
Penneys Math 7212, Analytic properties Spring 2024

6. Analytic and approximation properties

We discuss various analytic and approximation properties for countable discrete groups.
In this section, Γ always denotes a countable discrete group.

6.1. Positive definite functions and cp multipliers. This section follows a mini-course
I took from Narutaka Ozawa at IMSc in February 2009. Let Γ be a discrete countable group.

Definition 6.1.1. A function f : Γ → C is called positive definite if for every g1, . . . , gn ∈ Γ,
[f(g−1

i gj)] is positive in Mn(C).
Lemma 6.1.2. Suppose a ∈ Mn(C) is positive and constant along the diagonal. Then
|aij| ≤ akk for all 1 ≤ i, j, k ≤ n.

Proof. Let b ∈Mn(C) such that a = b∗b. Then for all i, j,

|aij|2 = |⟨ei|aej⟩|2 = |⟨bei|bej⟩|2 ≤
(CS)

∥bei∥2∥bej∥2 = ⟨ei|aei⟩ · ⟨ej|aej⟩ = aiiajj.

Since aii = ajj, we have |aij| ≤ aii. □

Proposition 6.1.3. If f : Γ → C is positive definite, then f ∈ ℓ∞Γ with ∥f∥∞ = f(e).

Proof. For g ∈ Γ, |f(g)| = |a12| ≤ a11 = f(e) for a =

(
f(e) f(g)
f(g−1) f(e)

)
≥ 0. □

Definition 6.1.4. Given f : Γ → C, we get a multiplier Mf : CΓ → CΓ by

Mf

∑
xgg :=

∑
f(g)xgg.

Theorem 6.1.5. For f : Γ → C, the following are equivalent:

(1) f is positive definite.
(2) The sesquilinear form ⟨

∑
xgg,

∑
yhh⟩f :=

∑
f(h−1g)xgyh on CΓ is positive.

(3) f is a coefficient of a unitary representation, i.e., there is a Hilbert space H and
group homomorphism π : Γ → U(H) and η ∈ H such that f(g) = ⟨πgη, η⟩.

(4) Mf extends to a normal cp map LΓ → LΓ.

Proof.
(1) ⇔ (2): Observe that [f(g−1

i gj] ∈ Mn(C) is positive if and only if for all x ∈ Cn,

x∗[f(g−1
i gj)]x ≥ 0. This condition is equivalent to ⟨ · , · ⟩f ≥ 0.

(2) ⇒ (3): Let ℓ2fΓ denote the completion of the quotient of CΓ under the length zero

vectors under ⟨ · , · ⟩f . We get a Γ-action π : Γ → U(ℓ2fΓ) as usual by (πgξ)(h) :=

ξ(g−1h). Indeed, π−1
g = πg−1 , and πg is isometric:

∥πgξ∥2f =
∑
h,k

f(k−1h)ξ(g−1h)ξ(g−1k) =
∑
h,k

f((g−1k)−1(g−1h))ξ(g−1h)ξ(g−1k) = ∥ξ∥2f .
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Finally, note f(g) = ⟨πgδe, δe⟩ for all g ∈ Γ.
(3) ⇒ (4): We will use Fell’s Absorption Principle, which you proved on homework,

which states that if (H, π) is any unitary representation of Γ and λ : Γ → U(ℓ2Γ)
is the left regular representation, then (ℓ2Γ ⊗ H,λ ⊗ π) is unitarily equivalent to
(ℓ2Γ⊗H, λ⊗ 1).
The LΓ-representation π̃ : LΓ → B(ℓ2Γ⊗H) given by

g 7→ λg ⊗ 1 7→ λg ⊗ πg

is normal as it is a composite of normal unitary ∗-homomorpisms. Define v : ℓ2Γ →
ℓ2Γ⊗H by ξ 7→ ξ ⊗ η

∥η∥ , which is an isometry. Observe that for all g, h ∈ Γ,

v∗π̃(λg)vδh = v∗π̃(λg)δh ⊗
η

∥η∥
= v∗δgh ⊗ πg

η

∥η∥
=

1

∥η∥2
⟨πgη, η⟩δgh =

1

∥η∥2
f(g)λgδh.

Thus by linearity, for all x ∈ CΓ, Mfx = ∥η∥2v∗π̃(x)v, which is manifestly normal and
cp.
(4) ⇒ (1): Let g1, . . . , gn ∈ Γ. Then

[λg−1
i gj

] =

λg1...
λgn

∗ [
λg1 · · · λgn

]
≥ 0

in Mn(LΓ). Now since Mf is cp, [Mfλg−1
i gj

] ≥ 0 in Mn(LΓ), so

[f(g−1
i gj)] =

λg1 . . .
λgn

 [Mfλg−1
i gj

]

λg1 . . .
λgn

∗

≥ 0

in Mn(LΓ), and thus also in Mn(C). □

Example 6.1.6. Suppose φ : LΓ → LΓ is cp. Define f(g) := tr(φ(λg)λ
∗
g). We claim that

Mf is cp as it is the composite of the following cp maps:

LΓ LΓ⊗ LΓ LΓ⊗ LΓ LΓ

λg λg ⊗ λg λg ⊗ λh δg=hλg

x⊗ y x⊗ φ(y)

∆ id⊗φ Ad(v)

where vδg := δg ⊗ δg. The above composite applied to λg is

λg 7→ λg ⊗ λg 7→ v∗(λg ⊗ φ(λg))v.

If φ(λg)δe =
∑
yhδh, then applying the above operator to the separating vector δe, we obtain

v∗(λg ⊗ φ(λg))vδe = v∗(λg ⊗ φ(λg))(δe ⊗ δe) = v∗
∑
h

yhδg ⊗ δh = ygδg = ygλgδe.

Finally we know that yg = tr(λ∗gφ(λg)), verifying the claim.
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Example 6.1.7. If Λ ≤ Γ is a subgroup, then the characterisic function χΛ(g) := ⟨πgδΛ, δΛ⟩
is positive definite, where π : Γ → U(ℓ2Γ/Λ). In this case, MχΛ

= ELΛ, the canonical
trace-preserving conditional expectation.

Recall that the reduced group C∗-algebra C∗
rΓ is the norm closure of spanλΓ ⊂ B(ℓ2Γ).

Definition 6.1.8. The universal group C∗-algebra C∗Γ is the closure of the group algebra
CΓ under the uniform norm

∥x∥u := sup {∥π(x)∥|(H, π) a unitary representation of Γ} .
Observe ∥ · ∥u is well-defined as ∥π(g)∥u = 1 for all g ∈ Γ.

Remark 6.1.9. The proof of (3) ⇒ (4) in Theorem 6.1.5 also shows that if f : Γ → C is
positive definite, we also get a cp multiplier on C∗

rΓ and C∗Γ. Moreover, we have ∥Mf∥ ≤
∥f∥∞ as a cp multiplier on either of C∗

rΓ,C
∗Γ.

6.2. Amenability for discrete groups. The following is the main result of this section.

Theorem 6.2.1. The following are equivalent for a countable discrete group Γ. If any/all
are satisfied, we call Γ amenable.

(A1) There is a state m ∈ (ℓ∞Γ)∗ such that m(g·f) = m(f) for all g ∈ Γ, where (g·f)(h) :=
f(g−1h).

(A2) Γ has a left invariant mean, i.e., there is a finitely additive (left) Γ-invariant proba-
bility measure on 2Γ, the power set of Γ.

(A3) Γ has an approximate invariant mean, i.e., for every finite F ⊂ Γ and ε > 0, there
is a

µ ∈ Prob(Γ) :=

{
µ ∈ ℓ1Γ

∣∣∣∣∣µ ≥ 0 and
∑
g

µ(g) = 1

}
such that maxg∈F ∥g · µ− µ∥ < ε, where (g · µ)(A) := µ(g−1A).

(A4) (Følner sequence) there is a sequence of finite subsets ∅ ≠ Fn ⊂ Γ with Γ =
⋃
Fn

such that
|gFn△Fn|

|Fn|
→ 0 ∀ g ∈ Γ.

Here, △ denotes the symmetric difference of sets.
(A5) The left regular representation λ : Γ → U(ℓ2Γ) has almost invariant vectors, i.e., for

every finite F ⊂ Γ and ε > 0, there is a ξ ∈ ℓ2Γ such that ∥λgξ − ξ∥ < ε∥ξ∥ for all
g ∈ F .

(A6) The trivial representation is weakly contained in the left regular representation, i.e.,
there is sequence of unit vectors (ξn) ⊂ ℓ2Γ such that ∥λgξn − ξn∥ → 0 for all g ∈ Γ.

(A7) There is a sequence (fn) of finitely supported positive definite functions on Γ such
that fn → 1 pointwise.

(A8) C∗
rΓ

∼= C∗Γ
(A9) There is a 1-dimensional representation of C∗

rΓ.
(A10) (Kesten Criterion) For all finite F ⊂ Γ,∥∥∥∥∥ 1

|F |
∑
g∈F

λg

∥∥∥∥∥
B(ℓ2Γ)

= 1.
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(A11) (LΓ amenable) There is a conditional expectation E : B(ℓ2Γ) → LΓ.
(A12) (Hypertrace) There is a state φ ∈ B(ℓ2Γ)∗ such that

• φ(xλg) = φ(λgx) for all g ∈ Γ and x ∈ B(ℓ2Γ), and
• φ|LΓ = trLΓ (recall that trLΓ = ωδe = ⟨ · δe, δe⟩).

Non-example 6.2.2. The free group Fn for n ≥ 2 is not amenable. For n = 2, suppose
F2 = ⟨a, b⟩. For x ∈ {a, b, a−1, b−1⟩, let Wx be the set of reduced words starting with x, so
that F2 can be written as a disjoint union

F2 = {e} ⊔Wa ⊔Wb ⊔Wa−1 ⊔Wb−1 .

But since Wb ⊔Wa−1 ⊔Wb−1 ⊂ aWa−1 and Wa ⊔Wa−1 ⊔Wb−1 ⊂ bWb−1 , we also have

Wa ⊔ aWa−1 = F2 = Wb ⊔ bWb−1

so that F2 has no invariant mean.

Example 6.2.3. Finite groups are amenable.

Example 6.2.4. The sets Fn := [−n, n] give a Følner sequence for Z. Indeed, for all m ∈ Z,
eventually n ≥ m, for which

|(m+ Fn)△Fn|
|Fn|

=
2m

2n+ 1

n→∞−−−→ 0.
m

m
Fn

m+Fn

Example 6.2.5. A discrete countable group Γ is called locally finite if Γ = lim−→Γn where
each Γn is finite, i.e., every finite subset F ⊂ Γ is contained in a finite subgroup. Let mn be
the uniform measure on Γn and let ω be a non-principal/free ultrafilter on N, i.e., ω ∈ βN\N.
For f ∈ ℓ∞Γ, we define

m(f) := lim
ω
mn(f |Γn),

and one checks m(g · f) = m(f) for all g ∈ Γ.

Example 6.2.6. The class of amenable groups is closed under products, extensions, sub-
groups, quotients, and direct limits.

Example 6.2.7. Combining Examples 6.2.3, 6.2.4, and 6.2.6, all abelian groups are amenable.
Indeed, every group is the direct limit of its finitely generated subgroups.

We now prove the following implications:

(A12) (A11) (A5) (A10)

(A1) (A3) (A4) (A6)

(A2) (A9) (A8) (A7)

(A1)⇒(A2). If m ∈ (ℓ∞Γ)∗ is a left Γ-invariant state, define µ : 2Γ → [0, 1] by µ(A) :=

m(χA). □
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(A2)⇒(A1). If µ : 2Γ → [0, 1] is a left Γ-invariant mean, define m(f) :=
∫
f dµ, which

is a left Γ-invariant state on ℓ∞Γ. Here,
∫
f dµ is defined in the usual way, first for

positive functions as a sup over simple 0 ≤ ϕ ≤ f , and then extending to all bounded
functions. □

Exercise 6.2.8. Prove (A1)⇒(A3) (originally due to Day) and (A3)⇒(A4) (originally due
to Namioka).

Exercise 6.2.9. Show (A5)⇔(A6).

(A4)⇒(A6). Suppose (Fn) is a Følner sequence for Γ. Consider the unit vectors ξn :=

|Fn|−1/2χFn ∈ ℓ2Γ. For all g ∈ Γ,

∥λgξn − ξn∥22 =
∑
h

|ξn(g−1h)− ξn(h)|2

=
1

|Fn|
∑
h

|χFn(g
−1h)− χFn(h)|2

=
gFn△Fn

|Fn|
n→∞−−−→ 0. □

(A6)⇒(A7). Let (ξn) ⊂ ℓ2Γ be a sequence of unit vectors such that ∥λgξn − ξn∥ → 0

for all g ∈ Γ. For n ∈ N, define φn(g) := ⟨λgξn, ξn⟩, which is positive definite by
Theorem 6.1.5. Moreover, for all g ∈ Γ,

|φn(g)− 1| = |⟨λgξn, ξn⟩ − ⟨ξn, ξn⟩| = |⟨λgξn − ξn, ξn⟩| ≤ ∥λgξn − ξn∥
n→∞−−−→ 0.

We can inductively construct finite subsets En ⊂ Γ with En ⊆ En+1 and
⋃
En = Γ

such that ∥ηn − ξn∥ < 2−n, where ηn := ξn|En . Setting fn(g) := ⟨λgηn, ηn⟩, we have fn
is positive definite, finitely supported, and for all g ∈ Γ,

|φn(g)− fn(g)| = |⟨λgξn, ξn⟩ − ⟨λgηn, ηn⟩| = |⟨λgξn, ξn − ηn⟩ − ⟨λg(ηn − ξn), ηn⟩|

≤ 2∥ξn − ηn∥ = 21−n n→∞−−−→ 0. □

Definition 6.2.10 (Banach limits in B(H)). Let Lim denote any positive extension of
limn→∞ from c to ℓ∞ obtained from Hahn-Banach. If (xn) ⊂ B(H) is a norm-bounded
sequence, define Lim xn by ⟨Limxnη, ξ⟩ := Lim⟨xnη, ξ⟩. Observe Limxn lies in the WOT-
closure of Conv{xn}, so if (xn) ⊂M ⊆ B(H) for some von Neumann algebra, then Limxn ∈
M . Moreover, if xn ≥ 0 for all n, then Limxn ≥ 0 also.
Now suppose Φn : M → M is a sequence of ucp maps. Then map (LimΦn)(x) :=

LimΦn(x) is manifestly ucp. Indeed, if (xij) ∈Mn(M)+, then for all ξ1, . . . , ξn ∈ H,〈
[(LimΦn)(xij)]

ξ1...
ξn

 ,
ξ1...
ξn

〉 = Lim

〈
[Φn(xij)]

ξ1...
ξn

 ,
ξ1...
ξn

〉 ≥ 0.
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(A4)⇒(A11). Given a Følner sequence (Fn), define Φn := 1
|Fn|
∑

g∈Fn
ρgxρ

∗
g where

ρ : Γ → B(ℓ2Γ) is the right regular representation. Setting E := LimΦn, we see
E(x) ∈ RΓ′ = LΓ as∥∥∥∥∥ρh

(
1

|Fn|
∑
g∈Fn

ρgxρ
∗
g

)
ρ∗h −

1

|Fn|
∑
g∈Fn

ρgxρ
∗
g

∥∥∥∥∥ ≤ |hFn|△|Fn|
|Fn|

· ∥x∥ n→∞−−−→ 0.

Since each Φn is cp and preserves LΓ, E is cp and preserves LΓ. □

(A11)⇒(A12). Immediate from the more general Theorem 6.2.11 below. □

Theorem 6.2.11. Suppose M ⊂ B(H) is a von Neumann algebra with normal faithful
tracial state tr. The following are equivalent:

• There is a conditional expectation E : B(H) → M , i.e., a unital completely positive
map B(H) →M which is M-bimodular.

• There is a hypertrace for M , i.e., there is a state φ ∈ B(H)∗ such that φ(xm) =
φ(mx) for all x ∈ B(H) and m ∈M and φ|M = trM .

Proof.
⇒: Set φ := trM ◦E. Then for all x ∈ B(H) and m ∈M ,

φ(xm) = trM(E(xm)) = trM(E(x)m) = trM(mE(x)) = trM(E(mx)) = φ(mx).

Since E(1) = 1, it also follows that φ(m) = trM(m).
⇐: For x ∈ B(H), define ψx on M by ψx(m) := φ(mx).

Claim. When x ≥ 0, ψx is a state on M such that 0 ≤ ψx ≤ ∥x∥ · trM = ∥x∥ · ωΩM
.

Proof of claim. For m ∈M+, observe that

ψx(m) = φ(m1/2xm1/2)

= |⟨xm1/2Ω,m1/2Ω⟩φ|
≤

(CS)
|⟨xm1/2Ω, xm1/2Ω⟩φ|1/2 · |⟨m1/2Ω,m1/2Ω⟩φ|1/2

= φ(m1/2x2m1/2)1/2φ(m)1/2

≤ ∥x∥ · φ(m).

Since φ|M = trM , ψx(m) ≤ ∥x∥ tr(m) for all x ∈ B(H)+ and m ∈M+. □

Claim. When x ≥ 0, ψx is normal.

Proof of claim. If (mi) ⊂M+ such that mi ↗ m, then

ψx(m−mi) ≤ ∥x∥ · tr(m−mi) ↘ 0. □

Claim. For each x ∈ B(H)+, there is a unique E(x) ∈ M+ such that ψx(m) =
trM(mE(x)) for all m ∈M .
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Proof of claim.
Uniqueness: If y, z ∈M such that trM(my) = trM(mz) for all m ∈M , then

⟨yΩ,m∗Ω⟩L2M = ⟨zΩ,m∗Ω⟩L2M ∀m ∈M.

It follows that yΩ = zΩ, which implies y = z as Ω is separating.
Existence: First, suppose x ≥ 0. Since 0 ≤ ψx ≤ ∥x∥ trM = ∥x∥ωΩM

, there is a unique
x′ ∈M ′ with 0 ≤ x′ ≤ ∥x∥ such that

ψx(m) = ⟨mx′ΩM ,ΩM⟩L2M ∀m ∈M.

Since M ′ = JMJ , there is a unique E(x) ∈M+ such that x′ = JE(x)J , and thus

ψx(m) = ⟨mJE(x)JΩM ,ΩM⟩L2M = ⟨mE(x)ΩM ,ΩM⟩L2M = trM(mE(x)) ∀m ∈M.

□

Claim. The right action of M on L2(B(H), φ) given by xΩφ 7→ xmΩφ is bounded.

Proof. For all x ∈ B(H),

∥xmΩ∥2φ = φ(m∗x∗xm) = φ(mm∗x∗x) = trM(mm∗E(x∗x))

= trM(E(x∗x)1/2mm∗E(x∗x)1/2) ≤ ∥mm∗∥ · trM(E(x∗x))

= ∥mm∗∥ · φ(x∗x) = ∥m∥2 · ∥xΩ∥2φ. □

We now mimic the proof of Stinespring’s Theorem. Observe that the map v : L2M →
L2(B(H), φ) given by mΩM 7→ mΩφ is an M −M bilinear isometry. It follows im-
mediately that E(x) := v∗xv ∈ B(L2M) commutes with the right M -action and thus
lies in M , thus giving our M −M bimodular ucp map. It remains to prove that our
new definition of E(x) agrees with our old definition, i.e., trM(mv∗xv) = φ(mx) for
all m ∈M :

trM(mv∗xv) = ⟨v∗mxvΩM ,ΩM⟩L2M = ⟨mxΩφ,Ωφ⟩φ = φ(mx). □

(A12)⇒(A1). Recall ℓ∞Γ ↪→ B(ℓ2Γ) by (fξ)(g) := f(g)ξ(g). Observe that if f ∈ ℓ∞Γ
and g ∈ Γ, then

(λgfλ
∗
gξ)(h) = (fλg−1ξ)(g−1h) = f(g−1h)(λg−1ξ)(g−1h) = f(g−1h)ξ(h) = ((g · f)ξ)(h).

Restricting the LΓ-hypertrace φ to ℓ∞Γ ⊂ LΓ, we have

φ(g · f) = φ(λgfλ
∗
g) = φ(f),

so φ yields a Γ-invariant state on ℓ∞Γ. □

(A7)⇒(A8). First, note that ∥λx∥ ≤ ∥x∥u for all x ∈ C∗
rΓ, and thus λ : CΓΓ → B(ℓ2Γ)

extends to a surjective unital ∗-homomorphism λ̃ : C∗Γ → C∗
rΓ ⊂ B(ℓ2Γ). We must

show λ̃ is injective.
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Suppose (fn) is a sequence of finitely supported positive definite functions on Γ which
converges to 1 pointwise. By Remark 6.1.9, we get cp multipliersMn,Mn,r on C∗Γ,C∗

rΓ

respectively. To prove λ̃ is injective, we will use the following two facts.

(1) λ̃ ◦Mn = Mn,rλ̃ on C∗Γ, since both are continuous with respect to ∥ · ∥u and
they agree on the dense subspace CΓ.

(2) Since fn → 1 pointwise, Mnx → x for x ∈ CΓ. Since ∥fn∥∞ are uniformly
bounded by sup fn(e) as fn(e) → 1, Mnx→ x for all x ∈ C∗Γ by density of CΓ
in C∗Γ by a standard ε/3 argument.

Suppose x ∈ C∗Γ such that Λ̃(x) = 0. Then by (1) above,

λ̃(Mnx) =Mn,rλ̃(x) = 0 ∀n ∈ N.

But since fn is finitely supported, Mnx ∈ CΓ for all n, and thus λ̃(Mnx) = 0 implies
Mnx = 0. Thus x = limMnx = 0 by (2). □

(A8)⇒(A9). Note that C∗Γ has a 1-dimensional representation as the trivial represen-

tation CΓ → C by
∑
xgg 7→

∑
xg on C is subordinate to ∥ · ∥u. □

Lemma 6.2.12. Let A be a unital C∗-algebra. Suppose φ ∈ A∗ is a state and a ∈ A such
that φ(a∗a) = |φ(a)|2. Then for all b ∈ A, φ(a)φ(b) = φ(ba).

Proof. Let (Hφ, πφ,Ωφ) be the cyclic GNS representation of A with respect to φ. Note
that

∥πφ(a)Ωφ∥2 = φ(a∗a) = |φ(a)|2 = |⟨πφ(a)Ωφ,Ωφ⟩|2 ∥
(CS)

πφ(a)Ωφ∥2,

and thus the Cauchy-Schwarz inequality above is an equality. Thus there is an α ∈ C
such that

πφ(a)Ωφ = αΩφ.

It follows immediately that

φ(ba) = ⟨πφ(b)πφ(a)Ωφ,Ωφ⟩ = α⟨πφ(b)Ωφ,Ωφ⟩ = φ(a)φ(b). □

(A9)⇒(A1). Let ϕ : C∗
rΓ → C be a 1-dimensional representation. Then ϕ is a state,

and we can extend ϕ to a state φ ∈ B(ℓ2Γ)∗ by Hahn-Banach. Note that for every
g ∈ Γ,

φ(λgλ
∗
g) = φ(λ∗gλg) = φ(1) = 1 = |φ(λg)|2.

Then for all f ∈ ℓ∞Γ, g · f = λgfλ
∗
g, and thus by Lemma 6.2.12,

φ(g · f) = φ(λgfλ
∗
g) = φ(λg)φ(f)φ(λ

∗
g) = φ(f)

and thus φ restricts to a Γ-invariant state on ℓ∞Γ. □
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(A6)⇒(A10). Let (ξn) ⊂ ℓ2Γ be a sequence of almost invariant vectors. Then for every
finite F ⊂ Γ,

1 = lim
n

∥∥∥∥∥ 1

|F |
∑
g∈F

ξn

∥∥∥∥∥
2

= lim
n

∥∥∥∥∥ 1

|F |
∑
g∈F

λgξn

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

|F |
∑
g∈F

λg

∥∥∥∥∥ ≤ 1. □

(A10)⇒(A5). Let F ⊂ Γ be finite such that F = F−1. Then x = 1
|F |
∑

g∈F λg is

self-adjoint and has operator norm equal to 1. Let ε > 0. There is a ξ ∈ ℓ2Γ such that
|⟨xξ, ξ⟩| > 1− ε′, where ε′ > 0 is to be determined in terms of ε and |F |. Let |ξ| ∈ ℓ2Γ
be the pointwise absolute value of ξ: |ξ|(g) := |ξ(g)|. We calculate

1− ε′ < |⟨xξ, ξ⟩| =

∣∣∣∣∣∑
g∈Γ

(xξ)(g)ξ(g)

∣∣∣∣∣
≤
∑
g∈Γ

|(xξ)(g)| · |ξ(g)| ≤
∑
g∈Γ

(x|ξ|)(g) · |ξ|(g)

= ⟨x|ξ|, |ξ|⟩ 1
F

∑
g∈F

⟨λg|ξ|, |ξ|⟩︸ ︷︷ ︸
≤1 ∀g∈F

.

Thus for all g ∈ F , ⟨λg|ξ|, |ξ|⟩ > 1− |F |ε′, and we have

∥λg|ξ| − |ξ|∥2 = ∥λg|ξ|∥2 + ∥|ξ|∥2 − ⟨λg|ξ|, |ξ|⟩ − ⟨λg−1|ξ|, |ξ|⟩
= 1− ⟨λg|ξ|, |ξ|⟩+ 1− ⟨λg−1|ξ|, |ξ|⟩
< 2|F |ε′ < ε2

whenever ε′ < min{ ε2

2|F | ,
1
|F |}. □

6.3. Amenability for von Neumann algebras. TODO:

6.4. The Haagerup property for discrete groups and tracial von Neumann alge-
bras. For this section, Γ is a discrete countable group.

Definition 6.4.1. We say Γ has the Haagerup property if

[HP] there is a sequence (φn) of positive definite c0 functions on Γ such that φn → 1
pointwise.

Example 6.4.2.

(1) All amenable gropus have [HP], as finitely supported implies c0.
(2) Free groups Fn with n ≥ 2 have [HP]. We will prove this once we have a second

equivalent characterization of [HP].
(3) SL(2,Z) = Z/4 ∗Z/2 Z/6 ⊃ F2 as an index 12 subgroup.
(4) PSL(2,Z) = Z/2 ∗ Z/3
(5) Groups which act on trees (e.g. Fn acting on its Cayley graph)
(6) Coxeter groups ⟨g1, . . . , gn|(gigj)mij where mii = 1, mij ≥ 2 i ̸= j⟩. Here, mij = ∞ is

ok, which means there is no relation of this form.
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(7) The class of groups with [HP] is closed under taking subgroups, direct products, free
products.

(8) If H has [HP] and H ≤ G with finite index, then G has [HP].

Definition 6.4.3. A cocycle of Γ is a triple (H, π, β) where (H, π) is a unitary representation
and β : Γ → H such that

β(hg) = β(h) + πhβ(g) ∀ g, h ∈ Γ.

A cocycle is called inner if there is a ξ ∈ H such that β(g) = ξ − πgξ for all g ∈ Γ.

Facts 6.4.4. We have the following facts about cocycles.

(β1) β(e) = β(e2) = β(e) + πeβ(e) = 2β(e), so β(e) = 0.
(β2) 0 = β(e) = β(g−1g) = β(g−1) + πg−1β(g), so β(g−1) = −πg−1β(g).
(β3) ∥β(g−1h)∥ = ∥β(g−1) + πg−1β(h)∥ = ∥ − πg−1β(g) + πg−1β(h)∥ = ∥β(g)− β(h)∥.

The motivation for these cocycles is as follows. Let

Aff(H) : = {affine invertible transformations of H}
= {ξ 7→ uξ + η|η ∈ H, u ∈ U(H)}

Observe that Aff(H) is a group under composition:

ξ 7→ u2ξ + η2 7→ u1(u2ξ + η2) + η1 = u1u2ξ + (u2η2 + η1).

Thus we may identify Aff(H) = H ⋊ U(H) with multiplication (u1, η1) · (η2, u2) := (η1 +
u1η2, u1u2).

Definition 6.4.5. An affine isometric action of Γ on H is a group homomorphism α : Γ →
Aff(H).

Example 6.4.6. Given a cocycle (H, π, β), we get an affine isometric action by

αgξ := πgξ + β(g).

The cocycle condition implies αgαh = αgh:

αgαhξ = αg(πhξ + β(h)) = πg(πhξ + β(h)) + β(g) = πghξ + πgβ(h) + β(g)︸ ︷︷ ︸
β(hg)

= αghξ.

Conversely, observe that an affine isometric action α : Γ → Aff(H) gives a unitary repre-
sentation π : Γ → U(H) by the quotient map:

π : Γ
α−→ Aff(H) = H ⋊ U(H) ↠ U(H)

Observe that there is a unique β(g) ∈ H such that αg = (β(g), πg) ∈ Aff(H), i.e., αgξ =
πgξ + β(g) for all ξ ∈ H and g ∈ Γ. This β is a cocycle:

β(h) + πhβ(g) = πh(αgξ)− αh(αgξ) + πh(πgξ − αgξ) = πhgξ − αhgξ = β(hg).

Exercise 6.4.7. Let X be a uniformly convex Banach space and B ⊂ X a bounded set.
Then

inf
x∈X

sup
b∈B

∥x− b∥

is attained at a unique x ∈ X.
10



Lemma 6.4.8. A cocycle (H, π, β) is inner if and only if it is bounded.

Proof.
⇒: If (H, π, β) is inner with β(g) = ξ − πgξ, then

∥β(g)∥ = ∥ξ − πgξ∥ ≤ 2∥ξ∥ ∀ g ∈ Γ.

⇐: Consider the affine action of Γ on H associated to (π, β). If β is bounded, then the
orbit Γ · 0H is bounded as

αg0H = πg0H + β(g) = β(g).

By Exercise 6.4.7, there is a unique ξ ∈ H minimizing supg∈Γ ∥β(g) − ξ∥. We claim
that β(g) = ξ − πgξ for all g ∈ Γ. Indeed, for every η ∈ Γ · 0H and g ∈ Γ,

∥αgξ − αgη︸︷︷︸
∈Γ·0H

∥ = ∥πg(ξ − η)∥ = ∥ξ − η∥,

so by uniqueness in Exercise 6.4.7, αgξ = ξ for all g ∈ Γ. Hence

ξ = αgξ = πgξ + β(g) ⇐⇒ β(g) = ξ − πgξ

for all g ∈ Γ. □

Definition 6.4.9. A function f : X → Y between topological spaces is called proper if
whenever K ⊂ Y is compact, f−1K ⊂ X is compact. An affine action α : Γ → Aff(H) is
called proper if the map Γ×H → H ×H given by (g, ξ) 7→ (gξ, ξ) is proper.
A cocycle β : Γ → H is called proper if g 7→ ∥β(g)∥ is proper, i.e., for all N ∈ N,

{g ∈ Γ|∥β(g)∥ < N} is finite.

Exercise 6.4.10. Show that an affine action α = (H, π, β) is proper if and only if β is
proper.

Exercise 6.4.11. Suppose a, b ∈ Mn(C) ≥ 0. Prove that the Schur product a ∗ b ∈ Mn(C)
is also positive, where (a ∗ b)ij := aijbij.
Deduce that if a ≥ 0, then the pointwise exponential [exp(aij)] ≥ 0.

Proposition 6.4.12 (Schoenberg). If β : Γ → H is a cocycle, then for all r > 0, fr(g) :=
exp(−r∥β(g)∥2) is positive definite, and fr → 1 pointwise as r ↘ 0. Moreover,

• fr ∈ c0Γ if and only if β is proper, and
• fr → 1 uniformly as r ↘ 0 if and only if β is bounded.

Proof. By scaling β linearly, we may assume r = 1, and we wrte f = f1. Note that

f(g−1h) =
(β3)

exp(−∥β(g)− β(h)∥2)

= exp(−∥β(g)∥2) · exp(−∥β(h)∥2) · exp(2Re⟨β(g), β(h)⟩).
Fix g1, . . . , gn ∈ Γ. First, note that [exp(−∥β(gi)∥2) · exp(−∥β(gj)∥2)] ≥ 0 as it equalsexp(−∥β(g1)∥2)

...
exp(−∥β(gn)∥2)

 ·
[
exp(−∥β(g1)∥2) · · · exp(−∥β(gn)∥2)

]
.
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Second, we show that [exp(2Re⟨β(gi), β(gj)⟩)] ≥ 0 by the following steps.
Step 1: [⟨β(gi), β(gj)⟩] ≥ 0. Indeed, each ξ ∈ H can be viewed as a bounded linear map
|ξ⟩ : C → H by 1 7→ ξ, and for all x = (xi)

n
i=1 ∈ Cn,∑

i,j

xi⟨β(gi), β(gj)⟩xj =

(
n∑

j=1

xj|β(gj)⟩

)∗( n∑
i=1

xi|β(gi)⟩

)
≥ 0.

Step 2: If a ∈Mn(C)+, then

⟨aξ, ξ⟩Cn⟩ =
n∑

i,j=1

aijξjξi =
n∑

i,j=1

aijξjξi = ⟨aξ, ξ⟩Cn⟩ ≥ 0,

and thus Re(a) =
a+ a

2
≥ 0.

Step 3: Since exp(2Re⟨β(g), β(h)⟩) =
∑
n≥0

(2Re⟨β(g), β(h)⟩)n

n!
, by Exercise 6.4.11,

[2Re⟨β(gi), β(gj)⟩] ≥ 0 =⇒ [exp(2Re⟨β(gi), β(gj)⟩)] ≥ 0.

Finally, we see that the matrix in question is exactly the Schur product of two positive
matrices, which is again positive by Exercise 6.4.11.
The final claims about the fr are immediate. □

Theorem 6.4.13. For a countable discrete group Γ, the following are equivalent:

(1) Γ has [HP].
(2) Γ admits a proper cocycle.
(3) Γ admits a proper affine isometric action on a Hilbert space.

Proof.
(1) ⇒ (2): Omitted.

(2) ⇔ (3): Immediate from Exercise 6.4.10 above.

(2) ⇒ (1): Suppose β : Γ → H is a proper cocycle. Schoenberg’s result 6.4.12 gives c0
positive definite functions f1/n(g) := exp(−∥β(g)∥2/n) such that fr → 1 pointwise as
n→ ∞. □

Theorem 6.4.14. If Γ acts faithfully on a tree T preserving the distance of vertices, then
Γ has [HP].

Proof. Let H denote ℓ2(oriented edges of T ), so that each edge appears twice with
opposite orientations. For vertices u, v ∈ T , define:

• d(u, v) := the length of the geodescic [u, v] from u to v in T , and
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• the signed characteristic function χ[u,v] ∈ H by

χ[u,v](ε) :=


0 if ε /∈ [u, v]

1 if ε ∈ [u, v]

−1 if ε ∈ [v, u]

We observe the following two important relations:

χ[u,v] + χ[v,w] = χ[u,w] ∀ vertices u, v, w ∈ T (6.4.15)

∥χ[u,v]∥2 = 2d(u, v) ∀ vertices u, v ∈ T. (6.4.16)

The Γ action on T gives a unitary representation π : Γ → B(H) by left translation
such that

πgχ[u,v] = χ[gu,gv] ∀ vertices u, v ∈ T. (6.4.17)

Now fix a vertex t0 ∈ T , and define β : Γ → H by β(g) = χ[gt0,t0]. For all g, h ∈ Γ,

β(hg) = χ[hgt0,t0]

= χ[hgt0,gt0] + χ[ht0,t0] (6.4.15)

= πhχ[gt0,t0] + χ[ht0,t0] (6.4.17)

= βhβ(g) + β(h),

so β is a cocycle. By (6.4.16), ∥β(g)∥2 = 2d(gt0, t0) → ∞ as g → ∞, so β is proper.
Hence Γ has [HP] by Theorem 6.4.13. □

Example 6.4.18. The free group Fn acts on its Cayley graph, which is a tree.

Definition 6.4.19. Let (M, tr) be a tracial von Neumann algebra. We say (M, tr) has the
Haagerup property if there is a sequence (φn :M →M) of normal trace-preserving cp maps
such that:

• φn → id pointwise-∥ · ∥2, and
• on L2M , φ̂n(mΩ) := φn(m)Ω is compact as an operator in B(L2M).

This second condition is analogous to the c0 condition for Γ.

Remark 6.4.20. Suppose (φn) is a sequence of trace-preserving ucp maps on LΓ. If φn →
idLΓ pointwise-∥·∥2, then the positive definite functions fn(g) := tr(φn(λg)λ

∗
g) from Example

6.1.6 converge to 1 pointwise. Indeed,

|fn(g)− 1| = |⟨φn(λg), λg⟩L2(LΓ) − ⟨λg, λg⟩L2(LΓ)|

= |⟨(φ̂n − 1)δg, δg⟩ℓ2Γ ≤
(CS)

∥(φ̂n − 1)δg∥ℓ2Γ
n→∞−−−→ 0.

Lemma 6.4.21. If x ∈ K(H) and (ei) is an ONB for H, then |ωei(x)| = |⟨xei, ei⟩| → 0 as
i→ ∞.

Proof. Since every x ∈ K(H) is a linear combination of 4 positive compact operators,
we may assume x ≥ 0. Let x =

∑
sn|fn⟩⟨fn| be a Schmidt decomposition of x with

sn ↘ 0 as n → ∞. Let ε > 0 and pick N > 0 such that n ≥ N implies sn < ε/2.
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Since |⟨ei, fn⟩|2 → 0 as i→ ∞, there is an i0 such that i > i0 implies

N−1∑
n=0

sn|⟨ei, fn⟩|2 <
ε

2
.

We now calculate that whenever i > i0,

⟨xei, ei⟩ =
∞∑
n=0

sn|⟨ei, fn⟩|2 <
N−1∑
n=0

sn|⟨ei, fn⟩|2 + sN

∞∑
n≥N

|⟨ei, fn⟩|2 <
ε

2
+
ε

2
= ε. □

Theorem 6.4.22. A countable discrete group Γ has [HP] if and only if LΓ has [HP].

Proof.
⇒: Let (fn) be a sequence of c0 positive definite functions Γ → C which converges to
1 pointwise. Without loss of generality, we may assume fn(e) = 1 for all n; otherwise
replace fn with fn/fn(e). The cp multipliers Mfn : LΓ → LΓ witness that LΓ has

[HP]. Indeed, M̂fn ∈ B(ℓ2Γ) is clearly compact as it is diagonal with eigenvalues going
to 0, and

∥(Mfn(x)− x)δe∥22 = ∥(M̂fn − 1)xδe∥22 =
∑
g

|fn(g)− 1|2|xg|2
n→∞−−−→ 0

as each fn ∈ c0Γ with ∥fn∥ = fn(e) = 1 for all n. Explicitly, |fn(g) − 1|2 ≤ 4 for all
n, so we may choose h ∈ Γ large in some ordering so that

∑
g>h |xg|2 < ε2/8, and we

may then choose N so that n > N implies∑
g≤h

|fn(g)− 1|2|xg|2 < ε2/2.

⇐: Suppose (φn) witness that LΓ has [HP]. Then fn(g) := trLΓ(φn(λg)λ
∗
g) is positive

definite by Example 6.1.6. To see that fn ∈ c0Γ, we have that

|fn(g)| = | trLΓ(φn(λg)λ
∗
g)| = |⟨φn(λg), λg⟩L2(LΓ)| = |ωλg(φ̂n)|

g→∞−−−→ 0

by Lemma 6.4.21. Since φn → idLΓ pointwise-∥ · ∥2, fn → 1 pointwise by Remark
6.4.20 □

6.5. Kazhdan’s Property (T) for discrete groups. For this section, Γ is a countable
discrete group, and Λ ≤ Γ is a subgroup.

Definition 6.5.1. We say Γ has property (T) relative to Λ whenever (fn) is a sequence of
positive definite functions Γ → C such that fn → 1 pointwise, then fn|Λ → 1 uniformly on
Λ. We say Γ has property (T) if Γ has property (T) relative to Γ. In other words:

(T) whenever (fn) is a sequence of positive definite functions Γ → C such that fn → 1
pointwise, then fn → 1 uniformly.

Example 6.5.2.

(1) All finite groups have (T).
(2) SL(2,Z) has [HP] as F2 ≤ SL(2,Z) with index 12, but SL(n,Z) has (T) for n ≥ 3.
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(3) Z2 ≤ Z2 ⋊ SL(2,Z) has relative (T).
1 ∗

1 ∗
1

 ≤


a b ∗
c d ∗

1

∣∣∣∣∣∣
[
a b
c d

]
∈ SL(2,Z)


Observe that neither of these groups has (T).

Facts 6.5.3.

(1) If Γ has (T) relative to Λ and Γ has [HP], then Λ is finite. In particular, Γ has [HP]
and (T) if and only if Γ is finite.

(2) If Γ has relative (T) with respect to an infinite subgroup Λ, then Γ does not have
[HP]. Thus [HP] is not preserved under extensions.

Theorem 6.5.4. The following are equivalent.

(T1) Γ has (T), i.e., for all sequences (fn) of positive deifnite functions with fn → 1
pointwise, fn → 1 uniformly.

(T2) Every cocycle β : Γ → H is inner (equivalently bounded).
(T3) Every affine Γ-action has a fixed point.
(T4) If (H, π) is a unitary representation of Γ with a sequence of unit vectors (ξn) such

that ∥πgξn − ξn∥ → 0 for all g ∈ Γ, then there is a non-zero ξ ∈ H such that πgξ = ξ
for all g ∈ Γ.

(T5) There is a δ > 0 and a finite F ⊂ Γ such that for every unitary representation (H, π)
and ξ ∈ (H)1 with ∥πgξ − ξ∥ < δ for all g ∈ F , there is an ξ0 ∈ (H)1 with πgξ0 = ξ0
for all g ∈ Γ.

(T6) For all ε > 0, there is a δ > 0 and a finite F ⊂ Γ such that for every unitary
representation (H, π) and ξ ∈ (H)1 with ∥πgξ − ξ∥ < δ for all g ∈ F , there is an
ξ0 ∈ (H)1 with ∥ξ − ξ0∥ < ε and πgξ0 = ξ0 for all g ∈ Γ.

(T7) For all ε > 0, there is a δ > 0 and a finite F ⊂ Γ such that for all positive definite
f : Γ → C with |f(g)− 1| < δ on F , we have |f(g)− 1| < ε for all g ∈ Γ.

We prove the following implications:

(T1) (T7) (T6)

(T3) (T2) (T4) (T5)

(T1)⇒(T2). Let β : Γ → H be a cocycle. By Schoenberg’s result 6.4.12, for all r > 0,

fr(g) := exp(−r∥β(g)∥2) is positive definite, and fr(g) → 1 pointwise as r → 0+. By
(T1), f1/n → 0 uniformly, which implies β is bounded. Thus β is inner by Lemma
6.4.8. □

(T2)⇔(T3). Observe that for all α ∈ Aff(H),

ξ = αgξ = πgξ + β(g) ⇐⇒ β(g) = ξ − πgξ ∀ g ∈ Γ.

Hence α has a fixed point if and only if β is inner. □
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¬(T5)⇒ ¬(T4). Let Γ = {g1, g2, . . . } be an enumeration and set Fn = {g1, . . . , gn} ⊂ Γ

and δn = 1/n. Then for each n, there is a unitary representation (Hn, πn, ξn) such that
∥ξn∥ = 1, ∥πn(g)ξn − ξn∥ < 1/n for all g ∈ Fn, but the Γ-invariant subspace Hπn

n = 0.
Set (H, π) :=

⊕
(Hn, πn). Then (ξn) where ξn lives in only the n-th component is a

sequence of almost invariant vectors, but there is no Γ-invariant vector in (H, π) as
every projection map (H, π) → (Hn, πn) is Γ-equivariant. □

(T6)⇒(T5). Trivial - just take an arbitrary ε > 0. □

(T5)⇒(T6). Let ε > 0. Pick δ′ > 0 and a finite set F ′ ⊂ Γ satisfying (T5). We set

δ = ε′δ′ for a to-be-determined ε′ > 0 in terms of ε and set F = F ′. Suppose (H, π)
is a unitary Γ-representation with ξ ∈ H a (δ, F )-almost invariant vector as in (T6).
Consider the Γ-fixed points

Hπ := {η ∈ H|πgη = η ∀ g ∈ Γ} .
If ξ ∈ Hπ, then we are finished. If not, our strategy will be to project ξ to Hπ and
show that this vector is non-zero and close to ξ after renormalizing.
To this end, let p be the orthogonal projection onto Hπ so that

∥πgη − η∥ = ∥πg(1− p)η + πgpη − η∥ = ∥πg(1− p)η + (1− p)η∥ ∀ η ∈ H.

Note that (Hπ)⊥ = (1 − p)H does not contain any non-zero invariant vectors. Since
π|(1−p)H is a unitary Γ-representation, by (T5), for all unit vectors η ∈ (1 − p)H,
∥πgη − η∥ ≥ δ′ for some g ∈ F . This means

∥πg(1− p)ξ − (1− p)ξ∥ ≥ δ′∥(1− p)ξ∥.
We now calculate that

ε′δ′ = δ ≥ ∥πgξ−ξ∥ = ∥πg(1−p)ξ−(1−p)ξ∥ ≥ δ′∥(1−p)ξ∥ =⇒ ∥(1−p)ξ∥ ≤ ε′.

As ξ is a unit vector, this means that if ε′ < 1, then pξ ̸= 0, and we may set ξ0 :=
pξ/∥pξ∥ ∈ Hπ. It remains to show ξ0 is close to ξ when ε′ is small enough. Indeed,

ξ0 − pξ =
pξ

∥pξ∥
− pξ =

1− ∥pξ∥
∥pξ∥

pξ

which implies

∥ξ0 − pξ∥ ≤ 1− ∥pξ∥ = ∥ξ∥ − ∥pξ∥ ≤ ∥(1− p)ξ∥ ≤ ε′

by the reverse triangle inequality. Finally, we calculate

∥ξ0 − ξ∥ ≤ ∥ξ0 − pξ∥+ ∥pξ − ξ∥ = ∥ξ0 − pξ∥+ ∥(1− p)ξ∥ ≤ 2ε′ < ε

as long as ε′ < min{ε/2, 1}. □

(T6)⇒(T7). Let ε > 0, and choose (F ′, δ′) as in (T6) for ε′ > 0 a function of ε to

be determined. Set F = F ′ ∪ (F ′)−1 ∪ {e} and let δ be a function of ε and δ′ to
be determined. Suppose f : Γ → C is positive definite such that |f(g) − 1| < δ for
all g ∈ F . By Theorem 6.1.5, there is a unitary Γ-representation (H, π, η) such that
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f(g) = ⟨πgη, η⟩ for all g ∈ Γ. Since e ∈ F ,

|∥η∥2 − 1∥ = |f(e)− 1| < δ.

Set ξ := η/∥η∥, and we record the estimate

|1− ⟨πgξ, ξ⟩| ≤ |1− f(g)|︸ ︷︷ ︸
<δ

+ |⟨πgη, η⟩ − ⟨πgξ, ξ⟩|︸ ︷︷ ︸
≤|∥η∥2−1|·⟨πgξ,ξ⟩<δ·1

< 2δ ∀ g ∈ F.

Then for all g ∈ F ,

∥πgξ − ξ∥2 = 1− ⟨πgξ, ξ⟩+ 1− ⟨πg−1ξ, ξ⟩ ≤ |1− ⟨πgξ, ξ⟩|+ |1− ⟨πg−1ξ, ξ⟩| ≤ 4δ < δ′2

if δ < δ′2/4. By (T6), there is a unit vector ξ0 ∈ H such that πgξ0 = ξ0 for all g ∈ Γ
and ∥ξ − ξ0∥ < ε′. Then for all g ∈ Γ,

|1− f(g)| = |⟨πgξ0, ξ0⟩ − ⟨πgη, η⟩|
= |⟨πg(ξ0 − ξ), ξ0⟩+ ⟨πgξ, (ξ0 − ξ)⟩+ ⟨πgξ, ξ⟩ − ⟨πgη, η⟩|
≤ |⟨πg(ξ0 − ξ), ξ⟩|+ |⟨πgξ, (ξ0 − ξ)⟩|+ |⟨πgξ, ξ⟩ − ⟨πgη, η⟩|
< 2ε′ + δ < ε

provided we chose ε′ < ε/3 and δ < min{ε/3, δ′2/4}. □

(T7)⇒(T1). Suppose (fn) is a sequence of positive definite functions such that fn → 1

pointwise on Γ. Let ε > 0, and choose (F, δ) as in (T7). Since F is finite and fn → 1
pointwise, eventually |fn(g)− 1| < δ for all g ∈ F . Then |fn(g)− 1| < ε for all g ∈ Γ
by (T7). □

Exercise 6.5.5. Prove (T2)⇒(T4).

Exercise 6.5.6. Modify all the statements in Theorem 6.5.4 for a countable discrete group
Γ to be relative to a subgroup Λ ≤ Γ. Then prove all the equivalences.

6.6. Property (T) for tracial von Neumann algebras. For this section, (M, tr) is a
tracial von Neumann algebra with separable predual.

Definition 6.6.1. We say (M, tr) has property (T) if for every sequence (φn : M → M) of
normal trace-preserving ucp maps with φn → idM pointwise-∥ · ∥2, φn → idM uniformly in
∥ · ∥2 on (M)1, the unit ball of M .

The main goal of this section is to prove that a countable discrete group Γ has (T) if and
only if LΓ with its canonical trace has (T).

Definition 6.6.2. Suppose (A, trA), (B, trB) are tracial von Neumann algebras. An A−B bi-
module AHB is a Hilbert spaceH equipped with commuting normal unital ∗-homomorphisms
λ : A → B(H) and ρ : Bop → B(H) (with [λa, ρb] = 0 for all a ∈ A, b ∈ Bop). We typically
suppress λ, ρ and simply write aηb = λaρbη.
A pointing on a bimodule AHB is a distinguished vector ξ ∈ H such that AξB is dense in

H. A pointing is called tracial if in addition

⟨aξ, ξ⟩ = trA(a) ∀ a ∈ A and ⟨ξb, ξ⟩ = trB(b) ∀ b ∈ B.
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Construction 6.6.3. Suppose (A, trA), (B, trB) are tracial von Neumann algebras and
(AHB, η) is a tracially pointed bimodule. We can construct a trace-preserving normal ucp
map ϕ : A→ B as follows.
First, since η is a tracial pointing, the map Lη : L2B → H given by bΩ 7→ ηb extends to

a unique isometry. Define ϕ : A → B by ϕ(a) := L∗
ηλaLη ∈ B(L2B). Since Lη and λa are

right B-linear, so is ϕ(a), i.e., ϕ(a) ∈ JBJ ′ = B. Finally, we verify

trB(ϕ(a)) = ⟨ϕ(a)Ω,Ω⟩ = ⟨L∗
ηλaLηΩ,Ω⟩ = ⟨bη, η⟩ = trB(a).

Remark 6.6.4. Given two tracially pointed bimodules (AHB, η) and (AKB, ξ), there is at
most one A−B bimodular map T : H → K mapping η to ξ. This map will be unitary if and
only if T ∗ : K → H also preserves the pointing. Indeed, T ∗ξ = η if and only if T ∗ = T−1.
This shows that the 2-category of tracial von Neumann algebras, tracially pointed bimodules,
and A − B bimodular unitaries preserving the pointing is 1-truncated, i.e., equivalent to a
1-category.

Construction 6.6.5. Suppose (A, trA), (B, trB) are tracial von Neumann algebras and ϕ :
A→ B is a trace-preserving normal ucp map. We can build a tracially pointed bimodule as
follows.

Let Hϕ be the Hilbert space obtained from taking the algebraic tensor product A ⊗ B
with sesquilinear form ⟨a1⊗ b1, a2⊗ b2⟩ϕ := trB(b

∗
2ϕ(a

∗
2a1)b1), quotienting out the length zero

vectors, and completing in ∥ · ∥2; this is the Hilbert space from the proof of the Stinespring
Dilation Theorem. We calculate the left A-action descends to a bounded action:∥∥∥∥∥a ·∑

i

xi ⊗ yi

∥∥∥∥∥
2

ϕ

=
∑
i,j

⟨ϕ(x∗ja∗axi)yiΩ, yjΩ⟩L2B ≤ ∥a∗a∥ ·

∥∥∥∥∥∑
i

xi ⊗ yi

∥∥∥∥∥
2

ϕ

.

where the inequality comes from the fact [ϕ(x∗ja
∗axi)] ≤ ∥a∗a∥ · [ϕ(x∗jxi)] in Mn(B). Bound-

edness of the right B-action is easier and omitted. These actions are normal since ϕ is normal
(exercise).

Remark 6.6.6. Consider the case of N ⊂ M an inclusion of finite von Neumann algebras
where M is equipped with a faithful normal tracial state tr. Let E :M → N be the unique
trace-preserving conditional expectation. We claim that the map m ⊗ n 7→ mn descends
to an M − N bimodular unitary isomorphism HE

∼= ML
2MN ; this is the unique map from

Remark 6.6.4. Indeed, M −N bimodularity is obvious, and we calculate

⟨m1 ⊗ n1,m2 ⊗ n2⟩E = tr(n∗
2E(m

∗
2m1)n1) = (tr ◦E)(n∗

2m
∗
2m1n1)

= tr(n∗
2m

∗
2m1n1) = ⟨m1n1Ω,m2n2Ω⟩L2M .

Hence this map descends to a well-defined isometry with dense range, and thus uniquely
extends to a unitary.

Exercise 6.6.7. Prove that Constructions 6.6.5 and 6.6.3 are mutually inverse. In more
detail:

(1) Starting with a trace-preserving normal ucp map ϕ : A → B, show that applying
Construction 6.6.5 and then Construction 6.6.3 produces exactly ϕ again.

(2) Starting with a tracially pointed bimodule (AHB, η), show that applying Construction
6.6.3 and then Construction 6.6.5 gives another tracially pointed bimodule (AKB, ξ)
which is canonically unitarily equivalent to (AHB, η) via Remark 6.6.4.
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Remark 6.6.8. Exercise 6.6.7 above shows that the 1-truncated 2-category from Remark
6.6.4 is equivalent to the 1-category of tracial von Neumann algebras with trace-preserving
normal ucp maps.

Lemma 6.6.9. Suppose φ : M → M is trace-preserving ucp map, and let (H, ξ) be the
associated tracially pointed M −M bimodule. Then for all x ∈ M , ⟨xξ, ξx⟩ = trM(φ(x)x∗)
and

∥φ(x)Ω− xΩ∥L2M ≤ ∥xξ − ξx∥H ≤ ∥φ(x)Ω− xΩ∥L2M · ∥x∥2.

Proof. First, note that

⟨xξ, ξx⟩ = ⟨x⊗ 1, 1⊗ x⟩φ = ⟨φ(x)Ω, xΩ⟩L2M = trM(φ(x)x∗).

We then calculate

∥φn(x)Ω− xΩ∥2L2M = ∥φn(x)Ω∥2L2M + ∥xΩ∥2L2M − 2Re trM(φn(x)x
∗)

= trM(φn(x)
∗φn(x)) + trM(x∗x)− 2Re trM(φn(x)x

∗)

≤ trM(φn(x
∗x)) + trM(x∗x)− 2Re trM(φn(x)x

∗)

= 2 trM(x∗x)− 2Re⟨xξn, ξnx⟩.

We now see that

2 trM(x∗x)− 2Re⟨xξn, ξnx⟩ = ∥xξn∥22 + ∥ξnx∥22 − 2Re⟨xξn, ξnx⟩ = ∥xξn − ξnx∥2L2M

and

2 trM(x∗x)− 2Re⟨xξn, ξnx⟩ = 2Re trM((φm(x)− x)x∗)

≤ 2|⟨(φm(x)− x)Ω, xΩ⟩|
≤

(CS)
2∥φm(x)Ω− xΩ∥2 · ∥xΩ∥2. □

Theorem 6.6.10. For a tracial von Neumann algebra (M, tr), the following are equivalent.

(1) (M, tr) has (T).
(2) For all ε > 0, there is a δ > 0 and a finite F ⊂ M such that for every tracially

pointed M −M bimodule (MHM , ξ) satisfying

max
x∈F

∥xξ − ξx∥ < δ,

there is an M-central vector ξ0 ∈ H such that ∥ξ − ξ0∥ < ε.

Proof.
(1) ⇒ (2): Omitted. TODO: Check this!

(2) ⇒ (1): Suppose (φn) is sequence of normal trace-preserving ucp maps such that

φn → idM pointwise ∥ · ∥2. Let ε > 0 and pick (F ′, δ′) for a to-be-determined ε′ > 0
as a function of ε. Let (Hn, ξn) be the tracially pointed M −M bimodule associated
to φn. Since φn → idM pointwise ∥ · ∥2, there is an N > 0 such that n > N implies

∥φn(x)Ω− xΩ∥2 < δ ∀x ∈ F ′,
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where δ > 0 is to be determined in terms of ε′, δ′, F ′. Then by Lemma 6.6.9, for all
n > N and x ∈ F ,

∥xξn − ξnx∥22 ≤ 2∥φm(x)Ω− xΩ∥2 · ∥xΩ∥2 < 2δK

where K := maxx∈F ∥xΩ∥2. Now if δ < δ′2/2K, then for every n > N , there is an
M -central vector ξn,0 ∈ Hn such that ∥ξn,0 − ξn∥ < ε′. Then again by Lemma 6.6.9,
for all n > N and x ∈ (M)1,

∥φn(x)Ω− xΩ∥2 ≤ ∥xξn − ξnx∥ ≤ ∥xξn − xξn,0∥+ ∥ξn,0x− ξnx∥ ≤ 2ε′ < ε

whenever ε′ < ε/2. □

Corollary 6.6.11. A countable discrete group Γ has (T) if and only if LΓ with its canonical
trace has (T).

Proof. Suppose Γ has (T). Let ε > 0, and choose (F, δ) as in (T6). Let (H, ξ) be a
tracially pointed LΓ − LΓ bimodule such that maxg∈F ∥λgξ − ξλg∥2 < δ. We have a
unitary representation π : Γ → B(H) by πgη := λgηλ

∗
g. Since ξ ∈ (H)1 and

∥πgξ − ξ∥ = ∥λgξλ∗g − ξ∥ = ∥λgξ − ξλg∥ < δ ∀ g ∈ Γ,

by (T6) there is a Γ-invariant vector ξ0 ∈ (H)1 with ∥ξ − ξ0∥ < ε such that πgξ0 = ξ0
for all g ∈ Γ. But then λgξ0 = ξ0λg for all g ∈ Γ, and thus ξ0 is LΓ-central as desired.
We conclude LΓ has (T).
Conversely, suppose LΓ has (T). Let (fn) be a sequence of positive definite functions
on Γ which converge to 1 pointwise. Without loss of generality, we may assume
fn(e) = 1 for all n. Then (Mfn) is a sequence of trace-preserving ucp maps such that
Mfn → idM pointwise ∥ · ∥2. Since LΓ has (T), Mfn → idM uniformly in ∥ · ∥2 on
(LΓ)1. In particular, for every ε > 0, there is an N > 0 such that for all n > N and
g ∈ Γ,

|fn(g)− 1| = ∥fn(g)δg − δg∥ℓ2Γ = ∥Mfn(λg)Ω− λgΩ∥L2LΓ < ε.

Hence fn → 1 uniformly, and Γ has (T). □
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