weak or strong approximation.
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5.2. Inverting the integral representation

Let II be as above and let £ € Vi1 be a decomposable vector in the space Vi1 of
II. Since II is generic, then fixing local Whittaker models W(IL,,,) at all places,
compatibly normalized at the unramified places, we can associate to & a non-zero
function We(g) =[] We, (9v) on GLy(A) which transforms by the global character
¥ under left translation by N, (A), i.e., We(ng) = ¢(n)We(g). Since ¢ is trivial on
rational points, we see that We(g) is left invariant under N,, (k). We would like to
use W¢ to construct an embedding of Vi1 into the space of (smooth) automorphic
forms on GL,(A). The simplest idea is to average W¢ over N, (k)\ GL,(k), but
this will not be convergent. However, if we average over the rational points of the
mirabolic P = P,, then the sum

Uesg)= >, Welpg)

No (k)\ P(k)

is absolutely convergent. For the relevant growth properties of U see [9]. Since II is
assumed to have automorphic central character, we see that Ug(g) is left invariant
under both P(k) and the center Z,, (k).

Suppose now that we know that L(s,II x ") is nice for all #’ € T (m). Then we
will hope to obtain the remaining invariance of U from the GL,, x GL,, functional
equation by inverting the integral representation for L(s,II x #'). With this in
mind, let Q = Q,,, be the mirabolic subgroup of GL,, which stabilizes the standard
unit vector e, 1, that is the column vector all of whose entries are 0 except the
(m + 1)t which is 1. Note that if m = n — 1 then Q is nothing more than the
opposite mirabolic P = ‘P! to P. If we let a,, be the permutation matrix in
GL, (k) given by

am = | Im
Infmfl

then Q,, = a;,'a, 1Pa, ! a,, is a conjugate of P and for any m we have that P(k)
and Q(k) generate all of GL,, (k). So now set

Vel = >, Welamay)
N (6 Q)

where N' = a,;! N, i, € Q. This sum is again absolutely convergent and is invari-
ant on the left by Q(k) and Z(k). Thus, to embed II into the space of automorphic
forms it suffices to show U = V¢, for then we get invariance of U under all of
GL,, (k). It is this that we will attempt to do using the integral representations.

Now let (7', Vi) be an irreducible subrepresentation of the space of automor-
phic forms on GL,,(A) and assume ¢' € V. is also factorizable. Let

I(s:Ve.¢') = e () et an

/C}Lm(k)\GLm(A)

This integral is always absolutely convergent for Re(s) >> 0, and for all s if 7' is
cuspidal. As with the usual integral representation we have that this unfolds into
the Euler product
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I(s; Usyp') = / We (g ! )W;,(hndet(h)v—(n—m)ﬂ dh
(A)\ GL, (4) n—m
hy 0 s—(n—m
_H/ e <0 0 >W;,U(hv)|det(hv)|v (n=m)/2 gp,
)\ GL, n—m
= H\I—'v s; We,, w’v)'

Note that unless 7’ is generic, this integral vanishes.

Assume first that 7’ is cuspidal. Then from the local theory of L-functions from
Lecture 3, for almost all finite places we have W, (s; We,, W, ) = L(s, I, x 7'y)
and for the other places W, (s; We,, W[, ) = ey(s;We,, W, )L(s,IL, x 7') with
the e, (s; We,, W, ) entire. So in this case I(s; Ug,¢') = e(s)L(s, I x ') with e(s)
entire. Since L(s;II x 7') is assumed nice we may conclude that I(s;Ug, ') has
an analytic continuation to an entire function. When 7’ is not cuspidal, it is a
subrepresentation of a representation that is induced from (possibly non-unitary)
cuspidal representations o; of GL,, (A) for r; < m with > r; = m and is in fact,
if our integral doesn’t vanish, the unique generic constituent of this induced rep-
resentation. Then we can make a similar argument using this induced representa-
tion and the fact that the L(s,II X ;) are nice to again conclude that for all 7
I(s;Ue,¢") = e(s)L(s, Il x 7') = €'(s) [ L(s,II x 0;) is entire. (See [9] for more
details on this point.)

Similarly, consider I(s; Ve, ¢') for ¢’ € Vi with ' an irreducible subrepresen-
tation of the space of automorphic forms on GL,,(4), still with

IsiVers!) = | et (")) @l desnle 2 an,
GL . (k)\ GLy, (A)

Now this integral converges for Re(s) << 0. However, when we unfold, we find
I(s; Ve, ¢! H\Il spwnm)ng,W ):é(l—s)L(l—s,ﬁx{rv’)

as above. Thus I(s; Vg, ') also has an analytic continuation to an entire function
of s.

Now, utilizing the assumed global functional equation for L(s,II x #') in the
case where 7' is cuspidal, or for the L(s,II x ;) in the case #' is not cuspidal, as
well as the local functional equations at v € So, U S U Sy U Sy as in Lecture 3 one
finds

I(s:Ue,¢') = e(s)L(s, T x 7') = (1 = $)L(1 — s, 1L x 77) = I(s: Ve, ')

for all ¢' in all irreducible subrepresentations 7' of GL,,(4), in the sense of analytic
continuation. Then an application of the Phragmen—Lindel6f principle implies that
these functions are bounded in vertical strips of finite width. This concludes our
use of the L-function.
We now rewrite our integrals I(s;Ug,¢') and I(s; Ve, ') as follows. We first
stratify GL,,(A). For each a € A* let GL;,(A) = {g € GL,,(4) | det(g) = a}. We
a

can, and will, always take GL;., (A) = SL,,,(4) - ( I ) Let
m—1

EL0e = [ e (")) o an
SLn ()\ GLE, (4)
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and similarly for (P? Ve, ¢')q. These are both absolutely convergent for all a and
define continuous functions of a on k*\A*. We now have that I(s;Ug,¢") is the
Mellin transform of (P%.Us, ¢')q,

I(5; U, ') = / (B Ve, ¢)a a2 d¥a,
kX \AX

similarly for I(s;Ve,¢'), and that these two Mellin transforms are equal in the
sense of analytic continuation. By Mellin inversion as in Lemma 11.3.1 of Jacquet-
Langlands [39], we have that (P}, Ue, ¢")a = (P7, Ve, ¢')a for all a, and in particular
for ¢ = 1. Since this is true for all ¢’ in all irreducible subrepresentations of
automorphic forms on GL,,(A), then by the weak form of Langlands’ spectral
theory for SL,, we may conclude that P}}Us = PpV; as functions on Py, (4).
More specifically, we have the following result.

Proposition 5.1. Let II be an irreducible admissible representation of GL,,(A) as
above. Suppose that L(s,II x 7') is nice for all ' € T (m). Then for each ¢ € V;
we have PP Us (Im41) = PP Ve (Ipt1)-

All of our Converse Theorems take Proposition 5.1 as their starting point. The
first part of Theorem 5.1 follows almost immediately. In all others we must add
local conditions to compensate for the fact that we do not have the full family of
twists from Theorem 5.1 and then work around them.

5.3. Remarks on the proof of Theorem 5.1
Let us first look at the proof of Theorem 5.1. Details can be found in [9] and [7].

5.3.1. The case of S empty

We now assume that II is as above and that L(s, I x 7) is nice for all 7' € T(n—1).
Then we have that for all £ € Vir, PP Ue(I) = P, Ve(I,). But form =n—1
the projection operator P}'_; is nothing more than restriction to P,. Hence we
have Ug(I,) = Ve(Iy,) for all £ € Vir. Then for each g € GL,(A), we have Ug(g) =
Un(g)e(In) = Vii(g)e(In) = Ve(g). So the map & — Ug(g) gives our embedding of
II into the space of automorphic forms on GL,(A), since now Uy is left invariant

under P(k), Q(k), and hence all of GL,, (k). Since we still have
Us(g) = Y Welpyg)

No (k)\ P (k)

we can compute that U is cuspidal along any parabolic subgroup of GL,,. Hence
IT embeds in the space of cusp forms on GL,(A) as desired.

5.3.2. The case of non-empty S

Now let S be a non-empty set of finite places of k. Since we are only twisting
by representations which are unramified at places in S, we will only be able to
prove the equality Ue(g) = Ve(g) for a restricted set of £ and only on a subset of
GL,(4). Since we have not twisted by all of 7(n — 1) we are not in a position to
apply Proposition 5.1. To be able to apply that, we will now have to place local
conditions at all v € S.
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Let v € S. Let K, = GL,,(0,) be the standard maximal compact subgroup of
GL,,(k,). Let p, C 0, be the unique prime ideal of 0, and for each integer m, > 0

set
%

Koo (p™) = { g € GLy(0,)|g = * fl 0 (mod p™)

*

and Ki ,(p0™) = {g € Ko,o(p]™) | gn,n = 1 (mod pJ*))}. Note that for m, = 0
we have K; ,(p)) = Ko, (p)) = K,. Then, as noted at the end of Section 3.1.2, for
each local component II, with v € S there is a unique integer m, > 0 such that the
dimension of the space of K ,(pJ**)-fixed vectors in II, is exactly one. For every
place v € S we choose a vector £, such that £ is invariant under the compact open
subgroup K; (p) for this value of m,. This vector will necessarily transform by
the character wrr, under the action of Ko (pI**).

As is standard, we will let G = [[,c5 GLn(kv), G* = [T 45 GLa(k,), s =
Rpeslly,, II° = ®,g51ly, etc.. Let Kos(n) = [],c5 Kou(p)™*) C Gs where n =
[T,eshu'. Let £& = ®ueséy € Vig. Let &% be any vector in Vis. Then for &

of the form { = {5 ® ¢5 the functions Ut and V¢ (h ) are unramified

1 1

at the places v € S, so that the integrals I(s; Ug,¢’) and I(s; Ve, ') vanish unless
¢'(h) is also unramified at those places in S. In particular, if 7' € T(n — 1) but
7' ¢ T°(n—1) these integrals will vanish for all ¢’ € V. So now, for this fixed class
of ¢ we actually have I(s;Ue,¢") = I(s; Ve,¢') for all ¢’ € Vo for all 7’ € T(n—1).
Hence, as in Proposition 5.1, U¢(I,) = Ve¢(I,,) for all such £&. Then the previous
argument now lets us conclude that Ug(g) = Vz(g) for all g € Ko s(n) G°.

Let Po(n) = P(k) N Ky s(n) G¥, which in fact is simply P(k), and Qy(n) =
Q(k) N Ko.s(n)G®. Then a simple matrix computation shows that Po(n) and
Qo(n) generate the congruence type subgroup o(n) = GL, (k) N Ko s(n) G° of
G' = Ko,s(n) G°. Hence the mapping £° — Ueses (g9) embeds Vis into the
space of automorphic forms A(Ig(n)\ G';wr) as a representation of G'. Since
by approximation GL,(A) = GL,(k) G" and T'g(n) = GL,(k) N G we see that
A(GL,,(k)\ GL,(A);wr) = A(To(n)\ G';wr1) so that II9 determines an automor-
phic representation II; of GL,(A). Then by construction, II; , ~ IL, for all v ¢ S.
For our II' of the theorem we now take any irreducible constituent of II; .

5.4. Remarks on the proof of Theorem 5.2

Details for this section can be found in [12].

5.4.1. The case of S empty

Now suppose that n > 3, and that L(s,II x 7’) is nice for all 7' € T(n — 2). Then
from Proposition 5.1 we may conclude that PP _,Ue(I,,—1) = PR_,Ve(Ip—1) for all
& € Vi1. Since the projection operator P;_, now involves a non-trivial integration
over k" 1\A"! we can no longer argue as in the proof of Theorem 5.1. To get to
that point we will have to impose a local condition on the vector ¢ at one place.
Before we place our local condition, let us write Fy = Ug — V¢. Then F; is
rapidly decreasing as a function on P,_;. We have P}!_,F¢(I,—1) = 0 and we
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would like to have simply that Fg(I,) = 0. Let u = (uy,...,up—1) € A" ! and

consider the function N
I,
few=re ().

Now fe(u) is a function on k"~'\A"~! and as such has a Fourier expansion

few) = D" fel@)a(u)
acknr—t
where 14 (1) = 9(a -fu) and

~

fe(a) = /knl\Anl fe(u)p_q(u) du.

In this language, the statement P}*_,F¢(I,,—1) = 0 becomes fg(en_l) = 0, where as
always, ey, is the standard unit vector with 0’s in all places except the k" where
there is a 1.

Note that F¢(g) = Ue(g) — Ve (g) is left invariant under (Z(k) P(k))N(Z(k) Q(k))
where Q = Q,,_,. This contains the subgroup

In—2
Rk)=Sr=| o« an1 an||ad €k ? a1 #0
1
Using this invariance of Fy, it is now elementary to compute that, with this notation,
fH(T)g(en,l) = fg(a) where @ = (o/, a,—1) € k"L, Since fg(en,l) = 0 for all &,
and in particular for II(r)¢, we see that for every ¢ we have f¢(a) = 0 whenever
ap—1 # 0. Thus

fewy = D" fel@walw) = D felo!,00¢ar0)(u).
ackn—1 a’'ekn—2
Hence f¢(0,...,0,un—1) = X picpn—2 fg(a’,O) is constant as a function of u, ;.
Moreover, this constant is f¢(0) = F¢(I,), which we want to be 0. This is what our
local condition will guarantee.

If v is a finite place of k, let o, denote the ring of integers of k,, and let p,
denote the prime ideal of 0,. We may assume that we have chosen v so that the
local additive character v, is normalized, i.e., that v, is trivial on 0, and non-trivial
on p,!. Given an integer n, > 1 we consider the open compact group

KOO,v(pZ‘/) = {g == (917]) S GLn(Uu) |(z) Gin—1 c p;f)lv for 1 S i S n— 2,
(i) gnj €pyr for 1 <j<mn—2;
(Z“) In,n—1 € pi””}
(As usual, g; ; represents the entry of ¢ in the i-th row and j-th column.)

Lemma 5.1. Let v be a finite place of k as above and let (I, Vi1, ) be an irreducible
admissible generic representation of GL, (k). Then there is a vector &, € Vi1, and
a non-negative integer n, such that

1. for any g € Koo, (p?*) we have II,(9)&), = wir, (9n,n)E,,

2. /Hv 1 u]é& du=0.
7 1
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The proof of this Lemma is simply an exercise in the Kirillov model of II,, and
can be found in [12].
If we now fix such a place vp and assume that our vector £ is chosen so that

— ¢!
v = &y, then we have

Fe(I,) = f:(0) = Vol(p;ol)f1 /_1 fe(0,...,0, Uyy) duy,
Pvg

[n—2
= Vol(p;,) ™" / Fe 1wy, | duy, =0

-1

Pvg 1

for such ¢&.

Hence we now have Ug(I,,) = V¢(I,,) for all £ € Vg such that &, = &, at our
fixed place. If we let G’ = Koo,u, (poe®) G, where we set G = H;¢v0 GL,, (kv),
then we have this group preserves the local component &, up to a constant factor
so that for g € G' we have Ue(g) = Uni(g)e(In) = Vig)e(In) = Ve(g)-

We now use a fact about generation of congruence type subgroups. Let I'; =
(P(k)Z(k)) NG, Ty = (Q(k)Z(k)) N G', and T = GL, (k) N G'. Then U¢(g) is
left invariant under I'y and Vg(g) is left invariant under I's. It is essentially a
matrix calculation that together I'y and 'y generate I'. So, as a function on G',
Ue(g) = Ve(g) is left invariant under T'. So if we let 11" = @;_, II, then the
map £ +— Ug gevo(g) embeds Voo into AT\ G'), the space of automorphic
forms on G’ relative to I'. Now, by weak approximation, GL,(A) = GL, (k) - G'
and I' = GL, (k) N G, so we can extend II° to an automorphic representation of
GL,,(A). Let IIp be an irreducible component of the extended representation. Then
ITp is automorphic and coincides with IT at all places except possible vg.

One now repeats the entire argument using a second place v; # vo. Then we
have two automorphic representations II; and Il of GL,(A) which agree at all
places except possibly vy and v;. By the generalized Strong Multiplicity One for
GL,, we know that Ily and II; are both constituents of the same induced represen-
tation £ = Ind(oy ® --- ® 0,) where each o; is a cuspidal representation of some
GL,,,; (A), each m; > 1 and > m; = n. We can write each o; = 0 ® |det |* with
o7 unitary cuspidal and ¢; € R and assume ¢; > --- > t,.. If r > 1, then either
mi1 <n—2orm, <n—2 (or both). For simplicity assume m, <n — 2. Let S be
a finite set of places containing all archimedean places, vg, v1, Si, and S, for each
i. Taking 7' =&, € T(n — 2), we have the equality of partial L-functions

L3(s, I x 7' = L5(s,IIy x ') = L(s,I1; x ')

= 125,00 x ') = [J L5(s + t; — tr, 07 x 57).
i 7

Now L°(s,02 x 52) has a pole at s = 1 and all other terms are non-vanishing at
s = 1. Hence L(s,IIx #') has a pole at s = 1 contradicting the fact that L(s,IIx7")
is nice. If m; < n — 2, then we can make a similar argument using L(s, II x o1). So
in fact we must have r = 1 and IIy = II; = = is cuspidal. Since IIy agrees with II
at v; and II; agrees with IT at vy we see that in fact II = IIy = II; and II is indeed
cuspidal automorphic.
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5.4.2. The case of non-empty S

Let S be our non-empty set of finite places of k. Since we have restricted our
ramification at the places in S, we no longer know that L(s,II x #') is nice for
all 7' € T(n — 2) and so Proposition 5.1 above is not immediately applicable. In
this case, for each place v € S we fix a vector £, € Vi, as in the above Lemma.
(So we must assume we have chosen ¢ so it is unramified at the places in S.) Let
§s = [l,eséw € IIs. Consider now only vectors £ of the form €% ® & with &5

arbitrary in Vjjs and &g fixed. For these vectors, the functions P}:_,Us (h 1> and

szfZVE 1

and I(s;Vg,¢') vanish unless ¢'(h) is also unramified at those places in S. In
particular, if 7' € T (n—2) but 7’ ¢ 7°(n—2) these integrals will vanish for all ¢’ €
Var. So now, for this fixed class of { we actually have I(s;Ug, ') = I(s; Ve, ') for
all ¢ € Vu for all 7’ € T(n — 2). Hence, as before, P7'_,Ue(L,,—1) = Pp_oVe(In—1)
for all such &.

Now we proceed as before. Our Fourier expansion argument is a bit more
subtle since we have to work around our local conditions, which now have been
imposed before this step, but we do obtain that Ug(g) = Ve(g) for all g € G’ =
([Tves Koo (0yv)) G¥. The generation of congruence subgroups goes as before. We
then use weak approximation as above, but then take for II' any constituent of
the extension of II° to an automorphic representation of GL,,(A).There no use of
strong multiplicity one nor any further use of the L-function in this case. More
details can be found in [12].

> are unramified at the places v € S, so that the integrals I(s; U, ¢")

5.5. Remarks on the proof of Theorem 5.3

Let us now sketch the proof of Theorem 5.3. Details can be found in [9].

We fix a non-empty finite set of places .S, containing all archimedean places,
such that the ring og of S-integer has class number one. Recall that we are now
twisting by all cuspidal representations ' € Tg(n — 1), that is, 7' which are un-
ramified at all places v ¢ S. Since we have not twisted by all of 7 (n — 1) we are
not in a position to apply Proposition 5.1. To be able to apply that, we will now
have to place local conditions at all v ¢ S.

We begin by recalling the definition of the conductor of a representation II,
of GL,(ky) and the conductor (or level) of II itself. Let K, = GL,(0,) be the
standard maximal compact subgroup of GL,,(k,). Let p, C 0, be the unique prime
ideal of 0, and for each integer m, > 0 recall that

Ko,u(py) = ¢ 9 € GLyp(0,)|g = * : (mod p™)
%

and Kj ,(p)™) = {9 € Kow(®2*) | gn,n = 1 (mod p2**))}. Note that for m, =0

v
we have Ki ,(p%) = Ko,,(p%) = K,. Then for each local component II, of II there
is a unique integer m, > 0 such that the space of K; ,(p}*)-fixed vectors in II,
is exactly one. For almost all v, m, = 0. We take the ideal p* = §(II,) as the

conductor of II,. Then the ideal n = f(II) = [[, p** C o is called the conductor of
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II. For each place v we fix a non-zero vector & € II,, which is fixed by K; , (pi'),
which at the unramified places is taken to be the vector with respect to which the
restricted tensor product II = ®'IL, is taken. Note that for g € Ko ,(pI*) we have
I, (9)55 = wir, (gn,n)&?'

Now fix a non-empty finite set of places S, containing the archimedean places
if there are any. Then the compact subring n® = vaspvm" C k%, or the ideal
it determines ng = k N ksn® C og, is called the S—conductor of II. Let K7 (n) =
[l,¢s Ki0(py') and similarly for K§(n). Let £&° = ®pgs& € 119, Then this vector
is fixed by K7 (n) and transforms by a character under K3 (n). In particular, since

HU¢S GL,,_1(0,) embeds in Kf(n) via h — <h ) we see that when we restrict

1
II° to GL,_; the vector £° is unramified.

Now let us return to the proof of Theorem 5.3 and in particular the version
of Proposition 5.1 we can salvage. For every vector £g € Ilg consider the func-
tions Ugzgee and Vegmeo. When we restrict these functions to GL,—; they become
unramified for all places v ¢ S. Hence we see that the integrals I(s;Ug,gee, ")
and I(s; Vegweo, ') vanish identically if the function ¢’ € Vs is not unramified for
v ¢ S, and in particular if ¢’ € Vv for 7' € T(n — 1) but 7’ ¢ Tg(n — 1). Hence,
for vectors of the form £ = &5 ® £° we do indeed have that I(s;Ugsneo, ') =
I(s;Veggeo,¢') for all ¢' € Vv and all 7" € T(n — 1). Hence, as in Proposition
5.1 we may conclude that Ug geo (1) = Veggeo (I) for all {s € Vir,. Moreover,
since {s was arbitrary in Vi1, and the fixed vector £° transforms by a character
of K5 (n) we may conclude that Uggeee(9) = Vegweo(g) for all & € Vip, and all
g€ GsK§(n).

What invariance properties of the function Ugzg¢e have we gained from our
equality with Vesgeo. Let us let T'y(ng) = GL, (k) N Gs K7 (n) which we may view
naturally as congruence subgroups of GL,(05). Now, as a function on GgK§ (n),
Ueswee (g) is naturally left invariant under Ty p(ng) = Z(k) P(k) N Gs K (n) while
Veswee (9) is naturally left invariant under Ty o (ng) = Z(k) Q(k) N Gg K (n) where
Q = Q,_;. Similarly we set I'; p(ng) = Z(k)P(k) N GsK{(n) and T q(ns) =
Z(k) Q(k) N Gs K{(n). The crucial observation for this Theorem is the following
result.

Proposition 5.2. The congruence subgroup I';(ng) is generated by the subgroups
Iip(ng) and I'; q(ng) for i =0, 1.

This proposition is a consequence of results in the stable algebra of GL,, due
to Bass which were crucial to the solution of the congruence subgroup problem for
SL,, by Bass, Milnor, and Serre. This is reason for the restriction to n > 3 in the
statement of Theorem 5.3.

From this we get not an embedding of II into a space of automorphic forms
on GL,(A), but rather an embedding of IIs into a space of classical automorphic
forms on Gg. To this end, for each &5 € Vi1, let us set

Be,(95) = Uesweo ((95,1%)) = Veggeo (95, 1°))

for gs € Gs. Then ®¢, will be left invariant under I'i (ns) and transform by a
Nebentypus character ys under I'g(ng) determined by the central character wys
of IT°. Furthermore, it will transform by a character ws = wr, under the center
Z(ks) of Gg. The requisite growth properties are satisfied and hence the map
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&s — P, defines an embedding of IIg into the space A(T'o(ns)\ Gs;ws, xs) of
classical automorphic forms on Gg relative to the congruence subgroup I'g(ng)
with Nebentypus xs and central character wgs.

We now need to lift our classical automorphic representation back to an adelic
one and hopefully recover the rest of II. By strong approximation for GL,, and
our class number assumption we have the isomorphism between the space of clas-
sical automorphic forms A(Io(ns)\ Gs;ws, xs) and the K7 (n) invariants in the
space A(GL,(k)\ GL,(A);w) where w is the central character of II. Hence Ilg
will generate an automorphic subrepresentation of the space of automorphic forms
A(GL,,(k)\ GL,,(A);w). To compare this to our original II, we must check that, in
the space of classical forms, the ®¢;g¢o are Hecke eigenforms for a classical Hecke
algebra and that their Hecke eigenvalues agree with those from II. We do this only
for those v ¢ S which are unramified, where it is a rather standard calculation. As
we have not talked about Hecke algebras, we refer the reader to [9] for the details.

Now if we let II' be any irreducible subrepresentation of the representation
generated by the image of IIg in A(GL,(k)\ GL,(A);w), then II' is automorphic
and we have II}, ~ II,, for all v € S by construction and I}, ~ II, for all v ¢ S’ by
the Hecke algebra calculation. Thus we have proven Theorem 5.3.

5.6. A useful variant

For the applications of any of these Converse Theorems to the problem of lifting
of automorphic representations to GL,,, which we will take up in the next Lecture,
the following simple variant of these theorems is extremely useful [13]. If 7 is
one of the twisting sets from above and 7 is a fixed idele class character, we set
Ton={r"|n"=ny®n with =y € T} where we view 7 as a character of any
GL,,, by composition with the determinant.

Observation 5.1. Let IT be as in Theorem 5.1, 5.2, or 5.3. Suppose that 5 is a
fixed character of k*\A*. Suppose that L(s,II x 7') is nice for all 7' € T ®n, where
T is any of the twisting sets of those theorems. Then II is cuspidal automorphic or
quasi-automorphic as in those theorems.

The only thing to observe, say by looking at the local or global integrals, is that
if 7y € T then L(s,II x (m,®n)) = L(s, (II®n) x w{) so that applying the Converse
Theorem for II with twisting set 7 ® n is equivalent to applying the Converse
Theorem for I ® n with the twisting set 7. So, by either Theorem 5.1, 5.2, or 5.3,
whichever is appropriate, Il ® 7 is cuspidal automorphic or quasi-automorphic and
hence II is as well.

5.7. Global fields of characteristic p # 0

When the global field k is of characteristic 0, that is, is a number field, the state-
ments of the Converse Theorems we have given in terms of the analytic properties of
the L-functions are the most appropriate and applicable. However when the global
field k is of characteristic p # 0, that is, the field of functions of a curve over a finite
field, while the statements we have presented are still true, it is most appropriate
and useful to have the Converse Theorems stated in terms of the global L-functions
as rational functions, as was done in Piatetski-Shapiro’s original paper [65]. While
it would take us too far afield to present this in this setting, Lafforgue needed this
formulation in his proof of the Global Langlands Correspondence for GL,, in this
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context [59]. In Appendix B of that paper Lafforgue reformulated our Theorem
5.1 in terms of L-functions as rational functions and showed how to modify our
proof above to apply in this context. We recommend Lafforgue’s Appendix B to
the interested reader.

5.8. Conjectures

What are the optimal statements that one could hope for in a Converse Theorem?
At this point in time there seem to be two more or less accepted conjectures [12].

The first is credited to Jacquet. It assumes the least amount of twisting one
could hope for and still be able to control the cuspidality of II. The heuristics for
this conjecture can be found in the last section of [12]. Notations are as in Section
5.1.

Conjecture 5.1. Let II be an irreducible admissible representation of GL,,(A) as
above. Let S be a finite set of finite places of k. Suppose that L(s,II x ') is nice
for all 7' € 79 ([2]).
1. If S = () then II is a cuspidal automorphic representation.
2. If S # () then II is quasi-automorphic in the sense that there is an automor-
phic representation II' such that I, ~ II/ for all v ¢ S.

The most ambitious conjecture we know of is due to Piatetski—-Shapiro and is
explained in [12].

Conjecture 5.2. Let II be an irreducible admissible representation of GL,,(A) as
above. Suppose that L(s,II ® w) is nice for all w € T (1), that is, for all idele class
characters w. Then II is quasi-automorphic in the sense that there is an automorphic
representation IT" such that II, ~ II/, for all finite places of k where both II and II'
are unramified and such that L(s, [I®w) = L(s,II'®w) and (s, [Ieow) = (s, [I'®w)
for all w.

This conjecture would have many applications to number theoretic questions.
We refer the reader to Taylor’s recent ICM talk for a discussion of some of these [93].






LECTURE 6
Converse Theorems and Functoriality

In this section we would like to make some general remarks on how to apply
these Converse Theorems to the problem of functorial liftings [3]. Other surveys of
this topic can be found in [14,83].

In order to apply these these theorems, you must be able to control the global
properties of the L-function. However, for the most part, the way we have of con-
trolling global L-functions is to associate them to automorphic forms or represen-
tations. A minute’s thought will then lead one to the conclusion that the primary
application of these results will be to the lifting of automorphic representations
from some group H to GL,. This has traditionally been the case, for example in
Shimura’s original proof of the Shimura correspondence [86], the Doi-Naganuma
analysis of quadratic base change for GLy [18], and the symmetric square lifting
from GLy to GL3 by Gelbart and Jacquet [23]. More explicitly number-theoretic
applications then come as consequences of these liftings.

In the recent cases in which the Converse Theorem has been used to establish
Functorial liftings, the group H has been split and the field £ has been of charac-
teristic zero. To simplify our exposition we will work in this context throughout
this lecture. So let k£ be a number field and H a split connected reductive algebraic
group over k.

6.1. Functoriality

Langlands’ Principle of Functoriality is a natural philosophy governing the lifting or
transfer of automorphic representations, having its origins in viewing the Langlands
Conjectures as giving an arithmetic parameterization of local admissible or global
automorphic representations.

6.1.1. Langlands Conjectures

Let “H be the Langlands L-group of H. Since we are assuming that H is split, the
Galois structure will play no role and we can simply use the connected component
LH® as the full L-group without loss of information. This connected component
is essentially the complex analytic group determined by the root data which is
dual to that of H [3,6]. The Langlands Conjectures can be viewed as giving an
arithmetic parameterization of either the admissible representations of H(k,) or
the automorphic representations of H(A) in terms of admissible homomorphisms

65
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of the local Weil-Deligne group Wy —or the conjectural global Langlands group Ly,
into the Langlands L-group “H.

We will begin with the Local Langlands Conjecture. So let v be a place of k, k,
the corresponding completion, and W,;U the associated Weil-Deligne group [92]. If
k, is archimedean, we simply take W = W}, to be the Weil group. Following Borel
[3,6] we let ®(H,) denote the set of admissible homomorphisms ¢, : W; — “H
modulo inner automorphisms. In the case H = GL,, these are simply the Frobenius
semi-simple complex representations of the Weil-Deligne group and for other H
they are an appropriate generalization. Let A(H,) = A(H(k,)) denote the set of
equivalence classes of irreducible admissible complex representations of H(k,).

Local Langlands Conjecture: There is a surjective map A(H,) — ®(H,) with fi-
nite fibres which partitions A(H,) into disjoint finite sets Ay, = Ag, (H,) satisfying
certain representation-theoretic desiderata.

For the precise nature of the desiderata we refer the reader to Borel [3] or [6].
Since they will play no role in our discussion we will refrain from listing them. The
sets Ay, for ¢, € ®(H,) are called local L-packets.

The following general results are known towards this Conjecture for H:

1. If H = GL,, then the Local Langlands Conjecture for GL,, in characteristic
zero has been completely established by Harris—Taylor [32] and then Henniart [35].
In this case the correspondence is bijective and the desiderata are expressed in terms
of the matching of L-factors and e-factors of pairs.

2. If the local field k, is archimedean, i.e., k, = R or C, then it was completely
established by Langlands [62].

3. If k, is non-archimedean one knows how to parameterize the unramified
representations of H(k,) via the unramified admissible homomorphisms [3]. This is
a rephrasing in this language of the Satake classification.

4. If k, is non-archimedean then Kazhdan and Lusztig have shown how to
parameterize those representations of H(k,) having an Iwahori fixed vector in terms
of admissible homomorphisms of the Weil-Deligne group [50].

Thinking of the Local Langlands Conjecture as providing an arithmetic parame-
terization of the irreducible admissible representations of H(k,), one can define local
L-functions associated to arbitrary m, € A(H,). One needs a second parameter,
namely a continuous complex representation r : “H — GL,,(C). Then, for any ad-
missible homomorphism ¢, € ®(H,), the composition r o ¢, : W — GL,(C) is a
continuous complex representation of the Weil-Deligne group and to it we can asso-
ciate an L-factor L(s,ro¢,) and e-factor (s, r0¢,,1,) for an additive character 1,
of k [92]. If m, € Ay, is in the L-packet defined by the admissible homomorphism
¢, then we set

L(S,’/TU,T') :L(S,’I“Od)v) and 5(877Tv77'71/)v) :E(Saro¢v7¢v)'

According to this definition, one cannot distinguish between the representations ,
lying in a given L-packet Ay, in terms of their L-functions and e-factors, hence
the terminology. At present these L-functions are well-defined only for those =, for
which the parameterization is known, for example if 7, is unramified.

One would ideally like a statement of a Global Langlands Conjecture or param-
eterization which is analogous to the local one, but at present there is no natural
global version of the Weil-Deligne group in characteristic zero. One can give such
a formulation in terms of a conjectural global Langlands group L for a number
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field k£ [68]. Not knowing what this should look like, one still expects to have
local-global compatibility. If one begins with an irreducible automorphic repre-
sentation 7 = ®'m, of H(A) then, assuming the Local Langlands Conjecture for
each local group H(k,), one can attach to 7 the collection {¢,} of local parameters
by = b, Wi — LH given by the local components ,. This system of local pa-
rameters can often be used as a substitute for a global parameter. This collection
of local data is sufficient to define the global L-function and e-factor attached to =
and a representation r : “H — GL,(C) by

L(s,m,r) = HL(S,’/TU,T) = HL(s,r ° dy)

and

e(s,m,r) = HE(S,WU,T, ) = Ha(s,r  y, y)

where ¥ = ®%, is an additive character of A trivial on k.

6.1.2. Local Functoriality

We are interested in Functoriality from H to G = GL,. In general, Functoriality
is associated to an L-homomorphism, which in our context is simply a complex
analytic homomorphism v : LH — YG = GL,(C).

Local Functoriality is very natural if one assumes the Local Langlands Conjec-
ture for H(k,). In this case, if 7, is an irreducible admissible representation of H(k,)
then here is associated a parameter or admissible homomorphism ¢, : W,;v - LH. If
we compose this with the L-homomorphism u we obtain a parameter for GL, (k,),
namely ®, = uo ¢, : Wi — “G = GL,(C). Since the local Langlands cor-
respondence for GL,, is bijective, this parameter determines a unique irreducible
admissible representation II, of GL,,(k,):

Lg u Ly
Ty ——> x / —1I,.
Wi

The representation I, is called the local Langlands lift or transfer of m, associated
to the L-homomorphism u. Note that in terms of local L-functions, we have the
equalities

L(s,my,u) = L(s,u o ¢,) = L(s,®,) = L(s,1I,)
and
(8, Ty, u,Py) = €(5,u 0 ¢y, hy) = (s, By, ¥y) = &(s5, 11y, 9y)

as well as equalities for the twisted versions with representations !, of GLy, (k).

6.1.3. Global Functoriality

We retain our L-homomorphism u : LH — LG = GL,(C). If we begin with a
cuspidal representation 7 = ®'m, of H(A) then the global Principle of Functoriality
states that to # and w should be associated an automorphic representation II of
GL,(4) for which L(s,m,u) = L(s,II) among other things.
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If we assume the Local Langlands Conjecture for each local group H(k,) then
this global Functoriality is easy to formulate. We first take 7 and decompose it into
its local components # = ®'m,. For each local representation w, we apply our local

lifting diagram:
Ly v Ly
Ty ——— x / —1I,.
Wi,

Then piecing the local representations II, together we obtain an irreducible admis-
sible representation II = ®'Il, of GL,,(A). Langlands’ Principle of Functoriality
then says that II should be automorphic. Then II would be the global Langlands
lift or transfer of m associated to the L-homomorphism u. Note that in this case
we would have the equality of L- and e-factors

L(s,m,u) = HL(Sa”Tv;u) = HL(Saﬂv) = L(s,1I)

and

e(s,m,u) = Hz—:(s,m,u,@/}v) = HE(S,HU,@/JU) =¢e(s,II)

as well as equalities for the twisted versions with representations @' of GL,,(A)
L(s,m x " u®t)=L(s, 1 x ')

for cuspidal automorphic representations of GL,,(A), where ¢ : GL,,,(C) — GL,,(C)
is the identity map viewed as an L-homomorphism, and the related equalities of
e—factors.

In general, as noted above, there will be a finite set S of finite places of k for
which we do not know the local Langlands conjecture for H(k,). So for any finite
set of finite places S we will call an automorphic representation II of GL,(A) a
global Langlands lift of w if for every v ¢ S we have that II, is the local Langlands
lift of m,. In particular this will imply an equality of partial L—functions

L3(s,m,u) = L°(s, )

as well as the related equalities of e—factors and twisted versions.

6.2. Functoriality and the Converse Theorem

It should now be clear how one can apply the Converse Theorem to establish lift-
ings or transfers from split connected reductive groups H to an appropriate GLy
associated to an L-homomorphism u : 'H — GLy(C). There are essentially three
steps.

1. Construction of a candidate lift. We begin with a cuspidal automorphic
representation 7 = ®'m, of H(A). Assume that for each place v we can construct
an appropriate local lift m, — II, associating to m, an irreducible admissible rep-
resentation of GLy (k,). If the local Langlands conjecture is known for H(k,) we
take II, to be the local Langlands lift of m, as defined above. At the remaining
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places, if any, the existence of a local lift is a problem that will be addressed be-
low. Putting these local lifts together we obtain a candidate lift II = ®'IL, which
is an irreducible admissible representation of GLy(A) as in the statement of the
Converse Theorems. One must take care that for each n' € T for an appropriate
twisting set 7 we have equalities

L(s,mx ' u®t) = L(s, 11 x ')

and
e(s,mxm iu®i) =¢e(s, I x 7).

2. Control the analytic properties of the twisted L-functions for H. In our
examples this will be done using the Langlands—Shahidi method as explained in
Shahidi’s article in this volume [84]. To apply the Langlands—Shahidi method
we must at present assume that k is a number field, as we have, and that the
cuspidal representation 7 is globally generic [84]. Then we need to know that for
an appropriate twisting set 7 the twisted L-functions L(s,7 x 7', u ® t) are nice,
ie, for 7' in an appropriate twisting set 7 we need

1. L(s,mx 7', u®¢) and L(s, 7 x 7, u® 1) have analytic continuations to entire
functions of s,

2. these entire continuations are bounded in vertical strips of finite width, nd

3. they satisfy the standard functional equation

Lis,mxmu®i) =e(s,m x 7w, u®)L(1— 8,7 X7, u®1).

The functional equation (3) is known in wide generality [80,84]. The bounded-
ness in vertical strips (2) is likewise known [25,84]. After a moments thought one
realizes that the entirety (1) will not be true in general, since certain cuspidal 7
of H(A) are expected to lift to non-cuspidal IT on GLx(A) and hence the twisted
L-functions L(s,II x 7') need not be entire. This is a difficulty that we will also
address below.

3. Application of the appropriate Converse Theorem. In all the examples in
which we have been able to carry out this program, the Converse Theorem that is
used is either Theorem 5.1 or 5.2 in conjunction with Observation 5.1 of Section 5.6.
The use of Observation 5.1 with n a sufficiently highly ramified idele class character
will be used to solve the local and global difficulties remaining in steps 1 and 2.
Once we apply the Converse Theorem we can conclude that there is a automorphic
representation II' = @'II!, of GLy(A) such that IT], = II, is the local Langlands lift
of m, for all v outside a finite set of places S, i.e, II' is a global Langlands lift of =
with respect to the L-homomorphism w. Thus the global Langlands Functoriality
from H to GL,, associated to the L-homomorphism u is established.

6.3. Statement of Results

We left two problems open in the sketch above: (i) the lack of knowledge of the
Local Langlands Conjecture at certain places for H(k,), and hence the lack of a
natural local lift, and (ii) the possibility of global poles for L(s,7 X n',u ® ). We
have been able to overcome these difficulties, as will be discussed below, and this
method has been applied in the following cases:
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H LH uwH -G La G
SO2n+1 Sp,,,(C) < GL2,(C) | GLay
SOsp S04, (C) < GL2,(C) | GLay
Spay, SO2,41(C) < GL2,41(C) | GLypyy
GLs x GLy | GL2(C) x GLy(C) ® GL4(C) GLy
GLy x GL3 | GL(C) x GL3(C) ® GLg(C) GLs
GLy GL4(C) A2 GLg(C) GLs

In this table, the first three maps u : “H — G are the natural embeddings, the
next two are the tensor product maps, and the last is the exterior square map.

Theorem 6.1. Let k& be a number field. Let H be a split reductive algebraic group
over k from the table above. Let m be a globally generic cuspidal representation
of H(A). Then 7 has a global Langlands lift II' to GLy (A) associated to the map
u : 'H — GLy(C) from the table. More specifically, there is a non-empty finite
set of finite places S and an automorphic representation II' of GLy(A) such that
for all v ¢ S we have II, is the local Langlands lift of 7, with respect to the
L-homomorphism u.

The first case of this Theorem to appear was the tensor product lifting from
GL2 x GL; to GL4 by Ramakrishnan [69]. His method was slightly different from
the one we have outlined here in that he controlled the analytic properties of the
twisted L-functions for H = GL; x GL2 by a combination of both the Langlands—
Shahidi method and integral representations. In addition he used Theorem 5.2 but
made no use of Observation 5.1 or the highly ramified twist. The first case which
was completely treated by the method outlined here was the lifting from SOqp 41
to GLg, in [7]. Once this method was understood, particularly the global use of
Observation 5.1, then other liftings could be obtained whenever one could control
the L-functions. The tensor product lifting from GL; x GL3 to GLg by Kim and
Shahidi [55] and the exterior square lift from GL4 to GLg by Kim [53] soon followed.
More recently, we have completed the local results necessary to complete the liftings
from the other classical groups SOz, and Sp,, [8]. In addition, the Asai lifting
from GL» /K to GL4 /k, where K /k is a quadratic extension, has been analyzed by
Ramakrishnan [70] by a variant of this method and by Krishnamurthy [57] using
the Langlands-Shahidi method to control the L-functions.

We should point out that in all cases, particularly those of Kim—Shahidi [55]
and Kim [53], the Theorem we have stated is the starting point of a more complete
analysis of the lifting as well as applications.
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6.4. Example: The lifting from SOs,; to GLo,

In this section we would like to give a more detailed sketch of the proof of The-
orem 6.1 in the case of the lifting from SOs,41 to GLa, associated to the em-
bedding of L-groups Sp,,(C) — GL2,(C). Since the L-functions for SOz, as-
sociated to this representation of “H are the standard L-functions, we will omit
the L-homomorphism from our notation for the L-functions and e-factors. The
L-functions and e-factors for H below are those defined by the Langlands-Shahidi
method [84]. More details can be found in [7].

Recall that k is taken to be a number field. For definiteness, we will take H to

1

be the split special orthogonal group with respect to the form . Let

T = ®'m, be a globally generic cuspidal representation of H(A).

6.4.1. Construction of a candidate lift

Let S be the finite set of finite places at which the local component m, of 7 is
ramified.

For v ¢ S the Local Langlands Conjecture is known for H(k,) and we can
associate to m, its local Langlands lift II,, from the local lifting diagram:

Sp2n GLZn

(©)¢ ©
Ty —— \ / ——1II,.
Wi,

In these cases we have the following proposition, as is expected from the for-
malism.

Proposition 6.1. Let v ¢ S and let II,, be the local Langlands lift of 7, as above.
Let 7!, be an irreducible admissible generic representation of GL,, (k,) with m < 2n.
Then

L(s,my, X m) = L(s,II, x 7)) and &(s,m, X m,, ) = &(s, I, X 7, 1y).

Now we come to the places v € S where we do not have the Local Langlands
Conjecture at our disposal. Instead, we will replace it with the following two local
facts about representations of H(k,). As was the case for linear groups, there is a
local ~-factor y(s, m, x 7, 1,) for representations of H(k,), where m, is our generic
representation of H(k,) and ), is a generic representation of GL,,(k,) [80,84]. It
is related to the local L- and e-factors by

€(s,my X T, 1hy)L(L — 8,7y X 1)
L(s,my x 7)) '

7(S:7Tv X FL,%) =

The following two properties of the local y—factor are crucial to our local lifting. The
first is the mutliplicativity of local vy-factors and is known in quite some generality
[81,84].
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Proposition 6.2 (Multiplicativity of «-factors). If 7, is a generic irreducible ad-
missible representation of H(k,) and if #} is a generic irreducible admissible repre-
sentation of GLy, (k,) with 7, = Ind(m; ,®m ,), with 7; , an irreducible admissible
representation of GL,, (k), then

7(87'”11 X 7r,v;¢v) = 7(87'”11 X '/TILv;’l/}v)'Y(S;"rv X 77,2711;1/}11)-

There is a similar multiplicativity in the first variable, i.e., if the representation
of H(k,) is a full induced representation.

The second property is the stability of the local «-factors under highly ramified
twists. The knowledge of this property is more limited. It is known in the case we
need, namely H = SOsyp,41 [11], and there is progress in establishing it in general
[8,82].

Proposition 6.3 (Stability of y-factors). If 7 , and 7, are two irreducible ad-
missible generic representations of H(k,) then for every sufficiently highly ramified
character 7, of k, we have

7(877‘_1,1) X 771171[)1)) = 7(877‘_2,1) X nvawv)
and
L(s,m15 X Ny) = L(s,m2,, xny) = 1.

Hence the local e-factor stabilizes as well.

To see how these function as a replacement for the Local Langlands Conjec-
ture at the places is S, first recall from Section 3.1.6 that we also know the local
multiplicativity and stability of ~-factors for GLo, (k). If we use the multiplica-
tivity of the y-factor in the first variable then we can actually compute the stable
form of the y-factors (s, m, X 1y,%,) with 7, a generic representation of H(k,)
and (s, I, x ny,%¢,) with II, a representation of GLay, (k) by taking 7 , or II ,
to be full induced representations in the statement of stability. Multiplicativity in
the first variable then reduces both y-factors to a product of 2n one dimensional
Artin «-factors. This then allows for a comparison of the stable forms on these two
different groups. As a result we find the following proposition.

Proposition 6.4 (Comparison of stable forms). Let 7, be a generic irreducible
admissible representation of H(k,) and let II, be a generic irreducible admissi-
ble representation of GLaj,(k,) having trivial central character. Then for every
sufficiently ramified character 7, of k) we have

’Y(S:ﬂ-v X ﬂv,%) = ’Y(S:Hv X 7]v:¢v)
and
L(s,my, x my) = L(s,1I, X 1,) = 1.

Hence the local e-factor are stably equal as well.

This equality, combined with the multiplicativity of the vy-factors, lets us make
the following definition of a local lift. If v is a place in S then we take the local
lift of 7, to be any irreducible generic representation II, of GLa, (k,) having trivial
central character. We can then establish the following analogue of Proposition 6.1.
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Proposition 6.5. Let v € S and let II, be the local lift of m, as above, that is,
any generic irreducible admissible representation of GLa, (k,) having trivial central
character. Let 7} be an irreducible admissible generic representation of GL,, (k,)
with m < 2n of the form m, = m; , ® n, with 7 , unramified and 7, a fixed
sufficiently highly ramified character of k.. Then

L(s,my, x m,) = L(s,II, x m,) and &(s,m, X my,y) = &(s, I, X m,,1,).
We will sketch the proof of this Proposition on the level of y-factors. Since
7, 18 generic and unramified, it is a full induced representation of the form m , =

Ind (1,4 ®- - @ fim,v) With each p; ,(z) = |z|5 an unramified character of k¢. Then
= 7r(’]7v ®@ 1y = Ind(p1 w0y @ -+ ® Wm,vMy) and we have

7(87771) X 77’1)77/}11) = 7(87’”1) X Ind(:ul,vnv Q- Nm7vnv)7¢v)
= H V(s + $i, Ty X Ny, 1y,) (multiplicativity)
= H v(s + 84, Iy X 1y,1,) (comparing stable forms)
= (s, Iy x Ind(p1,0M0 ® - -+ @ fom,vw), Py) (multiplicativity)
= 7(5: II, x FL,%)-
From this one derives the equality for the L— and e—factors.
We can now construct our candidate lift. With = and S as above we take II,
to be the local Langlands lift of m, for all v ¢ S and take II, to be any irreducible
admissible generic representation of GLo,(k,) with trivial central character for

v € S. Let II = ®'Il,. Then II is an irreducible admissible representation of
GL2,(A). From Proposition 6.1 and 6.5 we may now deduce the following result.

Proposition 6.6. Let 7 and S be as above and let II be the candidate lift of
7 constructed above. Then for any fixed idele class character n for which 7, is
sufficiently ramified at the places v € S so that Proposition 6.4 holds we have

L(s,mx@')=L(s,ll x ') and eg(s,m x ') =e(s,I x 7).
for all 7' € T9(2n — 1) @ 1.

6.4.2. Controlling the analytic properties of the twisted L-functions

The twisted L-functions L(s,7 x ') are controlled using the Langlands-Shahidi
method. We refer to Shahidi’s article in these proceedings [84] for a discussion of
this method. In our case, these results are obtained by analyzing the Eisenstein
series on SOa(p4m)+1 induced from the representation 7’| det |* @ 7 on the maximal
parabolic with Levi subgroup GL, X SO2,4+1 as well as the Eisenstein series on
SOsg,,41 induced from the representation 7’| det |*/2 on the maximal parabolic with
Levi subgroup GL,, for all m =1,...,2n — 1.
The general functional equation has been understood for many years [80,84]:

Proposition 6.7. For any cuspidal representation 7’ of GL,,(4), 1 < m < 2n, we
have the functional equation

L(s,mx ') =¢(s,m x #")L(1 — 5,7 x &).
Similarly, the boundedness in vertical strips is true for all 7’ [25,84]:

Proposition 6.8. For any cuspidal representation 7' of GL,,(A), 1 < m < 2n, the
L-function L(s,7 x 7') is bounded in vertical strips.
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As noted above, there is no reason for us to expect the L-functions L(s, 7 X 7')
to be entire for all cuspidal #’. However, one can analyze the potential poles
in terms of the Eisenstein series above. The crucial observation of Kim was the
following [7,84].

Proposition 6.9. The relevant Eisenstein series, hence the L-function L(s, 7 x 7'),
can have poles only if the representation 7' is essentially self-contragredient, that
is, 7' ~ 7' ® | det |* for some t € C.

This condition for poles is a condition on our twisting representation 7’ and
can again be controlled by a ramified twist. If we assume that 7' is such that at
one finite place v we have m;, = m , ®n, with g, unramified and 7, a character of

k> such that both 7, and n2 are ramified then we can never have 7' ~ 7’ @ | det |*
since this is not possible locally at the place v. Hence L(s,m x ') will be entire.
Combining these three results, we have the following statement.

Proposition 6.10. Let 7 be a globally generic cuspidal representation of H(A).
Let S’ be a non-empty set of finite places and suppose that n is an idele class
character such that at at least one place v € S’ we have both n, and n? are ramified.
Then the twisted L-functions L(s, 7 x 7') are nice for all 7’ € T5 (2n — 1) @ 1.

6.4.3. Application of the Converse Theorem

We are now ready to complete the proof of Theorem 6.1 in the case of H = SOq;,4 1.
Let 7 be a globally generic cuspidal representation of H(A). Let S be the finite set
of finite places at which =, is ramified. Let II be the candidate lift of 7 to GLa,,(A)
constructed above, that is, I, is the local Langlands lift of 7, for v ¢ S and II, is
any irreducible admissible generic representation of GLo, (k,) having trivial central
character for v € S. If S is non-empty let S’ = S and if 7 is unramified at all finite
places take S’ = {vp} to contain any chosen finite place. Choose a fixed idele class
character i which is sufficiently ramified for all v € S’ such that both Propositions
6.6 and 6.10 are valid. Then for all 7’ € 75 (2n — 1) ®  we have

L(s,mx@')=L(s,JIx7') and e(s,mx7')=¢e(s,II x ")

and the L(s,II x 7') are thus nice. Then applying Theorem 5.1 and Observation
5.1 we can conclude that there exists a automorphic representation II' = ®'II}
of GLayp(A) such that II) = II, is the local Langlands lift of =, for all v ¢ S'.
Hence II' is a global Langlands lift of 7 associated to the embedding of L-groups
Spon(C) — GL2,(C). This is Theorem 6.1 in this case.

6.5. Liftings from the other classical groups

The liftings of globally generic cuspidal representations from SOs, to GLg, and
Spa,, to GLa,y1 follows the same outline as above. At the time of writing [7]
the stability of the local y-factors was known only for H = SOs,,+1. Since then,
Shahidi has established formulas for his local coefficients, and hence his local ~-
factors, which represent them as Mellin transforms of suitable Bessel functions [82].
Having such a representation was crucial for the proof for stability of «-factors in
the SOsp41 case [11]. Combining the formulas of [82] with the analysis of [11]
now gives the stability in these cases. Having this stability in hand, the proof now
follows the method above. The complete proof in these cases will appear in [8].
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6.6. Complements

As we noted above, Theorem 6.1 is the beginning point for a more complete analysis
of the these liftings. We would like to mention two examples of this.

In the case of the lifting from SOsp41 to GLa,, combining this lift with their
descent theory Ginzburg, Rallis and Soudry were able to completely characterize
the image locally and globally [29] and thus show that the local components II! at
those v € S" are completely determined by the global lift, so there is no ambiguity
at these places. This is true for the liftings from the other classical groups as
well [8,88]. Once one knows that these lifts are rigid, then one can begin to define
and analyze the local lift for ramified representations by setting the local lift of =,
to be the II,, determined by the global lift. This is the content of the papers of Jiang
and Soudry [48,49] for the case of H = SOa2,11. In essence they show that this
local lift satisfies the relations on L-functions that one expects from Functoriality
and then deduce the Local Langlands Conjecture for generic representation SOap41
from that for GLs,,. We refer to their papers for more detail and precise statements.
Related results and further applications can be found in the papers of Kim [51,52].

In the case of the tensor lifting GLs x GL3 to GLg, Kim and Shahidi also showed
that in fact this lift is completely determined at the places v € S and in fact is the
local Langlands lift at those places as well [55,84]. They also characterize when the
image is cuspidal, etc. Kim is able to do the same for his exterior square lift from
GL4 to GLg, except possibly for places lying above 2 and 3 [53,84]. In addition,
combining these two lifts, they are able to deduce and analyze the symmetric cube
and fourth power lifts for GL, [53,55, 56]:

H IH w:TH-> LG Lag G

GL; | GL,(C) Sym® | GL4(C) | GLy

GL2 GL2 ((C) Sym4 GL5 ((C) GL5

From these they were able to deduce the estimates towards the Generalized
Ramanujan Conjecture for GLy mentioned in Section 4.5. For more details, we
refer the reader to the original papers [53,55,56] as well as Shahidi’s article in these
proceedings [84].

6.7. Concluding remarks

What further cases of Functoriality can we expect from this method? The table
in Section 6.3 gives all of the cases of split H which are attainable. Given that
the Converse Theorem requires the control of a large family of twisted L-functions,
this table covers all cases where the Langlands-Shahidi method is able to supply
that control [60,79]. There are cases of quasi-split H and similitude groups such
as G Spin that should also be attainable and Shahidi, Kim, and their students are
currently pursuing these.

If we stay within the general Langlands-Shahidi philosophy of controlling ana-
lytic properties of L-functions through analyzing the Fourier coefficients of Eisen-
stein series there are two possible extensions of the method. The first possibility
for extending the method would be to relax the requirement of 7 being globally
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generic. This idea has been initially investigated by Friedberg and Goldberg [20].
Another possible extension would be to adapt the method to include Eisenstein
series on loop groups [21,22]. Many more twisted L-functions should be attainable
from Eisenstein series on these groups since more combinations of groups occur in
the Levi decomposition of parabolic subgroups in this context.

Another possibility would be to try to control the twisted L-functions involved
by the method of integral representations, as was pursued in this set of notes for
GL,,. While there are many integral representations in the literature, with the
exception of GL,, there are few if any cases where a complete analysis of the L-
functions has been worked out. The version of the Converse Theorem given in
Theorem 5.3 was originally put forth for use with integral representations.

Of course, possibly the most natural way to extend the method would be to
reduce the amount of twisting needed in the Converse Theorem. For this reason,
the pursuit of Conjecture 5.2 becomes very appealing.
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