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Hypersurfaces

Let f be a polynomial in n variables

f =
∑

ω∈Zn

aωx
ω

where aω are finitely supported.
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Hypersurfaces

Let f be a polynomial in n variables

f =
∑

ω∈Zn

aωx
ω

where aω are finitely supported.

The hypersurface V (f ) ⊂ Cn is the zero locus of f .
Example:

1 x + y + 1 = 0 is a line.

2 y2 − x3 − x − 1 = 0 is an elliptic curve.

3 z2 − x2 − y2 − 1 = 0 is a conic surface.
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Degree

There’s a pretty good invariant of hypersurfaces when you view them as
living in Pn

C ⊃ Cn, the degree.
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There’s a pretty good invariant of hypersurfaces when you view them as
living in Pn

C ⊃ Cn, the degree.

d = max({|ω| | aω 6= 0})

where |(ω1, . . . , ωn)| = |ω1|+ · · ·+ |ωn|.
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where |(ω1, . . . , ωn)| = |ω1|+ · · ·+ |ωn|.
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Degree

There’s a pretty good invariant of hypersurfaces when you view them as
living in Pn

C ⊃ Cn, the degree.

d = max({|ω| | aω 6= 0})

where |(ω1, . . . , ωn)| = |ω1|+ · · ·+ |ωn|.

The degree can be used to compute generic intersection numbers:

Bézout’s Theorem: Let f , g be generic polynomials of two variables of
degrees d and e respectively. Then V (f ),V (g) ⊂ P2

C intersect in d · e
points.
Here, generic means, for generic choice of coefficients. This theorem has a
generalization for intersecting n hypersurfaces in Pn

C.
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Newton polytope

What if we don’t want to compactify Cn to Pn
C? Instead, say, we want to

study hypersurfaces in (C∗)n = (C \ {0})n , that is Cn with the coordinate
hyperplanes removed.
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Newton polytope

What if we don’t want to compactify Cn to Pn
C? Instead, say, we want to

study hypersurfaces in (C∗)n = (C \ {0})n , that is Cn with the coordinate
hyperplanes removed.

A good invariant is the Newton polytope,

P(f ) = Conv({ω|aω 6= 0}).
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Newton polytope

What if we don’t want to compactify Cn to Pn
C? Instead, say, we want to

study hypersurfaces in (C∗)n = (C \ {0})n , that is Cn with the coordinate
hyperplanes removed.

A good invariant is the Newton polytope,

P(f ) = Conv({ω|aω 6= 0}).

The Newton polytope of y2 − x3 − x − 1 is
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Bernstein’s Theorem

The Newton polytope can be used to compute generic intersection
numbers in (C∗)n by Bernstein’s theorem.
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Bernstein’s Theorem

The Newton polytope can be used to compute generic intersection
numbers in (C∗)n by Bernstein’s theorem.

In the two-dimensional case, for two generic 2-variable polynomials f , g
with given Newton polytopes, the intersection number of V (f ) and V (g)
in (C∗)2 is

Vol(P(f ) + P(g))− Vol(P(f ))− Vol(P(g))

where the addition of polytopes is Minkowski sum.
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Bernstein’s Theorem

The Newton polytope can be used to compute generic intersection
numbers in (C∗)n by Bernstein’s theorem.

In the two-dimensional case, for two generic 2-variable polynomials f , g
with given Newton polytopes, the intersection number of V (f ) and V (g)
in (C∗)2 is

Vol(P(f ) + P(g))− Vol(P(f ))− Vol(P(g))

where the addition of polytopes is Minkowski sum.

By results of Danilov-Khovanskii, one can compute the Euler characteristic
χc(V (f )) for generic hypersurfaces for a given Newton polytope. More
specifically, one can compute the Hodge polynomial for the mixed Hodge
structure on H∗

c (V (f )).
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Projective Subspaces

Another motivating example for this talk is projective subspaces.
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Projective Subspaces

Another motivating example for this talk is projective subspaces.

Let Pn = P(Cn+1) be projective space with a choice of basis
~e0, . . . ,~en ∈ Cn+1. Let V r ⊂ Pn be a projective subspace not contained in
any coordinate subspace. Consider the hyperplane arrangement
complement

V \ (H0 ∪ · · · ∪ Hn),

where H0, . . . ,Hn are the coordinate hyperplanes. We may want to
compute its Euler characteristic or some of its Hodge-theoretic invariants.
The compactly supported cohomology of this space is determined by a
combinatorial encoding of the projective subspace called a matroid.
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Matroids

Let LI be the coordinate subspace given by

LI = {xi1 = xi2 = · · · = xil = 0}

for I = {i1, i2, . . . , il} ⊂ {0, . . . , n}.
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Matroids

Let LI be the coordinate subspace given by

LI = {xi1 = xi2 = · · · = xil = 0}

for I = {i1, i2, . . . , il} ⊂ {0, . . . , n}.

The rank of a subset is defined to be

ρ(I ) = codim(V ∩ LI ⊂ V ).
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Let LI be the coordinate subspace given by

LI = {xi1 = xi2 = · · · = xil = 0}

for I = {i1, i2, . . . , il} ⊂ {0, . . . , n}.

The rank of a subset is defined to be
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Matroids

Let LI be the coordinate subspace given by

LI = {xi1 = xi2 = · · · = xil = 0}

for I = {i1, i2, . . . , il} ⊂ {0, . . . , n}.

The rank of a subset is defined to be

ρ(I ) = codim(V ∩ LI ⊂ V ).

We may abstract the linear space to a rank function

ρ : 2{0,...,n} → Z

satisfying
1 0 ≤ ρ(I ) ≤ |I |
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Matroids

Let LI be the coordinate subspace given by

LI = {xi1 = xi2 = · · · = xil = 0}

for I = {i1, i2, . . . , il} ⊂ {0, . . . , n}.

The rank of a subset is defined to be

ρ(I ) = codim(V ∩ LI ⊂ V ).

We may abstract the linear space to a rank function

ρ : 2{0,...,n} → Z

satisfying
1 0 ≤ ρ(I ) ≤ |I |
2 I ⊂ J implies ρ(I ) ≤ ρ(J)
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Matroids

Let LI be the coordinate subspace given by

LI = {xi1 = xi2 = · · · = xil = 0}

for I = {i1, i2, . . . , il} ⊂ {0, . . . , n}.

The rank of a subset is defined to be

ρ(I ) = codim(V ∩ LI ⊂ V ).

We may abstract the linear space to a rank function

ρ : 2{0,...,n} → Z

satisfying
1 0 ≤ ρ(I ) ≤ |I |
2 I ⊂ J implies ρ(I ) ≤ ρ(J)
3 ρ(I ∪ J) + ρ(I ∩ J) ≤ ρ(I ) + ρ(J)
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Matroids

Let LI be the coordinate subspace given by

LI = {xi1 = xi2 = · · · = xil = 0}

for I = {i1, i2, . . . , il} ⊂ {0, . . . , n}.

The rank of a subset is defined to be

ρ(I ) = codim(V ∩ LI ⊂ V ).

We may abstract the linear space to a rank function

ρ : 2{0,...,n} → Z

satisfying
1 0 ≤ ρ(I ) ≤ |I |
2 I ⊂ J implies ρ(I ) ≤ ρ(J)
3 ρ(I ∪ J) + ρ(I ∩ J) ≤ ρ(I ) + ρ(J)
4 ρ({0, . . . , n}) = r + 1.
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Matroids

Note: Item (3) abstracts

codim(((V ∩ LI ) ∩ (V ∩ LJ)) ⊂ (V ∩ LI∩J)) ≤

codim((V ∩ LI ) ⊂ (V ∩ LI∩J)) + codim((V ∩ LJ) ⊂ (V ∩ LI∩J)).
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Matroids

Note: Item (3) abstracts

codim(((V ∩ LI ) ∩ (V ∩ LJ)) ⊂ (V ∩ LI∩J)) ≤

codim((V ∩ LI ) ⊂ (V ∩ LI∩J)) + codim((V ∩ LJ) ⊂ (V ∩ LI∩J)).

This is one of the definitions of matroids. There are many others.
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Representability

Not every matroid comes from a subspace. One can construct matroids
corresponding to impossible arrangements of hyperplanes. If a matroid
comes from a subspace, then it is said to be representable.
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Not every matroid comes from a subspace. One can construct matroids
corresponding to impossible arrangements of hyperplanes. If a matroid
comes from a subspace, then it is said to be representable.

1 One can construct matroids that are only representable over fields in
which certain algebraic equations have solutions.
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Representability

Not every matroid comes from a subspace. One can construct matroids
corresponding to impossible arrangements of hyperplanes. If a matroid
comes from a subspace, then it is said to be representable.

1 One can construct matroids that are only representable over fields in
which certain algebraic equations have solutions.

2 Over Q, an algorithm to determine representability is equivalent to
Diophantine decidability algorithm over Q which is open but thought
to be impossible.

Eric Katz (Waterloo) Tropicalization October 25, 2012 9 / 27



Representability

Not every matroid comes from a subspace. One can construct matroids
corresponding to impossible arrangements of hyperplanes. If a matroid
comes from a subspace, then it is said to be representable.

1 One can construct matroids that are only representable over fields in
which certain algebraic equations have solutions.

2 Over Q, an algorithm to determine representability is equivalent to
Diophantine decidability algorithm over Q which is open but thought
to be impossible.

3 It is a conjecture of Rota to characterize Fq-representable matroids in
terms of forbidden minors (F2 due to Tutte; F3 due to Seymour; F4

due to Geelen-Gerards-Kapoor).
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Algebraic Varieties

Let’s try to combinatorially abstract algebraic subvarieties of (C∗)n.
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Algebraic Varieties

Let’s try to combinatorially abstract algebraic subvarieties of (C∗)n.

Let X ⊂ (C∗)n be an algebraic variety, that is, a common zero set of a
system of polynomials. We can define a weighted polyhedral complex in
Rn that simultaneously generalizes Newton polytopes (for hypersurfaces)
and matroids (for linear subspaces).
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Algebraic Varieties

Let’s try to combinatorially abstract algebraic subvarieties of (C∗)n.

Let X ⊂ (C∗)n be an algebraic variety, that is, a common zero set of a
system of polynomials. We can define a weighted polyhedral complex in
Rn that simultaneously generalizes Newton polytopes (for hypersurfaces)
and matroids (for linear subspaces).

Define Log : (C∗)n → Rn by

Log(z1, . . . , zr ) = (log(|z1|), . . . , log(|zn|)).
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Algebraic Varieties

Let’s try to combinatorially abstract algebraic subvarieties of (C∗)n.

Let X ⊂ (C∗)n be an algebraic variety, that is, a common zero set of a
system of polynomials. We can define a weighted polyhedral complex in
Rn that simultaneously generalizes Newton polytopes (for hypersurfaces)
and matroids (for linear subspaces).

Define Log : (C∗)n → Rn by

Log(z1, . . . , zr ) = (log(|z1|), . . . , log(|zn|)).

The set Log(X ) is said to be the amoeba of X .
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Amoebas
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Figure: The amoeba of the line {z1 + z2 − 1 = 0} ⊂ (C∗)2.

The tentacles correspond to

1 z1 → 0, z2 → 1,

2 z2 → 0, z1 → 1,

3 |z1| → ∞.
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Tropicalizations

To get something combinatorial, we need to look at the tropicalization
which is the limit set

Trop(X ) = lim
t→0

−t Log(X )

where the limit is taken in the Hausdorff sense.
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Tropicalizations

To get something combinatorial, we need to look at the tropicalization
which is the limit set

Trop(X ) = lim
t→0

−t Log(X )

where the limit is taken in the Hausdorff sense.

For the line we get

In this case, it’s a fan, a polyhedral complex made up of cones. This is
true in general for varieties defined over C.
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Tropicalizations

To get something combinatorial, we need to look at the tropicalization
which is the limit set

Trop(X ) = lim
t→0

−t Log(X )

where the limit is taken in the Hausdorff sense.

For the line we get

In this case, it’s a fan, a polyhedral complex made up of cones. This is
true in general for varieties defined over C.

In practice, the logarithmic limit set definition is mostly unusable, and it’s
more pleasant to use a purely algebraic definition.
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Tropicalizations of Families

We may also consider the tropicalization of a family of varieties Xt

parameterized by t ∈ C \ {0}. In this case,

Trop(X ) = lim
t→0

1

log(t)
Log(Xt).
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Tropicalizations of Families

We may also consider the tropicalization of a family of varieties Xt

parameterized by t ∈ C \ {0}. In this case,

Trop(X ) = lim
t→0

1

log(t)
Log(Xt).

Example: Consider a family of cubic curves V (ft) ⊂ (C∗)2 where

ft =
∑

0≤i ,j≤3

i+j≤3

aijx
iy j

for aij ∈ C[t, t−1] \ {0}.
The limit may have many different combinatorial types but below is one
possibility.
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A cubic curve in the plane
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In general

Tropicalizations of general subvarieties are balanced, weighted, integral
polyhedral complexes (by results of Bieri-Groves and Speyer).
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In general

Tropicalizations of general subvarieties are balanced, weighted, integral
polyhedral complexes (by results of Bieri-Groves and Speyer).

The real dimension of Trop(X ) is equal to the complex dimension of X .
Integral: Each polyhedral cell is cut out by linear inequalities with rational
coefficients.
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In general

Tropicalizations of general subvarieties are balanced, weighted, integral
polyhedral complexes (by results of Bieri-Groves and Speyer).

The real dimension of Trop(X ) is equal to the complex dimension of X .
Integral: Each polyhedral cell is cut out by linear inequalities with rational
coefficients.
Weighted: Each top-dimensional cell has a weight w(P) ∈ N. (in almost
all of our examples, it will be 1.)
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In general (cont’d)

Balanced: For 1-dimensional varieties, it’s easy to state For v , a vertex of
Σ and adjacent edges E1, . . . ,Ek in primitive Zn directions, ~u1, . . . , ~uk then

∑
w(Ei )~ui = ~0.
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In general (cont’d)

Balanced: For 1-dimensional varieties, it’s easy to state For v , a vertex of
Σ and adjacent edges E1, . . . ,Ek in primitive Zn directions, ~u1, . . . , ~uk then

∑
w(Ei )~ui = ~0.

Example:

w = 2

w = 1

w = 1
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In general (cont’d)

Balanced: For 1-dimensional varieties, it’s easy to state For v , a vertex of
Σ and adjacent edges E1, . . . ,Ek in primitive Zn directions, ~u1, . . . , ~uk then

∑
w(Ei )~ui = ~0.

Example:

w = 2

w = 1

w = 1

For higher dimensions, the balancing condition is analogous.
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Tropicalization compared to Newton polytope

How is tropicalization a generalization of Newton polytopes?

Eric Katz (Waterloo) Tropicalization October 25, 2012 17 / 27



Tropicalization compared to Newton polytope

How is tropicalization a generalization of Newton polytopes?

Theorem (Kapranov): If f =
∑

ω∈Zn aωx
ω is a polynomial, then

Trop(V (f )) is the codimension 1 skeleton of the normal fan to P(f ).
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Tropicalization compared to Newton polytope

How is tropicalization a generalization of Newton polytopes?

Theorem (Kapranov): If f =
∑

ω∈Zn aωx
ω is a polynomial, then

Trop(V (f )) is the codimension 1 skeleton of the normal fan to P(f ).

The normal fan is made up of cones dual to the faces of the polytope. A
cone dual to a face F is the set of all linear functionals on Rn that achieve
their minimum on F . The codimension 1 skeleton means that we look at
cones dual to positive dimensional faces.
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Tropicalization compared to matroids

How is tropicalization a generalization of matroids?
Theorem (Sturmfels, Ardila-Klivans): Let V ⊂ Pn be a projective
subspace. Then Trop(V ∩ (C∗)n) is determined by the matroid M of V .
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Tropicalization compared to matroids

How is tropicalization a generalization of matroids?
Theorem (Sturmfels, Ardila-Klivans): Let V ⊂ Pn be a projective
subspace. Then Trop(V ∩ (C∗)n) is determined by the matroid M of V .

There is an explicit recipe for constructing the tropicalization from M. It
works over fields besides C by using the algebraic definition of Trop.

Eric Katz (Waterloo) Tropicalization October 25, 2012 18 / 27



Tropicalization compared to matroids

How is tropicalization a generalization of matroids?
Theorem (Sturmfels, Ardila-Klivans): Let V ⊂ Pn be a projective
subspace. Then Trop(V ∩ (C∗)n) is determined by the matroid M of V .

There is an explicit recipe for constructing the tropicalization from M. It
works over fields besides C by using the algebraic definition of Trop.

There is a sort of converse to this theorem saying that if the
tropicalization of a variety looks like the tropicalization of a subspace, then
the variety is a subspace. I like calling it the duck theorem. It was written
down by K.-Payne but also announced by Mikhalkin-Ziegler.
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Tropicalization compared to matroids

How is tropicalization a generalization of matroids?
Theorem (Sturmfels, Ardila-Klivans): Let V ⊂ Pn be a projective
subspace. Then Trop(V ∩ (C∗)n) is determined by the matroid M of V .

There is an explicit recipe for constructing the tropicalization from M. It
works over fields besides C by using the algebraic definition of Trop.

There is a sort of converse to this theorem saying that if the
tropicalization of a variety looks like the tropicalization of a subspace, then
the variety is a subspace. I like calling it the duck theorem. It was written
down by K.-Payne but also announced by Mikhalkin-Ziegler.

Now let’s look at some pictures.
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Tropicalization of a family of lines in the tropicalization of

a plane in space
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An elliptic curve in a plane in space

All multiplicities are 1. There are arrows pointing into and out of the
screen to ensure balancing.
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Properties encoded in tropicalization

What does the tropicalization know about the original variety?
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What does the tropicalization know about the original variety?

Some Intersection Theory:
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Properties encoded in tropicalization

What does the tropicalization know about the original variety?

Some Intersection Theory:
It knows the degree of the variety.
Given two varieties X ,Y ⊂ (C∗)n with dim(X ) + dim(Y ) = n, we can also
read off an expected intersection number under genericity assumptions.
This is a generalization of Bernstein’s theorem due to K.,
Osserman-Payne, Rabinoff in different degrees of generality.
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Properties encoded in tropicalization (cont’d)

Some Hodge Theory: For X ⊂ (C∗)n satisfying genericity assumptions, we
can look at H∗(X ). This has a mixed Hodge structure. The lowest weight
bit is described by H∗(Trop(X )) by a theorem of Hacking. For families,
the analogous result is due to Helm-K.
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Properties encoded in tropicalization (cont’d)

Some Hodge Theory: For X ⊂ (C∗)n satisfying genericity assumptions, we
can look at H∗(X ). This has a mixed Hodge structure. The lowest weight
bit is described by H∗(Trop(X )) by a theorem of Hacking. For families,
the analogous result is due to Helm-K.

Under certain assumptions, the tropical variety knows much much more
about the original variety. This is when the tropical variety locally looks
like the tropicalization of a linear subspace. These are the so-called
smooth tropical varieties. Results due to
Itenberg-Kazarkov-Mikhalkin-Zharkov and K.-Stapledon.
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Lifting problem

How are tropicalizations special among balanced, weighted, integral
polyhedral complexes?
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Lifting problem

How are tropicalizations special among balanced, weighted, integral
polyhedral complexes?

Specifically, if I give you a balanced, weighted, integral polyhedral
complex, how can you be sure that it comes from an algebraic variety?
This is analogous to the representability problem for matroids. In fact, it
contains that problem by the duck theorem so it must be subtle. This is
called the lifting problem.
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Lifting problem

How are tropicalizations special among balanced, weighted, integral
polyhedral complexes?

Specifically, if I give you a balanced, weighted, integral polyhedral
complex, how can you be sure that it comes from an algebraic variety?
This is analogous to the representability problem for matroids. In fact, it
contains that problem by the duck theorem so it must be subtle. This is
called the lifting problem.

Here is an example of a non-liftable graph due to Mikhalkin and Speyer.
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Example of non-liftable curve

Change the length of a bounded edge in the spatial elliptic curve so that it
does not lie on the tropicalization of any plane (possible by dimension
counting).
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Example of non-liftable curve (cont’d)

This is not liftable to a family of curves because
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Example of non-liftable curve (cont’d)

This is not liftable to a family of curves because

1 three unbounded edges in each direction in the curve shows that it
must be a cubic,
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Example of non-liftable curve (cont’d)

This is not liftable to a family of curves because

1 three unbounded edges in each direction in the curve shows that it
must be a cubic,

2 the loop in the curve shows that any lift must have genus at least 1,
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Example of non-liftable curve (cont’d)

This is not liftable to a family of curves because

1 three unbounded edges in each direction in the curve shows that it
must be a cubic,

2 the loop in the curve shows that any lift must have genus at least 1,

3 any classical cubic is either genus 0 and spatial or genus 1 and planar,
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Example of non-liftable curve (cont’d)

This is not liftable to a family of curves because

1 three unbounded edges in each direction in the curve shows that it
must be a cubic,

2 the loop in the curve shows that any lift must have genus at least 1,

3 any classical cubic is either genus 0 and spatial or genus 1 and planar,

no lift of the curve can be planar or genus 0, so the curve does not lift.
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Lifting Problem (cont’d)

1 Many results for curves in space due to Mikhalkin, Speyer,
Brugallé-Mikhalkin, Nishinou, Tyomkin, and K. Closely tied to
deformation theory.
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Lifting Problem (cont’d)

1 Many results for curves in space due to Mikhalkin, Speyer,
Brugallé-Mikhalkin, Nishinou, Tyomkin, and K. Closely tied to
deformation theory.

2 It’s trivial for hypersurfaces. Analogous to the fact that every lattice
polytope is the Newton polytope of a polynomial.
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Lifting Problem (cont’d)

1 Many results for curves in space due to Mikhalkin, Speyer,
Brugallé-Mikhalkin, Nishinou, Tyomkin, and K. Closely tied to
deformation theory.

2 It’s trivial for hypersurfaces. Analogous to the fact that every lattice
polytope is the Newton polytope of a polynomial.

3 It’s really subtle for surfaces. Huh has produced a two-dimensional
complex that violates the Hodge index theorem and so cannot be a
tropicalization. We cannot yet figure out what’s wrong with this
surface, but we’re working on it. There’s lots of subtle positivity.
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Lifting Problem (cont’d)

1 Many results for curves in space due to Mikhalkin, Speyer,
Brugallé-Mikhalkin, Nishinou, Tyomkin, and K. Closely tied to
deformation theory.

2 It’s trivial for hypersurfaces. Analogous to the fact that every lattice
polytope is the Newton polytope of a polynomial.

3 It’s really subtle for surfaces. Huh has produced a two-dimensional
complex that violates the Hodge index theorem and so cannot be a
tropicalization. We cannot yet figure out what’s wrong with this
surface, but we’re working on it. There’s lots of subtle positivity.

4 There’s an interesting example due to Vigeland of a curve C and a
surface S in (C∗)3 where Trop(C ) ⊂ Trop(S) but it’s impossible to
change C ,S to ensure C ⊂ S without changing the tropicalizations.
This makes enumerating curves on surfaces through tropical geometry
tricky. This class of examples has been studied by Bogart-K.,
Brugallé-Shaw, Gathmann-Winstel.
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Pathological curve in a surface
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