Geometric Rank Functions and Rational Points on Curves

Eric Katz (University of Waterloo) joint with David Zureick-Brown (Emory University)

April 4, 2012

"Oh yes, I remember Clifford. I seem to always feel him near somehow."

— Ion Hendricks

Eric Katz (Waterloo) Rank functions April 4, 2012

Linear systems on curves and graphs

Let $\mathbb K$ be a discretely valued field with valuation ring $\mathcal O$ and residue field $\mathbf k$. Let C be a curve with semistable reduction over $\mathbb K$. In other words, C can be completed to a family of curves $\mathcal C$ over $\mathcal O$ such that the total space is regular and that the central fiber $\mathcal C_0$ has ordinary double-points as singularities. Think: extending a family of curves over a punctured disc across the puncture while allowing mild singularities.

Let D be a divisor on C, supported on $C(\mathbb{K})$. Would like to bound the dimension of $H^0(C, \mathcal{O}(D))$ by using the central fiber.

2 / 29

Baker-Norine linear systems on graphs

The Baker-Norine theory of linear systems on graphs gives such bounds. Let the multi-degree deg of a divisor D to be the formal sum

$$\underline{\deg}(D) = \sum_{v} \deg(\mathcal{O}(D)|_{\mathcal{C}_{v}})(v)$$

where C_{ν} are the components of C_0 .

Baker-Norine define a rank $r(\underline{\deg}(D))$ in terms of the combinatorics of the dual graph Γ of \mathcal{C}_0 .

The bound obeys the specialization lemma:

$$\dim(H^0(C,\mathcal{O}(D)))-1\leq r(\underline{\deg}(D)).$$

These bounds are particularly nice in the case where all components of C_0 are rational (the maximally degenerate case).

Non-maximal degeneration case

The Baker-Norine theory is not ideal for the non-maximally degenerate case for the following reasons:

- 1 The bound is not very sharp,
- ② The canonical divisor of the dual graph Γ does not have much to do with the canonical bundle K_C of C; unclear what Riemann-Roch says in this case.

In fact, we have the following examples of things going haywire:

- If C has good reduction, Γ is just a vertex and so $r(\deg(D)) = \deg(D)$. Lots of other pathological cases.

Amini-Caporaso approach

Amini-Caporaso have a combinatorial approach to handle this case by inserting loops at vertices corresponding to higher genus components. Their approach obeys the specialization lemma and the appropriate Riemann-Roch theorem.

Their bound is sharper than the Baker-Norine bound and in their theory, one has

$$\underline{\mathsf{deg}}(K_C) = K_\Gamma$$

where K_{Γ} is the canonical divisor of the *weighted* dual graph Γ .

Today, I'll give an approach that incorporates the geometry of the components. The approach I'll explain was developed independently by Amini-Baker.

Our approach: extending linear equivalence

Our definition of rank is inspired by the following question:

Let D_1, D_2 be divisors on C supported on $C(\mathbb{K})$. Let $\mathcal{D}_1, \mathcal{D}_2$ be their closures on C,

Question: Are the generic fibers D_1, D_2 linearly equivalent?

Try to construct a section s with $(s) = D_1 - D_2$.

6 / 29

Extension hierarchy for linear equivalence problem

We apply a certain extension hierarchy to this question. The steps have technical names which are inspired by the Néron model. The steps should be reminiscent of how one thinks about tropical lifting.

- 1 Try to construct s_0 on the central fiber such that $(s_0) = (\mathcal{D}_1)_0 - (\mathcal{D}_2)_0.$
 - **1** numerical: Is there an extension \mathcal{L} of $\mathcal{O}(D_1 D_2)$ to \mathcal{C} that has degree 0 on every component of the central fiber?
 - 2 Abelian: For each component C_{ν} of the central fiber, is there a section s_v on C_v of $\mathcal{L}|_{C_v}$ with $(s_v) = ((\mathcal{D}_1)_0 - (\mathcal{D}_2))|_{C_v}$?
 - **1** toric: Can the sections s_v be chosen to agree on nodes?
- 2 Use deformation theory to extend the glued together section s_0 to C.

We will concentrate on the first step.

The rank hierarchy

This hierarchy lets us define new rank functions following Baker-Norine. We say a divisor D on C has i-rank $\geq r$ if for any effective divisor E in $C(\mathbb{K})$ of degree r, steps (1)-(i) are satisfied for $\mathcal{D}=\overline{D}, \mathcal{E}=\overline{E}$:

1 numerical: there is a divisor $\varphi = \sum_{\nu} a_{\nu} C_{\nu}$ supported on the central fiber such that

$$\deg(\mathcal{O}(\mathcal{D}-\mathcal{E})(\varphi)|_{\mathcal{C}_{\nu}})\geq 0$$

for all v.

- **2** Abelian: For each component C_v of the central fiber, there is a non-vanishing section s_v on C_v of $\mathcal{O}(\mathcal{D} \mathcal{E})(\varphi)|_{C_v}$.
- **3** toric: The sections s_v be chosen to agree across nodes.

New rank functions

So we have rank functions r_{num} , r_{Ab} , r_{tor} .

- $r_{\text{num}}(D)$ depends only on the multi-degree of D, that is $\deg(D|_{C_{\nu}})$ for all v
- $\circ r_{Ab}$, r_{tor} depend only on \mathcal{D}_0 .

The rank functions r_{Ab} , r_{tor} are sensitive to the residue field **k** since bigger **k** allows for more divisors *E*. But they eventually stabilize.

Specialization map

To show that r_{Ab} and r_{tor} only depend on D_0 , we need to introduce the specialization (a.k.a. reduction) map

$$\rho: C(\mathbb{K}) \to \mathcal{C}_0^{sm}(\mathbf{k})$$

$$x \mapsto \overline{\{x\}} \cap \mathcal{C}_0(\mathbf{k}).$$

Note that \mathbb{K} -points always specialize to smooth points of the central fiber. The specialization map is surjective so any divisor E_0 of \mathcal{C}_0 supported on $\mathcal{C}_0^{sm}(\mathbf{k})$ extends to a divisor E supported on $\mathcal{C}(\mathbb{K})$ with

$$\rho(E)=E_0.$$

Therefore, we need only check effective divisors E_0 supported on $\mathcal{C}_0^{\mathsf{sm}}(\mathbf{k})$.

A natural question inspired by number theory

Our approach was designed to give an approximate answer to the following natural question motivated by number theory. Let D be a divisor on C supported on $C(\mathbb{K})$. Let F_0 be a divisor on $C_0^{\mathrm{sm}}(\mathbf{k})$. Let

$$|D|_{F_0}=\{D'\in |D|\mid F_0\subset \overline{D'}\}.$$

Definition: We say the rank $r(D, F_0)$ is greater than or equal to r if for any rank r effective divisor E supported on $C(\mathbb{K})$, $|D - E|_{F_0} \neq \emptyset$.

Question: Can we bound $r(D, F_0)$ in terms of C_0 , deg(D) and F_0 ?

It's unclear what kind of object $|D|_{F_0}$ is. It's a rigid analytic subspace of projective space and it's not even quite clear if its rank has nice properties. Working with it requires developing a missing theory of rigid analytic/algebraic compatibility. But it is very natural to consider as we shall see.

11 / 29

Numerical rank and Baker-Norine rank

But $r_{\text{num}}(D)$ is not new. In fact, it is the Baker-Norine rank of $\underline{\text{deg}}(D)$. What is called here a *multi-degree* is what Baker and Norine call a divisor on a graph.

One observes that for $\varphi = \sum_{\nu} a_{\nu} C_{\nu}$, treated as a function on $V(\Gamma)$, we have

$$\underline{\mathsf{deg}}(\varphi) = \Delta(\varphi)$$

where Δ is the graph Laplacian.

Also after possible unramified field extension of \mathbb{K} for any multi-degree, $\underline{E} = \sum a_v(v)$, there is a divisor E on C with $\underline{\deg}(E) = \underline{E}$.

Consequently, unpacking the definition of r_{num} , we see that it says $r_{\text{num}}(D) \geq r$ if and only if for any multi-degree $\underline{E} \geq 0$ with $\deg(\underline{E}) = r$, there is a $\varphi: V(\Gamma) \to \mathbb{Z}$ with

$$\underline{D} - \underline{E} + \Delta(\varphi) \geq 0.$$

Specialization lemma

These rank functions satisfy a specialization lemma. For D, a divisor supported on $C(\mathbb{K})$, set

$$r_C(D) = \dim H^0(C, \mathcal{O}(D)) - 1.$$

Then

$$r_C(D) \leq r_{\mathsf{tor}}(D) \leq r_{\mathsf{Ab}}(D) \leq r_{\mathsf{num}}(D).$$

We have examples where the inequalities are strict.

Proof of Specialization lemma

The proof is essentially the same as Baker's specialization lemma.

First by definition, we have

$$r_{\mathsf{tor}}(D) \leq r_{\mathsf{Ab}}(D) \leq r_{\mathsf{num}}(D),$$

so it suffices to show $r_C(D) \le r_{tor}(D)$.

One can characterize $r_C(D)$ by saying $r_C(D) \ge r$ if and only if for any effective divisor E of degree r supported on $C(\mathbb{K})$ that

$$H^0(C,\mathcal{O}(D-E))\neq \{0\}.$$

Consequently, there's a section s of $\mathcal{O}(D-E)$. The section can be extended to a rational section of $\mathcal{O}(\mathcal{D}-\mathcal{E})$ on \mathcal{C} . The associated divisor can be decomposed as

$$(s) = H - V$$

where H is the closure of a divisor in C and V is supported on C_0 .

Eric Katz (Waterloo) Rank functions April 4, 2012 14 / 29

Proof of Specialization lemma (cont'd)

Consequently, we can write

$$\varphi \equiv V = \sum_{v} a_{v} C_{v}.$$

Now, s can be viewed as a regular section of $\mathcal{O}(\mathcal{D} - \mathcal{E})(\varphi)$. Set $s_v = s|_{C_v}$. These are the desired sections on components.

It follows that $r_{tor}(D) \ge r$.

15 / 29

Clifford's theorem for r_{Ab}

Let K_{C_0} be the relative dualizing sheaf of the central fiber. This is characterized by being the natural extension of the canonical bundle on C to C, restricted to the central fiber. Note

$$\underline{\operatorname{deg}}(K_{\mathcal{C}_0}) = \sum_{\nu} (2g(C_{\nu}) - 2 + \operatorname{deg}(\nu))(\nu) = K_{\Gamma} + \sum_{\nu} 2g(C_{\nu})(\nu).$$

(No longer as much of a) Question: Is Riemann-Roch true for r_{Ab} and r_{tor} ?

$$r_i(D_0) - r_i(K_{C_0} - D_0) = 1 - g + \deg(D_0)$$
?

Yes for r_{Ab}! By Amini-Baker.

Theorem: (Clifford-Brown-K) Let D_0 be a divisor supported on smooth **k**-points of C_0 then

$$r_{\mathsf{Ab}}(K_{\mathcal{C}_0} - D_0) \leq g - \frac{\deg D_0}{2} - 1.$$

Proof uses the Baker-Norine version of Clifford's theorem, classical Clifford's theorem, and a general position argument.

Proof of Clifford's theorem

The theorem follows by Amini-Baker's Riemann-Roch theorem which uses a version of reduced divisors, but we give another proof...

To prove Clifford's theorem, given D_0 supported on $\mathcal{C}_0^{\mathrm{sm}}(\mathbf{k})$, we must cook up a divisor E_0 of degree at most $g-\frac{\deg D_0}{2}$ such that for any φ , there is some component C_v such that the line bundle

$$\mathcal{O}(D_0-E_0)(\varphi)|_{C_v}$$

on C_{ν} has no non-zero sections.

The idea is to choose E_0 to vandalize any possible section on any component as efficiently as possible. Now, we need only look at φ such that

$$\deg(\mathcal{O}(D_0-E_0)(\varphi)|_{C_\nu})\geq 0$$

for all C_v . Up to addition of a multiple of the central fiber, there are finitely many such φ .

17 / 29

Proof of Clifford's theorem (cont'd)

To vandalize efficiently, we need the following general position principle: We make an unramified field extension of \mathbb{K} to ensure that \mathbf{k} is infinite. Now we can choose an effective degree n divisor P_0 on $C_v^{\mathrm{sm}}(\mathbf{k})$ such that for any φ ,

$$h^0(\mathit{C}_{v}, \mathcal{O}(\mathit{D}_0 - \mathit{E}_0 - \mathit{P}_0)(\varphi)|_{\mathit{C}_{v}}) = \max(0, h^0(\mathit{C}_{v}, \mathcal{O}(\mathit{D}_0 - \mathit{E}_0)(\varphi)|_{\mathit{C}_{v}}) - \mathit{n}).$$

Now if C_{ν} has $deg(\mathcal{O}(D_0 - E_0)(\varphi)|_{C_{\nu}}) \leq 2g - 1$, by ordinary Clifford's theorem,

$$h^0(C_{\nu},\mathcal{O}(D_0-E_0)(\varphi)|_{C_{\nu}})\leq \frac{d}{2}+1.$$

Such components can be vandalized with fewer points of E_0 than expected.

One keeps track of these components and vandalizes their sections. If necessary, one also uses Baker-Norine's version of Clifford's theorem to add points to E_0 to ensure that there are always such components C_v . The numbers work out correctly.

Application: Chabauty-Coleman method

The Chabauty-Coleman method is an effective method for bounding the number of rational points on a curve of genus $g \geq 2$. It does not work for all higher genus curves unlike Faltings' theorem, but it gives bounds that can be helpful for explicitly determining the number of points.

Let C be a curve defined over $\mathbb Q$ with good reduction at a prime p>2g. This means that viewed as a curve over $\mathbb Q_p$, it can be extended to $\mathbb Z_p$ such that the fiber over p is smooth. Let $\mathsf{MWR}=\mathsf{rank}(J(\mathbb Q))$ be the Mordell-Weil rank of C. Computing MWR is now an industry among number theorists.

Theorem: (Coleman) If MWR < g then $\#C(\mathbb{Q}) \leq \#C_0(\mathbb{F}_p) + 2g - 2$.

In the case $p \leq 2g$, there's a small error term.

Theorem: (Stoll) If MWR < g then $\#C(\mathbb{Q}) \le \#C_0(\mathbb{F}_p) + 2 \text{ MWR}$.

This improvement is important! A sharper bound means less searching for a rational point that may not exist.

Outline of Coleman's proof

First, work p-adically. If C has a rational point x_0 , use it for the base-point of the Abel-Jacobi map $C \to J$. Applying Chabauty's argument involving p-adic Lie groups, can assume that that $\overline{J(\mathbb{Q})}$ lies in an Abelian subvariety $A_{\mathbb{Q}_p} \subset J_{\mathbb{Q}_p}$ with $\dim(A_{\mathbb{Q}_p}) \leq \mathrm{MWR}$. Then there is a 1-form ω on $J_{\mathbb{Q}_p}$ that vanishes on A, hence on the images of all points of $C(\mathbb{Q})$ under the Abel-Jacobi map. Pull back ω to $C_{\mathbb{Q}_p}$. By multiplying by a power of p, can suppose that ω does not vanish on the central fiber C_0 .

Coleman defines a function $\eta: C(\mathbb{Q}_p) \to \mathbb{Q}_p$ by a p-adic integral,

$$\eta(x) = \int_{x_0}^x \omega$$

that vanishes on points of $C(\mathbb{Q})$.

Outline of Coleman's proof (cont'd)

Let $\rho: \mathcal{C}(\mathbb{Q}_p) \to \mathcal{C}_0(\mathbb{F}_p)$ be the specialization map

$$\rho(x) = \overline{\{x\}} \cap \mathcal{C}_0(\mathbb{F}_p),$$

By a Newton polytope argument for any residue class $\tilde{x} \in \mathcal{C}_0(\mathbb{F}_p)$,

$$\#(\eta^{-1}(0)\cap\rho^{-1}(\tilde{x}))\leq 1+\operatorname{ord}_{\tilde{x}}(\omega|_{\mathcal{C}_0}).$$

Summing over residue classes $\tilde{x} \in \mathcal{C}_0(\mathbb{F}_p)$, we get

$$\begin{split} \#\mathcal{C}(\mathbb{Q}) &\leq \#\eta^{-1}(0) &= \sum_{\tilde{x} \in \mathcal{C}_0(\mathbb{F}_p)} (1 + \mathsf{ord}_{\tilde{x}}(\omega|_{\mathcal{C}_0})) \\ &= \#\mathcal{C}_0(\mathbb{F}_p) + \mathsf{deg}(\omega) \\ &= \#\mathcal{C}_0(\mathbb{F}_p) + 2g - 2. \end{split}$$

Proof of Stoll's improvement

Stoll improved the bound by picking a good choice of ω for each residue class.

Let $\Lambda \subset \Gamma(J_{\mathbb{Q}_p}, \Omega^1)$ be the 1-forms vanishing on $\overline{J(\mathbb{Q})}$. For each residue class $\tilde{x} \in \mathcal{C}_0(\mathbb{F}_p)$, let

$$n(\tilde{x}) = \min \{ \operatorname{ord}_{\tilde{x}}(\omega|_{\mathcal{C}_0}) | 0 \neq \omega \in \Lambda \}.$$

Let the Chabauty divisor on C_0 be

$$D_0 = \sum_{\tilde{x}} n(\tilde{x})(\tilde{x}).$$

Note that by Coleman's argument,

$$\#(\eta^{-1}(0)\cap\rho^{-1}(\tilde{x}))\leq 1+n(\tilde{x}).$$

By summing over residue classes, one gets

$$\#C(\mathbb{Q}) \leq \#C_0(\mathbb{F}_p) + \deg(D_0).$$

Proof of Stoll's improvement (cont'd)

Now, we just need to bound D_0 . Every $\omega \in \Lambda$ extends (up to a multiple by a power of p) to a regular 1-form vanishing on D_0 .

By a semi-continuity argument, one gets

$$\dim \Lambda \leq \dim H^0(\mathcal{C}_0, \mathcal{K}_{\mathcal{C}_0} - D_0) \leq g - \frac{\deg(D_0)}{2}.$$

Since dim $\Lambda = g - MWR$, deg $(D_0) \le 2 MWR$.

Therefore, we get

$$\#C(\mathbb{Q}) \leq \#C_0(\mathbb{F}_p) + 2 MWR$$
.

Bad reduction case

The bad reduction case of Coleman's bound was proved independently by Lorenzini-Tucker and McCallum-Poonen. The bad reduction case of the Stoll bound was proved for hyperelliptic curves by Stroll and the general case was posed as a question in a paper of McCallum-Poonen.

The set-up for the bad reduction case is where \mathcal{C} is a regular minimal model over \mathbb{Z}_p . This means that the total space is regular, but there are no conditions of the types of singularities on the central fiber. They can be worse than nodes.

Theorem: (Lorenzini-Tucker, McCallum-Poonen) Suppose MWR < g then

$$C(\mathbb{Q}) \leq \#\mathcal{C}_0^{\mathsf{sm}}(\mathbb{F}_p) + 2g - 2.$$

The reason why we only need to look at the smooth points is that any rational point of C specializes to a smooth point of C_0 . Therefore, we need only consider the residue classes in $C_0^{sm}(\mathbb{F}_p)$.

Stoll bounds in the bad reduction case

Theorem: (Brown-K '12) Suppose MWR < g then

$$C(\mathbb{Q}) \leq \#\mathcal{C}_0^{\mathsf{sm}}(\mathbb{F}_p) + 2 \,\mathsf{MWR}$$

Now, we outline the proof which is formally similar to Stoll's.

The first step is to go from a regular minimal model to a semistable model. We can make finite ramified field extension $\mathbb{Q}_p \subset \mathbb{K}$ such that $C' = C \times_{\mathbb{Q}_p} \mathbb{K}$ has a semistable model C'. There is a map

$$\mathcal{C}' \to \mathcal{C} \times_{\mathbb{Z}_p} \mathcal{O}.$$

Now, $\mathcal{C}'^{\mathsf{sm}}_0(\mathbf{k})$ may have many more points than $\mathcal{C}_0(\mathbb{F}_p)$. Fortunately, we only need to consider points lying over $\mathcal{C}^{\mathsf{sm}}_0(\mathbb{F}_p)$. But over points of $\mathcal{C}^{\mathsf{sm}}_0$, $\mathcal{C}'_0 \to \mathcal{C}_0$ is an isomorphism. We only need to look at ω near those points.

Proof of Stoll bounds in bad reduction case (cont'd)

Produce the Chabauty divisor nearly as before: for $\tilde{x} \in \mathcal{C}_0^{sm}(\mathbb{F}_p)$, set

$$n(\tilde{x}) = \min \{ \operatorname{ord}_{\tilde{x}}(\omega|_{\mathcal{C}_0}) | 0 \neq \omega \in \Lambda \}.$$

where each ω is normalized so that it does not vanish identically on the component C_v containing \tilde{x} .

Let the Chabauty divisor supported on $\mathcal{C}_0'(\mathbf{k}')$ be

$$D_0 = \sum_{\tilde{x} \in \mathcal{C}_0^{\rm sm}(\mathbf{k})} n(\tilde{x})(\tilde{x}).$$

Nearly all the Coleman machinery works in the bad reduction case. The Coleman integral is now multivalued, but it is well-defined as long as one integrates between points in the same residue class. Consequently,

$$\#C(\mathbb{Q}) \leq \#C_0(\mathbb{F}_p) + \deg(D_0).$$

Proof of Stoll bounds in the bad reduction case (cont'd)

Since every ω in Λ vanishes on D_0 , we can use the proof of the specialization lemma to show that

$$\dim \Lambda \leq r_{\mathsf{Ab}}(K_{\mathcal{C}_0} - D_0) + 1.$$

Then apply Clifford's theorem for r_{Ab} to conclude

$$\deg(D_0) \leq 2 \text{ MWR}$$
.

And that's it!

Further Questions

- Because Clifford's bounds are usually strict, in any given case, one can probably do better by bounding the Abelian rank by hand. Is there a general statement that incorporates the combinatorics of the dual graph?
- What can we say about the number of rational points specializing to different components of the central fiber?
- **1** What about r_{tor} ? Does that help us improve the bounds?
- What about passing from the special fiber to the generic fiber? This should give even better bounds. We can use deformation-theoretic obstructions from tropical lifting here. Probably really need to understand the bad reduction analogue of the Coleman integral which is the Berkovich integral.
- **o** $r(D, F_0)$?

Thanks!

- M. Baker. *Specialization of linear systems from curves to graphs.* Algebra Number Theory, 2:613–653, 2008.
- M. Baker and S. Norine. *Riemann-Roch and Abel-Jacobi theory on a finite graph.* Adv. Math., 215:766–788, 2007.
- E. Katz and D. Zureick-Brown. *The Chabauty-Coleman bound at a prime of bad reduction and Clifford bounds for geometric rank functions.*, next week.
- D. Lorenzini and T. Tucker. *Thue equations and the method of Chabauty-Coleman.* Invent. Math., 148:47–77, 2002.
- W. McCallum and B. Poonen. *The method of Chabauty and Coleman.* Panoramas et Synthèses, to appear.
- M. Stoll. *Independence of rational points on twists of a given curve.* Compos. Math., 142:1201–1214, 2006.

Eric Katz (Waterloo) Rank functions April 4, 2012 29 / 29