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“But Hodge shan’t be shot; no, no, Hodge shall not be shot.”
– Samuel Johnson
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The characteristic polynomial of a subspace

Let k be a field. Let V ⊂ kn+1 be an (r + 1)-dim linear subspace not
contained in any coordinate hyperplane. Would like to use
inclusion/exclusion to express [V ∩ (k∗)n+1] as a linear combination of
[V ∩ LI ]’s where LI is the coordinate subspace given by

LI = {xi1 = xi2 = · · · = xil = 0}

for I = {i1, i2, . . . , il} ⊂ {0, . . . , n}.

Example: Let V be a generic subspace (intersecting every coordinate
subspace in the expected dimension). Then

[V ∩ ((k∗)n+1)] = [V ∩L∅]−
∑
i

[V ∩Li ] +
∑
I
|I |=2

[V ∩LI ]−
∑
I
|I |=3

[V∩LI ] + . . . .

If you’re fancy, you can say that this is a motivic expression.
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Flats

In general, you may have to be a little more careful as there may be
I , J ⊆ {0, . . . , n} with V ∩ LI = V ∩ LJ . Need to make sure we do not
overcount.

Definition

A subset I ⊂ {0, . . . , n} is said to be a flat if for any J ⊃ I ,
V ∩ LJ 6= V ∩ LI .

The rank of a flat is

ρ(I ) = codim(V ∩ LI ⊂ V ).

We can now write for some choice of νI ∈ Z,

[V ∩ (k∗)n+1] =
∑

flats I

νI [V ∩ LI ].

Fact: (−1)ρ(I )νV is always positive.
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Characteristic Polynomial

Definition

The characteristic polynomial of V is

χV (q) =
r+1∑
i=0

 ∑
flats I
ρ(I )=i

νI

 qr+1−i

≡ µ0q
r+1 − µ1q

r + · · ·+ (−1)r+1µr+1

We can think of χ as an evaluation of the classes [V ∩ LI ] of the form

[V ∩ LI ] 7→ qr+1−ρ(I )

so the characteristic polynomial is the image of [V ∩ (k∗)n+1].

Example: In the generic case subspace case, we have

χV (q) = qr+1 −
(
r + 1

1

)
qr +

(
r + 1

2

)
qr−1 − · · ·+ (−1)r+1

(
r + 1

r + 1

)
.
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Rota-Heron-Welsh Conjecture

Theorem (Rota-Heron-Welsh Conjecture (in the realizable case)
(Huh-k ’11))

χV (q) is log-concave and internal zero-free, hence unimodal.

Definition

A polynomial with coefficients µ0, . . . , µr+1 is said to be log-concave if for
all i ,

|µi−1µi+1| ≤ µ2
i .

(so log of coefficients is a concave sequence.)

Definition

A polynomial with coefficients µ0, . . . , µr+1 is said to be unimodal if the
coefficients are unimodal in absolute value, i.e. there is a j such that

|µ0| ≤ |µ1| ≤ · · · ≤ |µj | ≥ |µj+1| ≥ · · · ≥ |µr+1|.
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Motivation:Chromatic Polynomials of Graphs

Original Motivation: Let Γ be a loop-free graph. Define the chromatic
function χΓ by setting χΓ(q) to be the number of colorings of Γ with q
colors such that no edge connects vertices of the same color.

Fact: χΓ(q) is a polynomial of degree equal to the number of vertices with
alternating coefficients.

Read’s Conjecture ’68 (Huh ’10): χΓ(q) is unimodal.
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Matroids

We may abstract the linear space to a rank function

ρ : 2{0,...,n} → Z

satisfying

1 0 ≤ ρ(I ) ≤ |I |
2 I ⊂ J implies ρ(I ) ≤ ρ(J)

3 ρ(I ∪ J) + ρ(I ∩ J) ≤ ρ(I ) + ρ(J)

4 ρ({0, . . . , n}) = r + 1.

Note: Item (3) abstracts

codim(((V ∩ LI ) ∩ (V ∩ LJ)) ⊂ (V ∩ LI∩J)) ≤

codim((V ∩ LI ) ⊂ (V ∩ LI∩J)) + codim((V ∩ LJ) ⊂ (V ∩ LI∩J)).

This is one of the definitions of matroids.
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Rota-Heron-Welsh Conjecture

For matroids, νI and hence χ(q) can be defined combinatorially by Möbius
inversion without reference to any linear space. This leads us to

Conjecture: For any matroid, χ(q) is log-concave.

We think we have it! We’re writing it up now.
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Another problem

Today, I’m going to relate the log-concavity question to the lower bound
theorem in polyhedral combinatorics.

Let P ⊂ Rd be a full-dimensional convex polytope. For the sake of
convenience, let us suppose that P is simplicial (every proper face is a
simplex). Let fk(P) be the number of k-dimensional faces of P. We can
ask how the fk ’s are constrained and which fk ’s are possible. McMullen
gave a conjectural description. This was proven by Billera-Lee and Stanley.
We will talk only about the necessity part of the lower bound theorem.

We make a linear change of variables for the packaging of the fk ’s: define
hk by

d∑
i=0

fi−1(t − 1)d−i =
d∑

k=0

hkt
d−k .

Here the Dehn-Sommerville relations say that the hk ’s form a symmetric
sequence:

hk = hd−k .
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Stanley-Reisner rings

The lower bound theorem is that the hk ’s form a unimodal sequence:

h0 ≤ h1 ≤ · · · ≤ hbd/2c.

This statement is implied by a statement in commutative algebra about
Stanley-Reisner rings. Let ∆ be the boundary of P, considered as a
simplicial complex. Let v1, . . . , vn be the vertices of P. Introduce variables
x1, . . . , xn. For a field k, let

I∆ ⊂ k[x1, . . . , xn]

be the non-face ideal. This is defined as follows: for S ⊂ {1, . . . , n} let

xS =
∏
i∈S

xi ,

then
I∆ = 〈xS | S is not a face of P〉.
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Lefschetz elements

The Stanley-Reisner ring is

k[∆] = k[x1, . . . , xn]/I∆.

Because I∆ is a homogeneous ideal, k[∆] is a graded ring.
Now let l1, . . . , ld be generic degree 1 elements of k[∆]. Then

dim(k[∆]/(l1, . . . , ld))i = hi .

The lower bound theorem is reduced to the existence of a weak Lefschetz
element ω ∈ k[∆] for which the multiplication map

·ω : (k[∆]/(l1, . . . , ld))i−1 → (k[∆]/(l1, . . . , ld))i

is injective for 1 ≤ i ≤ d
2 .

Note here that the unimodality of hi ’s is different from the unimodality of
the characteristic polynomial as the characteristic polynomial is not
symmetric. We have no idea where the mode is supposed to be.
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is injective for 1 ≤ i ≤ d
2 .

Note here that the unimodality of hi ’s is different from the unimodality of
the characteristic polynomial as the characteristic polynomial is not
symmetric. We have no idea where the mode is supposed to be.
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Hard algebraic geometry but...

The existence of the Lefschetz element comes form identifying the
quotient k[∆]/(l1, . . . , ld) with the cohomology of a projective algebraic
variety X ⊂ Pn, that is hi = dimH2i (X ). This variety, a toric variety, is
mildly singular, but the Hard Lefschetz theorem gives a Lefschetz element.
So the result relies on hard algebraic geometry, but

McMullen gave a
combinatorial proof in the simplicial case which was extended to the
non-simplicial case by Karu and others.

McMullen’s proof uses an alternative presentation of the Stanley-Reisner
ring. Then, he applies flip moves to transform P into a simplex where the
Hard Lefschetz theorem is known to hold, checking that the Hard Leschetz
theorem is preserved by these moves.

Incidentally, the presentations should be thought of in the following way:
the Stanley-Reisner presentation is homology under intersection product;
the Minkowski weight ring (used by McMullen) is cohomology; the
conewise polynomial ring (used by Karu) is a quotient of equivariant
cohomology.
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Related work

I should mention that there is recent, related work by Ben Elias and
Geordie Williamson proving the Hard Lefschetz theorem in a synthetic
context. They are interested in questions involving the positivity of
Kazhdan-Lusztig polynomials and the Kazhdan-Lusztig conjecture in the
context of Coxeter systems.

These theorems were proven in the case of Weyl groups by studying the
intersection cohomology of a Schubert variety.

In general, there may be no Schubert variety, so certain modules act as an
abstract avatar. They prove that these modules have the required Hodge
theoretic properties.
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Now some hard algebraic geometry

Let us delve into the hard algebraic geometry. I will discuss two theorems,
the Hard Lefschetz theorem, and the Hodge Index theorem, and will
explain how they are implied by an even deeper theorem, the
Hodge-Riemann-Minkowski relations.

Let X ⊂ Pn be a smooth projective d-dimensional algebraic variety. The
cohomology ring H∗(X ) is a graded ring in degrees 0, 1, . . . , 2d . It’s an
algebra over C. We think of H i (X ) as the group of codimension i cycles in
X . Now H2d(X ) ∼= C is generated by the class of a point.

There is a Hodge decomposition:

Hk(X ) =
⊕

p+q=k

Hp,q(X )
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Hard Lefschetz theorem

If H is a generic hyperplane in Pn, H ∩ X gives a codimenison 2 cycle in
X , hence an element of H2(X ). The Hard Lefschetz Theorem shows that
H is a strong Lefschetz element:

Theorem (Hodge)

Let L : Hk(X )→ Hk+2(X ) be given by multiplication by H. Then for all
k ≤ d,

Ld−k : Hk(X )→ H2d−k(X )

is an isomorphism.

This implies the unimodality of h2i ’s.
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Lefschetz decomposition

The Hard Lefschetz theorem gives the Lefschetz decomposition of
cohomology: define primitive cohomology Pk ⊂ Hk(X ) by

Pk = ker(Ld−k+1 : Hk(X )→ H2d−k+2(X )).

Then
Hk(X ) = Pk ⊕ LPk−2 ⊕ L2Pk−4 ⊕ . . . .

Eric Katz (Waterloo) HTIC May 14, 2015 16 / 30



The Hodge index theorem

The Hodge index theorem is a theorem about the intersection theory on
algebraic surfaces and is the main technical tool behind the proof of
log-concavity for realizable matroids.

Let X be a projective complex surface (2 complex dimensions, 4 real
dimensions). Consider H2(X ) equipped with intersection product

H2(X )⊗ H2(X )→ H4(X ) ∼= C.

Theorem (Hodge)

The intersection product restricted to H1,1(X ) is non-degenerate with a
single positive eigenvalue.

Eric Katz (Waterloo) HTIC May 14, 2015 17 / 30



The Hodge index theorem

The Hodge index theorem is a theorem about the intersection theory on
algebraic surfaces and is the main technical tool behind the proof of
log-concavity for realizable matroids.

Let X be a projective complex surface (2 complex dimensions, 4 real
dimensions). Consider H2(X ) equipped with intersection product

H2(X )⊗ H2(X )→ H4(X ) ∼= C.

Theorem (Hodge)

The intersection product restricted to H1,1(X ) is non-degenerate with a
single positive eigenvalue.

Eric Katz (Waterloo) HTIC May 14, 2015 17 / 30



The Hodge inequality

This implies the Hodge inequality:

Corollary

Let α, β ∈ H1,1(X ) be given by pulling back a hyperplane class from two
embeddings i1, i2 : X → Pni . Then

(α2)(β2) ≤ (α · β)2.

This comes from the intersection product being indefinite on Span(α, β)
so the discriminant is negative. Note we can replace α and β by positive
multiples (ample classes). Or look at classes that can be approximated by
hyperplane classes (nef).
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Hodge-Riemann-Minkowski Relations

An even stronger theorem holds for algebraic varieties in all dimensions.

Theorem

Let α be an ample class. Let P∗ be the primitive cohomology with respect
to α. Then the pairing Qp,q on

Hp,q
prim = Pp+q(X ) ∩ Hp,q(X )

given by

Qp,q(β, γ) = (−1)
(p+q)(p+q−1)

2 ip−q−k(β · γ · αd−(p+q))

is positive definite.

This is deep and analytic.

In the sequel, we will restrict to Hp,p so

Qp,p(β, γ) = (−1)p(β · γ · αd−2p).
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Consequences

The Hodge-Riemann-Minkowski relations immediately imply the Hard
Lefschetz theorem. They also imply the Hodge index theorem:

Proof.

We have
H1,1(X ) = LH0,0

prim(X )⊕ H1,1
prim(X ).

This is an orthogonal decomposition. The usual intersection product is
positive-definite on the first summand and negative-definite on the second
summand.

More generally, we get the Khovanskii-Teissier inequality: for α, β nef

(αr−i+1βi−1)(αr−i−1βi+1) ≤ (αr−iβi )2.
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Proof of Log-concavity

Now, let us outline the proof of log-concavity in the realizable case. First,
we use the reduced characteristic polynomial:

From the fact χ(1) = 0, we can set

χ(q) =
χ(q)

q − 1
.

The log-concavity of χ implies the log-concavitiy of χ.

Coefficients of χ have a combinatorial description:

χV (q) = µ0qr − µ1qr−1 + · · ·+ (−1)rµrq0.

Then
µi = (−1)i

∑
flats I
ρ(I )=i

06∈I

νI .
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A new Stanley-Reisner ring

We define a Stanley-Reisnerish ring attached to the matroid:

Definition

Let xF be indeterminates indexed by proper flats. Let IM be the ideal in
k[xF ] generated by

1 For each i , j ∈ {0, 1, . . . , n},∑
F3i

xF −
∑
F3j

xF ,

2 For incomparable flats F ,F ′,

xF x
′
F .

Let RM = k[xF ]/IM .

This is the Stanley-Reisner ring of the order complex of the lattice of flats
of the matroid quotiented by a linear ideal. Henceforth, let us take k = C.
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Properties of the ring

There is a canonical isomorphism

deg : (RM)r → C

that takes the value 1 on an ascending chain of flats xF1 . . . xFr .

There are two important elements of RM : pick i ∈ {0, 1, . . . , n}, and set

α =
∑
F3i

xF

β =
∑
F 63i

xF .

Lemma

We have the equality
µi = deg(αiβr−i ).

Aside: We proved this using tropical intersection theory. You can give a
direct proof in this presentation.
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Hodge-Riemann-Minkowski holds

Theorem

If M is realizable over C, there is an algebraic variety Ṽ with
H2∗(Ṽ ) = RM . The classes α and β are nef on Ṽ and the
Hodge-Riemann-Minkowski relations hold for suitably perturbed α and β.

So HRM implies the log-concavity of the µi ’s by the Hodge inequality.
This implies the log-concavity of the µi ’s.

The same argument holds over fields besides C. One has to use a different
derivation of the Khovanskii-Teissier inequality making use of Kleiman’s
transversality.
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The space Ṽ

The space Ṽ is natural. Start with V ⊂ Cn+1. Projectivize to get
P(V ) ⊂ Pn. The coordinate hyplerplanes of Pn induce a hyperplane
arrangement on P(V ). We blow-up the 0-dimensional strata, and then the
proper transforms of the 1-dimensional strata, and so on to produce Ṽ .

The space Ṽ lives in a blown-up projective space P̃n which has two natural
maps to π1, π2 : P̃n → Pn. Think: it resolves a Cremona transform. Then
α = π∗1H, β = π∗2H.

We perturb α and β so that they are ample. We get an inequality and
then take limits.
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We made this argument combinatorial!

Every time I’ve given a talk about log-concavity, I’ve asked if this result
can be made purely combinatorial and thus prove Rota-Heron-Welsh.
Every time, I’ve suggested some approach. I’ve even made jokes about the
failures of these approaches.

Well, this time is different. We have a lot of details to check, but we’re
very confident that we did it!

Our idea is to start with projective space and do each blow-up one-by-one
in a purely combinatorial fashion to produce intermediate Stanley-Reisner
rings. We also have intermediate analogues of α, β. We have to show that
the Hodge-Riemann-Minkowski relations (with respect to a “combinatorial
ample cone”) are preserved by our blow-ups. We have a geometric picture
in mind of slicing faces off of a simplex to get a permutohedron.
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Outline of proof

The proof has several steps making use of an inductive argument used by
McMullen and Karu and elevated to a cornerstone of Hodge theory by de
Cataldo and Migliorini:

1 Define a combinatorial analogue of an ample cone sitting in (RM)1,
2 Show that the intermediate Stanley-Reisner rings satisfies Poincaré

duality of dimension r ,
3 Show that if two intermediate Stanley-Reisner rings satisfy

Hodge-Riemann-Minkowski, their “skew tensor product” also does,
4 Show that if all skew tensor products of rank r − 1 satisfy

Hodge-Riemann-Minkowski than all intermediate Stanley-Reisner
rings of rank r satisfy Hard Lefschetz,

5 Show that if a intermediate Stanley-Reisner ring satisfies
Hodge-Riemann-Minkowski with respect to one ample class, it
satisfies it with respect to all of them,

6 Show that an intermediate Stanley-Reisner ring satisfies
Hodge-Riemann-Minkowski with respect to one ample class.
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Outline of proof (cont’d)

The last step, showing that the intermediate Stanley-Reisner ring satisfies
Hodge-Riemann-Minkowski with respect to an ample class is the hardest
one (to me).

It is exactly as difficult as giving a purely (linear) algebraic proof of the
following:

Theorem

Let X is a smooth projective variety with ample divisor H. Let Z be a
smooth subvariety. Suppose that X and Z satisfy the
Hodge-Riemann-Minkowski relations. Then BlZ X satisfies the
Hodge-Riemann-Minkowski relations with respect to H − εE where E is
the exceptional divisor and ε > 0.

Here, a perturbation argument suffices.
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And the tropical geometry?

Since this conference is tropical geometry in the tropics, where’s the
tropical geometry in this talk?

There’s a general procedure for turning certain Stanley-Reisner rings
(modulo a linear ideal) into a tropical fan.

A Stanley-Reisner ring modulo a linear ideal, R[∆]/(l1, . . . , ld) is said to
have an r -dimensional fundamental class if there an isomorphism

deg : (R[∆]/(l1, . . . , ld))r → R.

To every degree 1 generator is associated a ray. To every square-free
monomial not in I∆ (thus a face) is associated a cone. The
top-dimensional cones are given a weight by looking at the value of their
corresponding monomial under deg. The linear ideal generated an
embedding into Rd for which the fan is balanced.

This procedures produces the face fan from the S-R ring of a polytope. It
produces the Bergman fan from the S-R ring of a matroid.
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Thanks!

Huh, June and K, Log-concavity of characteristic polynomials and the
Bergman fan of matroids.

Huh, June. Milnor numbers of projective hypersurfaces and the chromatic
polynomial of graphs.
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