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SOLUTIONS OF SELF-DIFFERENTIAL
FUNCTIONAL EQUATIONS

Abstract

The system of functional differential equations (1) has a continuously
differentiable solution for every value of the parameter a. The boundary
values and a are related with d(2 — a) = ¢(2 4+ a). When a € S where

S={2""":n=1,23,..},
the system (1) has infinitely many solutions with boundary values ¢ = 0
and d = 0. For all other values of a, the system (1) has a unique solution.
1

<zx< =
,fL’,2
1

(z)
() =aF(2—2x) if
F(0) =c, F(1) =d.

jad
F

/

aF(2z) if
F (1)

= 9

<z<

1 Introduction.

A function f : [a,b] — R is self-differential if [a,b] can be subdivided into a
finite number of sub-intervals, and on each sub-interval the derivative of f is
equal to f by the graph transformed by an affine map. The case to be studied

1 1
here is (1), where [0,1] is decomposed into [0, 2} and [2, 1] , and the affine

transformed images of F' are aF(2z) and aF (2 — 2x).

In [4] Fabius showed that the distribution function F» of the random vari-
able U = fo:l 27U, where Uy, Us,,... are independent random variables
uniformly distributed on [0, 1], is the solution of (1) for a value of the param-
eter a = 2 and boundary values ¢ = 0 and d = 1. The function F5 is infinitely
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differentiable and nowhere analytic on [0,1]. The derivatives of F, of order
2n are also solutions of (1) for a = 22"+ and ¢ = d = 0. In Theorem 2.1 (i),
we show that (1) has a unique solution for all other values of a. We prove the
existence of the solution using a modification of the method of the successive

1
approximations on a sub-interval [07 471] and extend it to [0, 1] with formulas

(4.3). This method is used by Kato and McLeod [5] for the solution of the
initial value functional differential equation y(z) = ay’(Az) + By(x), y(0) = 1.
Similar initial value functional differential equations have been studied by De
Bruijn [1]. A distinctive feature of the solution F' of (1) is that if it is known
on any sub-interval, then it can be extended to [0, 1] using only polynomials.
This property of the solutions of boundary value self-differential equations is
analogous to the notion of self-similarity for fractals (p. 135, Edgar [3]).

Definition 1.1. A differentiable function f is polynomially divided on the
interval [0,1] if for every N > 0 there exists an integer n > N and poly-

nomials {pnz(x)}::ll such that either f (Z + x) =f (z - m) + pni(x) or
n n
1 1—1 ) 1
f(+;1c> =f (—i—x) +pni(z)fori=1,2,....n—1land z € [O,}.
n n n

This definition means that if [0, 1] is partitioned to n sub-intervals of equal
length, the values of f on two neighboring intervals differ only by a polynomial.
The solutions of (1) are polynomially divided by Lemma 3.1. In Section 2 we
find a relation between the boundary values which allows us to decompose
equations (1) to the simpler functional differential equations (x) and (k).
The decomposition of the solutions is different, depending on whether or not a
belongs to the set .S = {2”+1 n=123,.. } The main motivation to study
self-differential equations is to generalize the exponential functions which have
derivatives constant multiples of themselves. It is an interesting question to
find self-differential equations which have practical applications.

This work is part of the Ph.D. thesis of the first author, written under the
direction of the second author.

2 Basic Properties.

When a = 0, equations (1) have a solution F'(z) = ¢ with boundary values
¢ = d. For boundary conditions ¢ = d = 0, equations (1) have a solution
F(z) = 0 for all values of the parameter a. The Fabius function dFs(z) is a
solution of (1) for a = 2, ¢ = 0 and every value of F(1) = d. Other solutions
are obtained from the derivatives of Fy(x) of even order.
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Lemma 2.1. The function F2(2n) is a solution of (1) with a = 22"+ and
boundary values c=d =0, for alln=1,2,...

ProoF. The Fabius function F5 satisfies

1
Fj(z) = 2F5(2x) if0 < 5
1
Fj(z) =2F3(2 —2z) if 5 <1
By differentiating 2n times these equations, we obtain
n T 1
FP () = 22041 £ (92) if0<z< 3
1
F2(2n+1)(x) _ 22n+1F2(2n)(2 —2x) if 3 < <z<l.
From the first formula and z = 0 we obtain
F(0) = F*(0) = -+ = F(0) = Fy(0) = 0,

and by the second formula and x = 1 we have that
FPD (1) = 22211 R (0) = 0.

Therefore F2(2") satisfies (1) with parameter a = 22"+ and boundary values
c=d=0. O

The graphs of the solutions of (1) for a = 2,8 and 32 are given in Fig. 1.
Every constant multiple function of F2(2") (z) is also a solution of (1). Therefore
(1) has infinitely many solutions for every a € S. In Section 3 we show that
equations (1) have a unique solution for all other values of a ¢ S. Now we
want to find a relation between the boundary values and the parameter a.
Suppose that the function F(x) is a solution of the system of equations (1).

Proposition 2.1. The solution F of (1) satisfies

P(bee)or(hoa)era -
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Fig. 1: The solutions 4F5, Fj and F2(4) of (1) for a = 2,8 and a = 32

PRrooF.
1 1 1
_ - — <zx< -
Let G(x F(2+x) <2 ;1:> for()_x_2
Then G'(z 1+ +F 1
e 5T 5%
1
:aF(Q ( >>+aF<2(2—x>)
F(1-2z)—aF(1—-2z)=0.
Therefore,
1
G(m):G<2> FO)+F(1)=c+d O
1 1
From (2.1) and = = 5 e obtain F' (2> = c—;—d.

Lemma 2.2. The boundary values of equations (1) satisfy d(2—a) = c(2+a).

1
ProOOF. We evaluate / F(z) dx in two ways:
0

1

/OIF(z)dz/Oz

=

F(x)dﬁ/llF(x)dx/jF(x)dH/O F(1 - u) du

2
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and
1 3
/ F(z) dx = / [F(u) + F(1 —u)] du.
0 0
By Proposition 2.1 we have that F(u) + F(1 —u) = ¢+ d. Then
! 3 c+d
/ F(z) de = / [c+d] dz = . (2.2)
0 0 2
Let z = 2y.
1 3 2 [3
/ F(x)dx:2/ F(2y)dy:f/ F'(y) dy
0 0 @ Jo (2.3)
:2 I 1 — F(0) :g c+d_c :d—c
a 2 a 2 a
d— d
By (2.2) and (2.3) we obtain - - C;r . Therefore, ¢(a+2) = d(2—a). O

In Lemma 2.2 we showed that if equations (1) have a solution, then the
boundary values satisfy c¢(a+2) = d(2 — a). In this way we have the following
four possibilities for the values of the parameters ¢ and d depending on the

values of a:

(a+2)c

e a # +2. The value of d is determined from ¢ with d = 5 .
—a

e ¢ =2. Then ¢ =0 and d is an arbitrary real number.

e ¢ = —2. Then d = 0 and c is an arbitrary real number. These relations of
the boundary values lead to the following system of functional differential

equations.

=

f'(w) = af(2z) i

f'(@) =af(2-22) i
FO)=2—a,f(1)=2+a.

_h
o= O
A IA
) 8
A IA
— N~

In Theorem 2.1 we show that (*) has a unique solution when a ¢ S.

e ¢ =d =0 and qa is an arbitrary real number. With these values of the

parameters equations (1) become
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fl(z) =af(2x) if

fl(x)=af(2—-2z) if
f(0)=0,f(1)=0.
In Lemma 2.2 we have already found infinitely many nonzero solutions of ()
for every a € S. The solution of (1) is either a constant multiple of a solution

of (%) or it is a solution of (xx) if ¢ = d = 0. These results are summarized in
Theorem 2.1 and Corollary 2.1.

()

Theorem 2.1. (i) Equations (x) have a unique C solution for all a ¢ S and
have no solution if a € S.

(ii) Equations (¥*) have infinitely many C' solutions {TFQ(Q")\T € R} for ev-

ery a = 2*"*1 € S and have no nonzero solutions if a ¢ S.

The proof of Theorem 2.1 is divided into lemmas. In Section 3 we show that a
necessary condition for a solution of equations (*) is that a ¢ S and we prove
that all solutions of (xx) with parameter a = 22"™1 are constant multiples of
FQ(M). In Section 4 we construct the solution of (%) using a modification of
the method of the successive approximations. The solution of equations (1) is
derived from the solution of (*) in the following way.

Corollary 2.1. Leta ¢ S and f(x) be the unique solution of equations (x). If
d(2 —a) = c(a+2), then equations (1) have a unique C' solution F(x) where

F(z) = 02f(:v) ifa #2. When a =2 and ¢ =0 the solution is F(x) = gf(:c)
—a

3 Necessary Conditions.

In Section 2 we found infinitely many solutions of (xx) for every a € S. In this
Section we prove that these are the only solutions of (x*) and that (*) has no

solution ifa € S. Let f(x) be a solution of (%) or (**) and denote by, = f o
1 1
In Proposition 2.1 we showed that f (2 + x) +f <2 — x) =c+d. Now we

show that similar property holds at each point o

Lemma 3.1. The function f satisfies

f <21n 4 x) (1) (;ﬂ _ :r:) — pu(a) (3.1)
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1
for0 <z < on The polynomials p,, are defined recursively by

5—1(7) = apa—2(27)
{ 225_1(0) - 252;_1 (32)
and . .
{ Zzi(o) o (3.3)

where
4 if f isa solution of (x)

0 if f isa solution of (k).

pi(z) = {

PROOF. We prove Lemma 3.1 by induction on n. When n = 1 equation (3.1)
is satisfied by Proposition 2.1. Suppose that

1 1
fl=+2)+D)"" (= —2) =pu(a).
AL n
Put x = 2¢ to obtain

f (;ﬂ + 2t> +(=1)"f (21,1 - 2t> = Pn(20).

1 1
From the second equations of (x) and (xx) with = on +2tand x = o 2t

1 1,/ 1
f(%—%)—af <2n+1_t>
1 1,/ 1
f(2n+2t>af <2n+1+t>.
1

f/ <2n1+1 +t) + (_1)n+1f/ <2n+1 — t) = CLPn(Qt)-

By integrating the above equation from 0 to x we obtain

/Ogc [f’ (27}“ +t> + (=)t <2n1+1 tﬂ dt‘ = /Ow apn (2t) dt
[f (2n1+1 +t> 4 (—1)"t2f <2n1+1 —t)]: a/ompn(zt) i@t

(o) - 0 () =1 () = [tz

we have that

and

Then
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where v = 1 + (—1)"*+2.

Casel n is even. Then v = 0, and when n = 2[, we have that

1 1 1 z
f (22l+1 +x) +f (221+1 —w) —2f (221“) :a/o por(2t) dt
1 1 T
f <22z+1 ‘H”) +f (22l+1 —ff) = 2ba1+1 +a/0 poy(2t) dt.

Therefore, f satisfies (3.1) with n = 2l + 1 and

p21+1(l’) = 2[)2[4_1 + a/ p21(2t) dt. (34)
0

Case 2 n is odd. Then v =0, and when n = 2] — 1 we have that

f<212l+x> f<212lx> :a/O par—1(2t) dt

* (3.5)
pa(r) = a/o par—1(2t) dt.

We obtain equations (3.2) and (3.3) from (3.4) and (3.5) by differentiation
with respect to x. O

The solution f of (1) is polynomially divided because it satisfies (3.1). If

1 1
f is known on the interval [0, — |, then we can extend it to [O, } with

am gm—1
formula (3.1) and n = m. By using the same procedure m — 1 times with
n=m—1,m—2,...,1 we can reconstruct f on the interval [0, 1]. Even more,
if the function f is known on an arbitrary sub-interval (a,b) of [0, 1] where

S s+1

< b, for some integers s and m, then using the reverse

1
procedure we can find the values of f on [0, om and then extend f to the

interval [0, 1] . In this way, we can reconstruct the solution of (1) from any sub-
interval of [0, 1] using only the polynomials p,,. Now we express the coefficients

1
of poy (x) with by, bs, ..., ba,—1. From (3.1) and z = on we can find the values

1
fp, and x = —.
of p, and = om
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Corollary 3.1. Suppose that f is a solution of (x). Then
1 1
Pon (22n> =ban_1 — 2+ a and pan+1 (22"4‘1) =boy, +2—a.

Corollary 3.2. Suppose that f is a solution of (xx). Then

1
n|l — ) =b,_1.
p <2n> 1

In the next lemma we find a formula for the polynomials ps,.

Lemma 3.2. The polynomials p, with even index are given by

pon(z) =32 @ 1)!*2’““36 : (3.6)

n 2k—122k2—3k+2b2 k—1
n
k=1

PRrOOF. By Lemma 3.1, py, is a polynomial of degree 2n — 1. The coefficients
may be computed by Taylor’s formula. Compute successive derivatives using
Lemma 3.1:

Doy, () = apan—1(2)

Py (1) = 2aph,, 1 (22) = 2a*pa,_o(4x)

Py (x) = 8a°ph,,_5(42) = 2220 py,—3(82) = 2°apas—3(82)

P () = 64a°ph, _5(82) = 2222%a"py—4(162) = 2%a"py—4(162),

and in general, by induction

1(1—1)

alpgn,l(2lx):2 2 alpgn,l(2lx).

pélr)z(x) — ol4+24+3+-+(1-1)

But pan—2x(0) = 0 and pap—2k+1(0) = 2bap—2k+1; SO

2n—1 (1) l N 2k—1062k2—3k+2 2k—1
QTL(O)m a 2 + b2n—2k}+1x
l! ’

penl) = ; ) 2k —1)!

k=1
In Lemma 2.1, we found infinitely many solutions

fla) = rFS ()

of equations (xx) for a = 2271 € S and r € R. In the next corollary, we show
that a € S is a necessary condition for a solution of (k).
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Corollary 3.3. Let f be a nonzero solution of (xx) such that
bl == bgnfl =0 and b2n+1 7é 0. Then a = 22"+1.

Proor. By Lemma 3.2,

n+1 _ 2
a2k 122k 1

—3k+2 b2n—2k+3332k7

p2n+2('r) = — (2]{7 — 1)' = 2ab2n+1$.
Then
1 1
f W‘Fx —f W — T =2abgn+1x.
Put x = Jont2 to obtain
1 abap 11 aban 11
f (22"“) — f(0) = SanT1 and by, 11 = ST

Therefore, a = 22"*! as required. O

Now we use Lemma 3.2 to find a formula which relates the numbers
b1,b3,...,ban 1.

Lemma 3.3. The numbers {ba,—1},—, satisfy

2
n o 2k—192k —3k+2—2n(2k—1)b2n_2k+1 >

b1 (2771 —a) =227 (2 —at) 2k —1)!

k=2

(3.7)
Proor. By Corollary 3.1,
1
Pan 5on =byp_1—2+a.

1
From (3.6) and © = —— we have that

22n
DP2n <
a n o 2k—192k*—3k+2-2n(2k—1)

ban—1 (1*2%7_1):2*‘”2 2k —1)!

k=2

b2n72k+1

1
22n

n o 2k—192k®—3k+2-2n(2k—1)
> = 2k —1)!

Then

b2n—2k+1 ) ]
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So far we have found formulas to compute the polynomials pa, (z) and the
numbers by, _1.

Corollary 3.4. Let f be a solution of (x) or (xx). The numbers ba, and the
coefficients of pan+1 are obtained from {bar_1}7_, by

) (x) _ n a2k22k2—k+1b2n_2k+1m2k
2n+1 — (2]{))'
and
" a2k22k2—k+1—2k(2n+1)bzn_zk 1 ) )
> ko k)] L4 a—2 if f satisfies (%)
ban = 2ko2k? :

22k —k’+1—2k(2n+1)b e

ZZ:O £ (Qk)' o] fo satisﬁes (**)

(3.8)

PrOOF. We have that
Pant1(w) = 2bop 1 + a/ Pan(2t) dt.
0

From (3.6) and = = 2t,

n a2k7122k:27k+1b2n_2k+1t2k71
Pan(21) = (2k —1)!
k=1 :
Then
n z  2k—192k?—k+1 2k—1
a 2 bg —92k 1t
p2n+1(l') = 2b2n+1 + CLZ/ (2k — {L)' + dt

k=170 )

2
_ 2": a2k92k 7k+1b2n72k+1x2k

— (2k)!

1
If f is a solution of (x), then pa,11 (227”1) =by, +2 —a and

n a2k22k2—k+1—2k(2n+1)b2n72k+1
b2n:Z (2]{})' +a— 2.
k=0
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1
If f is a solution of (xx), then po,11 (22”“) = by, and

N o2k92k® —k+1-2k(2n+1)y

b2n =
2 25!

2n—2k+1 ]

1
Remark 3.1. Ifa ¢ S and f is a solution of (x), then the values b,, = f (2n

are computed with formulas (3.7) and (3.8). The values of f on the set
k
D = 2—n|k= 1,....2" ne N

are computed from {b,} with formula (3.1). The set D is dense in [0, 1] and
the values of f are determined for every z € [0,1] from the values of f on D
with f(z) = lim f(d,) where d,, € D and lim d,, = x. Therefore, (x) has at

n—oo

most one solution for every a ¢ S. We show that (%) has a unique solution for
all a ¢ S in Section 4.

Remark 3.2. If ¢ = 22"*! and f is a solution of (sx*), then b; = 0 and
bs, ..., ban—1 are computed with (3.7), but the value of bg, 1 cannot be com-
puted with (3.7). If we choose by, 41 to be an arbitrary number, then

ban+3, bants, ... may also be computed with (3.7). The values of bg, may
be computed from the values of ba,_; with formula (3.8). Similarly to Re-
mark 3.1, the values of f on D may be computed with (3.1). Therefore,
(#+) has at most one solution for every choice of by,41. This solution is

bons1 Fy (@)
@n (1
F2 (22n+1 )

The graphs of f obtained by calculating the values of f on D for
a = —32,-4,7.9,8.1,16,50 are given on Fig. 2. Now we show that (x) has no
solution when a € S. Let a = 22™~1. With this value of a, equation (3.7)

. Therefore, all solutions of (%) are {TFQ(Q") (x)|r e R}.
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Fig. 2: The solutions of equations (x) for a = —4,16 (top), a = 7.9,8.1 and
a =7.99,8.01 (middle) and a = —32,50 (bottom)
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becomes

ban—1 (22”71 — 22m71) — 92n—1 (2 _ 22m—1+

2k — 1)!

=
||M:
[ V]

9(2m—1)(2k—1)92k* —3k+2-2n(2k—D)p, . )

b2n71

/

1— 22(m7n)) —9_ 22m71+ (39)
22k2—3k+2+(2m—2n—1)(2k—1)b2n
(2k — 1)!

—2k+1

NE

B
I|

2

1 n 22k23k+2+(2m2n1)(2k1)b2n_2k+1>

bon—1 = 1_am—n (2 (1—4m=) + Z (2k —1)!

k=2
The numbers by = 2,b3,...,bs,,_3 are computed with the above formula.
When n = m, formula (3.9) becomes

m 22k2—5k+3b2 okt
0=2(1—4m""! it
( )+;; 2k — 1)

m 2k2 —5k+2 (310)
gm—1_1_ 2 bom—2k+1
B — 1)
— (2k —1)!
Formula (3.10) gives a relation between by, . .., ba,,—3 and is a necessary condi-

tion for existence of a solution of equations () when a = 22~!. In Lemma 3.5
we show that (3.10) is not satisfied. In the proof of Lemma 3.5 we use Propo-
sition 3.1 and Lemma 3.4.

Proposition 3.1. Let ey, be the power of 3 in (2k — 1)!. Then e, < k — 1.

PRrROOF.

2k — 1 L2k — 1
= E o -
3r<2k—1 r=1
where ro = |logs(2k — 1) ].

1
1— ——
2k -1 3ro 2k —1 1 2k —1
ep < 3 1_1 =—3 <1—ym)< 5 < k.
3

Therefore, e, < k — 1. O
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The numbers by, bs, ..., bo,_3 are rational numbers in lowest terms. Let
day,—1 be the power of 3 in the denominator of bs,,_1. The sequence {dgn,l};n:]l
is increasing and satisfies the following inequality.

Lemma 3.4.
dop—1 —dop_32>2 (3.11)

Proor. We prove (3.11) by induction on n. by =2 and d; = 0. By (3.7),

1 . 2876+2+1+(2m75)3
by = T3 (2(1 4"+ 30 )
B 6(1 _ 4m—1) + 26m—11
3(1— 4m2)

Let’s denote by d(k) the power of 3 in 4¥ — 1. Then d(k) > 1 because
4P 1 =34t 4R ),

The numerator of bz is not divisible by 3. Therefore d3 = d(m —2) +1 > 2
and (3.11) is satisfied for n = 2. Suppose that dop_1 — dop—3 > 2 for every
k=23 ... .n—1.

1

64™ "by,,_
bop g = ———— (2(1 —gmmly 2 ey

1 —4m-n 3

zn: 22k2—3k+2+(2m—2n—1)(2k—1) ban—2k+1
= 2k —1)!)°
By the induction assumption,

k—1

don—s3 — don—ok1 = D [don—2141 — don—21-1] > 2(k —2) = 2k — 4
=2

don—op+1 + 2k — 4 < day—3.

ban—2k+1

m is d2n72k+1 + eg. From

The power of 3 in the denominator of

Proposition 3.1, we have that

dop—op+1+ex < dop—opt1 + k=1 < dop_opt1 +2k—4 < dop—3 < dop_3+1
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bon—
for 3 < k < n. The power of 3 in the denominator of % is doy—3 + 1.

ban—
3!

Therefore, the power of 3 in the denominator of 2 s greater than the

b2n—2k+1

m for every k = 3,4,...,n. Then the

power of 3 in the denominator of
power of 3 in the denominator of
64 M hon—3 N mok?—3k42— (3m—2n—1)(2k—1) D2n— 2kt 1

9 +2—(2m—2n—1)(2k—1)
5 T 2k 1)!

k=2

is exactly do,_3 + 1, and so the power of 3 in the denominator of

1 (64m_nb2n—3 + zn: 22k2—3k+2—(2m—2n—1)(2k—1) b2n—2k+1 >

— qgm—n _ |
1-4 3 —~ (2k —1)!

is equal to dop—3 + d(m —n) + 1. Then

dop—1 =dan—3+d(m—n)+1>do,_3+ 2. O

In Lemma 3.5, we prove that the necessary condition (3.10) for a solution
of (%) is not satisfied.
Lemma 3.5.
n 22k2—
4m—1_1q # Z
k=2

SRt 2 okt
2k —1)!

PrOOF. We want to show that the denominator of

- b
Z 22k2—5k+2 2m—2k+1

e (2k — 1)!

is divisible by 3.

Zn: g2k?—skt2b2m-2kt1 _ bam-s Zn: 02k —5h+2 D2m—2k-+1
2k—1)! 3l 2k — 1)

k=2 k=3

The power of 3 in the denominator of

22k275k+2 bom—2k+1
(2k — 1)!
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is dom—2k+1 + €x. By Proposition 3.1 and Lemma 3.4, we have that

dom—2k+1 + ek < dom—opy1+k—1 < dop—ok41 +2k—4 < dopp—3 < dopp—3+1

b
for 3 < k < n. The power of 3 in the denominator of 3 s dom—_3 + 1.
Therefore, the power of 3 in the denominator of
i 92k ~5h-+2 borm—2k+1
= (2k — 1)!
is doy,—3 + 1. Then the denominator of
Z o2k —5h-+2 D2m—2k-+1
(2k —1)!
is divisible by 3. Hence,
2_ryp.
gl Z R S
(2k —1)!
k=2
as required. O

From Lemma 3.5 it follows that equations (*) have no solution when a € S
because the necessary condition (3.10) is not satisfied.

4  Successive Approximations to the Solution.

In Section 2 and Section 3, we proved part (ii) of Theorem 2.1. We also
showed that if a € S, equations (*) have no solution. In Section 4, we show
that equations (x) have a solution for every a ¢ S. According to the following
remark, this solution is unique. Remark 3.1. Let f be a solution of (x)

andme[&ﬂ. Then f(z) = +f0f/ dt_2—a+f0af2t Ydt =

—a+ ¢ f ) dt. Let n be the smallest integer such that 2 |a| < 4™. Now,

we use the above equation to define a sequence of functions {hy} - w—o Which

1
approximates f on the interval [O, 4n_1} by
ho(x) =z
a [* 2
-9 _ — <zr< —
hi(x) 2—a+ 2/, hi—1(t)dt for 0 <z < yr (4.1)

2 2
hu (M-i-x) = pan—1(7 ) hi (—:1;) f0r0<x§47.
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Proposition 4.1. The functions hy are continuous for all k > 2 .

2 2 1
PrOOF. The functions hy are continuous on the intervals [O, ] and <7 } .
qn gn’ gn—1

Now, we show that hj is continuous at TR From the first equation of (4.1)

2
and x = Yol we have that

1

2 a [T-T
h | — ) =2- — hi_1(t)dt
k<4n> a+2/0 e—1(t)

=2—a+2/4 hk—l(t)dt‘f'g/yk hi—1(t) dt
2 Jo 2 /2

in
2

a a [4" 2
=2-— — hip—1(t)dt 4+ = hip—1 | — d
a+2/0 k—1(t) +2/0 k1(4n+u) u

2 2
T

he 1 (1) dt + %/0 [p2n_1(u) ~ hps (fn - uﬂ du

ES

|

From (3.2), we have that apa,_1(u) = ph, (%) Then
2 &

2 1 [+ , /u o
hel — ) =2—a+ = an(*) du=2—a-+ Doy, (u) du
4n 2 Jo 2 0

2 1
hi (4n> =2—a+pnm (4n> —p2n(0) =2—a+by_1 —24+a=bop_1.

From the second equation of (4.1), we obtain
2 : 2 . 2
(3) - 1 () g o ()

2

2
I <4n+> = p2n-1(0) — hy (471—> = 2bop—1 — bap—1 = bap—_1.

2 2
h, (471) = hy (471-1-) =bp_1.

Therefore,
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05 1 ‘ 05 1 ‘ 05 1

Fig. 3: The approximations hi, ho and hg to the solution of (x) for a = 1.99

2
The function hy is right continuous at = — and so it is continuous on the
1
interval |:O7 477,—1:| . O

When a = 1.99, then n = 1, because 2 |a|] < 4. The sequence of functions
{hi}re, approximates the solution of (*) on the interval [0,1]. The graphs of
the first three approximations hi, he and hs are given on Fig. 3. The solution
of equations (x) for a = 2 is 4F» (Fig. 2). The solutions of (x) for a = 1.99
and a = 2 differ by less than 0.015. Now we define a system of functional

1
differential equations on the interval [0, 416_1} Let k£ be a positive integer,

and denote by FEgns[k] the following functional differential equations.
2
=af(2z) for 0 <z < n

)
(f+) — poe(o) — f (42 _x) for0<z< o (Bansik)
1(0) ~2-a

Proposition 4.2. Let f be a solution of Eqns|k]. Then

1 1
f (4]@—1) = bgk,Q and f/ (4k—1> = abgk,‘g.

PROOF. From the second equation of Fqns[k] and z = we have that

2
47k7

f <41€11> = DP2k-1 (42k> - f(O) = DP2k-1 (jk) — 24 a=bog_o.
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By differentiating the second equation of Egns[k], we obtain

f (42,6 +m> = poy_q(z) + f (fk - x) :

2
Put x = — in the above equation,

4k
f (4131) = Phr1 <42k> + f'(0) = apay—2 <4,€11> +af(0)
f (4kll> = a(bop—3 — 2+ a)+a(2 — a) = aby,_3. O

By Proposition 4.2, equations (*) are the same as Eqns[1].

Lemma 4.1. (i) The sequence of functions hi(x) converges uniformly.
(i) The limit function f,(x) = klim hi(x) is continuously differentiable and
— 00

satisfies Eqns[n].

PROOF. (i) Let M = sup |hg(x) — hg—1(x)|. From the second equation
z€[0, 7]
of (4.1), we have that

My = sup |hg(z) — hp—1(z)|.

z€[0, %]

From the first equation of (4.1),

a 2x a 2x
hi(z) — hg—1(x) = 5/0 hi—1(u) du — 5/0 hi—2(u) du

2z
a
) — hiea ()] < & / e () — ha(u)] du.
0
Therefore,
o [ a 2ol
M < - My_1du= —2aeMy_; < —My_;.
2 o 2 in
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2
Let t = %. Then 0 < ¢ < 1, because n is chosen such that 2|a| < 4".

Therefore, M, < tMj,_;. By induction, we obtain M, < t*~'M;. Then
S

sup - |hs(z) = he(2)] < Yoo sup |hi(@) = by ()]

z€[0, =] k=r412€[0, 71
° ° > Myt"
k—1 k 1
< > Mp<M Yt ng§tgﬁ
k=r+1 k=r+1 k=r

for s > r. Therefore, hy is a Cauchy sequence, and so, it converges uniformly.

(#) The function f, is continuous because it is a uniform limit of continuous

4n
2
for k> 2. Then f, <> = bop—1. By letting k — oo in (4.1), we obtain

2
functions. In the proof of Proposition 4.1, we showed that hg <> = bop_1

47L

2x
2
fn(sv):2—a—i—g fn(t)dt for0 <z < —
2Jo 4 (4.2)
f z—i—x = (x)—f z—x f0r0<x<3
n 4n = P2n-1 n qn = 4n .
Form the first and second equations of (4.2), the function f, is continuously

2 2 1
differentiable on the intervals [O, 44 and <4n, 4711} Now, we show that

fn is differentiable at = 43” Let f'(z—) and f’(x+) denote
Fet) = tim LI g ey = i LD ZS@)

t—xt t—x t—xz— t—ax

Then

ey
—
| o
Jr
~_
I
z
e
—
=S
+
8
~
|
e
—
SIS
~—_

o 4n 2—0+ T
p2n71( )_fn (ﬁl—x) _fn (fn)
- ;10113)1Jr T
 Paa(®) =P 0 - i (42 - ) s (j)
= lim

z—0+ x
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2 2
(because P2n—1(0) — fn )= 2b2p—1 — bop—1 = fn o )

2 2
= lim Pon—1(x) — pan—1(0) . fn (4n —gg) — fn (471)

r—0+ x rz—0t —T

= Phy—1(0) + f1, (42,1) = apan—2(0) + £/, (42n>
(2
-5(5-)

2
Therefore, f, is differentiable at © = —. From the second equation of (4.3),

qn’

2 2
fn <4,L +x> = py,_1(x) + £, (4” - z) :

we have that

Then
. 2 . 2 2
Jim (o) = s @+ i (2= o) = 1 ().
Therefore, f,, is continuously differentiable at x = yIx and so f, is con-

1
tinuously differentiable at each point of the interval {0, 4"—1] From the
first equation of (4.2), we have that f,(0) = 2 —a and f),(z) = af,(2z) for
0<z< yex Therefore, f, satisfies Egns[n] as required. O

Lemma 4.2. Suppose that gi(x) is a continuously differentiable function
which satisfies Eqnslk + 1]. Let ga(x) be an extension of gi(x) defined by

. 1

92() =g1(x) if 0<z< 7
g2 @4‘53 = par(x) + g2 <4k—w> if O<x§4—k (4.3)

2 2 . 2

g2 47+17 —p2k—1($)92(4kx> 1f()<:z:§4—,~C

1
Then go(x) is continuously differentiable on [0, 4,6_1] , and satisfies Eqns[k].
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1
PROOF. The function gs is continuously differentiable on the intervals {O, } ,

4k
1 2 d 2 1 N h h is diffe iabl _ 1
VT an =k ow, we show that g 1s differentia eata:—4—k.

1 1
, 1 B 1 g2 4]€ X g2 4k
G2\t )= z
1 1
p() + g2 |7 —2)—g2| =
. 4 4
= lim
r—0t xT
(-2)-=(x)
g2 (=) -0
~ lim pak(z) — p2r(0) lim 4 4
z—0F x r—0+ —x

1
By Proposition 4.2, g} (

4k_> = abgk,l. Then

1 1
95 (4,;*‘) = apok—1(0) — abag—1 = 2abay_1 — abor_1 = g5 (4k—) .

1 1
Therefore, g is differentiable at z = & and g (4’“) = abgr_1. Now we

show that g5 is continuous at = = 47 It is enough to show that

1~ / 2 _ 2
Jm gy 47+x =92\ 1%

1
because ¢ is continuous on {0, 4’4 From the second equation of (4.3), we

1 1
g5 <4k+fﬂ) = poi(T) — g5 (M—fﬂ)

have that
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Then
1~ / 1 =+ o 1~ / ( _ 4 1 _
Jim gs (g5 +e) = Jim |phul@) =03 (g ==
/ /! ]‘
= pox(0) — g5 (4’“) = 2abag—1 — abgr—1
1
= abgk_1 = g/2 (4k> .
1
Therefore, go is continuously differentiable at © = —-. The proof that g, is

4k

continuously differentiable at x = is similar. Now we show that go satisfies

Ak
the conditions of Egns[k]. By the definition of g2, we have that g2(0) = 0 and

2 2
92 E-Fx = por—1(T) — g2 47—55

2
for0 <z < — T . Also, gh(z) = agz(2x) for 0 < = < because g2(x) = g1(x)

4k+1
1

on the interval [O, 44 and g, satisfies Fgns[k + 1]. By the third equation of

Eqgns[k + 1], we have that

2 2
92 \ ki1 + 2 | = paks1(z) — g2 LS

2
for0 <z < YESh By differentiating the above equation, we obtain

Vi 2 / A 2
92 \ EvT + x| = pop1 () + 95 =

2 1 1
gh (4k+1 +x> = apai(22) + ags <4k — 2x> = <4k + 2x) .

By the second equation of (4.3),

1 1
ST = par() + g2 w7
for 0 < z < —. Then

1 1
g5 (4k +$> = phy(x) — g5 (4k - $>

2 2
E + .Z‘) = ap2k71(2.’17) — ags (4]@ — 233) = ags (4k + 2.1')

N
—_

95



SOLUTIONS OF SELF-DIFFERENTIAL FUNCTIONAL EQUATIONS 25

: - 85400
0.25

hy

0.25 0.25 0.5

hs

Fig. 4: The graphs of hy and hs (left) and f3 and f on the same axis (right)
for a = 7.999

2
Therefore, g5(x) = ag2(2z) for all 0 < = < TR Then g is a continuously

differentiable function on [0 } which satisfies Egns[k]. O

7 k-1
Let n = [log, 2a| + 1. In Lemma 4.1, we showed that f,, satisfies Fqns[n].

Let {frx}7_, be a sequence of functions where f,, = f,,, and fj is the extension
- 1

of fry1 to the interval {0, M—l} with formulas (4.3) for k = 1,2,...,n — 1.

By Lemma 4.2, the functions fk satisfy Egnslk] for all k = 1,2,...,n.

Corollary 4.1. The function fl is continuously differentiable and satisfies

equations (x).

PRrROOF. The function f1 satisfies Eqgns[1] and by Proposition 4.2: fl(l) =

2 + a. Therefore f; satisfies (k). O
When a = 7.999, the sequence {hy},-, defined with (4.1) and ho(z) = z

1
converges to the solution of (%) on the interval |0, il The graphs of he and

hz are given on Figure 4 (left). Let f3 be the extension of hz with formulas
(4.3) where g1 = hs and go = f3. The function f3 is an approximation to
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the solution f of (x) on [0,1]. Although the values of f are in the interval
[—85400, 85400], the graph of the third approximation f3 already resembles
the graph of f (Fig. 4). When a = 2, the solution of (x) is 4F5 and the Fabius
function F» is infinitely differentiable and nowhere analytic in [0, 1]. Now we
show that this is the only infinitely differentiable solution of ().

Corollary 4.2. Let f be the solution of (x) where a # 2 and a ¢ S. Then

£ (x) is discontinuous at .

PRrROOF. By differentiating the first two equations of (%) we obtain

" (x) = 2a®f(4x2) if
=2a’f(2 —4x) if

()

()
F'(x) = —2a2f(4z — 2) if
(@) = —2a2f(4 — 4z) if

1
From the second and the third equations of (4.4) and = = 2 Ve obtain

f” <;—> =2d%*(2 —a)

I <1+> = —24*(2 - a).

and
2

1
Therefore, f” is discontinuous at x = 3

References

Oﬁxél
L,
4 77 (4.4)
%<x§1
1<x§1.
O

[1] N. G. De Bruijn, The Difference-Differential Equation

F'(x) = e¥*+tBF(x — 1), Indagationes Math.,

15 (1953), 449-464.

[2] Y. Dimitrov, Polynomially-divided Solutions of Bipartite Self-differential

Functional Equations, Ph.D. Thesis, (2006).

[3] G. Edgar, Integral, Probability and Fractal Measure, Springer-Verlag, New

York, 1998.



SOLUTIONS OF SELF-DIFFERENTIAL FUNCTIONAL EQUATIONS 27

[4] J. Fabius, A Probabilistic Fxample of a Nowhere Analytic C*°-Function,
Z. Wahrsch. Verw. Gebiete, 5 (1966), 173-174.

[5] T. Kato and J. B. McLeod, The Functional-Differential Equation
y' () = ay(Ax) + by(x), Bull. Amer. Math. Soc., 77 (1971) 891-937.

[6] S. Wolfram, The Mathematica Book, 4th ed., Wolfram Media/Cambridge
University Press, 1999.



