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Motivation:The Chabauty-Coleman method

The Chabauty-Coleman method is an effective method for bounding the
number of rational points on a curve of genus g ≥ 2 of small Mordell-Weil
rank.

Let C be a curve defined over Q, and let p be a prime. Let
MWR = rank(J(Q)) be the Mordell-Weil rank of C . Computing MWR is
now an industry among number theorists.

Theorem: (Chabauty, Coleman, Lorenzini-Tucker, McCallum-Poonen) If
MWR < g and p > 2g then

#C (Q) ≤ #Csm0 (Fp) + 2g − 2.

One can replace 2g − 2 by 2 MWR by results of Stoll and
K-Zureick-Brown.

Eric Katz (Waterloo) p-adic Integration January 16, 2014 2 / 19



Motivation:The Chabauty-Coleman method

The Chabauty-Coleman method is an effective method for bounding the
number of rational points on a curve of genus g ≥ 2 of small Mordell-Weil
rank.

Let C be a curve defined over Q, and let p be a prime. Let
MWR = rank(J(Q)) be the Mordell-Weil rank of C . Computing MWR is
now an industry among number theorists.

Theorem: (Chabauty, Coleman, Lorenzini-Tucker, McCallum-Poonen) If
MWR < g and p > 2g then

#C (Q) ≤ #Csm0 (Fp) + 2g − 2.

One can replace 2g − 2 by 2 MWR by results of Stoll and
K-Zureick-Brown.

Eric Katz (Waterloo) p-adic Integration January 16, 2014 2 / 19



Motivation:The Chabauty-Coleman method

The Chabauty-Coleman method is an effective method for bounding the
number of rational points on a curve of genus g ≥ 2 of small Mordell-Weil
rank.

Let C be a curve defined over Q, and let p be a prime. Let
MWR = rank(J(Q)) be the Mordell-Weil rank of C . Computing MWR is
now an industry among number theorists.

Theorem: (Chabauty, Coleman, Lorenzini-Tucker, McCallum-Poonen) If
MWR < g and p > 2g then

#C (Q) ≤ #Csm0 (Fp) + 2g − 2.

One can replace 2g − 2 by 2 MWR by results of Stoll and
K-Zureick-Brown.

Eric Katz (Waterloo) p-adic Integration January 16, 2014 2 / 19



Motivation:The Chabauty-Coleman method

The Chabauty-Coleman method is an effective method for bounding the
number of rational points on a curve of genus g ≥ 2 of small Mordell-Weil
rank.

Let C be a curve defined over Q, and let p be a prime. Let
MWR = rank(J(Q)) be the Mordell-Weil rank of C . Computing MWR is
now an industry among number theorists.

Theorem: (Chabauty, Coleman, Lorenzini-Tucker, McCallum-Poonen) If
MWR < g and p > 2g then

#C (Q) ≤ #Csm0 (Fp) + 2g − 2.

One can replace 2g − 2 by 2 MWR by results of Stoll and
K-Zureick-Brown.

Eric Katz (Waterloo) p-adic Integration January 16, 2014 2 / 19



Idea of proof of Chabauty-Coleman:

First, work p-adically. If C has a rational point x0 , use it as the
base-point of the Abel-Jacobi map C → J. If MWR < g , by an argument
involving p-adic Lie groups, we can suppose that that J(Q) lies in an
Abelian subvariety AQp ⊂ JQp with dim(AQp) ≤ MWR < g .

We might expect C (Qp) to intersect AQp in finitely many points. In fact,
there is a 1-form ω on JQp that vanishes on A, hence on the images of all
points of C (Q) under the Abel-Jacobi map. Pull back ω to CQp .
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Idea of proof of Chabauty-Coleman (cont’d)

Define a function η : C (Qp)→ Qp by a p-adic integral,

η(x) =

∫ x

x0

ω

that vanishes on points of C (Q).
By a Newton polytope argument, for any residue class x̃ ∈ Csm0 (Fp),

#(η−1(0) ∩ [x̃ [) ≤ 1 + ordx̃(ω|C0).

Summing over residue classes x̃ ∈ Csm0 (Fp), we get the desired result.
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Unanswered motivating questions

What can we say about the p-adic integral globally?

Most uses of Chabauty-Coleman only care about the integral in residue
disks and concede that there is at least one rational point in each residue
class unless there is some reason not to think so by a sieving argument.
But is there a way of getting a handle on the p-adic integral in a global
sense?

The one big result in this direction is due to Michael Stoll (2013) where he
produces a uniform bound for the number of rational points on a
(hyperelliptic) curve of Mordell-Weil rank ≤ g − 3.

What more be said in the bad reduction case?

Moreover, how does the reduction type of the curve influence the
reduction of rational points? If the curve has bad reduction, maybe the
rational points like to reduce to particular components?
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p-adic integration

Why is p-adic integration hard?

The topology on a p-adic space is totally disconnected. It’s easy to pick a
primitive on each residue disc. But the constant of integration remains
ambiguous and one must force agreement between residue discs.

Here the Dwork principle or “analytic continuation by Frobenius” comes to
the rescue. Or as was stated much more poetically by Coleman,

Rigid analysis was create to provide some coherence in an
otherwise totally disconnected p-adic realm. Still, it is often left
to Frobenius to quell the rebellious outer provinces.

Specifically, if the curve C has good reduction, we pick a smooth model C
and a self-map of C that extends Frobenius on the central fiber. We then
mandate that the integral obeys a change-of-variables formula with respect
to Frobenius. This produces a primitive on the affinoid (so path
independent!). It is not analytic but is more than locally analytic.
Coleman-analytic!
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p-adic integration on curves of bad reduction

One notion of integration on curves of bad reduction was defined by
Coleman and de Shalit and systematized by Berkovich. One can define it
by covering the curve with affinoids of well-understood reduction type and
finding primitives on these affinoids.

Specifically, one takes a semistable model C for the curve (after a possible
base-change). Then, one has a specialization map

ρ : C → C0.

The preimage of closed components of C0 turn out to be basic wide opens,
the complement of some discs in the analytification of a proper curve. We
can extend the 1-form to the proper curve if we allow poles in the removed
discs. Within any affinoid in this basic wide open we can find a primitive
by the standard Coleman integration. But a new subtlety arises!
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Integration on annuli

The preimage of a node under specialization is an annulus

A(r , 1) = {z |r ≤ |z | ≤ 1.}

An analytic function on an annulus is given by a convergent two-sided
power series:

f =
∞∑

n=−∞
anz

n.

We can be college freshmen and try to integrate this term-by-term and get
something that converges on a slightly smaller annulus, except

we need to integrate a−1z
−1!
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p-adic logarithm

To integrate a−1z
−1, we nee to pick a branch of p-adic logarithm.

Logarithm is uniquely defined as a map

Log : O∗ → K

but the extension to K∗ is ambiguous. One must choose a value of Log(π)
for a uniformizer π.

There are two ways to resolve this ambiguity:

1 Pick a value of Log(π) (a branch) once and for all for all annuli, or

2 Impose the condition that the integral is a pull-back of a univalent
logarithm on Jac(C ).
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A consistent choice of logarithm

If we pick a value of Log(π) for every annulus, we have resolved the
ambiguity. We have to enlarge the class of Coleman functions to allow
them to behave like an analytic function plus a multiple of a branch of
logarithm in annuli. This leads to an integral defined for Mumford curves
by Schneider (and later studied by Teitelbaum), studied in greater
generality by Coleman-de Shalit, and used a basis for a very general theory
of integration by Berkovich.

This integral has very good change-of-variables properties. Moreover, it
can be computed once we have a semistable model. In fact, it’s
straightforward to adapt the Balakrishnan-Bradshaw-Kedlaya algorithm to
do the integral on hyperelliptic basic wide opens.

This integral is path dependent unlike the good reduction case. We need
to keep track of the path we take in the dual graph. So there are periods!

And it’s very strange to me, at least, that the familiar phenomena of
periods only exist at primes of bad reduction.
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Logarithms on Abelian Lie groups

Let’s quickly review logarithms on Abelian Lie groups G over p-adic fields.
Let G (K)f be the smallest open subgroup of G (K) such that
G (K)/G (K)f contains no non-zero torsion elements. Then there is a
K-analytic homomorphism

logG(K) : G (K)f → Lie(G )

that induces an isomorphism on tangent spaces of the identity. Then, we
must extend log to G (K). In the case of Abelian varieties G (K)f = G (K).

We can identify the dual to the Lie algebra with the global, invariant
1-forms. This allows us to rewrite the logarithm as a bilinear pairing

A(K)× H0(AK,Ω
1)→ K.
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Logarithms on Abelian Lie groups (cont’d)

This pairing can be thought of an integral on A:

(Q, ω) 7→
∫ Q

0
ω.

This integral can be pulled back by the Abel-Jacobi map

C → Jac(C ).

This gives (a special case of) the Colmez integral. This is the integral that
you use in bad reduction Chabauty because it will vanish on the
sub-Abelian variety containing rational points of C .
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Comparison Theorem

Now, we have two integrals, the Berkovich-Coleman-de Shalit integral and
the Colmez integral.

Stoll gives a local comparison result in his paper. There is also work in
preparation by Wewers-Zerbes. We began this project in order to make
sense of Stoll’s comparison result, and we came up with a global
comparison result.

To set up the comparison result, we will pull back integrals from the
universal cover of the Jacobian.
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Raynaud Uniformization

Raynaud introduced a uniformization theory for general Abelian varieties
over p-adic fields. It extends the Mumford-Tate uniformization for
maximally degenerate Abelian varieties.

If A is an Abelian variety, then one can form a uniformization cross

T

��
Λ // G

��

p // A

B

where T is a torus, Λ is a discrete group, and B is an Abelian scheme with
good reduction.

We should think of this (imprecisely) as writing an Abelian variety as an
extension of an Abelian variety of good reduction by one of maximally
degenerate reduction. We think of G as the universal cover of A.
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Raynaud introduced a uniformization theory for general Abelian varieties
over p-adic fields. It extends the Mumford-Tate uniformization for
maximally degenerate Abelian varieties.
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Integrals on the Universal cover

The two integrals pull back to integrals on G (K)

G (K)× Ω1(A)→ K

given by

(P, ω) 7→
∫ P

0
ω.

and so induce logarithms

G (K)→ Lie(G ) = Hom(Ω1(A),K).

These logarithms are characterized by their extension to T (K) in the
diagram:

T (K) //

��

G (K) //

��

B(K)

��
Lie(T ) // Lie(G ) // Lie(B).

since the logarithm on B(K) is already determined.
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Characterization of Integrals

In the diagram
T (K) //

��

G (K) //

��

B(K)

��
Lie(T ) // Lie(G ) // Lie(B),

the BCdS integral is determined by (after extending K to ensure that T
splits) the fact that the logarithm is given by a Cartesian product of Log.
Specifically if z is a unit on T , then the primitive of the invariant 1-form
dz
z is Log(z).

On the other hand, the Colmez integral is determined by the fact that the
logarithm on G vanishes on the discrete group Λ.

Denote the two logarithms by logBCdS and logColmez .
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Comparison of Logarithms

The two logarithms agree on G (K)f . So we can view their difference as

logBCdS− logColmez : (G (K)/G (K)f )× Ω1 → K

where Ω1 denotes the invariant differential on G (K).

But G (K)/G (K)f = T (K)/T (K)f = T (K)/T (O). Now, T (K)/T (O) is
an intrinsic tropicalization of an algebraic torus that should be thought of
as (K∗/O∗)n = v(K∗)n. Write the quotient as

Trop : G (K)→ T (K)/T (O).

Therefore, logBCdS− logColmez is the unique homomorphism that takes the
value ∫

γ
ω (BCdS)

on Trop(γ) ∈ Trop(Λ).

This completely describes the Colmez integral.
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Comparison on Curves

Now, we can pull back the comparison theorem to curves to compute
Colmez integrals. Here’s where tropical geometry comes in handy.

We find a semistable reduction for the curve. Now, we can take a rigid
analytic universal cover of the curve C̃ which comes from taking the
universal cover of the dual graph Γ and gluing together the preimages of
specialization according to the universal cover Γ̃. By results of
Bosch-Lutkebohmert, there is a lift of the Abel-Jacobi map

C̃ → G .

There is a tropical Abel-Jacobi map

Γ→ ((T (K)/T (O))⊗ R)/Trop(Λ)

whose universal cover is the map of the central fibers of the above:

Γ̃→ (T (K)/T (O))⊗ R.

The map logBCdS− logColmez can be pulled back to Γ̃ and can be used to
correct Berkovich-Coleman-de Shalit integrals to Colmez integrals.
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Thanks!

V. Berkovich. Integration of one-forms on p-adic analytic spaces.

R. Coleman and E. de Shalit. p-adic regulators on curves and special
values of p-adic L-functions.

E. Katz and D. Zureick-Brown (and others?). p-adic integration on curves
of bad reduction.

M. Stoll. Uniform bounds for the number of rational points on
hyperelliptic curves of small Mordell-Weil rank.
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