Problem 1. Suppose A is a unital Banach algebra and fix $a, b \in A$.

- (1) Show that $1 \notin \operatorname{sp}_A(ab)$ if and only if $1 \notin \operatorname{sp}_A(ba)$ using the identity $(1 ba)^{-1} = 1 + b(1 ab)^{-1}a$. Deduce that $\operatorname{sp}_A(ab) \cup \{0\} = \operatorname{sp}_A(ba) \cup \{0\}$.
- (2) Show that for any Banach subalgebra $B \subseteq A$ with $1_A \in B$, for every $a \in B$, the spectral radius in B of a is equal to the spectral radius in A of a, i.e., $r_B(a) = r_A(a)$.
- (3) Suppose a, b ∈ A commute. Prove that r(ab) ≤ r(a)r(b) and r(a + b) ≤ r(a) + r(b).
 Hint: By (2), this computation can be performed in the unital commutative Banach subalgebra B ⊆ A generated by a and b. In B, there is a helpful characterization of the spectrum.
- (4) Deduce from part (3) that if A is commutative, the spectral radius $r : A \to [0, \infty)$ is continuous.

Problem 2. Let A be a unital Banach algebra. Suppose we have a norm convergent sequence $(a_n) \subset A$ with $a_n \to a$. Prove that for every open neighborhood U of sp(a), there is an N > 0 such that $sp(a_n) \subset U$ for all n > N.

Problem 3. Let $A \in M_n(\mathbb{C})$.

- (1) As best as you can, describe f(A) where $f \in \mathcal{O}(\operatorname{sp}(A))$. Hint: First consider the case that A is a single Jordan block.
- (2) Determine as best you can which matrices $A \in M_n(\mathbb{C})$ have square roots, i.e., when there is a $B \in M_n(\mathbb{C})$ such that $B^2 = A$. Note: Such a B is not necessarily unique.

Problem 4. Suppose A is a C*-algebra and $a \in A$ is normal.

- (1) Show a is self-adjoint if and only if $sp(a) \subset \mathbb{R}$.
- (2) Show a is unitary if and only if $sp(a) \subset \mathbb{T}$.
- (3) Show a is a projection if and only if $sp(a) \subset \{0, 1\}$.

Problem 5. Let A be a C*-algebra.

- (1) Show that the following are equivalent for a self-adjoint $a \in A$:
 - (a) $\operatorname{sp}(a) \subset [0, \infty),$
 - (b) For all $\lambda \ge ||a||$, $||a \lambda|| \le \lambda$, and
 - (c) There is a $\lambda \ge ||a||$ such that $||a \lambda|| \le \lambda$.

For now, we will call such elements *spectrally positive*.

Note: It is implicit here that a spectrally positive element is self-adjoint.

- (2) Deduce that the spectrally positive elements in a C*-algebra form a closed cone, i.e., $A_+ = \{a \in A | a \ge 0\}$ is closed, and for all $\lambda \in [0, \infty)$ and $a, b \in A_+$, we have $\lambda a + b \in A_+$.
- (3) Show a is positive $(a = b^*b$ for some b) if and only if a is spectrally positive $(a = a^* \text{ and } sp(a) \subset [0, \infty))$.

Hint: First, if $\operatorname{sp}(a) \subset [0, \infty)$, we can define $a^{1/2}$ via the continuous functional calculus. Now suppose $a = b^*b$ for some $b \in B$. Use the continuous functions $r \mapsto \max\{0, z\}$ and $r \mapsto -\min\{0, z\}$ on $\operatorname{sp}(a)$ to write $a = a_+ - a_-$ where $\operatorname{sp}(a_{\pm}) \subset [0, \infty)$ and $a_+a_- = a_-a_+ = 0$. Now look at $c = ba_-$. Prove that $\operatorname{sp}(c^*c) \subset (-\infty, 0]$ and $\operatorname{sp}(cc^*) \subset [0, \infty)$ using part (1) of this problem. Use part (1) of Problem 1 to deduce that $c^*c = 0$. Finally, deduce $a_- = 0$, and thus $a = a_+$.

Problem 6. For $a, b \in A$, we say $a \le b$ if $b - a \ge 0$.

- (1) Show that \leq is a partial order.
- (2) Show that if $a \leq b$, then for all $c \in A$, $c^*ac \leq c^*bc$.

(3) Suppose $0 \le a \le b$. Prove that $||a|| \le ||b||$.

Problem 7. Let A be a C*-algebra. By the hint to part (4) of Problem 4 that for $a \ge 0$, we can define an $a^{1/2} > 0$ such that $(a^{1/2})^2 = a$.

- (1) Show that if $b \ge 0$ such that $b^2 = a$, then $b = a^{1/2}$.
- (2) Prove that if 0 < a < b, then $a^{1/2} < b^{1/2}$.
- (3) Prove that if 0 < a ($0 \le a$ and a is invertible), then $0 < a^{-1}$.
- (4) Prove that if $0 < a \le b$, then 0 < b and $0 < b^{-1} \le a^{-1}$.

Problem 8 (Rieffel, "Preventative Medicine"). Consider $a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} s & 0 \\ 0 & t \end{pmatrix}$ for $s, t \ge 0$.

- (1) Determine for which $s, t \ge 0$ we have $b \ge a$.
- (2) Determine for which $s, t \ge 0$ we have $b \ge a_+$. Note: Since $a = a^*$, a_+ is the positive part defined as in the hint to part (4) of Problem 4.
- (3) Find values of $s, t \ge 0$ for which $b \ge a, b \ge 0$, and yet $b \ge a_+$.
- (4) Find values of $s, t \ge 0$ such that $b \ge a_+ \ge 0$, and yet $b^2 \not\ge a_+^2$. (5) Can you find $s, t \ge 0$ such that $b \ge a_+$ and yet $b^{1/2} \not\ge a_+^{1/2}$? Note: $a_{+}^{1/2}$ is the unique positive square root of a_{+} from part (1) Problem 7.
- (6) Suppose $c, p \in M_2(\mathbb{C})$ such that $c \ge 0$ and $p^2 = p^* = p$ is a projection. Is it always true that $pcp \leq c$?

Problem 9. Let $L^2(\mathbb{T})$ denote the space of complex-valued square-integrable 1-periodic functions on \mathbb{R} , and let $C(\mathbb{T}) \subset L^2(\mathbb{T})$ denote the subspace of continuous 1-periodic functions.

- (a) Prove that $\{e_n(x) := \exp(2\pi i n x) | n \in \mathbb{Z}\}$ is an orthonormal basis for $L^2(\mathbb{T})$.
- (b) Define $\mathcal{F} : L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$ by $\mathcal{F}(f)_n := \langle f, e_n \rangle_{L^2(\mathbb{T})} = \int_0^1 f(x) \exp(-2\pi i n x) \, dx$. Show that if $f \in L^2(\mathbb{T})$ and $\mathcal{F}(f) \in \ell^1(\mathbb{Z})$, then $f \in C(\mathbb{T})$, i.e., f is a.e. equal to a continuous function.

Problem 10. Recall that each $T \in B(H, K)$ induces a bounded sesquilinear form $K \times H \to \mathbb{C}$ given by $B_T(\xi, \eta) = \langle \xi, T\eta \rangle$.

- (1) Prove that $T \mapsto B_T$ is an isometric bijective correspondence between operators in B(H, K)and bounded sesquilinear forms $K \times H \to \mathbb{C}$.
 - Hint: Adapt the proof Lemma 3.2.2 in Analysis Now (see also Exercise 3.2.15 therein).
- (2) For $T \in B(H, K)$ corresponding to $B_T : K \times H \to \mathbb{C}$, we define $T^* \in B(K, H)$ to be the unique operator corresponding to the adjoint sesquilinear form $B_T^*: H \times K \to \mathbb{C}$ defined by

$$B_T^*(\eta,\xi) := \overline{B_T(\xi,\eta)} \qquad \Longleftrightarrow \qquad \langle \eta, T^*\xi \rangle = \langle T\eta, \xi \rangle \qquad \eta \in H, \xi \in K.$$

Show that $T \mapsto T^*$ is a conjugate linear isometry of B(H, K) onto B(K, H), and that $||T^*T|| = ||T||^2 = ||TT^*||.$

- (3) In the case that H = K, deduce the following:
 - (a) B(H) with involution $T \mapsto T^*$ is a C*-algebra.
 - (b) $T = T^*$ if and only if B_T is self-adjoint. That is, show $T = T^*$ if and only if $\langle T\xi, \xi \rangle \in \mathbb{R}$ for all $\xi \in H$.
 - (c) $T \ge 0$ if and only if B_T is positive. That is, show $T \ge 0$ if and only if $\langle T\xi, \xi \rangle \ge 0$ for all $\xi \in H$.

Hint: Use that for $T = T^*$ *, we have* $\inf \{ \langle T\xi, \xi \rangle | \xi \in H, \|\xi\| = 1 \} = \min \{ \lambda | \lambda \in \operatorname{sp}(T) \}$ *.* (d) (optional) $T \ge 0$ and T injective if and only if B_T is positive definite.

Hint: For $S \in B(H)$, ker $(S) = \text{ker}(S^*S)$, so $T \ge 0$ is injective if and only if $T^{1/2}$ is injective.

(e) (optional) T > 0 ($T \ge 0$ and T is invertible) if and only if B_T is positive definite, and H is complete in the norm $\|\xi\|_T := B_T(\xi,\xi)^{1/2}$. *Hint: When* B_T *is positive definite and* H *is complete for* $\|\cdot\|_T$, *apply part (d) and look at the isometry* $(H, \|\cdot\|_T) \to (H, \|\cdot\|)$ *by* $\xi \mapsto T^{1/2}\xi$.

Problem 11 (Challenge!). Suppose *H* is a Hilbert space. A *quadratic form* on *H* is a function $q: H \to \mathbb{C}$ such that:

- (1) (quadratic) $q(\lambda\xi) = |\lambda|^2 q(\xi)$ for all $\lambda \in \mathbb{C}$ and $\xi \in H$,
- (2) (parallelogram identity) $q(\eta + \xi) + q(\eta \xi) = 2(q(\eta) + q(\xi))$ for all $\eta, \xi \in H$, and
- (3) (continuous) There is a C > 0 such that $|q(\xi)| \le C ||\xi||^2$ for all $\xi \in H$.

Prove that

$$(\eta,\xi) := \frac{1}{4} \sum_{k=0}^{3} i^k q(\eta + i^k \xi)$$

is a bounded sesquilinear form on H such that $q(\xi) = (\xi, \xi)$.

Problem 12. For a Hilbert space H, we can define the *conjugate* Hilbert space $\overline{H} = \{\overline{\xi} | \xi \in H\}$ which has the conjugate vector space structure $\lambda \overline{\xi} + \overline{\eta} = \overline{\lambda} \overline{\xi} + \eta$ and the conjugate inner product $\langle \overline{\eta}, \overline{\xi} \rangle_{\overline{H}} = \langle \xi, \eta \rangle_{H}$.

- (1) Prove that \overline{H} is a Hilbert space.
- (2) For $T \in B(H, K)$, define $\overline{T} : \overline{H} \to \overline{K}$ by $\overline{T\xi} = \overline{T\xi}$. Prove that $\overline{T} \in B(\overline{H}, \overline{K})$, and $||T|| = ||\overline{T}||$.
- (3) Prove that $\overline{\cdot}$ is an endofunctor on the the category Hilb of Hilbert spaces with bounded operators ($\overline{\cdot}$ is a functor Hilb \rightarrow Hilb).
- (4) For each $H \in \mathsf{Hilb}$, construct a linear isometry u_H of H^* onto \overline{H} satisfying $u_H T^t = \overline{T} u_H$ for all $T \in B(H, K)$ where $T^t \in B(K^*, H^*)$ is the Banach adjoint of T.

Problem 13. For $T \in B(H)$, we define its *numerical radius* as

$$R(T) := \sup_{\|\xi\| \le 1} |\langle T\xi, \xi \rangle|.$$

Prove that $r(T) \leq R(T) \leq ||T|| \leq 2R(T)$. Deduce that if T is normal, then ||T|| = R(T).

Problem 14. Let A be a C*-algebra. An element $u \in A$ is called a *partial isometry* if u^*u is a projection.

- (1) Show that the following are equivalent:
 - (a) u is a partial isometry.
 - (b) $u = uu^*u$.
 - (c) $u^* = u^* u u^*$.
 - (d) u^* is a partial isometry.

Hint: For $(a) \Rightarrow (b)$, apply the C*-axiom to $u - uu^*u$.

- (2) We say two projections $p, q \in A$ are (Murray-von Neumann) equivalent, denoted $p \approx q$, if there is a partial isometry $u \in A$ such that $uu^* = p$ and $u^*u = q$. Prove that \approx is an equivalence relation on P(A), the set of projections of A.
- (3) Describe the set of equivalence classes $P(A) \approx for A = B(\ell^2)$.

Problem 15. Suppose x = u|x| is the polar decomposition of $x \in B(H)$. Show that $x^* = u^*|x^*|$ is the polar decomposition.

Problem 16 (MO:325725). Suppose A is a unital C*-algebra and $I \leq A$ is an ideal. Let $q: A \rightarrow A/I$ be the canonical surjection.

- (1) Show that unital *-homomorphisms $C[0,1] \to A$ are in canonical bijection with positive elements of A with norm at most 1.
- (2) Show that if $a + I \in A/I$ is positive with norm at most 1, there is a positive $\tilde{a} \in A$ with norm at most 1 such that $\tilde{a} + I = a + I$. *Hint:* Since $\operatorname{sp}_{A/I}(a + I) \subseteq \operatorname{sp}_A(a)$, f(q(a)) = q(f(a)) and thus f(a + I) = f(a) + I for all $f \in C(\operatorname{sp}_A(a))$. Now pick f carefully.
- (3) Deduce that for every unital *-homomorphism $\phi : C[0,1] \to A/I$, there is a unital *homomorphism $\tilde{\varphi} : C[0,1] \to A$ with $\phi = q \circ \tilde{\phi}$.
- (4) Discuss the connection between the above statement and the Tietze Extension Theorem when A is commutative.

Problem 17. Let *H* be a Hilbert space. Compute the extreme points of the unit balls of

- (1) $\mathcal{K}(H)$.
- (2) $\mathcal{L}^1(H)$, and
- (3) B(H).

Problem 18. Let *H* be a Hilbert space. Prove that the trace Tr induces isometric isomorphims:

- (1) $\mathcal{K}(H)^* \cong \mathcal{L}^1(H)$, and
- (2) $\mathcal{L}^1(H)^* \cong B(H).$

Problem 19. Suppose *H* is a Hilbert space and $K \subseteq H$ is a closed subspace. Let $p_K \in B(H)$ be associated orthogonal projection onto *K*.

- (1) Suppose $x \in B(H)$. Prove that:
 - (a) $xK \subseteq K$ if and only if $xp_K = p_K xp_K$.
 - (b) $x^*K \subseteq K$ if and only if $p_K x = p_K x p_K$.
 - (c) $xK \subseteq K$ and $x^*K \subseteq K$ if and only if $[x, p_K] = 0$.
- (2) Prove that if $M \subseteq B(H)$ is a *-closed subalgebra, then $MK \subseteq K$ if and only if $p_K \in M'$.

Problem 20. Suppose *H* is a Hilbert space.

- (1) Suppose K is another Hilbert space. Define the tensor product Hilbert space $H \overline{\otimes} K$ by completing the algebraic tensor product vector space $H \otimes K$ in the 2-norm associated to the sesquilinear form $\langle \eta \otimes \xi, \eta' \otimes \xi' \rangle := \langle \eta, \eta' \rangle \langle \xi, \xi' \rangle$. Find a unitary isomorphism $H \overline{\otimes} K \cong \bigoplus_{i=1}^{\dim K} H$.
- (2) Find a unital *-isomorphism $B(\bigoplus_{i=1}^{n} H) \cong M_n(B(H))$. Hint: use orthogonal projections.
- (3) Suppose $S \subseteq B(H)$, and let $\alpha : B(H) \to M_n(B(H))$ be the amplification

$$x \longmapsto \begin{pmatrix} x & & \\ & \ddots & \\ & & x \end{pmatrix}$$

Prove that:

- (a) $\alpha(S)' = M_n(S')$, and
- (b) If $0, 1 \in S$, then $M_n(S)' = \alpha(S')$.
- (c) Deduce that when $0, 1 \in S$, $\alpha(S)'' = \alpha(S'')$.

Problem 21. Let (X, μ) be a σ -finite measure space, and consider the map $M : L^{\infty}(X, \mu) \to B(L^2(X, \mu))$ given by $(M_f \xi)(x) = f(x)\xi(x)$ for $\xi \in L^2(X, \mu)$.

- (1) Prove that M is an isometric unital *-homomorphism.
- (2) Let $A \subset B(L^2(X,\mu))$ be the image of the map M. Prove that A = A'. Hint: If you're stuck with (2), try the case $X = \mathbb{N}$ with counting measure.

Problem 22. Let H be a Hilbert space. The weak operator topology (WOT) on B(H) is the topology induced by the separating family of seminorms $T \mapsto |\langle T\eta, \xi \rangle|$ for $\eta, \xi \in H$. The strong operator topology (SOT) on B(H) is induced by the separating family of seminorms $x \mapsto ||T\xi||_H$ for $\xi \in H$.

- (1) Prove that every WOT open set is SOT open. Equivalently, prove that if a net $(T_{\lambda})_{\lambda \in \Lambda} \subset B(H)$ converges to $T \in B(H)$ SOT, then $T_{\lambda} \to T$ WOT.
- (2) Prove that the WOT is equal to the SOT on B(H) if and only if H is finite dimensional.
- (3) Show that the following are equivalent for a linear functional φ on B(H):
 - (a) There are $\eta_1, \ldots, \eta_n, \xi_1, \ldots, \xi_n \in H$ such that $\varphi(T) = \sum_{i=1}^n \langle T\eta_i, \xi_i \rangle$.
 - (b) φ is WOT-continuous.
 - (c) φ is SOT-continuous.

Problem 23. Suppose $M \subset B(H)$ is a unital *-subalgebra. A vector $\xi \in H$ is called:

- cyclic for M if $M\xi$ is dense in H.
- separating for M if for every $x, y \in M, x\xi = y\xi$ implies x = y.
- (1) Prove that ξ is cyclic for M if and only if ξ is separating for M'.
- (2) Prove that H can be orthogonally decomposed into M-invariant subspaces $H = \bigoplus_{i \in I} K_i$, such that each K_i is cyclic for M (has a cyclic vector). Prove that if H is separable, this decomposition is countable.
- (3) Prove that if M is abelian and H is separable, then there is a separating vector in H for M.

Problem 24. Suppose *H* is a Hilbert space, and (x_{λ}) is an increasing net of positive operators in B(H) which is bounded above by the positive operator $x \in B(H)$, i.e., $\lambda \leq \mu$ implies $x_{\lambda} \leq x_{\mu}$, and $0 \leq x_{\lambda} \leq x$ for all λ . Prove that the following are equivalent.

- (1) $x_{\lambda} \to x$ SOT.
- (2) $x_{\lambda} \to x$ WOT.
- (3) For every $\xi \in H$, $\omega_{\xi}(x_{\lambda}) = \langle x_{\lambda}\xi, \xi \rangle \nearrow \langle x\xi, \xi \rangle = \omega_{\xi}(x)$.
- (4) There exists a dense subspace $D \subset H$ such that for every $\xi \in D$, $\omega_{\xi}(x_{\lambda}) = \langle x_{\lambda}\xi, \xi \rangle \nearrow \langle x\xi, \xi \rangle = \omega_{\xi}(x)$.

We say an increasing net of positive operators (x_{λ}) increases to $x \in B(H)_+$, denoted $x_{\lambda} \nearrow x$, if any of the above equivalent conditions hold.

Hint: Show it suffices to prove $(3) \Rightarrow (1)$ and $(4) \Rightarrow (3)$. Try proving these implications.

Problem 25. Let *H* be a Hilbert space and let $T \in B(H)$. Prove that the following are equivalent. (You may use any results from last semester that you'd like without proof.)

- (1) T is compact and normal.
- (2) T has an orthonormal basis of eigenvectors $(e_i)_{i \in I}$ such that the corresponding eigenvalues $\lambda_i \to 0$, with at most countably many of the $\lambda_i \neq 0$.
- (3) There is a countable orthonormal subset $(\xi_n)_{n \in \mathbb{N}} \subset H$ and a sequence $(\lambda_n) \subset \mathbb{C}$ such that $\lambda_n \to 0$ and $T = \sum_{n \in \mathbb{N}} \lambda_n |\xi_n\rangle \langle \xi_n |$, which converges in operator norm.
- (4) There is a sequence $(\lambda_n) \subset \mathbb{C}$ such that $\lambda_n \to 0$ and a countable family of finite rank projections $E_n \subset B(H)$ such that $T = \sum_{n \in \mathbb{N}} \lambda_n E_n$, which converges in operator norm.
- (5) There is a discrete set X equipped with counting measure ν , a function $f \in c_0(X)$, and a unitary $U \in B(\ell^2 X, H)$ such that $T = UM_f U^*$ where $M_f \xi = f\xi$ for $\xi \in \ell^2 X$. Note: $U \in B(K, H)$ is unitary if $UU^* = \operatorname{id}_H$ and $U^*U = \operatorname{id}_K$.

Problem 26. Suppose A is a unital C*-algebra. A linear map $\Phi : A \to B(H)$ is called *completely* positive if for every $a = (a_{i,j}) \ge 0$ in $M_n(A)$, $(\Phi(a_{i,j})) \ge 0$ in $M_n(B(H)) \cong B(H^n)$. Such a map is unital if $\Phi(1) = 1$.

- (1) Show that $\langle x \otimes \eta, y \otimes \xi \rangle := \langle \Phi(y^*x)\eta, \xi \rangle_H$ on $A \otimes H$ linearly extends to a well-defined positive sesquilinear form.
- (2) Show that for V a vector space with positive sesquilinear form $B(\cdot, \cdot)$, $N_B = \{v \in V | B(v, v) = 0\}$ is a subspace of V, and B descends to an inner product on V/N_B .
- (3) Define K to be completion of $(A \otimes H)/N_{\langle \cdot, \cdot \rangle}$ in $\|\cdot\|_2$. Find a unital *-homormophism $\Psi: A \to B(K)$, and an isometry $v \in B(H, K)$ such that $\Phi(m) = v^* \Psi(m) v$.

Problem 27. Suppose $y \in B(H)$ is positive.

- (1) Show that if $y \notin K(H)$, then there is a $\lambda > 0$ and a projection p with infinite dimensional range such that $y \ge \lambda p$.
- (2) Deduce that if $x \mapsto \operatorname{Tr}(xy)$ is bounded on $\mathcal{L}^p(H)$ where $1 \le p < \infty$, then $y \in K(H)$.

Problem 28. Suppose $A \subseteq B(H)$ is a unital C*-subalgebra and $\xi \in H$ is a cyclic vector for A. Consider the vector state $\omega_{\xi} = \langle \cdot \xi, \xi \rangle$. Prove there is a bijective correspondence between:

- (1) positive linear functionals φ on A such that $0 \leq \varphi \leq \omega_{\xi} \ (\omega_{\xi} \varphi \geq 0)$, and
- (2) operators $0 \le x \le 1$ in A'.

Hint: For $0 \le x \le 1$ in A', define $\varphi_x(a) := \langle ax\xi, \xi \rangle$ for $a \in A$. (Why is $0 \le \varphi_x \le \omega_{\xi}$?) For the reverse direction, use the bijective correspondence between sequilinear forms and operators.

Problem 29.

- (1) Prove that a unital *-subalgebra $M \subseteq B(H)$ is a von Neumann algebra if and only if its unit ball is σ -WOT compact.
- (2) Let $M \subset B(H)$ be a von Neumann algebra and $\Phi : M \to B(K)$ a unital *-homomorphism. Deduce that if Φ is σ -WOT continuous and injective, then $\Phi(M)$ is a von Neumann subalgebra of B(K).

Problem 30. Suppose X is a compact Hausdorff topological space and $E : (X, \mathcal{M}) \to B(H)$ is a Borel spectral measure. Prove that the following conditions are equivalent.

- (1) E is regular, i.e., for all $\xi \in H$, $\mu_{\xi,\xi}(S) = \langle E(S)\xi,\xi \rangle$ is a finite regular Borel measure.
- (2) For all $S \in \mathcal{M}$, $E(S) = \sup \{E(K) | K \text{ is compact and } K \subseteq S \}$.
- (3) For all $S \in \mathcal{M}$, $E(S) = \inf \{E(U) | U \text{ is open and } S \subseteq U\}$

Problem 31. Suppose $x \in B(H)$ is normal. Show that $\chi_{\{0\}}(x) = p_{\ker(x)}$ and $\chi_{\operatorname{sp}(x)\setminus\{0\}} = p_{\overline{xH}}$.

Problem 32. Let *H* be a separable Hilbert space and $A \subseteq B(H)$ an abelian von Neumann algebra. Prove that the following are equivalent.

- (1) A is maximal abelian, i.e., A = A'.
- (2) A has a cyclic vector $\xi \in H$.
- (3) For every norm separable SOT-dense C*-subalgebra $A_0 \subset A$, A_0 has a cyclic vector.
- (4) There is a norm separable SOT-dense C*-subalgebra $A_0 \subset A$ such that A_0 has a cyclic vector.
- (5) There is a finite regular Borel measure μ on a compact Hausdorff second countable space X and a unitary $u \in B(L^2(X,\mu),H)$ such that $f \mapsto uM_f u^*$ is an isometric *-isomorphism $L^{\infty}(X,\mu) \to A$.

Hints:

For $(1) \Rightarrow (2)$, use Problem 23.

For (3) \Rightarrow (4) it suffices to construct a norm separable SOT-dense C*-algebra. First show that $A_* = \mathcal{L}^1(H)/A_{\perp}$ is a separable Banach space. Then show that A is σ -WOT separable, which implies SOT-separable. Take A_0 to be the unital C*-algebra generated by an SOT-dense sequence. For (4) \Rightarrow (5) show that A_0 separable implies $X = \widehat{A}_0$ is second countable. Define $\mu = \mu_{\xi,\xi}$ on X, and show that the map $C(X) \rightarrow H$ by $f \mapsto \Gamma^{-1}(f)\xi$ is a $\|\cdot\|_2 - \|\cdot\|_H$ isometry with dense range.

Problem 33. Suppose $E : (X, \mathcal{M}) \to P(H)$ is a spectral measure with H separable, and let $A \subset B(H)$ be the unital C*-algebra which is the image of $L^{\infty}(E)$ under $\int \cdot dE$. Suppose there is a cyclic unit vector $\xi \in H$ for A.

- (1) Show that $\omega_{\xi}(f) = \langle (\int f dE)\xi, \xi \rangle$ is a faithful state on $L^{\infty}(E)$ $(\omega_{\xi}(|f|^2) = 0 \Longrightarrow f = 0).$
- (2) Consider the finite non-negative measure $\mu = \mu_{\xi,\xi}$ on (X, \mathcal{M}) . Show that a measurable function f on (X, \mathcal{M}) is essentially bounded with respect to E if and only if f is essentially bounded with respect to μ .
- (3) Deduce that for essentially bounded measurable f on (X, \mathcal{M}) , $||f||_E = ||f||_{L^{\infty}(X, \mathcal{M}, \mu)}$.
- (4) Construct a unitary $u \in B(L^2(X, \mathcal{M}, \mu), H)$ such that for all $f \in L^{\infty}(E) = L^{\infty}(X, \mathcal{M}, \mu)$, $(\int f dE)u = uM_f$.
- (5) Deduce that $A \subset B(H)$ is a maximal abelian von Neumann algebra.

Problem 34. Suppose *H* is a separable infinite dimensional Hilbert space. Prove that $K(H) \subset B(H)$ is the unique norm closed 2-sided proper ideal.

Problem 35. Classify all abelian von Neumann algebras $A \subset B(H)$ when H is separable. Hint: Use a maximality argument to show you can write 1 = p + q with $p, q \in P(A)$ such that q is diffuse and $p = \sum p_i$ (SOT) with all p_i minimal. Then analyze Aq and Ap.

Problem 36. Suppose $M \subseteq B(H)$ is a von Neumann algebra and $p, q \in P(M)$. Define $p \land q \in B(H)$ to be the orthogonal projection onto $pH \cap qH$. Prove that $p \land q \in M$ two separate ways:

- (1) Show that $pH \cap qH$ is M'-invariant, and deduce $p \wedge q \in M$.
- (2) Show that $p \wedge q$ is the SOT-limit of $(pq)^n$ as $n \to \infty$.
 - Hint: You could proceed as follows, but a quicker proof would be much appreciated! (a) Use (2) of Problem 6 to show $(pq)^n p$ is a decreasing sequence of positive operators.
 - (b) Show $(pq)^n p$ converges SOT to a positive operator $x \in M$.
 - (c) Show that $x^2 = x$, and deduce $x \le p$ is an orthogonal projection.
 - (d) Show that xqp = x, and deduce xqx = x.
 - (e) Show that $x \leq q$, and deduce $x \leq p \wedge q$.
 - (f) Show that $(p \wedge q)(pq)^n$ converges SOT to both $p \wedge q$ and x, and deduce $x = p \wedge q$.
 - (g) Finally, show $(pq)^n$ converges SOT to $xq = p \land q$.

Define $p \lor q$ as the projection onto $\overline{pH + qH}$. Show that $p \lor q \in M$ in two separate ways:

- (1) Prove that $\overline{pH + qH}$ is M'-invariant, and deduce $p \lor q \in M$.
- (2) Show that $p \lor q = 1 (1 p) \land (1 q)$ and use that $p \land q \in M$.

Problem 37. Suppose $N \subseteq M \subset B(H)$ is a unital inclusion of von Neumann algebra and $p \in P(N)$.

- (1) Prove that $(N'p) \cap pMp = (N' \cap M)p$.
- (2) Deduce that if $p \in P(M)$, Z(pMp) = Z(M)p.
- (3) Deduce that if $p \in P(M)$ and M is a factor, then pMp is a factor.
- (4) Prove that when M is a factor and $p \in P(M)$, the map $M' \to M'p$ by $x \mapsto xp$ is a unital *-algebra isomorphism.

Problem 38. Prove that the following conditions are equivalent for a von Neumann algebra $M \subseteq B(H)$:

- (1) Every non-zero $q \in P(M)$ majorizes an abelian projection $p \in P(M)$.
- (2) M is type I (every non-zero $z \in P(Z(M))$ majorizes an abelian $p \in P(M)$).
- (3) There is an abelian projection $p \in P(M)$ whose central support $z(p) = \bigvee_{u \in U(M)} u^* p u \in Z(M)$ is 1_M .

Hints:

For $(2) \Rightarrow (3)$, if $p \in P(M)$ is abelian with $z(p) \neq 1$, then there is an abelian projection $q \in P(M)$ such that $z(q) \leq 1 - z(p)$. Show that pMq = 0 and p + q is an abelian projection. Now use Zorn's Lemma.

For $(3) \Rightarrow (1)$, suppose $p \in P(M)$ is abelian with z(p) = 1 and $q \in P(M)$ is non-zero. Show there is a non-zero partial isometry $u \in M$ such that $uu^* \leq p$ and $u^*u \leq q$. Deduce that uu^* is abelian, and then prove u^*u is abelian.

Problem 39. Show that for every von Neumann algebra M, there are unique central projections $z_{\rm I}$, $z_{\rm II_1}$, $z_{\rm II_{\infty}}$, and $z_{\rm III}$ (some of which may be zero) such that

- Mz_{I} is type I, Mz_{II_1} is type II₁, $Mz_{II_{\infty}}$ is type II_{∞}, and Mz_{III} is type III, and
- $z_{\mathrm{I}} + z_{\mathrm{II}_1} + z_{\mathrm{II}_{\infty}} + z_{\mathrm{III}} = 1$

Hint: You could proceed as follows:

- (1) First, show that if M has an abelian projection p, then z(p) is type I. Then use a maximality argument to construct z_{I} . For this, you could adapt the hint for $(2) \Rightarrow (3)$ in Problem 38.
- (2) Replacing M, H with $M(1 z_I), (1 z_I)H$, we may assume M has no abelian projections. Show that if M has a finite central projection z, then Mz is type II₁. Now use a maximality argument to construct z_{II_1} . This hinges on proving the sum of two orthogonal finite central projections is finite. (Proving this is much easier than proving the sup of two finite projections is finite!)
- (3) By compression, we may now assume that M has no abelian projections and no finite central projections. Show that if M has a nonzero finite projection p, then its central support z(p) satisfies Mz(p) is type Π_{∞} . Use a maximality argument to construct $z_{\Pi_{\infty}}$.
- (4) Compressing one more time, we may assume M has no finite projections, and thus M is purely infinite and type III.

Problem 40. Let $M \subseteq B(H)$ be a finite dimensional von Neumann algebra.

- (1) Prove M has a minimal projection.
- (2) Deduce that Z(M) has a minimal projection.
- (3) Prove that for any minimal projection $p \in Z(M)$, Mp is a type I factor.
- (4) Prove that M is a direct sum of matrix algebras.

Problem 41. Suppose H is infinite dimensional. Prove that B(H) does not admit a σ -WOT continuous tracial state.

Optional: Instead, prove that B(H) does not admit a non-zero tracial linear functional.

Problem 42. Suppose $M \subseteq B(H)$ and $N \subseteq B(K)$ are von Neumann algebras, and let $H \otimes K$ be the tensor product of Hilbert spaces as in Problem 20.

- (1) Show that for every $m \in M$ and $n \in N$, the formula $(m \otimes n)(\eta \otimes \xi) := m\eta \otimes n\xi$ gives a unique well-defined operator $m \otimes n \in B(H \otimes K)$.
- (2) Let $M \otimes N = \{m \otimes n | m \in M, n \in N\}'' \subset B(H \otimes K)$. Show that the linear extension of the map from the algebraic tensor product $M \otimes N$ to $M \otimes N$ given by $m \otimes n \mapsto m \otimes n$ is a well-defined injective unital *-algebra map onto an SOT-dense unital *-subalgebra. Hint for injectivity: Suppose $x = \sum_{i=1}^{k} m_i \otimes n_i$ is not zero in $M \otimes N$. Reduce to the case $\{n_1, \ldots, n_k\}$ is linearly independent and all $m_i \neq 0$. Show that for each $i = 1, \ldots, k$, there exists a $k_i > 0$ and $\{\eta_j^i, \xi_j^i\}_{j=1}^{k_i}$ such that $\sum_{j=1}^{k_i} \langle n_{i'} \eta_j^i, \xi_j^i \rangle = \delta_{i=i'}$. (Sub-hint: Consider $F = \operatorname{span}_{\mathbb{C}}\{n_1, \ldots, n_k\} \subset N$, a closed normed space, and look at $\Phi : H \times \overline{H} \to F^*$ by $(\eta, \xi) \mapsto \langle \cdot \eta, \xi \rangle$. Show that $\operatorname{span}_{\mathbb{C}}(\Phi(H)) = F^*$.) Now pick $\kappa, \zeta \in H$ such that $\langle m_1 \kappa, \zeta \rangle \neq 0$, and deduce $\sum_{j=1}^{k_1} \langle \kappa \otimes \eta_j^1 \rangle, \zeta \otimes \xi_j^1 \rangle_{H \otimes K} \neq 0$.

- (3) We denote by $B(H) \otimes 1$ the image of B(H) under the map $x \mapsto x \otimes 1 \in B(H \otimes K)$. Prove that $B(H) \otimes 1$ is a von Neumann algebra. Hint: Show that $(B(H) \otimes 1)' = 1 \otimes B(K)$. Then by symmetry, $(1 \otimes B(K))' = B(H) \otimes 1$ is a von Neumann algebra.
- (4) Prove that B(H ⊗K) = B(H) ⊗B(K). Hint: Calculate the commutant of the image of the algebraic tensor product (B(H) ⊗ B(K))' = C1 and use (2).

Problem 43. Let S_{∞} be the group of finite permutations of \mathbb{N} .

- (1) Show that S_{∞} is ICC. Deduce that LS_{∞} is a II₁ factor.
- (2) Give an explicit description of a projection with trace k^{-n} for arbitrary $n, k \in \mathbb{N}$. Hint: Find such a projection in $\mathbb{C}S_{\infty} \subset LS_{\infty}$.
- (3) Find an increasing sequence $F_n \subset LS_\infty$ of finite dimensional von Neumann subalgebras such that $LS_\infty = (\bigcup_{n=1}^\infty F_n)''$.

Note: A II₁ factor which is generated by an increasing sequence of finite dimensional von Neumann subalgebras as in (3) above is called hyperfinite.

Problem 44. Let M be a von Neuman algebra. Suppose $a, b \in M$ with $0 \le a \le b$. Prove there is a $c \in M$ such that $a = c^*bc$. Deduce that a 2-sided ideal in a von Neumann algebra is *hereditary*: $0 \le a \le b \in M$ implies $a \in M$.

Problem 45. Let M be a factor. Prove that if M is finite or purely infinite, then M is algebraically simple, i.e., M has no 2-sided ideals.

Note: You may use that a II₁ factor has a (faithful σ -WOT continuous) tracial state.

Problem 46. A positive linear functional $\varphi \in M^*$ is called *completely additive* if for any family of pairwise orthogonal projections (p_i) , $\varphi(\sum p_i) = \sum \varphi(p_i)$. (Here, $\sum p_i$ converges SOT.)

Suppose $\varphi, \psi \in M^*$ are completely additive and $p \in P(M)$ such that $\varphi(p) < \psi(p)$. Then there is a non-zero projection $q \leq p$ such that $\varphi(qxq) < \psi(qxq)$ for all $x \in M_+$ such that $qxq \neq 0$.

Hint: Choose a maximal family of mutually orthogonal projections $e_i \leq p$ for which $\psi(e_i) \leq \varphi(e_i)$. Consider $e = \bigvee e_i$, and show that $\psi(e) \leq \varphi(e)$. Set q = p - e, and show that for all projections $r \leq q, \varphi(r) < \psi(r)$. Then show $\varphi(qxq) < \psi(qxq)$ for all $x \in M_+$ such that $qxq \neq 0$.

Problem 47. Show that the following conditions are equivalent for a positive linear functional $\varphi \in M^*$ for a von Neumann algebra M:

- (1) φ is σ -WOT continuous,
- (2) φ is normal: $x_{\lambda} \nearrow x$ implies $\varphi(x_{\lambda}) \nearrow \varphi(x)$, and
- (3) φ is completely additive: for any family of pairwise orthogonal projections $(p_i), \varphi(\sum p_i) = \sum \varphi(p_i)$. (Here, $\sum p_i$ converges SOT.)

Hint: For $(3) \Rightarrow (1)$, show if $p \in P(M)$ is non-zero, then pick $\xi \in H$ such that $\varphi(p) < \langle p\xi, \xi \rangle$. Use Problem 46 to find a non-zero $q \leq p$ such that $\varphi(qxq) < \langle xq\xi, q\xi \rangle$ for all $x \in M$. Use the Cauchy-Schwarz inequality to show $x \mapsto \varphi(xq)$ is SOT-continuous, and thus σ -WOT continuous. Now use Zorn's Lemma to consider a maximal family of mutually orthogonal projections $(q_i)_{i \in I}$ for which $x \mapsto \varphi(xq_i)$ is σ -WOT continuous. Show $\sum q_i = 1$. For finite $F \subseteq I$, define $\varphi_F(x) = \sum_{i \in F} \varphi(xq_i)$. Ordering finite subsets by inclusion, we get a net $(\varphi_F) \subset M_*$. Show that $\varphi_F \to \varphi$ in norm in M^* . Deduce that $\varphi \in M_*$ since $M_* \subset M^*$ is norm-closed.

Problem 48. Let $\Phi: M \to N$ be a unital *-homomorphism between von Neumann algebras.

- (1) Prove that the following two conditions are equivalent:
 - (a) Φ is normal: $x_{\lambda} \nearrow x$ implies $\Phi(x_{\lambda}) \nearrow \Phi(x)$.
 - (b) Φ is σ -WOT continuous.

- (2) Prove that if Φ is normal, then $\Phi(M) \subset N$ is a von Neumann subalgebra. Hint: ker $(\Phi) \subset M$ is a σ -WOT closed 2-sided ideal.
- (3) Let φ be a normal state on a a von Neumann algebra M, and let $(H_{\varphi}, \Omega_{\varphi}, \pi_{\varphi})$ be the cyclic GNS representation of M associated to φ , i.e., $H_{\varphi} = L^2(M, \varphi), \ \Omega_{\varphi} \in H_{\varphi}$ is the image of $1 \in M$ in H_{φ} , and $\pi_{\varphi}(x)m\Omega_{\varphi} = xm\Omega_{\varphi}$ for all $x, m \in M$.
 - (a) Show that π_{φ} is normal.
 - (b) Deduce that if φ is faithful, then $M \cong \pi_{\varphi}(M) \subset B(H_{\varphi})$ is a von Neumann algebra acting on H_{φ} .

Problem 49. Suppose $\Phi: M \to N$ is a unital *-algebra homomorphism between von Neumann algebras.

- (1) Prove that the following conditions imply Φ is normal:
 - (a) Φ is SOT-continuous on the unit ball of M.
 - (b) Φ is WOT-continuous on the unit ball of M.
 - (c) Suppose $N = N'' \subseteq B(H)$. For a dense subspace $D \subseteq H$, $m \mapsto \langle \Phi(m)\eta, \xi \rangle$ is WOT-continuous on M for any $\eta, \xi \in D$.
- (2) (optional) Which of the conditions above are equivalent to normality of Φ ?

Problem 50. Let M be a finite von Neumann algebra with a faithful σ -WOT continuous tracial state. Let $L^2M = L^2(M, \text{tr})$ where Ω is the image of 1_M in L^2M . Identify M with its image in $B(L^2M)$ by part (3) of Problem 48.

- (1) Show that $J: M\Omega \to M\Omega$ by $a\Omega \mapsto a^*\Omega$ is a conjugate-linear isometry with dense range.
- (2) Deduce J has a unique extension to L^2M , still denoted J, which is a conjugate-linear unitary, i.e, $J^2 = 1$ and $\langle J\eta, J\xi \rangle = \langle \xi, \eta \rangle$ for all $\eta, \xi \in L^2M$. Hint: Look at η, ξ in $M\Omega$.
- (3) Calculate $Ja^*Jb\Omega$ for $a, b \in M$. Deduce that $JMJ \subseteq M'$.
- (4) Show $\langle Ja^* Jb\Omega, c\Omega \rangle = \langle b\Omega, Ja Jc\Omega \rangle$ for all $a, b, c \in M$. Deduce $(JaJ)^* = Ja^* J$.
- (5) Show $\langle Jy\Omega, a\Omega \rangle = \langle y^*\Omega, a\Omega \rangle$ for all $a \in M$ and $y \in M'$. Deduce $Jy\Omega = y^*\Omega$.
- (6) Prove that for $y \in M'$, $(JyJ)^* = Jy^*J$. Hint: Try the same technique as in (4).
- (7) Show for all $a, b \in M$ and $x, y \in M'$, $\langle xJyJa\Omega, b\Omega \rangle = \langle JyJxa\Omega, b\Omega \rangle$.
- (8) Deduce that $M' \subseteq (JM'J)' = JMJ$, and thus M' = JMJ.

Problem 51. Let Γ be a discrete group, and let $L\Gamma = \{\lambda_g\}'' \subset B(\ell^2\Gamma)$. Consider the faithful σ -WOT continuous tracial state tr $(x) = \langle x \delta_e, \delta_e \rangle$ on $L\Gamma$.

- (1) Show that $u\delta_g = \lambda_g$ uniquely extends to a unitary $u \in B(\ell^2\Gamma, L^2L\Gamma)$ such that for all $x \in L\Gamma$ and $\xi \in \ell^2\Gamma$, $L_x u\xi = ux\xi$ where $L_x \in B(L^2L\Gamma)$ is left multiplication by x, i.e., $L_x(y\Omega) = xy\Omega$.
- (2) Deduce from Problem 50 that $L\Gamma' = R\Gamma$.

Problem 52. Use Problem 51 above to give the following alternative characterization of $L\Gamma$. Let

$$\ell \Gamma = \left\{ x = (x_g) \in \ell^2 \Gamma \middle| x * y \in \ell^2 \Gamma \text{ for all } y \in \ell^2 \Gamma \right\}$$

where $(x * y)_g = \sum_h x_h y_{h^{-1}g}$. Define a unital *-algebra structure on $\ell\Gamma$ by multiplication is convolution, the unit is δ_e , the the indicator function at $e \in \Gamma$ ($\delta_e(g) = \delta_{g=e}$), and the involution * on $\ell\Gamma$ is given on $x \in \ell\Gamma$ by $(x^*)_g := \overline{x_{g^{-1}}}$.

- (1) Show that $\ell\Gamma$ is a well-defined unital *-algebra under the above operations.
- (2) For $x \in \ell \Gamma$ define $T_x : \ell^2 \Gamma \to \ell^2 \Gamma$ by $T_x y = x * y$. Prove $T_x \in B(\ell^2 \Gamma)$.
 - Hint: Show that for all $x \in \ell\Gamma$ and $y, z \in \ell^2\Gamma$, $\langle T_x y, z \rangle = \langle y, T_{x^*} z \rangle$. Then use the Closed Graph Theorem.

- (3) Prove that for all $x \in \ell\Gamma$, $T_x \in L\Gamma$.
- *Hint:* Prove $T_x \in R\Gamma'$ and apply Problem 51.
- (4) Deduce that $x \mapsto T_x$ is a unital *-algebra isomorphism $\ell \Gamma \to L \Gamma$.

Problem 53 (V. Jones). Suppose $M = M_2(\mathbb{C})$ and φ is a state. Then $\varphi(x) = \operatorname{tr}(x\rho)$ for a unique density matrix $\rho \ge 0$ with $\operatorname{tr}(\rho) = 1$. Choosing a basis of eigenvectors for ρ , we may identify

$$\rho = \begin{pmatrix} \frac{1}{1+\lambda} & \\ & \frac{\lambda}{1+\lambda} \end{pmatrix}$$

for some $0 \le \lambda \le 1$. Observe that φ is faithful if and only if $0 < \lambda < 1$ if and only if ρ is invertible.

- (1) Describe as best you can $L^2(M, \phi)$ in terms of λ .
- (2) Show that the action of M on $L^2(M, \phi)$ is faithful.
- (3) From this point on, assume $0 < \lambda < 1$. Consider $S : L^2(M, \varphi) \to L^2(M, \varphi)$ by $x\Omega \mapsto x^*\Omega$. Compute the polar decomposition $S = J\Delta^{1/2}$ where $\Delta = S^*S$.
- (4) Show that M' = JMJ = SMS on $L^2(M, \varphi)$.
- (5) Show that for all $z \in \mathbb{C}$, $\Delta^z M \Delta^{-z} = M$.
- (6) Deduce that we have a 1-parameter group of unitaries $t \mapsto \sigma_t := \Delta^{it}$ for $t \in \mathbb{R}$ which preserve M.

Problem 54. Repeat Problem 52 for the crossed product von Neumann algebra $M \rtimes_{\alpha} \Gamma$ acting on $L^2 M \otimes \ell^2 \Gamma \cong L^2(\Gamma, L^2 M)$ where M is a finite von Neumann algebra with faithful normal tracial state tr, Γ is a discrete group, and $\alpha : \Gamma \to \operatorname{Aut}(M)$ is an action. Here, we define

$$\ell^{2}(\Gamma, M) = \left\{ x: \Gamma \to M \middle| \sum_{g} \|x_{g}\Omega\|_{L^{2}M}^{2} < \infty \right\}$$
$$\ell^{2}(\Gamma, L^{2}M) = \left\{ \xi: \Gamma \to L^{2}M \middle| \sum_{g} \|\xi_{g}\|^{2} < \infty \right\} \text{ and }$$
$$M \times_{\alpha} \Gamma = \left\{ x = (x_{g}) \in \ell^{2}(\Gamma, M) \middle| x * \xi \in \ell^{2}(\Gamma, L^{2}M) \text{ for all } \xi \in \ell^{2}(\Gamma, L^{2}M) \right\}.$$

Here, the convolution action is given by $(x * \xi)_g = \sum_h x_h v_h \xi_{h^{-1}g}$ where $v_h \in U(L^2 M)$ is the unitary implementing $\alpha_u \in \operatorname{Aut}(M)$. Define an analogous unital *-algebra structure on $M\Gamma$ and find a unital *-algebra isomorphism $M \times_{\alpha} \Gamma \to M \rtimes_{\alpha} \Gamma$.

Hint: Similar to $L\Gamma$, some people write elements of $M \rtimes_{\alpha} \Gamma$ as formal sums $\sum_{g} x_{g}u_{g}$ which does not converge in any operator topology. Rather, $\sum_{g} x_{g}u_{g}(\Omega \otimes \delta_{e})$ converges in $L^{2}M \otimes \ell^{2}\Gamma$. These formal sums can be algebraically manipulated to obtain a unital *-algebra structure using the covariance condition $u_{g}mu_{g}^{*} = \alpha_{g}(m)$ for all $g \in \Gamma$ and $m \in M$. Thus

$$\left(\sum_{g} x_g u_g\right)^* = \sum_{g} u_g x_g^* = \sum_{g} u_g x_g^* u_g^* u_g = \sum_{g} \alpha_g(x_g^*) u_g.$$

Thus for $x = (x_g) \in M \times_{\alpha} \Gamma$, we define $(x^*)_g = \alpha_g(x_g^*)$. A similar algebraic manipulation gives the formula for multiplication, which is similar to convolution, but involves the action.

Problem 55. Prove that a *-isomorphism between von Neumann algebras is automatically normal.

Problem 56. Suppose (X, μ) is a measure space and $T : X \to X$ is a measurable bijection preserving the measure class of μ . Let $\alpha_T \in \operatorname{Aut}(L^{\infty}(X, \mu))$ by $(\alpha_T f)(x) = f(T^{-1}x)$. Is it always the case that the condition $\mu(\{x \in X | Tx = x\}) = 0$ is equivalent to the automorphism α_T being free? If yes, give a proof, and if not, find a counterexample together with a mild condition under which it is true. **Problem 57.** Let $\mathbb{F}_2 = \langle a, b \rangle$ be the free group on 2 generators.

- (1) Show that \mathbb{F}_2 is ICC. Deduce $L\mathbb{F}_2$ is a II₁ factor.
- (2) Show that the swap $a \leftrightarrow b$ extends to an automorphism σ of $L\mathbb{F}_2$.
- (3) Show that σ is outer.

Problem 58.

- (1) (Fell's Absorption Principle) Suppose Γ is a countable group and (H,π) is a unitary representation on a separable Hilbert space. Find a unitary $u \in B(\ell^2 \Gamma \overline{\otimes} H)$ intertwining $\lambda \otimes \pi$ and $\lambda \otimes 1$, i.e., $u(\lambda_q \otimes \pi_q) = (\lambda_q \otimes 1)u$ for all $g \in \Gamma$.
- (2) Consider the two definitions of $M \rtimes_{\alpha} \Gamma$ when (M, tr) is a tracial von Neumann algebra and $\operatorname{tr} \circ \alpha_q = \operatorname{tr}$ for all $g \in \Gamma$. The first is the von Neumann algebra generated by the π_m and u_q on $\ell^2(\Gamma, L^2M)$ where

$$(u_g\xi)(h) := \xi(g^{-1}h) \qquad (\pi_m\xi)(h) = \alpha_{h^{-1}}(m)\xi(h).$$

The second is the von Neumann algebra generated by the π_m and u_g on $L^2 M \otimes \ell^2 \Gamma$ given by

$$\pi_m(x\Omega\otimes\delta_h)=mx\Omega\otimes\delta_h\qquad \qquad u_g(x\Omega\otimes\delta_h)=\alpha_g(x)\Omega\otimes\delta_{gh}.$$

Find a unitary isomorphism $\ell^2(\Gamma, L^2M) \to L^2M \otimes \ell^2\Gamma$ intertwining the two *M*-actions and Γ -actions. Deduce the two definitions of $M \rtimes_{\alpha} \Gamma$ are equivalent.

Problem 59. Prove that irrational rotation on the circle (with Lebesgue/Haar measure) is free and ergodic.

Problem 60. Let *M* be a finite von Neumann algebra with a faithful normal tracial state.

(1) Show for all $x, y \in M$, $|\operatorname{tr}(xy)| \le ||y|| \operatorname{tr}(|x|)$.

t

- (2) Show for all $x \in M$, $\operatorname{tr}(|x|) = \sup\{|\operatorname{tr}(xy)||y \in M \text{ with } \|y\| = 1\}.$
- (3) Define $||x||_1 = \operatorname{tr}(|x|)$ on M. Show that $|| \cdot ||_1$ is a norm on M.
- (4) Define a map $\varphi: M \to M_*$ by $x \mapsto \varphi_x$ where $\varphi_x(y) = \operatorname{tr}(xy)$. Show that φ is a well-defined isometry from $(M, \|\cdot\|_1) \to M_*$ with dense range.
- (5) Deduce that $L^1(M, \operatorname{tr}) := \overline{M}^{\|\cdot\|_1}$ is isometrically isomorphic to the predual M_* .

Problem 61. Continue the notation of Problem 60. Let $N \subseteq M$ be a (unital) von Neumann subalgebra.

- (1) Prove that the inclusion $N \to M$ extends to an isometric inclusion $i: L^1(N, \mathrm{tr}) \to L^1(M, \mathrm{tr})$.
- (2) Let $E: M \to N$ be the Banach adjoint of i under the identification $M_* = L^1(M, \mathrm{tr})$ and $N_* = L^1(N, \text{tr})$. Show that E is uniquely characterized by the equation

$$\operatorname{tr}_M(xy) = \operatorname{tr}_N(E(x)y) \qquad x \in M, y \in N.$$

Note: E is called the canonical trace-preserving conditional expectation $M \to N$.

Problem 62. Suppose M is a finite von Neumann algebra with normal faithful tracial state tr and $N \subseteq M$ is a (unital) von Neumann subalgebra.

- (1) Prove that the inclusion $N \to M$ extends to an isometric inclusion $L^2(N, \operatorname{tr}) \to L^2(M, \operatorname{tr})$.
- (2) Define $e_N \in B(L^2M, L^2N)$ be the orthogonal projection with range $L^2(N, \text{tr}) = \overline{N\Omega}^{\|\cdot\|_2} \subset$ $L^2(M, \mathrm{tr})$. Show that for all $x \in M$, $e_N x e_N^* \subset B(L^2N)$ commutes with the right action of N, and thus defines an element in N by Problem 50. Hint: Show the inclusion $e_N^*: L^2N \to L^2M$ commutes with the right N action, and deduce e_N commutes with the right N action.
- (3) For $x \in M$, define $E(x) = e_N x e_N^*$. Show that E(x) is uniquely characterized by the equation

$$\mathbf{r}_M(xy) = \mathrm{tr}_N(E(x)y) \qquad x \in M, y \in N.$$

Note: E is called the canonical trace-preserving conditional expectation $M \to N$. Part (3) implies this definition agrees with that from Problem 61.

Problem 63. Continue the notation of Problem 62.

- (1) Deduce that E is normal.
- (2) Deduce E(1) = 1 and E is N-N bilinear, i.e., for all $x \in M$ and $y, z \in N$, E(yxz) = yE(x)z.
- (3) Deduce that $E(x^*) = E(x)^*$.
- (4) Show that E is completely positive, which was defined in Problem 26. *Hint:* Use the characterization $E(x) = e_N x e_N^*$ from (5) of Problem 62.
- (5) Show that $E(x)^*E(x) \le E(x^*x)$ for all $x \in M$. Hint: Use the characterization $E(x) = e_N x e_N^*$ from (5) of Problem 62. Show that $e_N^* e_N$ is an orthogonal projection.
- (6) Show that E is faithful: $E(x^*x) = 0$ implies $x^*x = 0$. *Hint:* Prove this by looking at the vector states $\omega_{n\Omega}$ for $n \in N$.

Problem 64. Suppose M is a finite von Neumann algebra with faithful normal tracial state tr. Suppose further that there is an increasing sequence of von Neumann subalgebras $M_1 \subset M_2 \subset \cdots M$ such that $(\bigcup M_n)'' = M$ (considered as acting on L^2M). Let $E_n : M \to M_n$ be the canonical tracepreserving conditional expectation from Problem 62.

- (1) Prove that the $\|\cdot\|_2$ -topology agrees with the SOT on the unit ball of M. That is, prove that $x_n \to x$ SOT if and only if $||x_n \Omega - x \Omega||_2 \to 0$.
- (2) Prove that for all $x \in M$, $||E_n(x)\Omega x\Omega||_2 \to 0$ as $n \to \infty$.
- (3) Deduce that $E_n(x) \to x$ SOT as $n \to \infty$.

Problem 65. Suppose Γ is a countable group, and let $\operatorname{Prob}(\Gamma) = \left\{ \mu \in \ell^1 \Gamma \middle| \mu \ge 0 \text{ and } \sum_g \mu(g) = 1 \right\}.$

- (1) Prove that $\operatorname{Prob}(\Gamma)$ is weak^{*} dense in the state space of $\ell^{\infty}\Gamma$.
- (2) Let $F \subset \Gamma$ be finite, and consider $\bigoplus_{g \in F} \ell^1 \Gamma$ with the (product) weak topology. Let K be the weak closure of $\left\{ \bigoplus_{g \in F} g \cdot \mu - \mu \middle| \mu \in \operatorname{Prob}(\Gamma) \right\} \subset \bigoplus_{g \in F} \ell^1 \Gamma$. Prove K is convex and norm closed in $\bigoplus_{q \in F} \ell^1 \Gamma$.
- (3) Now assume Γ is amenable, i.e., there is a left Γ -invariant state on $\ell^{\infty}\Gamma$. Prove that $0 \in K$. Deduce that Γ has an approximately invariant mean.

Problem 66. Suppose Γ is a countable group, and let $\operatorname{Prob}(\Gamma)$ be as in Problem 65.

(1) Prove that if $a, b \in [0, 1]$, then

$$|a-b| = \int_0^1 |\chi_{(r,1]}(a) - \chi_{(r,1]}(b)| \, dr$$

(2) Deduce that for $\mu \in \operatorname{Prob}(\Gamma)$ and $h \in \Gamma$,

$$\|h \cdot \mu - \mu\|_{\ell^1 \Gamma} = \int_0^1 \sum_{g \in \Gamma} |\chi_{(r,1]}(\mu(h^{-1}g)) - \chi_{(r,1]}(\mu(g))| \, dr.$$

- (3) For $r \in [0,1]$ and $\mu \in \operatorname{Prob}(\Gamma)$, let $E(\mu,r) = \{g \in \Gamma | \mu(g) > r\}$. Show that for all $h \in \Gamma$, $hE(\mu, r) = \{g \in \Gamma | (h \cdot \mu)(g) > r\}.$ (4) Calculate $\int_0^1 |E(\mu, r)| dr.$ (5) Show that for $r \in [0, 1], \mu \in \operatorname{Prob}(\Gamma)$, and $h \in \Gamma$,

$$|hE(\mu, r) \triangle E(\mu, r)| = \sum_{g \in \Gamma} |\chi_{(r,1]}(\mu(h^{-1}g)) - \chi_{(r,1]}(\mu(g))|.$$

Deduce that $||h \cdot \mu - \mu||_1 = \int_0^1 |hE(\mu, r) \triangle E(\mu, r)| dr$.

(6) Suppose now that Γ has an approximate invariant mean, so that for every finite subset $F \subset \Gamma$ and $\varepsilon > 0$, there is a $\mu \in \operatorname{Prob}(\Gamma)$ such that

$$\sum_{h \in F} \|h \cdot \mu - \mu\|_1 < \varepsilon.$$

Show that for the μ corresponding to this F and ε ,

$$\int_0^1 \sum_{h \in F} |hE(\mu, r) \triangle E(\mu, r)| \, dr < \varepsilon \int_0^1 |E(\mu, r)| \, dr.$$

Deduce there is an $r \in [0, 1]$ such that $|hE(\mu, r) \triangle E(\mu, r)| < \varepsilon |E(\mu, r)|$ for all $h \in F$. (7) Use (6) above to construct a Følner sequence for Γ .

Problem 67. Recall that an *ultrafilter* ω on a set X is a nonempty collection of subsets of X such that:

- $\emptyset \notin \omega$,
- If $A \subseteq B \subseteq X$ and $A \in \omega$, then $B \in \omega$,
- If $A, B \in \omega$, then $A \cap B \in \omega$, and
- For all $A \subset X$, either $A \in \omega$ or $X \setminus A \in \omega$ (but not both!).
- (1) Find a bijection from the set of ultrafilters on \mathbb{N} to $\beta \mathbb{N}$, the Stone-Cech compactification of \mathbb{N} .
- (2) Let ω be an ultrafilter on N. Let X be a compact Hausdorff space and f : N → X. We say
 x = lim_{n→ω} f(n) if for every open neighborhood U of x, f⁻¹(U) ∈ ω.
 Prove that lim_{n→ω} f(n) always exists for any function f : N → X.
- (3) An ultrafilter on \mathbb{N} is called *principal* if it contains a finite set. Show that every principal ultrafilter on \mathbb{N} contains a unique singleton set, and that any two principal ultrafilters containing the same singleton set are necessarily equal. Thus we may identify the set of principal ultrafilters on \mathbb{N} with $\mathbb{N} \subset \beta \mathbb{N}$.
- (4) Determine $\lim_{n\to\omega} f(n)$ for $f: \mathbb{N} \to X$ as in (2) when ω is principal.
- (5) An ultrafilter on \mathbb{N} is called *free* or *non-principal* if it does not contain a finite set. Let ω be a free ultrafilter on \mathbb{N} . Suppose $\Gamma = \bigcup \Gamma_n$ is a locally finite group and m_n is the uniform probability (Haar) measure on Γ_n . Define $m : 2^{\Gamma} \to [0, 1]$ by $m(A) = \lim_{n \to \omega} m_n(A \cap \Gamma_n)$. Prove that m is a left Γ -invariant finitely additive probability measure on Γ , i.e., Γ is amenable.

Problem 68. Let X be a uniformly convex Banach space and $B \subset X$ a bounded set. Prove that the function $f: X \to [0, \infty)$ given by $f(x) = \sup_{b \in B} ||b - x||_X$ achieves its minimum at a unique point of X.

Problem 69. Let Γ be a countable discrete group. Show that an affine action $\alpha = (\pi, \beta) : \Gamma \to Aff(H)$ $(\alpha_g \xi := \pi_g \xi + \beta(g) \text{ for } \pi_g \in U(H) \text{ and } \beta(g) \in H \text{ such that } \alpha_g \circ \alpha_h = \alpha_{gh} \text{ for all } g, h \in \Gamma)$ is proper if and only if the cocycle part $\beta : \Gamma \to H$ is proper $(g \mapsto ||\beta(g)||$ is a proper map).

Problem 70. Recall that the *Schur product* of two matrices $a, b \in M_n(\mathbb{C})$ is given by the entry-wise product: $(a * b)_{i,j} := a_{i,j}b_{i,j}$.

- (1) Prove that if $a, b \ge 0$, then $a * b \ge 0$.
- (2) Suppose that $p \in \mathbb{R}[z]$ is a polynomial whose coefficients are all non-negative. Prove that if $a \geq 0$, then $p[a] \geq 0$, where $p[a]_{i,j} := p(a_{i,j})$ for $a \in M_n(\mathbb{C})$.

Note: Here we use the notation p[a] to not overload the functional calculus notation.

(3) Suppose that f is an entire function whose Taylor expansion at 0 has only non-negative real coefficients. Prove that is $a \ge 0$, then $f[a] \ge 0$, where again $f[a]_{i,j} := f(a_{i,j})$ for $a \in M_n(\mathbb{C})$.

Problem 71. Let A be a unital C*-algebra.

(1) Prove that a map $\Phi : A \to M_n(\mathbb{C})$ is completely positive if and only if the map $\varphi : M_n(A) \to \mathbb{C}$ given by $(a_{i,j}) \mapsto \sum_{i,j}^n \Phi(a_{i,j})_{i,j}$ is positive.

Hint: for one direction, note that $\varphi(a) = \vec{e}^* \Phi(a) \vec{e}$ where $\vec{e} \in \mathbb{C}^{n^2}$ is the vector (e_1, e_2, \ldots, e_n) where $e_i \in \mathbb{C}^n$ is the *i*-th standard basis vector. For the other direction, use GNS with respect to φ , and consider $V : \mathbb{C}^n \to L^2(M_n(A), \varphi)$ given by $Ve_i = \pi_{\varphi}(E_{ij})\Omega_{\varphi}$ where (E_{ij}) is a system of matrix units in $M_n(\mathbb{C}) \subseteq M_n(A)$. Then use Stinespring.

- (2) Let $S \subset A$ be an operator subsystem, and let $\psi : S \to \mathbb{C}$ be a positive linear functional. Prove $\|\psi\| = \psi(1)$. Deduce that any norm-preserving (Hahn-Banach) extension of ψ to A is also positive.
- (3) Let $S \subset A$ be an operator subsystem, and let $\Phi : S \to M_n(\mathbb{C})$ be a (unital) completely positive map. Show that Φ extends to a (unital) completely positive map $A \to M_n(\mathbb{C})$.

Problem 72. Suppose Γ is a countable discrete group, and suppose $\varphi : L\Gamma \to L\Gamma$ is a normal completely positive map. Prove that $f : \Gamma \to \mathbb{C}$ given by $f(g) := \operatorname{tr}_{L\Gamma}(\varphi(\lambda_g)\lambda_g^*)$ is a positive definite function.

Problem 73. Prove that the following are equivalent for a finite von Neumann algebra $(M, tr) \subset B(H)$ with faithful normalized tracial state.

- (1) M is amenable, i.e., there is a conditional expectation $E: B(H) \to M$.
- (2) There is a sequence $(\varphi_n : M \to M)$ of (normal) trace-preserving completely positive maps such that $\varphi_n \to \text{id pointwise in } \|\cdot\|_M$, and for all $n \in \mathbb{N}$, the induced map $\widehat{\varphi}_n \in B(L^2M)$ given by $m\Omega \mapsto \varphi_n(m)\Omega$ is finite rank.

Problem 74. Suppose that Γ is a countable discrete group such that every cocycle is inner. Suppose (H, π) is a unitary representation and $(\xi_n) \subset H$ is a sequence of unit vectors such that $\|\pi_g \xi_n - \xi_n\| \to 0$ as $n \to \infty$ for all $g \in \Gamma$. Follow the steps below to find a non-zero Γ -invariant vector in H. (We may assume that no ξ_n is fixed by Γ .)

- (1) Enumerate $\Gamma = \{g_1, g_2, ...\}$. Explain why you can pass to a subsequence of (ξ_n) to assume that for all $n \in \mathbb{N}$, $\|\pi_{g_i}\xi_n \xi_n\| < 4^{-n}$ for all $1 \le i \le n$.
- (2) For $n \in \mathbb{N}$, consider the inner cocycles $\beta_n(g) := \xi_n \pi_g \xi_n$. Let $(K, \sigma) = \bigoplus_{n \in \mathbb{N}} (H, \pi)$. Define $\beta : \Gamma \to K$ by $\beta(g)_n := 2^n \beta_n(g)$. Prove that $\beta(g) \in H$ is well-defined for every $g \in \Gamma$. Then show that β is a cocycle for (K, σ) .
- (3) Deduce β is inner and thus bounded. Thus there is a $\kappa \in K \setminus \{0\}$ such that $\beta(g) = \kappa \sigma_g \kappa$ for all $g \in \Gamma$.
- (4) Prove that $\|\beta_n(g)\| \to 0$ uniformly for $g \in \Gamma$. That is, show that for all $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that n > N implies $\|\beta_n(g)\| < \varepsilon$ for all $g \in \Gamma$.
- (5) Fix $N \in \mathbb{N}$ such that $\|\beta_N(g)\| = \|\xi_N \pi_g \xi_N\| < 1$ for all $g \in \Gamma$. Show there is a $\xi_0 \in H \setminus \{0\}$ such that $\pi_g \xi_0 = \xi_0$ for all $g \in \Gamma$.
 - *Hint:* Look at $\{\pi_g \xi_N | g \in \Gamma\} \subset (H)_1$ and apply Problem 68.
- (6) (optional) Use a similar trick to finish the proof of $(1) \Rightarrow (2)$ from the same theorem from class.

Problem 75 (optional). As best as you can, edit the equivalent definitions I gave in class for property (T) for a countable discrete group Γ to be relative to a subgroup $\Lambda \leq \Gamma$. Then prove all the equivalences.

Problem 76. Suppose $\Gamma \curvearrowright (X, \mu)$ is a free p.m.p. action and $\mathcal{R} = \{(x, gx) | x \in X, g \in \Gamma\}$ is the corresponding countable p.m.p. equivalence relation. Follow the steps below to show $L^{\infty}(X, \mu) \rtimes \Gamma \cong L\mathcal{R}$.

- (1) Prove that $\theta : (x, g) \mapsto (x, g^{-1}x)$ induces a unitary operator $v \in B(L^2\mathcal{R}, L^2(X \times \Gamma, \mu \times \gamma))$ where γ is counting measure on Γ .
- (2) Deduce that θ is a p.m.p. isomorphism $(X \times \Gamma, \mu \times \gamma) \to (\mathcal{R}, \nu)$.
- (3) Show that $v^*M_f v = \lambda(f)$ for all $f \in L^{\infty}(X,\mu)$. Here, $(M_f\xi)(x,g) = f(x)\xi(x,g)$ for $\xi \in L^2(X \times \Gamma, \mu \times \gamma)$.
- (4) Show that $v^*u_g v = L_{\varphi_g}$ where $\varphi_g \in [\mathcal{R}]$ is the isomorphism $x \mapsto g \cdot x$. Here, $(u_g \xi)(x,h) = \xi(g^{-1}x, g^{-1}h)$ for all $\xi \in L^2(X \times \Gamma, \mu \times \gamma) \cong L^2(X, \mu) \otimes \ell^2 \Gamma$.
- (5) Deduce that $v^*(L^{\infty}(X,\mu) \rtimes \Gamma)v \subset L\mathcal{R}$.
- (6) Show that conjugation by v takes the commutant of L[∞](X, μ) × Γ into RR. Hint: Show that right multiplication by L[∞](X, μ) and the right action of u_g are both taken into RR.
- (7) Deduce that $v^*(L^{\infty}(X,\mu) \rtimes \Gamma)v = L\mathcal{R}$.

Problem 77. Let \mathcal{R} be a countable p.m.p. equivalence relation on (X, μ) . Let $A = L^{\infty}(X, \mu) \subset L\mathcal{R}$. Prove that the von Neumann subalgebra of $B(L^2(\mathcal{R}, \nu))$ generated by $A \cup JAJ$ is the von Neumann algebra of multiplication operators by elements of $L^{\infty}(\mathcal{R}, \nu)$.

Problem 78. Let M be a von Neumann algebra. A *weight* on M is a function $\varphi : M_+ \to [0, \infty]$ such that for all $r \in [0, \infty)$ and $x, y \in B(H)_+$, $\varphi(rx + y) = r\varphi(x) + \varphi(y)$, with the convention that for $s \in [0, \infty)$,

$$\infty \cdot s = \begin{cases} \infty & \text{if } s > 0 \\ 0 & \text{if } s = 0. \end{cases}$$

Define

$$\begin{aligned} \mathfrak{p}_{\varphi} &= \{ x \in M | \varphi(x) < \infty \} \\ \mathfrak{n}_{\varphi} &= \{ x \in M | x^* x \in \mathfrak{p}_{\varphi} \} \\ \mathfrak{m}_{\varphi} &= \mathfrak{n}_{\varphi}^* \mathfrak{n}_{\varphi} = \left\{ \sum_{i=1}^n x_i^* y_i \middle| x_i, y_i \in \mathfrak{n}_{\varphi} \text{ for all } i = 1, \dots, n \right\}. \end{aligned}$$

(1) Prove that

- (a) \mathfrak{p}_{φ} is a hereditary subcone of M_+ , i.e.,
 - (subcone) $r \ge 0$ and $x, y \in \mathfrak{p}_{\varphi}$ implies $rx + y \in \mathfrak{p}_{\varphi}$
 - (hereditary) $0 \le x \le y$ and $y \in \mathfrak{p}_{\varphi}$ implies $x \in \mathfrak{p}_{\varphi}$.
- (b) \mathfrak{n}_{φ} is a left ideal of M. Hint: Prove that for all $x, y \in M$, $(x \pm y)^*(x \pm y) \le 2(x^*x + y^*y)$.
- (c) \mathfrak{m}_{φ} is algebraically spanned by \mathfrak{p}_{φ} . *Hint: Use polarization.*
- (d) $\mathfrak{m}_{\varphi} \cap M_{+} = \mathfrak{p}_{\varphi}.$
- (e) \mathfrak{m}_{φ} is a hereditary *-subalgebra of M (hereditary is defined the same way as above).
- (2) When M = B(H) and $\varphi = \text{Tr}$, show $\mathfrak{m}_{\text{Tr}} = \mathcal{L}^1(H)$ and $\mathfrak{n}_{\text{Tr}} = \mathcal{L}^2(H)$.