
Functional Analysis 7212 Homework problem list

Problem 1. Suppose A is a unital Banach algebra and fix a, b ∈ A.

(1) Show that 1 /∈ spA(ab) if and only if 1 /∈ spA(ba) using the identity (1− ba)−1 = 1 + b(1−
ab)−1a. Deduce that spA(ab) ∪ {0} = spA(ba) ∪ {0}.

(2) Show that for any Banach subalgebra B ⊆ A with 1A ∈ B, for every a ∈ B, the spectral
radius in B of a is equal to the spectral radius in A of a, i.e., rB(a) = rA(a).

(3) Suppose a, b ∈ A commute. Prove that r(ab) ≤ r(a)r(b) and r(a+ b) ≤ r(a) + r(b).
Hint: By (2), this computation can be performed in the unital commutative Banach subal-
gebra B ⊆ A generated by a and b. In B, there is a helpful characterization of the spectrum.

(4) Deduce from part (3) that if A is commutative, the spectral radius r : A → [0,∞) is
continuous.

Problem 2. Let A be a unital Banach algebra. Suppose we have a norm convergent sequence
(an) ⊂ A with an → a. Prove that for every open neighborhood U of sp(a), there is an N > 0 such
that sp(an) ⊂ U for all n > N .

Problem 3. Let A ∈Mn(C).

(1) As best as you can, describe f(A) where f ∈ O(sp(A)).
Hint: First consider the case that A is a single Jordan block.

(2) Determine as best you can which matrices A ∈ Mn(C) have square roots, i.e., when there
is a B ∈Mn(C) such that B2 = A.
Note: Such a B is not necessarily unique.

Problem 4. Suppose A is a C*-algebra and a ∈ A is normal.

(1) Show a is self-adjoint if and only if sp(a) ⊂ R.
(2) Show a is unitary if and only if sp(a) ⊂ T.
(3) Show a is a projection if and only if sp(a) ⊂ {0, 1}.

Problem 5. Let A be a C*-algebra.

(1) Show that the following are equivalent for a self-adjoint a ∈ A:
(a) sp(a) ⊂ [0,∞),
(b) For all λ ≥ ‖a‖, ‖a− λ‖ ≤ λ, and
(c) There is a λ ≥ ‖a‖ such that ‖a− λ‖ ≤ λ.

For now, we will call such elements spectrally positive.
Note: It is implicit here that a spectrally positive element is self-adjoint.

(2) Deduce that the spectrally positive elements in a C*-algebra form a closed cone, i.e., A+ =
{a ∈ A|a ≥ 0} is closed, and for all λ ∈ [0,∞) and a, b ∈ A+, we have λa+ b ∈ A+.

(3) Show a is positive (a = b∗b for some b) if and only if a is spectrally positive (a = a∗ and
sp(a) ⊂ [0,∞)).

Hint: First, if sp(a) ⊂ [0,∞), we can define a1/2 via the continuous functional calculus.
Now suppose a = b∗b for some b ∈ B. Use the continuous functions r 7→ max{0, z} and
r 7→ −min{0, z} on sp(a) to write a = a+−a− where sp(a±) ⊂ [0,∞) and a+a− = a−a+ =
0. Now look at c = ba−. Prove that sp(c∗c) ⊂ (−∞, 0] and sp(cc∗) ⊂ [0,∞) using part (1)
of this problem. Use part (1) of Problem 1 to deduce that c∗c = 0. Finally, deduce a− = 0,
and thus a = a+.

Problem 6. For a, b ∈ A, we say a ≤ b if b− a ≥ 0.

(1) Show that ≤ is a partial order.
(2) Show that if a ≤ b, then for all c ∈ A, c∗ac ≤ c∗bc.

1



(3) Suppose 0 ≤ a ≤ b. Prove that ‖a‖ ≤ ‖b‖.

Problem 7. Let A be a C*-algebra. By the hint to part (4) of Problem 4 that for a ≥ 0, we can

define an a1/2 ≥ 0 such that (a1/2)2 = a.

(1) Show that if b ≥ 0 such that b2 = a, then b = a1/2.

(2) Prove that if 0 ≤ a ≤ b, then a1/2 ≤ b1/2.
(3) Prove that if 0 < a (0 ≤ a and a is invertible), then 0 < a−1.
(4) Prove that if 0 < a ≤ b, then 0 < b and 0 < b−1 ≤ a−1.

Problem 8 (Rieffel, “Preventative Medicine”). Consider a =

(
0 1
1 0

)
and b =

(
s 0
0 t

)
for s, t ≥ 0.

(1) Determine for which s, t ≥ 0 we have b ≥ a.
(2) Determine for which s, t ≥ 0 we have b ≥ a+.

Note: Since a = a∗, a+ is the positive part defined as in the hint to part (4) of Problem 4.
(3) Find values of s, t ≥ 0 for which b ≥ a, b ≥ 0, and yet b � a+.
(4) Find values of s, t ≥ 0 such that b ≥ a+ ≥ 0, and yet b2 � a2

+.

(5) Can you find s, t ≥ 0 such that b ≥ a+ and yet b1/2 � a
1/2
+ ?

Note: a
1/2
+ is the unique positive square root of a+ from part (1) Problem 7.

(6) Suppose c, p ∈ M2(C) such that c ≥ 0 and p2 = p∗ = p is a projection. Is it always true
that pcp ≤ c?

Problem 9. Let L2(T) denote the space of complex-valued square-integrable 1-periodic functions
on R, and let C(T) ⊂ L2(T) denote the subspace of continuous 1-periodic functions.

(a) Prove that {en(x) := exp(2πinx)|n ∈ Z} is an orthonormal basis for L2(T).

(b) Define F : L2(T) → `2(Z) by F(f)n := 〈f, en〉L2(T) =
∫ 1

0 f(x) exp(−2πinx) dx. Show that if

f ∈ L2(T) and F(f) ∈ `1(Z), then f ∈ C(T), i.e., f is a.e. equal to a continuous function.

Problem 10. Recall that each T ∈ B(H,K) induces a bounded sesquilinear form K × H → C
given by BT (ξ, η) = 〈ξ, Tη〉.

(1) Prove that T 7→ BT is an isometric bijective correspondence between operators in B(H,K)
and bounded sesquilinear forms K ×H → C.
Hint: Adapt the proof Lemma 3.2.2 in Analysis Now (see also Exercise 3.2.15 therein).

(2) For T ∈ B(H,K) corresponding to BT : K × H → C, we define T ∗ ∈ B(K,H) to be the
unique operator corresponding to the adjoint sesquilinear form B∗T : H×K → C defined by

B∗T (η, ξ) := BT (ξ, η) ⇐⇒ 〈η, T ∗ξ〉 = 〈Tη, ξ〉 η ∈ H, ξ ∈ K.

Show that T 7→ T ∗ is a conjugate linear isometry of B(H,K) onto B(K,H), and that
‖T ∗T‖ = ‖T‖2 = ‖TT ∗‖.

(3) In the case that H = K, deduce the following:
(a) B(H) with involution T 7→ T ∗ is a C*-algebra.
(b) T = T ∗ if and only if BT is self-adjoint. That is, show T = T ∗ if and only if 〈Tξ, ξ〉 ∈ R

for all ξ ∈ H.
(c) T ≥ 0 if and only if BT is positive. That is, show T ≥ 0 if and only if 〈Tξ, ξ〉 ≥ 0 for

all ξ ∈ H.
Hint: Use that for T = T ∗, we have inf {〈Tξ, ξ〉|ξ ∈ H, ‖ξ‖ = 1} = min {λ|λ ∈ sp(T )}.

(d) (optional) T ≥ 0 and T injective if and only if BT is positive definite.

Hint: For S ∈ B(H), ker(S) = ker(S∗S), so T ≥ 0 is injective if and only if T 1/2 is
injective.
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(e) (optional) T > 0 (T ≥ 0 and T is invertible) if and only if BT is positive definite, and

H is complete in the norm ‖ξ‖T := BT (ξ, ξ)1/2.
Hint: When BT is positive definite and H is complete for ‖ · ‖T , apply part (d) and

look at the isometry (H, ‖ · ‖T )→ (H, ‖ · ‖) by ξ 7→ T 1/2ξ.

Problem 11 (Challenge!). Suppose H is a Hilbert space. A quadratic form on H is a function
q : H → C such that:

(1) (quadratic) q(λξ) = |λ|2q(ξ) for all λ ∈ C and ξ ∈ H,
(2) (parallelogram identity) q(η + ξ) + q(η − ξ) = 2(q(η) + q(ξ)) for all η, ξ ∈ H, and
(3) (continuous) There is a C > 0 such that |q(ξ)| ≤ C‖ξ‖2 for all ξ ∈ H.

Prove that

(η, ξ) :=
1

4

3∑
k=0

ikq(η + ikξ)

is a bounded sesquilinear form on H such that q(ξ) = (ξ, ξ).

Problem 12. For a Hilbert space H, we can define the conjugate Hilbert space H =
{
ξ
∣∣ξ ∈ H}

which has the conjugate vector space structure λξ + η = λξ + η and the conjugate inner product
〈η, ξ〉H = 〈ξ, η〉H .

(1) Prove that H is a Hilbert space.
(2) For T ∈ B(H,K), define T : H → K by Tξ = Tξ. Prove that T ∈ B(H,K), and
‖T‖ = ‖T‖.

(3) Prove that · is an endofunctor on the the category Hilb of Hilbert spaces with bounded
operators ( · is a functor Hilb→ Hilb).

(4) For each H ∈ Hilb, construct a linear isometry uH of H∗ onto H satisfying uHT
t = TuH

for all T ∈ B(H,K) where T t ∈ B(K∗, H∗) is the Banach adjoint of T .

Problem 13. For T ∈ B(H), we define its numerical radius as

R(T ) := sup
‖ξ‖≤1

|〈Tξ, ξ〉|.

Prove that r(T ) ≤ R(T ) ≤ ‖T‖ ≤ 2R(T ). Deduce that if T is normal, then ‖T‖ = R(T ).

Problem 14. Let A be a C*-algebra. An element u ∈ A is called a partial isometry if u∗u is a
projection.

(1) Show that the following are equivalent:
(a) u is a partial isometry.
(b) u = uu∗u.
(c) u∗ = u∗uu∗.
(d) u∗ is a partial isometry.

Hint: For (a)⇒ (b), apply the C*-axiom to u− uu∗u.
(2) We say two projections p, q ∈ A are (Murray-von Neumann) equivalent, denoted p ≈ q,

if there is a partial isometry u ∈ A such that uu∗ = p and u∗u = q. Prove that ≈ is an
equivalence relation on P (A), the set of projections of A.

(3) Describe the set of equivalence classes P (A)/ ≈ for A = B(`2).

Problem 15. Suppose x = u|x| is the polar decomposition of x ∈ B(H). Show that x∗ = u∗|x∗| is
the polar decomposition.

Problem 16 (MO:325725). Suppose A is a unital C*-algebra and I ≤ A is an ideal. Let q : A→
A/I be the canonical surjection.
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(1) Show that unital ∗-homomorphisms C[0, 1] → A are in canonical bijection with positive
elements of A with norm at most 1.

(2) Show that if a + I ∈ A/I is positive with norm at most 1, there is a positive ã ∈ A with
norm at most 1 such that ã+ I = a+ I.
Hint: Since spA/I(a+ I) ⊆ spA(a), f(q(a)) = q(f(a)) and thus f(a+ I) = f(a) + I for all

f ∈ C(spA(a)). Now pick f carefully.
(3) Deduce that for every unital ∗-homomorphism φ : C[0, 1] → A/I, there is a unital ∗-

homomorphism ϕ̃ : C[0, 1]→ A with φ = q ◦ φ̃.
(4) Discuss the connection between the above statement and the Tietze Extension Theorem

when A is commutative.

Problem 17. Let H be a Hilbert space. Compute the extreme points of the unit balls of

(1) K(H),
(2) L1(H), and
(3) B(H).

Problem 18. Let H be a Hilbert space. Prove that the trace Tr induces isometric isomorphims:

(1) K(H)∗ ∼= L1(H), and
(2) L1(H)∗ ∼= B(H).

Problem 19. Suppose H is a Hilbert space and K ⊆ H is a closed subspace. Let pK ∈ B(H) be
associated orthogonal projection onto K.

(1) Suppose x ∈ B(H). Prove that:
(a) xK ⊆ K if and only if xpK = pKxpK .
(b) x∗K ⊆ K if and only if pKx = pKxpK .
(c) xK ⊆ K and x∗K ⊆ K if and only if [x, pK ] = 0.

(2) Prove that if M ⊆ B(H) is a ∗-closed subalgebra, then MK ⊆ K if and only if pK ∈M ′.

Problem 20. Suppose H is a Hilbert space.

(1) Suppose K is another Hilbert space. Define the tensor product Hilbert space H⊗K by
completing the algebraic tensor product vector space H ⊗ K in the 2-norm associated to
the sesquilinear form 〈η ⊗ ξ, η′ ⊗ ξ′〉 := 〈η, η′〉〈ξ, ξ′〉. Find a unitary isomorphism H⊗K ∼=⊕dimK

i=1 H.
(2) Find a unital ∗-isomorphism B(

⊕n
i=1H) ∼= Mn(B(H)).

Hint: use orthogonal projections.
(3) Suppose S ⊆ B(H), and let α : B(H)→Mn(B(H)) be the amplification

x 7−→

x . . .

x

 .

Prove that:
(a) α(S)′ = Mn(S′), and
(b) If 0, 1 ∈ S, then Mn(S)′ = α(S′).
(c) Deduce that when 0, 1 ∈ S, α(S)′′ = α(S′′).

Problem 21. Let (X,µ) be a σ-finite measure space, and consider the map M : L∞(X,µ) →
B(L2(X,µ)) given by (Mfξ)(x) = f(x)ξ(x) for ξ ∈ L2(X,µ).

(1) Prove that M is an isometric unital ∗-homomorphism.
(2) Let A ⊂ B(L2(X,µ)) be the image of the map M . Prove that A = A′.

Hint: If you’re stuck with (2), try the case X = N with counting measure.
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Problem 22. Let H be a Hilbert space. The weak operator topology (WOT) on B(H) is the
topology induced by the separating family of seminorms T 7→ |〈Tη, ξ〉| for η, ξ ∈ H. The strong
operator topology (SOT) on B(H) is induced by the separating family of seminorms x 7→ ‖Tξ‖H
for ξ ∈ H.

(1) Prove that every WOT open set is SOT open. Equivalently, prove that if a net (Tλ)λ∈Λ ⊂
B(H) converges to T ∈ B(H) SOT, then Tλ → T WOT.

(2) Prove that the WOT is equal to the SOT on B(H) if and only if H is finite dimensional.
(3) Show that the following are equivalent for a linear functional ϕ on B(H):

(a) There are η1, . . . , ηn, ξ1, . . . , ξn ∈ H such that ϕ(T ) =
∑n

i=1〈Tηi, ξi〉.
(b) ϕ is WOT-continuous.
(c) ϕ is SOT-continuous.

Problem 23. Suppose M ⊂ B(H) is a unital ∗-subalgebra. A vector ξ ∈ H is called:

• cyclic for M if Mξ is dense in H.
• separating for M if for every x, y ∈M , xξ = yξ implies x = y.

(1) Prove that ξ is cyclic for M if and only if ξ is separating for M ′.
(2) Prove that H can be orthogonally decomposed into M -invariant subspaces H =

⊕
i∈I Ki,

such that each Ki is cyclic for M (has a cyclic vector). Prove that if H is separable, this
decomposition is countable.

(3) Prove that if M is abelian and H is separable, then there is a separating vector in H for
M .

Problem 24. Suppose H is a Hilbert space, and (xλ) is an increasing net of positive operators in
B(H) which is bounded above by the positive operator x ∈ B(H), i.e., λ ≤ µ implies xλ ≤ xµ, and
0 ≤ xλ ≤ x for all λ. Prove that the following are equivalent.

(1) xλ → x SOT.
(2) xλ → x WOT.
(3) For every ξ ∈ H, ωξ(xλ) = 〈xλξ, ξ〉 ↗ 〈xξ, ξ〉 = ωξ(x).
(4) There exists a dense subspace D ⊂ H such that for every ξ ∈ D, ωξ(xλ) = 〈xλξ, ξ〉 ↗
〈xξ, ξ〉 = ωξ(x).

We say an increasing net of positive operators (xλ) increases to x ∈ B(H)+, denoted xλ ↗ x, if
any of the above equivalent conditions hold.
Hint: Show it suffices to prove (3)⇒ (1) and (4)⇒ (3). Try proving these implications.

Problem 25. Let H be a Hilbert space and let T ∈ B(H). Prove that the following are equivalent.
(You may use any results from last semester that you’d like without proof.)

(1) T is compact and normal.
(2) T has an orthonormal basis of eigenvectors (ei)i∈I such that the corresponding eigenvalues

λi → 0, with at most countably many of the λi 6= 0.
(3) There is a countable orthonormal subset (ξn)n∈N ⊂ H and a sequence (λn) ⊂ C such that

λn → 0 and T =
∑

n∈N λn|ξn〉〈ξn|, which converges in operator norm.
(4) There is a sequence (λn) ⊂ C such that λn → 0 and a countable family of finite rank

projections En ⊂ B(H) such that T =
∑

n∈N λnEn, which converges in operator norm.
(5) There is a discrete set X equipped with counting measure ν, a function f ∈ c0(X), and a

unitary U ∈ B(`2X,H) such that T = UMfU
∗ where Mfξ = fξ for ξ ∈ `2X.

Note: U ∈ B(K,H) is unitary if UU∗ = idH and U∗U = idK .

Problem 26. Suppose A is a unital C*-algebra. A linear map Φ : A→ B(H) is called completely
positive if for every a = (ai,j) ≥ 0 in Mn(A), (Φ(ai,j)) ≥ 0 in Mn(B(H)) ∼= B(Hn). Such a map is
unital if Φ(1) = 1.
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(1) Show that 〈x⊗η, y⊗ξ〉 := 〈Φ(y∗x)η, ξ〉H on A⊗H linearly extends to a well-defined positive
sesquilinear form.

(2) Show that for V a vector space with positive sesquilinear formB( · , · ), NB = {v ∈ V |B(v, v) = 0}
is a subspace of V , and B descends to an inner product on V/NB.

(3) Define K to be completion of (A ⊗ H)/N〈 · , · 〉 in ‖ · ‖2. Find a unital ∗-homormophism
Ψ : A→ B(K), and an isometry v ∈ B(H,K) such that Φ(m) = v∗Ψ(m)v.

Problem 27. Suppose y ∈ B(H) is positive.

(1) Show that if y /∈ K(H), then there is a λ > 0 and a projection p with infinite dimensional
range such that y ≥ λp.

(2) Deduce that if x 7→ Tr(xy) is bounded on Lp(H) where 1 ≤ p <∞, then y ∈ K(H).

Problem 28. Suppose A ⊆ B(H) is a unital C*-subalgebra and ξ ∈ H is a cyclic vector for A.
Consider the vector state ωξ = 〈 · ξ, ξ〉. Prove there is a bijective correspondence between:

(1) positive linear functionals ϕ on A such that 0 ≤ ϕ ≤ ωξ (ωξ − ϕ ≥ 0), and
(2) operators 0 ≤ x ≤ 1 in A′.

Hint: For 0 ≤ x ≤ 1 in A′, define ϕx(a) := 〈axξ, ξ〉 for a ∈ A. (Why is 0 ≤ ϕx ≤ ωξ?) For the
reverse direction, use the bijective correspondence between sesquilinear forms and operators.

Problem 29.

(1) Prove that a unital ∗-subalgebra M ⊆ B(H) is a von Neumann algebra if and only if its
unit ball is σ-WOT compact.

(2) Let M ⊂ B(H) be a von Neumann algebra and Φ : M → B(K) a unital ∗-homomorphism.
Deduce that if Φ is σ-WOT continuous and injective, then Φ(M) is a von Neumann subal-
gebra of B(K).

Problem 30. Suppose X is a compact Hausdorff topological space and E : (X,M)→ B(H) is a
Borel spectral measure. Prove that the following conditions are equivalent.

(1) E is regular, i.e., for all ξ ∈ H, µξ,ξ(S) = 〈E(S)ξ, ξ〉 is a finite regular Borel measure.
(2) For all S ∈M, E(S) = sup {E(K)|K is compact and K ⊆ S}.
(3) For all S ∈M, E(S) = inf {E(U)|U is open and S ⊆ U}

Problem 31. Suppose x ∈ B(H) is normal. Show that χ{0}(x) = pker(x) and χsp(x)\{0} = pxH .

Problem 32. Let H be a separable Hilbert space and A ⊆ B(H) an abelian von Neumann algebra.
Prove that the following are equivalent.

(1) A is maximal abelian, i.e., A = A′.
(2) A has a cyclic vector ξ ∈ H.
(3) For every norm separable SOT-dense C*-subalgebra A0 ⊂ A, A0 has a cyclic vector.
(4) There is a norm separable SOT-dense C*-subalgebra A0 ⊂ A such that A0 has a cyclic

vector.
(5) There is a finite regular Borel measure µ on a compact Hausdorff second countable space

X and a unitary u ∈ B(L2(X,µ), H) such that f 7→ uMfu
∗ is an isometric ∗-isomorphism

L∞(X,µ)→ A.

Hints:
For (1)⇒ (2), use Problem 23.
For (3) ⇒ (4) it suffices to construct a norm separable SOT-dense C*-algebra. First show that
A∗ = L1(H)/A⊥ is a separable Banach space. Then show that A is σ-WOT separable, which
implies SOT-separable. Take A0 to be the unital C*-algebra generated by an SOT-dense sequence.

For (4)⇒ (5) show that A0 separable implies X = Â0 is second countable. Define µ = µξ,ξ on X,
and show that the map C(X)→ H by f 7→ Γ−1(f)ξ is a ‖ · ‖2 − ‖ · ‖H isometry with dense range.
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Problem 33. Suppose E : (X,M) → P (H) is a spectral measure with H separable, and let
A ⊂ B(H) be the unital C*-algebra which is the image of L∞(E) under

∫
· dE. Suppose there is a

cyclic unit vector ξ ∈ H for A.

(1) Show that ωξ(f) = 〈(
∫
fdE)ξ, ξ〉 is a faithful state on L∞(E) (ωξ(|f |2) = 0 =⇒ f = 0).

(2) Consider the finite non-negative measure µ = µξ,ξ on (X,M). Show that a measurable
function f on (X,M) is essentially bounded with respect to E if and only if f is essentially
bounded with respect to µ.

(3) Deduce that for essentially bounded measurable f on (X,M), ‖f‖E = ‖f‖L∞(X,M,µ).

(4) Construct a unitary u ∈ B(L2(X,M, µ), H) such that for all f ∈ L∞(E) = L∞(X,M, µ),
(
∫
fdE)u = uMf .

(5) Deduce that A ⊂ B(H) is a maximal abelian von Neumann algebra.

Problem 34. Suppose H is a separable infinite dimensional Hilbert space. Prove that K(H) ⊂
B(H) is the unique norm closed 2-sided proper ideal.

Problem 35. Classify all abelian von Neumann algebras A ⊂ B(H) when H is separable.
Hint: Use a maximality argument to show you can write 1 = p+ q with p, q ∈ P (A) such that q is
diffuse and p =

∑
pi (SOT) with all pi minimal. Then analyze Aq and Ap.

Problem 36. Suppose M ⊆ B(H) is a von Neumann algebra and p, q ∈ P (M). Define p∧q ∈ B(H)
to be the orthogonal projection onto pH ∩ qH. Prove that p ∧ q ∈M two separate ways:

(1) Show that pH ∩ qH is M ′-invariant, and deduce p ∧ q ∈M .
(2) Show that p ∧ q is the SOT-limit of (pq)n as n→∞.

Hint: You could proceed as follows, but a quicker proof would be much appreciated!
(a) Use (2) of Problem 6 to show (pq)np is a decreasing sequence of positive operators.
(b) Show (pq)np converges SOT to a positive operator x ∈M .
(c) Show that x2 = x, and deduce x ≤ p is an orthogonal projection.
(d) Show that xqp = x, and deduce xqx = x.
(e) Show that x ≤ q, and deduce x ≤ p ∧ q.
(f) Show that (p ∧ q)(pq)n converges SOT to both p ∧ q and x, and deduce x = p ∧ q.
(g) Finally, show (pq)n converges SOT to xq = p ∧ q.

Define p ∨ q as the projection onto pH + qH. Show that p ∨ q ∈M in two separate ways:

(1) Prove that pH + qH is M ′-invariant, and deduce p ∨ q ∈M .
(2) Show that p ∨ q = 1− (1− p) ∧ (1− q) and use that p ∧ q ∈M .

Problem 37. Suppose N ⊆ M ⊂ B(H) is a unital inclusion of von Neumann algebra and p ∈
P (N).

(1) Prove that (N ′p) ∩ pMp = (N ′ ∩M)p.
(2) Deduce that if p ∈ P (M), Z(pMp) = Z(M)p.
(3) Deduce that if p ∈ P (M) and M is a factor, then pMp is a factor.
(4) Prove that when M is a factor and p ∈ P (M), the map M ′ → M ′p by x 7→ xp is a unital
∗-algebra isomorphism.

Problem 38. Prove that the following conditions are equivalent for a von Neumann algebra M ⊆
B(H):

(1) Every non-zero q ∈ P (M) majorizes an abelian projection p ∈ P (M).
(2) M is type I (every non-zero z ∈ P (Z(M)) majorizes an abelian p ∈ P (M)).
(3) There is an abelian projection p ∈ P (M) whose central support z(p) =

∨
u∈U(M) u

∗pu ∈
Z(M) is 1M .
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Hints:
For (2)⇒ (3), if p ∈ P (M) is abelian with z(p) 6= 1, then there is an abelian projection q ∈ P (M)
such that z(q) ≤ 1− z(p). Show that pMq = 0 and p+ q is an abelian projection. Now use Zorn’s
Lemma.
For (3)⇒ (1), suppose p ∈ P (M) is abelian with z(p) = 1 and q ∈ P (M) is non-zero. Show there
is a non-zero partial isometry u ∈ M such that uu∗ ≤ p and u∗u ≤ q. Deduce that uu∗ is abelian,
and then prove u∗u is abelian.

Problem 39. Show that for every von Neumann algebra M , there are unique central projections
zI, zII1 , zII∞ , and zIII (some of which may be zero) such that

• MzI is type I, MzII1 is type II1, MzII∞ is type II∞, and MzIII is type III, and
• zI + zII1 + zII∞ + zIII = 1

Hint: You could proceed as follows:

(1) First, show that if M has an abelian projection p, then z(p) is type I. Then use a maximality
argument to construct zI. For this, you could adapt the hint for (2)⇒ (3) in Problem 38.

(2) Replacing M,H with M(1 − zI), (1 − zI)H, we may assume M has no abelian projections.
Show that if M has a finite central projection z, then Mz is type II1. Now use a maxi-
mality argument to construct zII1. This hinges on proving the sum of two orthogonal finite
central projections is finite. (Proving this is much easier than proving the sup of two finite
projections is finite!)

(3) By compression, we may now assume that M has no abelian projections and no finite central
projections. Show that if M has a nonzero finite projection p, then its central support z(p)
satisfies Mz(p) is type II∞. Use a maximality argument to construct zII∞.

(4) Compressing one more time, we may assume M has no finite projections, and thus M is
purely infinite and type III.

Problem 40. Let M ⊆ B(H) be a finite dimensional von Neumann algebra.

(1) Prove M has a minimal projection.
(2) Deduce that Z(M) has a minimal projection.
(3) Prove that for any minimal projection p ∈ Z(M), Mp is a type I factor.
(4) Prove that M is a direct sum of matrix algebras.

Problem 41. Suppose H is infinite dimensional. Prove that B(H) does not admit a σ-WOT
continuous tracial state.
Optional: Instead, prove that B(H) does not admit a non-zero tracial linear functional.

Problem 42. Suppose M ⊆ B(H) and N ⊆ B(K) are von Neumann algebras, and let H⊗K be
the tensor product of Hilbert spaces as in Problem 20.

(1) Show that for every m ∈ M and n ∈ N , the formula (m ⊗ n)(η ⊗ ξ) := mη ⊗ nξ gives a
unique well-defined operator m⊗ n ∈ B(H⊗K).

(2) Let M⊗N = {m⊗ n|m ∈M,n ∈ N}′′ ⊂ B(H⊗K). Show that the linear extension of the
map from the algebraic tensor product M ⊗ N to M⊗N given by m ⊗ n 7→ m ⊗ n is a
well-defined injective unital ∗-algebra map onto an SOT-dense unital ∗-subalgebra.

Hint for injectivity: Suppose x =
∑k

i=1mi ⊗ ni is not zero in M ⊗ N . Reduce to the
case {n1, . . . , nk} is linearly independent and all mi 6= 0. Show that for each i = 1, . . . , k,

there exists a ki > 0 and {ηij , ξij}
ki
j=1 such that

∑ki
j=1〈ni′ηij , ξij〉 = δi=i′. (Sub-hint: Consider

F = spanC{n1, . . . , nk} ⊂ N , a closed normed space, and look at Φ : H × H → F ∗ by
(η, ξ) 7→ 〈 · η, ξ〉. Show that spanC(Φ(H)) = F ∗.) Now pick κ, ζ ∈ H such that 〈m1κ, ζ〉 6= 0,

and deduce
∑k1

j=1〈x(κ⊗ η1
j ), ζ ⊗ ξ1

j 〉H⊗K 6= 0.
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(3) We denote by B(H)⊗ 1 the image of B(H) under the map x 7→ x⊗ 1 ∈ B(H⊗K). Prove
that B(H)⊗ 1 is a von Neumann algebra.
Hint: Show that (B(H)⊗ 1)′ = 1⊗B(K). Then by symmetry, (1⊗B(K))′ = B(H)⊗ 1 is
a von Neumann algebra.

(4) Prove that B(H⊗K) = B(H)⊗B(K).
Hint: Calculate the commutant of the image of the algebraic tensor product (B(H) ⊗
B(K))′ = C1 and use (2).

Problem 43. Let S∞ be the group of finite permutations of N.

(1) Show that S∞ is ICC. Deduce that LS∞ is a II1 factor.
(2) Give an explicit description of a projection with trace k−n for arbitrary n, k ∈ N.

Hint: Find such a projection in CS∞ ⊂ LS∞.
(3) Find an increasing sequence Fn ⊂ LS∞ of finite dimensional von Neumann subalgebras

such that LS∞ = (
⋃∞
n=1 Fn)′′.

Note: A II1 factor which is generated by an increasing sequence of finite dimensional von Neumann
subalgebras as in (3) above is called hyperfinite.

Problem 44. Let M be a von Neuman algebra. Suppose a, b ∈M with 0 ≤ a ≤ b. Prove there is
a c ∈ M such that a = c∗bc. Deduce that a 2-sided ideal in a von Neumann algebra is hereditary :
0 ≤ a ≤ b ∈M implies a ∈M .

Problem 45. Let M be a factor. Prove that if M is finite or purely infinite, then M is algebraically
simple, i.e., M has no 2-sided ideals.
Note: You may use that a II1 factor has a (faithful σ-WOT continuous) tracial state.

Problem 46. A positive linear functional ϕ ∈M∗ is called completely additive if for any family of
pairwise orthogonal projections (pi), ϕ(

∑
pi) =

∑
ϕ(pi). (Here,

∑
pi converges SOT.)

Suppose ϕ,ψ ∈ M∗ are completely additive and p ∈ P (M) such that ϕ(p) < ψ(p). Then there
is a non-zero projection q ≤ p such that ϕ(qxq) < ψ(qxq) for all x ∈M+ such that qxq 6= 0.
Hint: Choose a maximal family of mutually orthogonal projections ei ≤ p for which ψ(ei) ≤ ϕ(ei).
Consider e =

∨
ei, and show that ψ(e) ≤ ϕ(e). Set q = p − e, and show that for all projections

r ≤ q, ϕ(r) < ψ(r). Then show ϕ(qxq) < ψ(qxq) for all x ∈M+ such that qxq 6= 0.

Problem 47. Show that the following conditions are equivalent for a positive linear functional
ϕ ∈M∗ for a von Neumann algebra M :

(1) ϕ is σ-WOT continuous,
(2) ϕ is normal : xλ ↗ x implies ϕ(xλ)↗ ϕ(x), and
(3) ϕ is completely additive: for any family of pairwise orthogonal projections (pi), ϕ(

∑
pi) =∑

ϕ(pi). (Here,
∑
pi converges SOT.)

Hint: For (3)⇒ (1), show if p ∈ P (M) is non-zero, then pick ξ ∈ H such that ϕ(p) < 〈pξ, ξ〉. Use
Problem 46 to find a non-zero q ≤ p such that ϕ(qxq) < 〈xqξ, qξ〉 for all x ∈M . Use the Cauchy-
Schwarz inequality to show x 7→ ϕ(xq) is SOT-continuous, and thus σ-WOT continuous. Now use
Zorn’s Lemma to consider a maximal family of mutually orthogonal projections (qi)i∈I for which
x 7→ ϕ(xqi) is σ-WOT continuous. Show

∑
qi = 1. For finite F ⊆ I, define ϕF (x) =

∑
i∈F ϕ(xqi).

Ordering finite subsets by inclusion, we get a net (ϕF ) ⊂M∗. Show that ϕF → ϕ in norm in M∗.
Deduce that ϕ ∈M∗ since M∗ ⊂M∗ is norm-closed.

Problem 48. Let Φ : M → N be a unital ∗-homomorphism between von Neumann algebras.

(1) Prove that the following two conditions are equivalent:
(a) Φ is normal : xλ ↗ x implies Φ(xλ)↗ Φ(x).
(b) Φ is σ-WOT continuous.
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(2) Prove that if Φ is normal, then Φ(M) ⊂ N is a von Neumann subalgebra.
Hint: ker(Φ) ⊂M is a σ-WOT closed 2-sided ideal.

(3) Let ϕ be a normal state on a a von Neumann algebra M , and let (Hϕ,Ωϕ, πϕ) be the cyclic
GNS representation of M associated to ϕ, i.e., Hϕ = L2(M,ϕ), Ωϕ ∈ Hϕ is the image of
1 ∈M in Hϕ, and πϕ(x)mΩϕ = xmΩϕ for all x,m ∈M .
(a) Show that πϕ is normal.
(b) Deduce that if ϕ is faithful, then M ∼= πϕ(M) ⊂ B(Hϕ) is a von Neumann algebra

acting on Hϕ.

Problem 49. Suppose Φ : M → N is a unital ∗-algebra homomorphism between von Neumann
algebras.

(1) Prove that the following conditions imply Φ is normal:
(a) Φ is SOT-continuous on the unit ball of M .
(b) Φ is WOT-continuous on the unit ball of M .
(c) Suppose N = N ′′ ⊆ B(H). For a dense subspace D ⊆ H, m 7→ 〈Φ(m)η, ξ〉 is WOT-

continuous on M for any η, ξ ∈ D.
(2) (optional) Which of the conditions above are equivalent to normality of Φ?

Problem 50. Let M be a finite von Neumann algebra with a faithful σ-WOT continuous tracial
state. Let L2M = L2(M, tr) where Ω is the image of 1M in L2M . Identify M with its image in
B(L2M) by part (3) of Problem 48.

(1) Show that J : MΩ→MΩ by aΩ 7→ a∗Ω is a conjugate-linear isometry with dense range.
(2) Deduce J has a unique extension to L2M , still denoted J , which is a conjugate-linear

unitary, i.e, J2 = 1 and 〈Jη, Jξ〉 = 〈ξ, η〉 for all η, ξ ∈ L2M .
Hint: Look at η, ξ in MΩ.

(3) Calculate Ja∗JbΩ for a, b ∈M . Deduce that JMJ ⊆M ′.
(4) Show 〈Ja∗JbΩ, cΩ〉 = 〈bΩ, JaJcΩ〉 for all a, b, c ∈M . Deduce (JaJ)∗ = Ja∗J .
(5) Show 〈JyΩ, aΩ〉 = 〈y∗Ω, aΩ〉 for all a ∈M and y ∈M ′. Deduce JyΩ = y∗Ω.
(6) Prove that for y ∈M ′, (JyJ)∗ = Jy∗J .

Hint: Try the same technique as in (4).
(7) Show for all a, b ∈M and x, y ∈M ′, 〈xJyJaΩ, bΩ〉 = 〈JyJxaΩ, bΩ〉.
(8) Deduce that M ′ ⊆ (JM ′J)′ = JMJ , and thus M ′ = JMJ .

Problem 51. Let Γ be a discrete group, and let LΓ = {λg}′′ ⊂ B(`2Γ). Consider the faithful
σ-WOT continuous tracial state tr(x) = 〈xδe, δe〉 on LΓ.

(1) Show that uδg = λg uniquely extends to a unitary u ∈ B(`2Γ, L2LΓ) such that for all
x ∈ LΓ and ξ ∈ `2Γ, Lxuξ = uxξ where Lx ∈ B(L2LΓ) is left multiplication by x, i.e.,
Lx(yΩ) = xyΩ.

(2) Deduce from Problem 50 that LΓ′ = RΓ.

Problem 52. Use Problem 51 above to give the following alternative characterization of LΓ. Let

`Γ =
{
x = (xg) ∈ `2Γ

∣∣x ∗ y ∈ `2Γ for all y ∈ `2Γ
}

where (x ∗ y)g =
∑

h xhyh−1g. Define a unital ∗-algebra structure on `Γ by multiplication is
convolution, the unit is δe, the the indicator function at e ∈ Γ (δe(g) = δg=e), and the involution ∗
on `Γ is given on x ∈ `Γ by (x∗)g := xg−1 .

(1) Show that `Γ is a well-defined unital ∗-algebra under the above operations.
(2) For x ∈ `Γ define Tx : `2Γ→ `2Γ by Txy = x ∗ y. Prove Tx ∈ B(`2Γ).

Hint: Show that for all x ∈ `Γ and y, z ∈ `2Γ, 〈Txy, z〉 = 〈y, Tx∗z〉. Then use the Closed
Graph Theorem.
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(3) Prove that for all x ∈ `Γ, Tx ∈ LΓ.
Hint: Prove Tx ∈ RΓ′ and apply Problem 51.

(4) Deduce that x 7→ Tx is a unital ∗-algebra isomorphism `Γ→ LΓ.

Problem 53 (V. Jones). Suppose M = M2(C) and ϕ is a state. Then ϕ(x) = tr(xρ) for a unique
density matrix ρ ≥ 0 with tr(ρ) = 1. Choosing a basis of eigenvectors for ρ, we may identify

ρ =

( 1
1+λ

λ
1+λ

)
for some 0 ≤ λ ≤ 1. Observe that ϕ is faithful if and only if 0 < λ < 1 if and only if ρ is invertible.

(1) Describe as best you can L2(M,φ) in terms of λ.
(2) Show that the action of M on L2(M,φ) is faithful.
(3) From this point on, assume 0 < λ < 1. Consider S : L2(M,ϕ) → L2(M,ϕ) by xΩ 7→ x∗Ω.

Compute the polar decomposition S = J∆1/2 where ∆ = S∗S.
(4) Show that M ′ = JMJ = SMS on L2(M,ϕ).
(5) Show that for all z ∈ C, ∆zM∆−z = M .
(6) Deduce that we have a 1-parameter group of unitaries t 7→ σt := ∆it for t ∈ R which

preserve M .

Problem 54. Repeat Problem 52 for the crossed product von Neumann algebra M oα Γ acting on
L2M ⊗ `2Γ ∼= L2(Γ, L2M) where M is a finite von Neumann algebra with faithful normal tracial
state tr, Γ is a discrete group, and α : Γ→ Aut(M) is an action. Here, we define

`2(Γ,M) =

{
x : Γ→M

∣∣∣∣∣∑
g

‖xgΩ‖2L2M <∞

}

`2(Γ, L2M) =

{
ξ : Γ→ L2M

∣∣∣∣∣∑
g

‖ξg‖2 <∞

}
and

M ∝α Γ =
{
x = (xg) ∈ `2(Γ,M)

∣∣x ∗ ξ ∈ `2(Γ, L2M) for all ξ ∈ `2(Γ, L2M)
}
.

Here, the convolution action is given by (x∗ξ)g =
∑

h xhvhξh−1g where vh ∈ U(L2M) is the unitary
implementing αu ∈ Aut(M). Define an analogous unital ∗-algebra structure on MΓ and find a
unital ∗-algebra isomorphism M ∝α Γ→M oα Γ.
Hint: Similar to LΓ, some people write elements of MoαΓ as formal sums

∑
g xgug which does not

converge in any operator topology. Rather,
∑

g xgug(Ω⊗δe) converges in L2M ⊗ `2Γ. These formal
sums can be algebraically manipulated to obtain a unital ∗-algebra structure using the covariance
condition ugmu

∗
g = αg(m) for all g ∈ Γ and m ∈M . Thus(∑

g

xgug

)∗
=
∑
g

ugx
∗
g =

∑
g

ugx
∗
gu
∗
gug =

∑
g

αg(x
∗
g)ug.

Thus for x = (xg) ∈M ∝α Γ, we define (x∗)g = αg(x
∗
g). A similar algebraic manipulation gives the

formula for multiplication, which is similar to convolution, but involves the action.

Problem 55. Prove that a ∗-isomorphism between von Neumann algebras is automatically normal.

Problem 56. Suppose (X,µ) is a measure space and T : X → X is a measurable bijection
preserving the measure class of µ. Let αT ∈ Aut(L∞(X,µ)) by (αT f)(x) = f(T−1x). Is it always
the case that the condition µ({x ∈ X|Tx = x}) = 0 is equivalent to the automorphism αT being
free? If yes, give a proof, and if not, find a counterexample together with a mild condition under
which it is true.
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Problem 57. Let F2 = 〈a, b〉 be the free group on 2 generators.

(1) Show that F2 is ICC. Deduce LF2 is a II1 factor.
(2) Show that the swap a↔ b extends to an automorphism σ of LF2.
(3) Show that σ is outer.

Problem 58.

(1) (Fell’s Absorption Principle) Suppose Γ is a countable group and (H,π) is a unitary repre-
sentation on a separable Hilbert space. Find a unitary u ∈ B(`2Γ⊗H) intertwining λ ⊗ π
and λ⊗ 1, i.e., u(λg ⊗ πg) = (λg ⊗ 1)u for all g ∈ Γ.

(2) Consider the two definitions of M oα Γ when (M, tr) is a tracial von Neumann algebra and
tr ◦αg = tr for all g ∈ Γ. The first is the von Neumann algebra generated by the πm and
ug on `2(Γ, L2M) where

(ugξ)(h) := ξ(g−1h) (πmξ)(h) = αh−1(m)ξ(h).

The second is the von Neumann algebra generated by the πm and ug on L2M ⊗ `2Γ given
by

πm(xΩ⊗ δh) = mxΩ⊗ δh ug(xΩ⊗ δh) = αg(x)Ω⊗ δgh.
Find a unitary isomorphism `2(Γ, L2M)→ L2M ⊗ `2Γ intertwining the two M -actions and
Γ-actions. Deduce the two definitions of M oα Γ are equivalent.

Problem 59. Prove that irrational rotation on the circle (with Lebesgue/Haar measure) is free
and ergodic.

Problem 60. Let M be a finite von Neumann algebra with a faithful normal tracial state.

(1) Show for all x, y ∈M , | tr(xy)| ≤ ‖y‖ tr(|x|).
(2) Show for all x ∈M , tr(|x|) = sup {| tr(xy)||y ∈M with ‖y‖ = 1}.
(3) Define ‖x‖1 = tr(|x|) on M . Show that ‖ · ‖1 is a norm on M .
(4) Define a map ϕ : M →M∗ by x 7→ ϕx where ϕx(y) = tr(xy). Show that ϕ is a well-defined

isometry from (M, ‖ · ‖1)→M∗ with dense range.

(5) Deduce that L1(M, tr) := M
‖·‖1 is isometrically isomorphic to the predual M∗.

Problem 61. Continue the notation of Problem 60. Let N ⊆ M be a (unital) von Neumann
subalgebra.

(1) Prove that the inclusionN →M extends to an isometric inclusion i : L1(N, tr)→ L1(M, tr).
(2) Let E : M → N be the Banach adjoint of i under the identification M∗ = L1(M, tr) and

N∗ = L1(N, tr). Show that E is uniquely characterized by the equation

trM (xy) = trN (E(x)y) x ∈M,y ∈ N.
Note: E is called the canonical trace-preserving conditional expectation M → N .

Problem 62. Suppose M is a finite von Neumann algebra with normal faithful tracial state tr and
N ⊆M is a (unital) von Neumann subalgebra.

(1) Prove that the inclusion N →M extends to an isometric inclusion L2(N, tr)→ L2(M, tr).

(2) Define eN ∈ B(L2M,L2N) be the orthogonal projection with range L2(N, tr) = NΩ
‖·‖2 ⊂

L2(M, tr). Show that for all x ∈ M , eNxe
∗
N ⊂ B(L2N) commutes with the right action of

N , and thus defines an element in N by Problem 50.
Hint: Show the inclusion e∗N : L2N → L2M commutes with the right N action, and deduce
eN commutes with the right N action.

(3) For x ∈M , define E(x) = eNxe
∗
N . Show that E(x) is uniquely characterized by the equation

trM (xy) = trN (E(x)y) x ∈M,y ∈ N.
12



Note: E is called the canonical trace-preserving conditional expectation M → N . Part (3) implies
this definition agrees with that from Problem 61.

Problem 63. Continue the notation of Problem 62.

(1) Deduce that E is normal.
(2) Deduce E(1) = 1 and E isN−N bilinear, i.e., for all x ∈M and y, z ∈ N , E(yxz) = yE(x)z.
(3) Deduce that E(x∗) = E(x)∗.
(4) Show that E is completely positive, which was defined in Problem 26.

Hint: Use the characterization E(x) = eNxe
∗
N from (5) of Problem 62.

(5) Show that E(x)∗E(x) ≤ E(x∗x) for all x ∈M .
Hint: Use the characterization E(x) = eNxe

∗
N from (5) of Problem 62. Show that e∗NeN is

an orthogonal projection.
(6) Show that E is faithful: E(x∗x) = 0 implies x∗x = 0.

Hint: Prove this by looking at the vector states ωnΩ for n ∈ N .

Problem 64. Suppose M is a finite von Neumann algebra with faithful normal tracial state tr.
Suppose further that there is an increasing sequence of von Neumann subalgebras M1 ⊂M2 ⊂ · · ·M
such that (

⋃
Mn)′′ = M (considered as acting on L2M). Let En : M →Mn be the canonical trace-

preserving conditional expectation from Problem 62.

(1) Prove that the ‖ · ‖2-topology agrees with the SOT on the unit ball of M . That is, prove
that xn → x SOT if and only if ‖xnΩ− xΩ‖2 → 0.

(2) Prove that for all x ∈M , ‖En(x)Ω− xΩ‖2 → 0 as n→∞.
(3) Deduce that En(x)→ x SOT as n→∞.

Problem 65. Suppose Γ is a countable group, and let Prob(Γ) =
{
µ ∈ `1Γ

∣∣∣µ ≥ 0 and
∑

g µ(g) = 1
}

.

(1) Prove that Prob(Γ) is weak* dense in the state space of `∞Γ.
(2) Let F ⊂ Γ be finite, and consider

⊕
g∈F `

1Γ with the (product) weak topology. Let K be

the weak closure of
{⊕

g∈F g · µ− µ
∣∣∣µ ∈ Prob(Γ)

}
⊂
⊕

g∈F `
1Γ. Prove K is convex and

norm closed in
⊕

g∈F `
1Γ.

(3) Now assume Γ is amenable, i.e., there is a left Γ-invariant state on `∞Γ. Prove that 0 ∈ K.
Deduce that Γ has an approximately invariant mean.

Problem 66. Suppose Γ is a countable group, and let Prob(Γ) be as in Problem 65.

(1) Prove that if a, b ∈ [0, 1], then

|a− b| =
∫ 1

0
|χ(r,1](a)− χ(r,1](b)| dr.

(2) Deduce that for µ ∈ Prob(Γ) and h ∈ Γ,

‖h · µ− µ‖`1Γ =

∫ 1

0

∑
g∈Γ

|χ(r,1](µ(h−1g))− χ(r,1](µ(g))| dr.

(3) For r ∈ [0, 1] and µ ∈ Prob(Γ), let E(µ, r) = {g ∈ Γ|µ(g) > r}. Show that for all h ∈ Γ,
hE(µ, r) = {g ∈ Γ|(h · µ)(g) > r}.

(4) Calculate
∫ 1

0 |E(µ, r)| dr.
(5) Show that for r ∈ [0, 1], µ ∈ Prob(Γ), and h ∈ Γ,

|hE(µ, r)4E(µ, r)| =
∑
g∈Γ

|χ(r,1](µ(h−1g))− χ(r,1](µ(g))|.

Deduce that ‖h · µ− µ‖1 =
∫ 1

0 |hE(µ, r)4E(µ, r)| dr.
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(6) Suppose now that Γ has an approximate invariant mean, so that for every finite subset
F ⊂ Γ and ε > 0, there is a µ ∈ Prob(Γ) such that∑

h∈F
‖h · µ− µ‖1 < ε.

Show that for the µ corresponding to this F and ε,∫ 1

0

∑
h∈F
|hE(µ, r)4E(µ, r)| dr < ε

∫ 1

0
|E(µ, r)| dr.

Deduce there is an r ∈ [0, 1] such that |hE(µ, r)4E(µ, r)| < ε|E(µ, r)| for all h ∈ F .
(7) Use (6) above to construct a Følner sequence for Γ.

Problem 67. Recall that an ultrafilter ω on a set X is a nonempty collection of subsets of X such
that:

• ∅ /∈ ω,
• If A ⊆ B ⊆ X and A ∈ ω, then B ∈ ω,
• If A,B ∈ ω, then A ∩B ∈ ω, and
• For all A ⊂ X, either A ∈ ω or X \A ∈ ω (but not both!).

(1) Find a bijection from the set of ultrafilters on N to βN, the Stone-Cech compactification of
N.

(2) Let ω be an ultrafilter on N. Let X be a compact Hausdorff space and f : N→ X. We say
• x = limn→ω f(n) if for every open neighborhood U of x, f−1(U) ∈ ω.

Prove that limn→ω f(n) always exists for any function f : N→ X.
(3) An ultrafilter on N is called principal if it contains a finite set. Show that every principal

ultrafilter on N contains a unique singleton set, and that any two principal ultrafilters
containing the same singleton set are necessarily equal. Thus we may identify the set of
principal ultrafilters on N with N ⊂ βN.

(4) Determine limn→ω f(n) for f : N→ X as in (2) when ω is principal.
(5) An ultrafilter on N is called free or non-principal if it does not contain a finite set. Let ω

be a free ultrafilter on N. Suppose Γ =
⋃

Γn is a locally finite group and mn is the uniform
probability (Haar) measure on Γn. Define m : 2Γ → [0, 1] by m(A) = limn→ωmn(A ∩ Γn).
Prove that m is a left Γ-invariant finitely additive probability measure on Γ, i.e., Γ is
amenable.

Problem 68. Let X be a uniformly convex Banach space and B ⊂ X a bounded set. Prove that
the function f : X → [0,∞) given by f(x) = supb∈B ‖b − x‖X achieves its minimum at a unique
point of X.

Problem 69. Let Γ be a countable discrete group. Show that an affine action α = (π, β) : Γ →
Aff(H) (αgξ := πgξ + β(g) for πg ∈ U(H) and β(g) ∈ H such that αg ◦ αh = αgh for all g, h ∈ Γ)
is proper if and only if the cocycle part β : Γ→ H is proper (g 7→ ‖β(g)‖ is a proper map).

Problem 70. Recall that the Schur product of two matrices a, b ∈Mn(C) is given by the entry-wise
product: (a ∗ b)i,j := ai,jbi,j .

(1) Prove that if a, b ≥ 0, then a ∗ b ≥ 0.
(2) Suppose that p ∈ R[z] is a polynomial whose coefficients are all non-negative. Prove that if

a ≥ 0, then p[a] ≥ 0, where p[a]i,j := p(ai,j) for a ∈Mn(C).
Note: Here we use the notation p[a] to not overload the functional calculus notation.

(3) Suppose that f is an entire function whose Taylor expansion at 0 has only non-negative real
coefficients. Prove that is a ≥ 0, then f [a] ≥ 0, where again f [a]i,j := f(ai,j) for a ∈Mn(C).
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Problem 71. Let A be a unital C*-algebra.

(1) Prove that a map Φ : A→Mn(C) is completely positive if and only if the map ϕ : Mn(A)→
C given by (ai,j) 7→

∑n
i,j Φ(ai,j)i,j is positive.

Hint: for one direction, note that ϕ(a) = ~e∗Φ(a)~e where ~e ∈ Cn2
is the vector (e1, e2, . . . , en)

where ei ∈ Cn is the i-th standard basis vector. For the other direction, use GNS with respect
to ϕ, and consider V : Cn → L2(Mn(A), ϕ) given by V ei = πϕ(Eij)Ωϕ where (Eij) is a
system of matrix units in Mn(C) ⊆Mn(A). Then use Stinespring.

(2) Let S ⊂ A be an operator subsystem, and let ψ : S → C be a positive linear functional.
Prove ‖ψ‖ = ψ(1). Deduce that any norm-preserving (Hahn-Banach) extension of ψ to A
is also positive.

(3) Let S ⊂ A be an operator subsystem, and let Φ : S → Mn(C) be a (unital) completely
positive map. Show that Φ extends to a (unital) completely positive map A→Mn(C).

Problem 72. Suppose Γ is a countable discrete group, and suppose ϕ : LΓ → LΓ is a normal
completely positive map. Prove that f : Γ→ C given by f(g) := trLΓ(ϕ(λg)λ

∗
g) is a positive definite

function.

Problem 73. Prove that the following are equivalent for a finite von Neumann algebra (M, tr) ⊂
B(H) with faithful normalized tracial state.

(1) M is amenable, i.e., there is a conditional expectation E : B(H)→M .
(2) There is a sequence (ϕn : M → M) of (normal) trace-preserving completely positive maps

such that ϕn → id pointwise in ‖ · ‖M , and for all n ∈ N, the induced map ϕ̂n ∈ B(L2M)
given by mΩ 7→ ϕn(m)Ω is finite rank.

Problem 74. Suppose that Γ is a countable discrete group such that every cocycle is inner.
Suppose (H,π) is a unitary representation and (ξn) ⊂ H is a sequence of unit vectors such that
‖πgξn − ξn‖ → 0 as n → ∞ for all g ∈ Γ. Follow the steps below to find a non-zero Γ-invariant
vector in H. (We may assume that no ξn is fixed by Γ.)

(1) Enumerate Γ = {g1, g2, . . . }. Explain why you can pass to a subsequence of (ξn) to assume
that for all n ∈ N, ‖πgiξn − ξn‖ < 4−n for all 1 ≤ i ≤ n.

(2) For n ∈ N, consider the inner cocycles βn(g) := ξn − πgξn. Let (K,σ) =
⊕

n∈N(H,π).
Define β : Γ → K by β(g)n := 2nβn(g). Prove that β(g) ∈ H is well-defined for every
g ∈ Γ. Then show that β is a cocycle for (K,σ).

(3) Deduce β is inner and thus bounded. Thus there is a κ ∈ K \ {0} such that β(g) = κ−σgκ
for all g ∈ Γ.

(4) Prove that ‖βn(g)‖ → 0 uniformly for g ∈ Γ. That is, show that for all ε > 0, there is an
N ∈ N such that n > N implies ‖βn(g)‖ < ε for all g ∈ Γ.

(5) Fix N ∈ N such that ‖βN (g)‖ = ‖ξN −πgξN‖ < 1 for all g ∈ Γ. Show there is a ξ0 ∈ H \{0}
such that πgξ0 = ξ0 for all g ∈ Γ.
Hint: Look at {πgξN |g ∈ Γ} ⊂ (H)1 and apply Problem 68.

(6) (optional) Use a similar trick to finish the proof of (1)⇒ (2) from the same theorem from
class.

Problem 75 (optional). As best as you can, edit the equivalent definitions I gave in class for
property (T) for a countable discrete group Γ to be relative to a subgroup Λ ≤ Γ. Then prove all
the equivalences.

Problem 76. Suppose Γ y (X,µ) is a free p.m.p. action and R = {(x, gx)|x ∈ X, g ∈ Γ} is the
corresponding countable p.m.p. equivalence relation. Follow the steps below to show L∞(X,µ)oΓ ∼=
LR.
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(1) Prove that θ : (x, g) 7→ (x, g−1x) induces a unitary operator v ∈ B(L2R, L2(X × Γ, µ× γ))
where γ is counting measure on Γ.

(2) Deduce that θ is a p.m.p. isomorphism (X × Γ, µ× γ)→ (R, ν).
(3) Show that v∗Mfv = λ(f) for all f ∈ L∞(X,µ). Here, (Mfξ)(x, g) = f(x)ξ(x, g) for

ξ ∈ L2(X × Γ, µ× γ).
(4) Show that v∗ugv = Lϕg where ϕg ∈ [R] is the isomorphism x 7→ g · x. Here, (ugξ)(x, h) =

ξ(g−1x, g−1h) for all ξ ∈ L2(X × Γ, µ× γ) ∼= L2(X,µ)⊗ `2Γ.
(5) Deduce that v∗(L∞(X,µ)o Γ)v ⊂ LR.
(6) Show that conjugation by v takes the commutant of L∞(X,µ)o Γ into RR.

Hint: Show that right multiplication by L∞(X,µ) and the right action of ug are both taken
into RR.

(7) Deduce that v∗(L∞(X,µ)o Γ)v = LR.

Problem 77. Let R be a countable p.m.p. equivalence relation on (X,µ). Let A = L∞(X,µ) ⊂
LR. Prove that the von Neumann subalgebra of B(L2(R, ν)) generated by A ∪ JAJ is the von
Neumann algebra of multiplication operators by elements of L∞(R, ν).

Problem 78. Let M be a von Neumann algebra. A weight on M is a function ϕ : M+ → [0,∞]
such that for all r ∈ [0,∞) and x, y ∈ B(H)+, ϕ(rx+ y) = rϕ(x) + ϕ(y), with the convention that
for s ∈ [0,∞),

∞ · s =

{
∞ if s > 0

0 if s = 0.

Define

pϕ = {x ∈M |ϕ(x) <∞}
nϕ = {x ∈M |x∗x ∈ pϕ}

mϕ = n∗ϕnϕ =

{
n∑
i=1

x∗i yi

∣∣∣∣∣xi, yi ∈ nϕ for all i = 1, . . . , n

}
.

(1) Prove that
(a) pϕ is a hereditary subcone of M+, i.e.,

• (subcone) r ≥ 0 and x, y ∈ pϕ implies rx+ y ∈ pϕ
• (hereditary) 0 ≤ x ≤ y and y ∈ pϕ implies x ∈ pϕ.

(b) nϕ is a left ideal of M .
Hint: Prove that for all x, y ∈M , (x± y)∗(x± y) ≤ 2(x∗x+ y∗y).

(c) mϕ is algebraically spanned by pϕ.
Hint: Use polarization.

(d) mϕ ∩M+ = pϕ.
(e) mϕ is a hereditary ∗-subalgebra of M (hereditary is defined the same way as above).

(2) When M = B(H) and ϕ = Tr, show mTr = L1(H) and nTr = L2(H).
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