The notes in this section are compiled from:

- Notes from a graduate course I took at Berkeley from Don Sarason in 2006,
- Pedersen's Analysis Now, and

2. HILBERT SPACE BASICS

For this section, H is a Hilbert space. Recall the polarization identity, which holds for any sesquilinear form:

$$\langle \eta, \xi \rangle = \frac{1}{4} \sum_{k=0}^{3} i^k \langle \eta + i^k \xi, \eta + i^k \xi \rangle \qquad \forall \eta, \xi \in H.$$
(2.0.1)

Exercise 2.0.2. Prove that a positive sesquilinear form is self adjoint.

The adjoint is defined via the Riesz-Representation Theorem, i.e., if $x \in B(H \to K)$, for all $\xi \in K$, $\eta \mapsto \langle x\eta, \xi \rangle_K$ is a bounded linear functional on H, so there is a unique $x^*\xi \in H$ such that

$$\langle x\eta,\xi\rangle_K = \langle \eta,x^*\xi\rangle_H \qquad \forall \eta \in H, \forall \xi \in K.$$

The assignment $\xi \mapsto x^* \xi$ is linear and bounded, so $x^* \in B(H)$.

Exercise 2.0.3. Explain the relationship between $x, x^*, \overline{x}, x^t$ where $\overline{x} \colon \overline{H} \to \overline{K}$ is the conjugate operator given by $\overline{x\eta} \coloneqq \overline{x\eta}$, and x^t is the transpose, given by the Banach adjoint $K^* \to H^*$ by $\langle \xi | \mapsto \langle \xi | \circ x$.

2.1. **Operators in** B(H). We have various types of operators as in the C*-algebra notes. We call $x \in B(H)$:

- self-adjoint if $x = x^*$,
- positive if there is a $y \in B(H)$ such that $x = y^*y$,
- normal if $xx^* = x^*x$,
- a projection if $x = x^* = x^2$,
- an isometry if $x^*x = 1$,
- a unitary if $x^*x = 1 = xx^*$ (equivalently, an invertible isometry),
- a partial isometry if x^*x is a projection.

Here are some elementary properties about B(H):

(B1)
$$\ker(x^*) = (xH)^{\perp}$$

Proof. Since $\langle x\eta, \xi \rangle = \langle \eta, x^* \xi \rangle$, we have $\xi \perp xH$ if and only if $x^* \xi \perp H$ if and only if $x^* \xi = 0$.

(B2)
$$x = y$$
 if and only if $\langle x\xi, \xi \rangle = \langle y\xi, \xi \rangle$ for all $\xi \in H$.

Proof. Replacing x with x - y, we may assume y = 0. The forward direction is trivial. Suppose $\langle x\xi, \xi \rangle = 0$ for all $\xi \in H$. Polarization (2.0.1) applied to the form $\langle x \cdot, \cdot \rangle$ implies $\langle x\eta, \xi \rangle = 0$ for all $\eta, \xi \in H$. Thus $x\eta \perp H$ for all $\eta \in H$, so x = 0. (B3) x is normal if and only if $||x\xi|| = ||x^*\xi||$ for all $\xi \in H$.

Proof. By (B2), $x^*x = xx^*$ if and only if $\langle x^*x\xi, \xi \rangle = \langle xx^*\xi, \xi \rangle$ for all $\xi \in H$. But this holds if and only if $||x\xi||^2 = ||x^*\xi||^2$ for all $\xi \in H$.

(B4) $x \in B(H)$ is self-adjoint if and only if $\langle x\xi, \xi \rangle \in \mathbb{R}$ for all $\xi \in H$.

Proof. Homework.

2.2. Normal operators. We now prove some elementary properties about normal operators. For the following properties, $x \in B(H)$ is normal.

(N1) $x\xi = \lambda\xi$ if and only if $x^*\xi = \overline{\lambda}\xi$.

Proof. Immediate from (B3) applied to $x - \lambda$.

- (N2) $x\eta = \lambda \eta$ and $x\xi = \mu \xi$ with $\lambda \neq \mu$ implies $\eta \perp \xi$.
- (N3) Every $\lambda \in \operatorname{sp}(x)$ is an approximate eigenvalue of x, i.e., there is a sequence of unit vectors (ξ_n) such that $(x \lambda)\xi_n \to 0$.

Proof. Suppose λ is not an approximate eigenvalue of x. Then there is a $\varepsilon > 0$ such that $||(x - \lambda)\xi|| \ge \varepsilon ||\xi||$ for all $\xi \in H$. Then $x - \lambda$ is injective with closed range, and by (B3), so is $x^* - \overline{\lambda}$. But $0 = \ker(x^* - \overline{\lambda}) = ((x - \lambda)H)^{\perp}$ by (B1). Thus $x - \lambda$ is surjective, and thus $x - \lambda$ is bijective and bounded, hence invertible. Thus $\lambda \notin \operatorname{sp}(x)$.

(N4) $||x|| = \sup \{ |\langle x\xi, \xi \rangle || ||\xi|| = 1 \}$

Proof. Since r(x) = ||x||, there is a $\lambda \in \operatorname{sp}(x)$ such that $|\lambda| = ||x||$. Then since λ is an approximate eigenvalue by (N3), there is a sequence (ξ_n) of unit vectors such that $(x - \lambda)\xi_n \to 0$. Thus

$$\begin{aligned} |\langle x\xi_n, \xi_n \rangle - \lambda| &= |\langle x\xi_n, \xi_n \rangle - \lambda \langle \xi_n, \xi_n \rangle| \\ &= |\langle (x - \lambda)\xi_n, \xi_n \rangle| \\ &\leq \\ (\text{CS}) \|x\xi_n - \lambda\xi_n\| \cdot \underbrace{\|\xi_n\|}_{=1} \xrightarrow{n \to \infty} 0. \end{aligned} \qquad \Box$$

(N5) If $x = x^*$,

$$\sup \{ \langle x\xi, \xi \rangle | \|\xi\| = 1 \} = \max \{ \lambda | \lambda \in \operatorname{sp}(x) \}$$
and
$$\inf \{ \langle x\xi, \xi \rangle | \|\xi\| = 1 \} = \min \{ \lambda | \lambda \in \operatorname{sp}(x) \}$$

Proof. Set $M := \max \{\lambda | \lambda \in \operatorname{sp}(x)\}$. By the Spectral Mapping Theorem, $\operatorname{sp}(x + \|x\|) = \operatorname{sp}(x) + \|x\| \subset [0, \infty)$, and thus $x + \|x\|$ is (spectrally) positive. Then $M + \|x\| = \max \{\lambda | \lambda \in \operatorname{sp}(x + \|x\|)\} = \sup \{\langle (x + \|x\|)\xi, \xi \rangle | \|\xi\| = 1\}$ $= \sup \{\langle x\xi, \xi \rangle | \|\xi\| = 1\} + \|x\|.$

The proof for the second is similar swapping min and inf for max and sup, and subtracting ||x||.

Remark 2.2.1. The set

$$R(x) \coloneqq \{ \langle x\xi, \xi \rangle | \|\xi\| = 1 \}$$

is called the *numerical range* of $x \in B(H)$. It is always convex subset of \mathbb{C} ; this is easy to show when x is self-adjoint. Indeed, since $\xi \mapsto \langle x\xi, \xi \rangle$ is continuous and the unit sphere is connected, R(T) is then a connected subset of \mathbb{R} , i.e., an interval.

Proposition 2.2.2. The following are equivalent for $x \in B(H)$.

(1) $\langle x\xi,\xi\rangle \ge 0$ for all $\xi \in H$.

- (2) x is normal and $\operatorname{sp}(x) \subset [0, \infty)$.
- (3) x is positive.

Proof. (1) \Rightarrow (2): Assuming (1), we have

$$\langle x\xi,\xi\rangle = \overline{\langle x\xi,\xi\rangle} = \langle \xi,x\xi\rangle = \langle x^*\xi,\xi\rangle \qquad \forall \xi \in H,$$

so $x = x^*$ by (B2). By (N4),

 $\operatorname{sp}(x) \subset \overline{R(x)} \subset [0,\infty).$

 $\underbrace{(2) \Rightarrow (3):}_{\text{to get a self-adjoint operator } \sqrt{x} \in B(H) \text{ such that } \sqrt{x}^2 = x.$ $(3) \Rightarrow (1): \text{ If } x = y^*y \text{ for some } y \in B(H), \text{ then}$

$$\langle x\xi,\xi\rangle = \langle y^*y\xi,\xi\rangle = \langle y\xi,y\xi\rangle = \|y\xi\|^2 \qquad \forall \xi \in H.$$

Theorem 2.2.3 (Fuglede). Suppose $x, y \in B(H)$ such that xy = yx. If x is normal, then $x^*y = yx^*$.

Proof due to Rosenblum. Since xy = yx, $ye^{i\overline{\lambda}x} = e^{i\overline{\lambda}x}y$, so $x = e^{i\overline{\lambda}x}ye^{-i\overline{\lambda}x}$ for all $\lambda \in \mathbb{C}$. We define $f \colon \mathbb{C} \to B(H)$ by $f(\lambda) \coloneqq e^{i\lambda x^*}ye^{-i\lambda x^*} = e^{i\lambda x^*}e^{i\overline{\lambda}x}ye^{-i\overline{\lambda}x}e^{-i\lambda x^*} = e^{i(\lambda x^* + \overline{\lambda}x)}ye^{-i(\lambda x^* + \overline{\lambda}x)}$. Since $\lambda x^* + \overline{\lambda}x$ is self-adjoint, $e^{i(\lambda x^* + \overline{\lambda}x)}$ is unitary. Hence $f \colon \mathbb{C} \to B(H)$ is a bounded B(H)-valued entire function, and thus constant by Liouville. Thus

$$0 = -i \cdot \left. \frac{d}{d\lambda} \right|_{\lambda=0} f(\lambda) = x^* y - y x^*.$$

(Take the power series expansion to first order.)

Exercise 2.2.4. Where is normality of x used in the proof of Fuglede's Theorem 2.2.3?

Corollary 2.2.5. If $x \in B(H)$ is normal and xy = yx, then yf(x) = f(x)y for all $f \in A$ $C(\operatorname{sp}(x)).$

Proof. By Fuglede's Theorem 2.2.3, the result holds for all polynomials in x and x^* . The result now follows by density of these polynomials in C(sp(x)) by Stone-Weierstrass.

Remark 2.2.6. The results in this section also hold for operators in a unital C*-algebra, not just B(H).

2.3. Projections and partial isometries.

Example 2.3.1. Let $x \in B(H)$. The support projection of x is $supp(x) := 1 - p_{ker(x)} =$ $p_{\ker(x)^{\perp}}$. The range projection of x is range(x) := $p_{\overline{xH}}$.

Observe that $x = \operatorname{range}(x) \cdot x \cdot \operatorname{supp}(x)$. By (B1), $\operatorname{range}(x) = \operatorname{supp}(x^*)$. If x is normal, then since $\ker(x) = \ker(x^*x) = \ker(xx^*) = \ker(x^*)$, $\operatorname{supp}(x) = \operatorname{range}(x)$.

Lemma 2.3.2. The map $p \mapsto pH$ is a bijective correspondence between projections and closed subspaces of H.

Proof. It is clear that $pH \subseteq H$ is a closed subspace as p is continuous and $p = p^2$. Moreover, since $p = p^*$, $pH^{\perp} = \ker(p^*) = \ker(p) = (1-p)H$. Conversely, every closed subspace $K \subseteq H$ has an orthogonal complement K^{\perp} , H = $K \oplus K^{\perp}$, and projection p_K onto K is an idempotent. We claim it is self-adjoint. Indeed, $\ker(p_K^*) = p_K H^{\perp} = K^{\perp} = \ker(p_K)$, which implies $p_K^*(1 - p_K) = 0$, and thus $p_K^* p_K = p_K^*$. But $p_K^* p_K$ is self-adjoint, and thus $p_K = p_K^*$. One checks these two constructions are mutually inverse.

Lemma 2.3.3. For $p, q \in P(M)$, the following are equivalent.

(1) $p \le q \ (q - p \ge 0),$ (2) $pH \subseteq qH$, and (3) p = pq.

Proof.

 $(1) \Rightarrow (2)$: We show $(1-q)H \subseteq (1-p)H$, and the result follows by taking orthogonal complements. Suppose $\xi \in (1-q)H$ so $q\xi = 0$. Then since $0 \leq q-p$,

$$0 \le \langle (q-p)\xi,\xi\rangle = \underbrace{\langle q\xi,\xi\rangle}_{=0} - \langle p\xi,\xi\rangle = -\langle p\xi,\xi\rangle = -\|p\xi\|^2.$$

Thus $p\xi = 0$, so $\xi \in (1-p)H$.

 $(2) \Rightarrow (3)$: If $pH \subseteq qH$, then projecting to qH and then to pH is the same as just projecting to pH.

(3) \Rightarrow (1): If p = pq, then $p = p^* = qp$. Thus $q - p = q - qpq = q(1 - p)q \ge 0$.

Exercise 2.3.4. We say projections p, q are mutually orthogonal, denoted $p \perp q$, if $pH \perp qH$. Show that $p \perp q$ if and only if pq = 0.

Exercise 2.3.5. For projections p, q, we define $p \wedge q$ to be the projection onto $pH \cap qH$ and $p \vee q$ to be the projection onto $\overline{pH + qH}$. Prove that $p \vee q = 1 - (1 - p) \wedge (1 - q)$.

Exercise 2.3.6. Prove the following statements about projections and invariant subspaces.

(1) $K \subseteq H$ is x-invariant if and only if $p_K x p_K = x p_K$.

- (2) $K \subseteq H$ is x-invariant if and only if K^{\perp} is x^{*}-invariant.
- (3) $K \subseteq H$ is x and x^{*}-invariant if and only if $xp_K = p_K x$.

Exercise 2.3.7. The following are equivalent for a $u \in B(H \to K)$.

- (1) u is a partial isometry.
- (2) $u = uu^*u$.
- (3) u^* is a partial isometry.
- (4) $u^* = u^* u u^*$.

Hint: Use the C^{*}*-identity.*

Remark 2.3.8. By the exercise, a partial isometry $u \in B(H \to K)$ is a unitary from u^*uH onto uu^*K .

Exercise 2.3.9. Suppose $u, v \in B(H)$ are partial isometries with $uu^* \perp vv^*$ and $u^*u \perp v^*v$. Show that u + v is again a partial isometry.

Proposition 2.3.10 (Polar decomposition). For each $x \in B(H \to K)$, there is a unique positive $|x| \in B(H)$ such that $|x|^2 = x^*x$ and $||x\xi|| = |||x|\xi||$ for all $\xi \in H$. Moreover, there is a unique partial isometry $u \in B(H \to K)$ such that u|x| = x and $\ker(u) = \ker(x) = \ker(|x|)$. In particular, $u^*x = |x|$.

Proof. If
$$y \ge 0$$
 such that $||y\xi|| = ||x\xi||$ for all $\xi \in H$, then
 $\langle x^*x\xi, \xi \rangle = ||x\xi||^2 = ||y\xi||^2 = \langle y^2\xi, \xi \rangle$

so $x^*x = y^2$ by (B2), and thus $y = \sqrt{x^*x}$ by the uniqueness of the positive square root. Now define $u: |x|H \to K$ by $u|x|\xi := x\xi$, and note

 $||u|x|\xi|| = ||x\xi|| = ||x|\xi|| \qquad \forall \xi \in H.$

So u is an isometry on |x|H, and is thus well-defined. We can extend u to $\overline{|x|H}$ by continuity, and define u = 0 on $(|x|H)^{\perp} = \ker(|x|)$ by (B1), and $\ker(|x|) = \ker(x)$ by construction. We will call this extension u again by a slight abuse of notation. Then u is a partial isometry and u|x| = x. If $v \in B(H)$ is another partial isometry with $\ker(v) = \ker(x) = \ker(u)$ and v|x| = x, then $u|x|\xi = v|x|\xi$ for all $\xi \in H$, so u = v on $\overline{|x|H}$. But u = v = 0 on $(|x|H)^{\perp}$, so

u = v. Finally, u^*u is the projection onto $\overline{|x|H}$, so $u^*x\xi = u^*u|x|\xi = |x|\xi$ for all $\xi \in H$. \Box

Exercise 2.3.11. Suppose x = u|x| is the polar decomposition. Prove that $x = |x^*|u$ and the polar decomposition of x^* is given by $u^*|x^*|$.

Corollary 2.3.12. If x = u|x| is the polar decomposition, then $u^*u = \operatorname{supp}(x)$ and $uu^* = \operatorname{range}(x)$.

Proof. Since $\ker(u) = \ker(x)$, $\operatorname{supp}(x) = p_{\ker(x)^{\perp}} = p_{\ker(u)^{\perp}} = u^*u$. Since $x^* = u^*|x^*|$ is the polar decomposition of x^* , we have $\operatorname{range}(x) = \operatorname{supp}(x^*) = uu^*$.

Remark 2.3.13. If x is invertible, then so are x^* and x^*x , and by the CFC for x^*x , so is |x|. If x = u|x| is the polar decomposition, then $u = x|x|^{-1} \in C^*(x)$ is a unitary. Hence if A is a unital C*-algebra and $a \in A$ is invertible, then a has a unique polar decomposition in A.

2.4. Compact operators. Recall $x \in B(H \to K)$ is called compact if it maps bounded subsets of H to precompact subsets (subset with compact closure) of K. We write $K(H \to K)$ for the subset of compact operators in $B(H \to K)$, and we write K(H) for the compact operators in B(H). Recall that K(H) is a closed 2-sided ideal in B(H).

Fact 2.4.1 (Spectra of compact operators). Suppose $x \in K(H)$. The non-zero points of sp(x) are isolated eigenvalues, and all correspondence only eigenspaces are finite dimensional. There are only countably many of them, and zero is the only possible accumulation point.

Exercise 2.4.2. An operator $x \in B(H)$ is called finite rank if xH is finite dimensional.

- (1) Show that every finite rank operator is compact.
- (2) Show that the finite rank operators form a *-closed 2-sided ideal in B(H).

Fact 2.4.3. Every *-closed 2-sided ideal $J \subseteq B(H)$ is spanned by its positive operators. First, note that every self-adjoint $x \in J$ can be written as $x = x_+ - x_-$ with $x_{\pm} \ge 0$ and $x_+x_- = 0$ by setting $x_+ := \chi_{[0,\infty)}(x)x$ and $x_- := \chi_{(-\infty,0]}(x)x$. Clearly $x_{\pm} \in J$, so every self-adjoint in J is in the span of the positives of J. Second, every $x = \operatorname{Re}(x) + i \operatorname{Im}(x)$ with $\operatorname{Re}(x) = (x + x^*)/2$ and $\operatorname{Im}(x) = (x - x^*)/(2i)$. Since J is *-closed, $\operatorname{Re}(x)$ and $\operatorname{Im}(x)$ are in J. Thus $\operatorname{Re}(x)_{\pm}, \operatorname{Im}(x)_{\pm} \in J$, and x is a linear combination of these 4 positives.

Lemma 2.4.4. There is a net (p_i) of finite rank projections such that $p_i \xi \to \xi$ for all $\xi \in H$. In other words, $p_i \to 1$ in the strong operator topology (the topology of pointwise convergence).

Proof. Let $(e_i)_{i \in I}$ be an ONB of H. Let \mathcal{F} be the subset of finite subsets of I, ordered by inclusion. For $F \in \mathcal{F}$, define p_F to be the projection onto the finite dimensional (and thus closed) subspace span $\{e_i | i \in F\}$. By Parseval's identity, $\|p_F\xi - \xi\| \to 0$ for all $\xi \in H$.

Theorem 2.4.5. The following are equivalent for $x \in B(H)$. Below, B denotes the normclosed unit ball in H.

- (K1) x is compact.
- (K2) x is in the norm closure of the finite rank operators in B(H).
- (K3) $x|_B$ is weak-norm continuous $B \to H$
- (K4) xB is compact in H.

Proof.

(1) \Rightarrow (2): Let $x \in K(H)$ and let (p_i) be a net as in Lemma 2.4.4. We claim that $p_i x \to x$ in norm. Otherwise, there is a $\varepsilon > 0$ such that (passing to a subnet if necessary) for all i, there is a $\xi_i \in H$ with $\|\xi_i\| = 1$ and $\varepsilon \leq \|(1 - p_i)x\xi_i\|$ and $x\xi_i \to \eta$ in H (by compactness of x). Then

$$\varepsilon \le \|(1-p_i)x\xi_i\| \le \|(1-p_i)(x\xi_i-\eta)\| + \|(1-p_i)\eta\| \le \|x\xi_i-\eta\| + \|(1-p_i)\eta\| \to 0,$$

a contradiction.

 $(2) \Rightarrow (3)$: Suppose x is a norm limit of finite rank operators and (ξ_i) is a net of vectors in B converging weakly to $\xi \in B$. Let $\varepsilon > 0$. Choose a finite rank $y \in B(H)$ such that $||x-y|| < \varepsilon$. We claim that $y\xi_i \to y\xi$. Indeed, choosing an ONB $\{e_1, \ldots, e_n\}$ for the finite dimensional Hilbert space yH,

$$\|y(\xi_i - \xi)\|^2 = \sum_{k=1}^n |\langle y(\xi_i - \xi), e_k \rangle|^2 = \sum_{k=1}^n |\langle \xi_i - \xi, y^* e_k \rangle|^2 \longrightarrow 0.$$

Now pick j so that i > j implies $||y\xi_i - y\xi|| < \varepsilon$. For all i > j,

 $||x\xi_i - x\xi|| \le ||x\xi_i - y\xi_i|| + ||y\xi_i - y\xi|| + ||x\xi - y\xi|| < 3\varepsilon.$

The result follows.

 $(3) \Rightarrow (4)$: Since B is weakly compact by Banach-Alaoglu, xB is the continuous image of a compact set which is thus compact.

 $(4) \Rightarrow (1)$: If $S \subset H$ is bounded, then $S \subset B_r = B_r(0_H)$ for some r > 0. Then $xB_r = rxB$ is compact, so the closure of xS is compact.

Exercise 2.4.6. Prove that if $x \in B(H)$ is finite rank, then so is x^* . Deduce that K(H) is *-closed.

Notation 2.4.7. We write $\langle \eta | \xi \rangle \coloneqq \langle \xi, \eta \rangle$, which is linear on the right, and conjugate linear on the left. For $\eta \in H$, we write $\langle \eta | \in H^*$ for $\xi \mapsto \langle \eta | \xi \rangle$, and we can also denote $\xi \in H$ by $|\xi\rangle$. This allows us to define the rank one operator $|\eta\rangle\langle\xi| \in B(H)$ by $\zeta \mapsto |\eta\rangle\langle\xi|\zeta\rangle = \langle\zeta,\xi\rangle\eta$.

Exercise 2.4.8. Prove the following statements about rank one operators.

- (1) $|\eta\rangle\langle\xi|^* = |\xi\rangle\langle\eta|$
- (2) $|\eta_1\rangle\langle\eta_2|\cdot|\xi_1\rangle\langle\xi_2| = \langle\eta_2|\xi_1\rangle\cdot|\eta_1\rangle\langle\xi_2|$
- (3) If $\|\xi\| = 1$, then $|\xi\rangle\langle\xi|$ is the rank one projection onto $\mathbb{C}\xi$.

Definition 2.4.9. An operator $x \in B(H)$ is orthogonally diagonalizable if there is an ONB (e_i) of eigenvectors for x.

Exercise 2.4.10. Show that if $x \in B(H)$ is orthogonally diagonalizable, then the eigenvalues (λ_i) for (e_i) are in $\ell^{\infty}(I)$, where I is given counting measure.

Lemma 2.4.11. An orthogonally diagonalizable operator $x \in B(H)$ is compact if and only if the eigenvalues (λ_i) for (e_i) is in $c_0(I)$, where I has the discrete topology, and $x = \sum_i \lambda_i |e_i\rangle \langle e_i|$, where the sum converges in norm. Proof. By Fact 2.4.1, since $\operatorname{sp}(x) \subseteq \{\lambda_i | i \in I\} \cup \{0\}$, we must have $(\lambda_i) \in c_0(I)$. Conversely, if $(\lambda_i) \in c_0(I)$, then $\sum \lambda_i | e_i \rangle \langle e_i |$ converges in operator norm to x. Indeed, if we define $x_F := \sum_{i \in F} \lambda_i | e_i \rangle \langle e_i |$ for each finite $F \subset I$, then picking $F \subset I$ so that $|\lambda_i| < \varepsilon$ for all $i \in F^c$, we have $\|(x - x_F)\xi\|^2 = \left\|\sum_{i \notin F} \lambda_i | e_i \rangle \langle e_i | \xi \rangle\right\|^2 = \sum_{i \notin F} |\lambda_i|^2 |\langle \xi, e_i \rangle|^2 < \varepsilon^2 \|\xi\|^2,$

so $x_F \to x$ in norm.

Theorem 2.4.12 (Spectral theorem for compact normal operators). Compact normal operators are diagonalizable.

Proof. Suppose $x \in K(H)$ is normal. It suffices to prove H is the orthogonal direct sum of eigenspaces of x. We may assume $\dim(H) = \infty$. Using Fact 2.4.1, let (λ_n) be the non-zero eigenvalues of x, which is either a finite list or $\lambda_n \searrow 0$. Let E_n be the corresponding eigenspaces. Then E_n is an eigenspace for x^* with eigenvalue $\overline{\lambda}$ by (N1), and $E_n \perp E_k$ for all $1 \leq k < n$. Since each E_n is x and x^* -invariant, so is $\bigoplus_{n\geq 1} E_n$. Setting $E_0 := (\bigoplus_{n\geq 1} E_n)^{\perp}$, we have E_0 is x and x^* -invariant by Exercise 2.3.6. Then $x|_{E_0}$ is compact and has no non-zero eigenvalues, and so $x|_{E_0} = 0$. We conclude that $H = \bigoplus_{n\geq 0} E_n$ is the desired direct sum decomposition into eigenspaces. \Box

Remark 2.4.13. Using the Borel functional calculus and Theorem 2.4.12, one can show that a positive operator $x \in B(H)$ is compact if and only if for all $\varepsilon > 0$, the spectral projection $\chi_{(\varepsilon,\infty)}(x)$ is finite rank.

Corollary 2.4.14. If $x \in B(H \to K)$ such that x^*x is compact, then x is compact.

Proof. Writing $x^*x = \sum \lambda_n |e_n\rangle \langle e_n|$ with $\lambda_n \searrow 0$ by Theorem 2.4.12, we have $|x| = \sum \sqrt{\lambda_n} |e_n\rangle \langle e_n|$ with $\sqrt{\lambda_n} \searrow 0$. Thus |x| is compact by Lemma 2.4.11, and so is x = u|x| using polar decomposition 2.3.10.

Definition 2.4.15. Suppose $x \in K(H)$, so $|x| = (x^*x)^{1/2}$ is compact. Enumerate the eigenvalues of |x| by

$$\lambda_0 \ge \lambda_1 \ge \lambda_2 \ge \cdots$$

with multiplicity as necessary. Note that $\lambda_0 = ||x||$.

We define $s_n(x) \coloneqq \lambda_n$, called the *n*-th singular value of x.

Now pick orthonormal vectors (f_n) such that $|x|f_n = \lambda_n f_n$ and $|x| = \sum \lambda_n |f_n\rangle \langle f_n|$, which converges in operator norm. Set $e_n \coloneqq uf_n$ where x = u|x| is the polar decomposition 2.3.10. Then (e_n) is an orthonormal set, and $x = u|x| = u \sum \lambda_n |f_n\rangle \langle f_n| = \sum \lambda_n |e_n\rangle \langle f_n|$, where the sum converges in operator norm. This is called a *Schmidt representation* of x.

Warning 2.4.16. We warn the reader that a Schmidt decomposition of $x \in K(H)$ is not unique, but the singular values are well-defined. The usefulness of a Schmidt decomposition is that x is realized as an explicit norm-limit of finite rank operators.

For a unique representation, we can define $p_n = p_{E_n}$ to be the (finite rank) orthogonal projection with range E_n , the eigenspace of |x| corresponding to $s_n(x)$. Then $|x| = \sum s_n(x)p_n$ and $x = \sum s_n(x)up_n$.

Here are some elementary properties about singular values.

(SV1) $s_n(x) = s_n(x^*)$ for all n.

Proof. Let $x = \sum s_n(x) |e_n\rangle \langle f_n|$ be a Schmidt decomposition for x. Using Exercise 2.3.11, one can see that

$$x^* = \sum s_n(x) |f_n\rangle \langle e_n| = u^* \sum s_n(x) |e_n\rangle \langle e_n|$$

is a Schmidt decomposition for x^* , and thus $s_n(x^*) = s_n(x)$. Alternatively, we see that $xx^* = \sum s_n(x)^2 |e_n\rangle \langle e_n|$ converges in norm, so $|x^*| = \sum s_n(x)|e_n\rangle \langle e_n|$, which also implies $s_n(x^*) = s_n(x)$.

(SV2) (Minimax) Suppose $x \in K(H)$ is positive and non-zero. Then for all $n \ge 0$ such that $n \le \dim(H)$,

$$s_n(x) = \min_{\substack{E \subseteq H \\ \operatorname{codim}(E) = n}} \max_{\substack{\xi \in E \\ \|\xi\| = 1}} \langle x\xi, \xi \rangle.$$
(2.4.17)

Proof. First, we prove that max $\{\langle x\xi, \xi \rangle | \xi \in E \text{ and } \|\xi\| = 1\}$ exists. By (K4), x is weak-norm continuous on B_E . Second, $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$ is *jointly* continuous on norm bounded sets in the product topology where the first factor has the norm topology and the second factor has the weak topology. Indeed, if $\eta_i \to \eta$ in norm and $\xi_i \to \xi$ weakly, we can find j in our index set so that i > j implies $\|\eta_i - \eta\| < \varepsilon/M$ where M is a bound for the norm of all ξ_i and ξ . Then

$$|\langle \eta_i, \xi_i \rangle - \langle \eta, \xi \rangle| \leq \underbrace{|\langle \eta_i - \eta, \xi_i \rangle|}_{\leq \|\eta_i - \eta\| \cdot \|\xi_i\| < \varepsilon} + \underbrace{|\langle \eta, \xi_i - \xi \rangle|}_{\to 0}$$

Hence the map $\xi \mapsto (x\xi,\xi) \mapsto \langle x\xi,\xi \rangle$ is continuous on B_E equipped with the weak topology. Since B_E is weakly compact by Banach-Alaoglu, the max exists.

Now denote the right hand side of (2.4.17) by m_n . We know the case n = 0 holds. Assume n > 0 and let (f_k) be an orthonormal subset such that $x = \sum s_k(x)|f_k\rangle\langle f_k|$ with $\lambda_k \searrow 0$. For $E = \operatorname{span}\{f_0, \ldots, f_{n-1}\}^{\perp}$, we have $f_n \in E$ and $\langle xf_n, f_n \rangle = s_n(x)$, so $m_n \leq \lambda_n$.

Conversely, if $\operatorname{codim}(E) = n$, then there is a $\xi \in E \cap \operatorname{span}\{f_0, \ldots, f_n\}$ with $\|\xi\| = 1$. Then writing $\xi = \sum_{i=0}^n \alpha_i f_i$ with $\alpha_i = \langle \xi, f_i \rangle$ and $\sum |\alpha_i|^2 = 1$, we have

$$\langle x\xi,\xi\rangle = \sum_{i=0}^{n} s_i(x) |\alpha_i|^2 \ge s_n(x)$$

Hence $s_n(x) \leq m_n$.

(SV3) If $x \in K(H)$, then

$$s_n(x) = \min_{\substack{E \subseteq H \\ codim(E) = n}} \max_{\substack{\xi \in E \\ \|\xi\| = 1}} \|x\xi\|.$$
 (2.4.18)

Proof. Observe that $s_n(x) = \sqrt{s_n(x^*x)}$ and $\langle x^*x\xi, \xi \rangle = ||x\xi||^2$. Apply Minimax (SV2) for x^*x and take square roots.

(SV4) If $x \in K(H)$ and $y \in B(H)$, then both $s_n(xy), s_n(yx) \le ||y|| s_n(x)$.

Proof. Using Minimax (2.4.18), we have^{*a*} $s_n(yx) = \min_{\substack{E \subseteq H \\ \text{codim}(E) = n}} \max_{\substack{\xi \in E \\ \|\xi\| = 1}} \|yx\xi\| \le \min_{\substack{E \subseteq H \\ \text{codim}(E) = n}} \max_{\substack{\xi \in E \\ \|\xi\| = 1}} \|y\| \cdot \|x\xi\| = \|y\| \cdot s_n(x).$

Observe now that

$$s_n(xy) = s_n(y^*x^*) \le ||y^*|| \cdot s_n(x^*) = ||y|| \cdot s_n(x).$$

^aStarting with $||yx\xi|| \le ||y|| \cdot ||x\xi||$, add max on the right then the left, and then add min on the left then the right.

(SV5) For $x \in K(H)$, $s_n(x) = \text{dist}(x, F_n \coloneqq \{\text{rank} \le n \text{ operators}\})$.

Proof. Write $x = \sum_{i} \lambda_{i} |e_{i}\rangle \langle f_{i}|$ in Schmidt representation. The operator $y \coloneqq \sum_{i=0}^{n-1} \lambda_{i} |e_{i}\rangle \langle f_{i}|$ is in F_{n} and $x - y = \sum_{i\geq n} \lambda_{i} |e_{i}\rangle \langle f_{i}|$ has norm λ_{n} . Hence dist $(x, F_{n}) \leq \lambda_{n}$. Now for all $y \in F_{n}$, dim span $\{f_{0}, \ldots, f_{n}\} = n + 1$, so there is a $\xi \in F_{n}$ with $\|\xi\| = 1$ and $y\xi = 0$. Then $\|x - y\| \geq \|(x - y)\xi\| = \|x\xi\| \geq \lambda_{n}.$

(SV6) If $x, y \in K(H)$, then $s_{m+n}(x+y) \le s_m(x) + s_n(y)$.

Proof. Let $\varepsilon > 0$. Using (SV5), take $z_1 \in F_m$ such that $||x - z_1|| < s_m(x) + \varepsilon$ and take $z_2 \in F_n$ such that $||y - z_2|| < s_n(y) + \varepsilon$. Then $z_1 + z_2 \in F_{m+n}$ and thus

$$s_{m+n}(x+y) = \operatorname{dist}(x+y, F_{m+n}) \le ||x+y-(z_1+z_2)||$$

$$\le ||x-z_1|| + ||y-z_2|| < s_m(x) + s_n(y) + 2\varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, the result follows.

2.5. The trace and the Schatten *p*-classes. Let (e_i) be an orthonormal basis of *H*. Define Tr: $B(H)_+ \to [0, \infty]$ by $\operatorname{Tr}(x) \coloneqq \sum_i \langle xe_i, e_i \rangle$.

Here are some basic properties about the trace.

(Tr1) Tr is positive-linear, i.e., $\operatorname{Tr}(\lambda x + y) = \lambda \operatorname{Tr}(x) + \operatorname{Tr}(y)$ for all $\lambda > 0$ and $x, y \in B(H)_+$.

(Tr2) Tr is lower semicontinuous on $B(H)_+$.

Proof. This follows immediately from the fact that each functional $x \mapsto \langle xe_i, e_i \rangle$ is continuous and $[0, \infty)$ -valued together with the following exercise.

Exercise 2.5.1. Let X be a topological space and (f_n) a sequence of lower semicontinuous $[0, \infty)$ -valued functions. Prove that $\sum f_n : X \to [0, \infty)$ defined by $(\sum f_n)(x) = \sum f_n(x)$ is again lower semicontinuous.

(Tr3) $\operatorname{Tr}(x^*x) = \operatorname{Tr}(xx^*)$ for all $x \in B(H)$.

Proof. Since the sum of positive numbers is independent of ordering,

$$\sum_{i} \langle x^* x e_i, e_i \rangle = \sum_{i} \langle x e_i, x e_i \rangle = \sum_{i,j} \langle \langle x e_i, e_j \rangle e_j, x e_i \rangle = \sum_{i,j} \langle x e_i, e_j \rangle \langle e_j, x e_i \rangle$$

$$= \sum_{i,j} \langle x^* e_j, e_i \rangle \langle e_i, x^* e_j \rangle = \sum_{j,i} \langle x^* e_j, e_i \rangle \langle e_i, x^* e_j \rangle$$

$$= \sum_{j,i} \langle \langle x^* e_j, e_i \rangle e_i, x^* e_j \rangle = \sum_j \langle x^* e_j, x^* e_j \rangle = \sum_j \langle x x^* e_j, e_j \rangle. \square$$

(Tr4) $\operatorname{Tr}(x) = \operatorname{Tr}(u^*xu)$ for all unitaries $u \in B(H)$ and $x \ge 0$. Hence if (f_i) is another orthonormal basis of H, then $\operatorname{Tr}(x) = \sum_i \langle xf_i, f_i \rangle$.

Proof. Write $x = \sqrt{x^2}$ so that by (Tr3), $\operatorname{Tr}(u^*xu) = \operatorname{Tr}((\sqrt{x}u)^*(\sqrt{x}u)) = \operatorname{Tr}((\sqrt{x}u)(\sqrt{x}u)^*) = \operatorname{Tr}(\sqrt{x^2}) = \operatorname{Tr}(x).$ Now if (f_i) is another ONB, then define a unitary $v \in B(H)$ by $e_i \mapsto f_i$. Then $\operatorname{Tr}(x) = \operatorname{Tr}(u^*xu) = \sum_i \langle u^*xue_i, e_i \rangle = \sum_i \langle xue_i, ue_i \rangle = \sum_i \langle xf_i, f_i \rangle.$

(Tr5) If $x \ge 0$, then $\operatorname{Tr}(x) \ge ||x||$.

Proof. If $x \ge 0$, then by (N5), there is a unit vector $\xi \in H$ such that $\langle x\xi, \xi \rangle = \max{\{\lambda | \lambda \in \operatorname{sp}(x)\}} = ||x||$. Extend $\{\xi\}$ to an ONB $\{\xi\} \operatorname{II}(f_i)$, and observe that $\operatorname{Tr}(x) = \langle x\xi, \xi \rangle + \sum_i \langle xf_i, f_i \rangle \ge \langle x\xi, \xi \rangle = ||x||$.

Lemma 2.5.2.

(1) If $x \in K(H)$, then $\operatorname{Tr}(|x|^p) = \sum s_n(x)^p$. (2) If $\operatorname{Tr}(|x|^p) < \infty$ for some p > 0, then x is compact.

Proof.

(1) Write $|x| = \sum \lambda_n |e_n\rangle \langle e_n|$ with $\lambda_n \searrow 0$ by Theorem 2.4.12 so that $|x|^p = \sum \lambda_n^p |e_n\rangle \langle e_n|$. Extending (e_n) to an ONB (e_i) , we see

$$\operatorname{Tr}(x) = \sum_{i} \langle xe_i, e_i \rangle = \sum_{n} \lambda_n^p = \sum_{n} s_n(x)^p.$$

(2) Let (e_i) be an ONB and suppose $\varepsilon > 0$. There is a finite subset $F \subset I$ such that $\sum_{i \notin F} \langle |x|^p e_i, e_i \rangle < \varepsilon$. Let p_F denote the projection onto span $\{e_i | i \in F\}$, and observe that

$$|||x|^{p/2}(1-p_F)||^2 = ||(1-p_F)|x|^p(1-p_F)|| \le \operatorname{Tr}((1-p_F)|x|^p(1-p_F)) = \sum_{i \notin F} \langle |x|^p e_i, e_i \rangle < \varepsilon.$$

Thus we may approximate $|x|^{p/2}$ by finite rank operators, so $|x|^{p/2}$ is compact, and thus so is $|x|^p$. Using the Spectral Theorem for compact normal operators 2.4.12, we can write $|x|^p = \sum \lambda_n |e_n\rangle \langle e_n|$ with $\lambda_n \searrow 0$. But then $|x| = \sum \lambda_n^{1/p} |e_n\rangle \langle e_n|$ and $\lambda_n^{1/p} \searrow 0$, so |x| is compact by Lemma 2.4.11. Hence x = u|x| is compact. \Box

Definition 2.5.3. The Schatten p-class/p-ideal is the set

$$\mathcal{L}^{p}(H) \coloneqq \left\{ x \in B(H) \middle| \operatorname{Tr}(|x|^{p}) = \sum s_{n}(x)^{p} < \infty \right\}.$$

We call $\mathcal{L}^1(H)$ the trace class operators and $\mathcal{L}^2(H)$ the Hilbert-Schmidt operators. Observe that $\mathcal{L}^p(H) \subset K(H)$ by Lemma 2.5.2.

Remark 2.5.4. Recall that when $1 \le q \le p$, $\ell^q \subseteq \ell^p$ with $\|\cdot\|_q \ge \|\cdot\|_p$. Since $\operatorname{Tr}(|x|^p) = \|(s_n(x))\|_{\ell^p}$, $\mathcal{L}^q(H) \subseteq \mathcal{L}^p(H)$ with $\|\cdot\|_q \ge \|\cdot\|_p$.

Lemma 2.5.5. The Schatten p-class $\mathcal{L}^p(H)$ is a *-closed 2-sided ideal of B(H) which is algebraically spanned by its positive operators.

Proof. *-closed: $s_n(x) = s_n(x^*)$ for all $n \ge 0$. +-closed: $s_{2n}(x+y) \le s_n(x) + s_n(y)$, so $(s_n(x)), (s_n(y)) \in \ell^p$ implies $(s_{2n}(x+y)) \in \ell^p$. Similarly, $s_{2n+1}(x+y) \le s_n(x) + s_{n+1}(y)$, so $(s_n(x)), (s_n(y)) \in \ell^p$ implies $(s_{2n+1}(x+y)) \in \ell^p$. ℓ^p . Thus $(s_n(x+y)) \in \ell^p$. ideal: For all $x \in B(H)$ and $y \in \mathcal{L}^p(H)$, $s_n(xy), s_n(yx) \le s_0(x)s_n(y) = ||x||s_n(y)$, so $xy, yx \in \mathcal{L}^p(H)$. positive spanning: Immediate by Fact 2.4.3.

Corollary 2.5.6. $\mathcal{L}^{1}(H) = \text{span} \{ x \ge 0 | \text{Tr}(x) < \infty \}.$

Proposition 2.5.7. Tr extends to a linear map $\mathcal{L}^1(H) \to \mathbb{C}$ satisfying:

- $x \leq y$ implies $\operatorname{Tr}(x) \leq \operatorname{Tr}(y)$ (when x, y are self-adjoint) and
- $|\operatorname{Tr}(x)| \leq \operatorname{Tr}(|x|).$

Proof. For $x \in \mathcal{L}^1(H)$, we can write $x = \sum_{k=0}^3 i^k x_k$ with each $x_k \in \mathcal{L}^1(H)_+$. Define $\operatorname{Tr}(x) = \sum_{k=0}^3 i^k \operatorname{Tr}(x_k)$. This formula is clearly linear as long as it is well-defined.

First, suppose x is self-adjoint. Since $\operatorname{Re}(x) = x_0 - x_2$ and $\operatorname{Im}(x) = x_1 - x_3 = 0$, we must have $x_1 = x_3$, so $x = x_0 - x_2$. If $x = y_0 - y_2$ for $y_0, y_2 \in \mathcal{L}^1(H)_+$, then

$$x_0 - x_2 = x = y_0 - y_2 \qquad \Longleftrightarrow \qquad x_0 + y_2 = y_0 + x_2.$$

Thus $\operatorname{Tr}(x_0) + \operatorname{Tr}(y_2) = \operatorname{Tr}(y_0) + \operatorname{Tr}(x_2)$, and since these numbers are finite, $\operatorname{Tr}(x_0) - \operatorname{Tr}(x_2) = \operatorname{Tr}(y_0) - \operatorname{Tr}(y_2)$. Now when x is arbitrary, if we can also write $x = \sum_{k=0}^{3} i^k y_k$ with each $y_k \in \mathcal{L}^1(H)_+$, then $\operatorname{Re}(x) = y_0 - y_2$ and $\operatorname{Im}(x) = y_1 - y_3$. Hence $\sum_{k=0}^{3} i^k \operatorname{Tr}(y_k) = \operatorname{Tr}(\operatorname{Re}(x)) - i \operatorname{Tr}(\operatorname{Im}(x))$ which is independent of the $y_k \ge 0$. Now suppose $x \le y$ in $\mathcal{L}^1(H)$. Then $y - x \ge 0$, so $0 \le \operatorname{Tr}(y - x) = \operatorname{Tr}(y) - \operatorname{Tr}(x)$. To prove the last relation, take a Schmidt decomposition $x = \sum_n s_n(x) |e_n\rangle \langle f_n|$ with (e_n) and (f_n) orthonormal. Then

$$|\operatorname{Tr}(x)| = \left|\sum_{i} \left\langle \sum_{n} s_{n}(x) | e_{n} \right\rangle \langle f_{n} | f_{i}, f_{i} \right\rangle \right| = \left|\sum_{n} s_{n}(x) \langle e_{n}, f_{n} \right\rangle |$$

$$\leq \sum_{n} s_{n}(x) | \langle e_{n}, f_{n} \rangle | = \sum_{n} s_{n}(x) = \operatorname{Tr}(|x|). \qquad \Box$$

Proposition 2.5.8. For $x, y \in \mathcal{L}^2(H)$, $x^*y \in \mathcal{L}^1(H)$. The space $\mathcal{L}^2(H)$ is a Hilbert space with inner product $\langle x, y \rangle_{\mathcal{L}^2} := \text{Tr}(y^*x)$.

Proof. First, if $x \in \mathcal{L}^2(H)$ if and only if $x^*x \in \mathcal{L}^1(H)$ as $\operatorname{Tr}(|x|^2) = \operatorname{Tr}(x^*x)$. By polarization,

$$y^{*}x = \frac{1}{4} \sum_{k=0}^{3} i^{k} \underbrace{(x + i^{k}y)^{*}}_{\in \mathcal{L}^{2}(H)} \underbrace{(x + i^{k}y)}_{\in \mathcal{L}^{1}(H)}$$

It is clear that $\langle \cdot, \cdot \rangle_{\mathcal{L}^2(H)}$ is a positive sesquilinear form. Definiteness follows from the estimate

$$||x||_2^2 := \operatorname{Tr}(x^*x) \ge ||x^*x|| = ||x||^2.$$

This also shows every $\|\cdot\|_2$ -Cauchy sequence is $\|\cdot\|$ -Cauchy. To see $\mathcal{L}^2(H)$ is complete with respect to $\|\cdot\|_2$, it suffices to prove that if (x_n) is $\|\cdot\|_2$ -Cauchy with $x_n \to x$ in $\|\cdot\|$, then $x_n \to x$ in $\|\cdot\|_2$. First, $x \in K(H)$ as K(H) is closed. Next, for all finite rank projections p,

$$\|(x - x_n)p\|_2^2 = \operatorname{Tr}(p(x - x_n)^*(x - x_n)p) \stackrel{(!)}{=} \lim_m \operatorname{Tr}(p(x_m - x_n)^*(x_m - x_n)p)$$

= $\lim_m \operatorname{Tr}((x_m - x_n)p(x_m - x_n)^*) \leq \limsup_m \operatorname{Tr}((x_m - x_n)(x_m - x_n)^*)$
= $\limsup_m \operatorname{Tr}((x_m - x_n)^*(x_m - x_n)) = \limsup_m \|x_m - x_n\|_2^2.$

In the equality marked (!) above, we are using the fact that there is only one trace on $B(pH) \cong M_k(\mathbb{C})$, where pH is a finite dimensional Hilbert space with dimension k.

Thus $x_m \to x$ in norm implies $p(x_m - x_n)^*(x_m - x_n)p \to p(x - x_n)^*(x - x_n)p$ in norm, and we know the trace on B(pH) is continuous. Since p was arbitrary, we conclude that $\|x - x_n\|_2^2 \le \limsup \|x_m - x_n\|_2^2$,

which implies both $x \in \mathcal{L}^2(H)$ and $x_n \to x$ in $\|\cdot\|_2$.

Exercise 2.5.9. Suppose H is a Hilbert space (which you may assume is separable) with ONBs (e_i) and (f_i) .

- (1) Show that for every $x \in \mathcal{L}^2(H)$, $\sum_{i,j} |\langle xe_j, f_i \rangle|^2 = \sum_n |s_n(x)|^2 = \sum_n ||xe_n||^2$.
- (2) Show that for each $a = (a_{ij}) \in \ell^2(\mathbb{N}^2)$, there is an $a \in \mathcal{L}^2(H)$ such that $a_{ij} = \langle ae_j, f_i \rangle$.
- (3) Construct a unitary isomorphism $\mathcal{L}^2(H) \to \ell^2(\mathbb{N}^2)$.
- (4) Construct a canonical isomorphism $\mathcal{L}^2(H) \cong H \otimes H^*$.

Corollary 2.5.10. For all $x \in \mathcal{L}^1(H)$ and $y \in \mathcal{B}(H)$, $|\operatorname{Tr}(xy)|, |\operatorname{Tr}(yx)| \leq ||y|| \cdot \operatorname{Tr}(|x|)$.

Proof. Since
$$xy \in \mathcal{L}^1(H)$$
, $|\operatorname{Tr}(xy)| \leq \operatorname{Tr}(|xy|)$. Since $s_n(|xy|) \leq ||y|| \cdot s_n(x)$ by (SV4),
 $\operatorname{Tr}(|xy|) = \sum s_n(|xy|) \leq \sum ||y|| s_n(x) = ||y|| \sum s_n(x) = ||y|| \operatorname{Tr}(|x|)$.
Similarly, $\operatorname{Tr}(|yx|) \leq ||y|| \operatorname{Tr}(|x|)$.

Lemma 2.5.11. For $x, y \in \mathcal{L}^2(H)$, $\operatorname{Tr}(xy) = \operatorname{Tr}(yx)$. The conclusion also holds for $x \in \mathcal{L}^1(H)$ and $y \in \mathcal{B}(H)$.

Proof. As $(x, y) \mapsto \operatorname{Tr}(x^*y)$ and $(y, x) \mapsto \operatorname{Tr}(yx^*)$ are both sesquilinear forms on $\mathcal{L}^2(H)$, by polarization, they agree if and only if they agree on the diagonal. But $\operatorname{Tr}(x^*x) =$ $\operatorname{Tr}(xx^*)$, so $\operatorname{Tr}(x^*y) = \operatorname{Tr}(yx^*)$ for all $x, y \in \mathcal{L}^2(H)$. For the second part, by linearity in x, we may assume $x \in \mathcal{L}^1(H)_+$ so that $\sqrt{x} \in$ $\mathcal{L}^2(H)_+$. We then calculate $\operatorname{Tr}(xy) = \operatorname{Tr}(\sqrt{x}(\sqrt{x}y)) = \operatorname{Tr}((\sqrt{x}y)\sqrt{x}) = \operatorname{Tr}(\sqrt{x}(y\sqrt{x})) = \operatorname{Tr}((y\sqrt{x})\sqrt{x}) = \operatorname{Tr}(yx)$.

Proposition 2.5.12. $\mathcal{L}^1(H)$ is a Banach *-algebra with $||x||_1 := \operatorname{Tr}(|x|) = \sum s_n(x)$.

 $\begin{array}{l} \textit{Proof. We show } \|\cdot\|_1 \text{ has the required properties.} \\ \underline{\textit{Homogeneous: }} \|\lambda x\|_1 = \mathrm{Tr}(|\lambda x|) = \mathrm{Tr}(|\lambda| \cdot |x|) = |\lambda| \operatorname{Tr}(|x|) = |\lambda| \cdot \|x\|_1 \\ \underline{\underline{\textit{Definite: }}} \|x\|_1 = \mathrm{Tr}(|x|) = 0 \text{ implies } |x| = 0, \text{ so } x = 0. \\ \underline{\underline{\textit{Subadditive: }}} \text{ Let } x + y = u|x + y| \text{ be the polar decomposition so that } |x + y| = u^* x + u^* y. \\ \underline{\textit{Since }} u^* x, u^* y \in \mathcal{L}^1(H), \\ \|x + y\|_1 = \mathrm{Tr}(|x + y|) = \mathrm{Tr}(u^* x + u^* y) = \mathrm{Tr}(u^* x) + \mathrm{Tr}(u^* y) \\ \leq |\operatorname{Tr}(u^* x)| + |\operatorname{Tr}(u^* y)| \leq \|u^*\| \operatorname{Tr}(|x|) + \|u^*\| \operatorname{Tr}(|y|) \\ \leq \mathrm{Tr}(|x|) + \mathrm{Tr}(|y|) = \|x\|_1 + \|y\|_1. \end{array}$

Submultiplicative: Let xy = u|xy| be the polar decomposition so that $|xy| = u^*xy$. Then

$$\operatorname{Tr}(|xy|) = \operatorname{Tr}(u^*xy) \leq_{\text{(Cor. 2.5.10)}} \underbrace{\|u^*x\|}_{=\||x|\|} \operatorname{Tr}(|y|) \leq_{\text{(Tr5)}} \operatorname{Tr}(|x|) \operatorname{Tr}(|y|) = \|x\|_1 \cdot \|y\|_1.$$

<u>*-isometric:</u> $||x||_1 = \text{Tr}(|x|) = \sum s_n(x) = \sum s_n(x^*) = \text{Tr}(|x^*|) = ||x^*||_1.$ <u>Complete:</u> Suppose (x_n) is $||\cdot||_1$ -Cauchy. By (Tr5),

$$||x_m - x_n||_1 = \operatorname{Tr}(|x_m - x_n|) \ge ||x_m - x_n||| = ||x_m - x_n||,$$

so (x_n) is $\|\cdot\|$ -Cauchy. Since K(H) is closed, there is an $x \in K(H)$ with $x_n \to x$ in norm. Consider the polar decomposition $x - x_n = u_n |x - x_n|$. For all finite rank projections p,

$$\operatorname{Tr}(p|x - x_n|) = \operatorname{Tr}(pu_n^*(x - x_n)p) = |\operatorname{Tr}(pu_n^*(x - x_n)p)| \\ = \lim_m |\operatorname{Tr}(pu_n^*(x_m - x_n)p)| \leq \lim_{\text{(Cor. 2.5.10)}} \limsup_m ||x_m - x_n||_1.$$

This implies $x \in \mathcal{L}^1(H)$ and $x_n \to x$ in $\|\cdot\|_1$.

Proposition 2.5.13. For all $1 , <math>\mathcal{L}^p(H)$ is a Banach space with $||x||_p^p := \text{Tr}(|x|^p) = ||(s_n(x))||_{\ell^p}$.

We omit the proof which is similar to those for $\mathcal{L}^2(H)$ and $\mathcal{L}^1(H)$.

Theorem 2.5.14. Suppose $1 < q, p < \infty$ with 1/p + 1/q = 1. For all $x \in \mathcal{L}^p(H)$ and $y \in \mathcal{L}^q(H)$, $xy \in \mathcal{L}^1(H)$ and $|\operatorname{Tr}(xy)| \leq ||x||_p \cdot ||y||_q$.

Proof. Without loss of generality, $2 \le p$. We proceed via the following steps. Step 1: If $x \in \mathcal{L}^p(H)_+$ with $p \ge 2$ and $\xi \in H$ with $\|\xi\| = 1$, then $\langle x^2\xi, \xi \rangle^{p/2} \le \langle x^p\xi, \xi \rangle$.

Proof. Let
$$(e_n)$$
 be an ONB with $x = \sum \lambda_n |e_n\rangle \langle e_n|$. For all $\xi \in \text{span}\{e_1, \dots, e_k\}$,
 $\langle x^2\xi, \xi \rangle = \sum_{i,j=1}^k \langle \langle \xi, e_i \rangle x^2 e_i, \langle \xi, e_j \rangle e_j \rangle = \sum_{i,j=1}^k \langle \xi, e_i \rangle \overline{\langle \xi, e_j \rangle} \langle x^2 e_i, e_j \rangle = \sum_{i=1}^k |\langle \xi, e_i \rangle|^2 \lambda_i^2.$

Since the function $r \mapsto r^{p/2}$ is convex and $\sum_{i=1}^{k} |\langle \xi, e_i \rangle|^2 = ||\xi||^2 = 1$, we have

$$\langle x^2\xi,\xi\rangle^{p/2} = \left(\sum_{i=1}^k |\langle\xi,e_i\rangle|^2\lambda_i^2\right)^{p/2} \le \sum_{i=1}^k |\langle\xi,e_i\rangle|^2\lambda_i^p = \langle x^p\xi,\xi\rangle$$

Hence the desired inequality holds on the algebraic span of the e_i , which is dense in H. Since the continuous function $\xi \mapsto \langle x^p \xi, \xi \rangle - \langle x^2 \xi, \xi \rangle^{p/2}$ is non-negative on a dense subspace, the result follows.

Step 2: If $x \in \mathcal{L}^p(H)_+$ with $p \ge 2$ and $y \in \mathcal{L}^q(H)_+$ with 1/p + 1/q = 1, then $xy \in \mathcal{L}^1(H)$ and $\operatorname{Tr}(|xy|) \le ||x||_p \cdot ||y||_q$.

 $\begin{array}{l} \textit{Proof. Pick an ONB} (f_n) \text{ such that } y = \sum_{i=1}^{n} \mu_n |f_n\rangle \langle f_n|. \text{ For every } n \in \mathbb{N}, \\ |\langle |xy|f_n, f_n\rangle|^2 & \leq_{(\mathrm{CS})}^2 ||xy|f_n||^2 \cdot ||f_n|| = |\langle |xy|^2 f_n, f_n\rangle| = |\langle y^*x^*xyf_n, f_n\rangle| \\ & = |\langle x^*xyf_n, yf_n\rangle| = \mu_n^2 |\langle |x|^2 f_n, f_n\rangle|. \\ \text{Hence by Step 1, we have} \\ & \langle |xy|f_n, f_n\rangle \leq \mu_n \langle |x|^2 f_n, f_n\rangle^{1/2} \leq_{(\mathrm{Step 1})}^2 \mu_n \langle |x|^p f_n, f_n\rangle^{1/p}. \\ \text{Now setting } a_n = \langle |x|^p f_n, f_n\rangle^{1/p}, (a_n) \in \ell^p \text{ as } x \in \mathcal{L}^p(H): \\ & \|(a_n)\|_p^p = \sum_n \langle |x|^p f_n, f_n\rangle = \mathrm{Tr}(|x|^p) < \infty. \\ \text{Also, } (\mu_n) \in \ell^q \text{ as } \sum_n \mu_n^q = \mathrm{Tr}(|y|^q) < \infty \text{ since } y \in \mathcal{L}^q(H). \text{ By Hölder's Inequality,} \\ & \mathrm{Tr}(|xy|) = \sum_n \langle |xy|f_n, f_n\rangle \leq \sum_n \mu_n \langle |x|^p f_n, f_n\rangle^{1/p} \leq \|(a_n)\|_p \cdot \|(\mu_n)\|_q = \|x\|_p \cdot \|y\|_q. \end{array}$

Step 3: For arbitrary $x \in \mathcal{L}^p(H)$ with $p \ge 2$ and $y \in \mathcal{L}^q(H)$ with 1/p + 1/q = 1, $xy \in \mathcal{L}^1(H)$ and $|\operatorname{Tr}(xy)| \le ||x||_p \cdot ||y||_q$.

Proof. Consider the polar decompositions x = u|x| and $y^* = v|y^*|$ and note that $|x|, |y^*| \ge 0, |x| = u^*x \in \mathcal{L}^p(H)$, and $|y^*| = v^*y^* \in \mathcal{L}^q(H)$. By Step 2, we have $|x| \cdot |y^*| \in \mathcal{L}^1(H)$ and $\operatorname{Tr}\left(||x| \cdot |y^*||\right) \le ||x||_p \cdot ||y||_q$. It follows immediately that $xy = x(y^*)^* = u|x|(v|y^*|)^* = u|x||y^*|v^* \in \mathcal{L}^1(H)$. and $|\operatorname{Tr}(xy)| = |\operatorname{Tr}(u|x||y^*|v^*)| \le (\operatorname{Cor. 2.5.10}) ||u|| \cdot ||v^*|| \cdot \operatorname{Tr}\left(||x| \cdot |y^*||\right)$ $\le (\operatorname{Step 2}) |||x|||_p \cdot |||y^*|||_q = ||x||_p \cdot ||y||_q$. □

Exercise 2.5.15. Show that the pairing $(x, y) \mapsto \operatorname{Tr}(xy)$ implements a duality exhibiting an isometric isomorphisms $K(H)^* \cong \mathcal{L}^1(H)$ and $\mathcal{L}^1(H)^* \cong B(H)$. Explain how one can view this as an analogy of the facts that $c_0^* \cong \ell^1$ and $(\ell^1)^* \cong \ell^\infty$.

Theorem 2.5.16. Suppose $1 < p, q < \infty$ with 1/p + 1/q = 1. The bilinear form (x, y) :=Tr(xy) implements a duality exhibiting $\mathcal{L}^p(H)$ and $\mathcal{L}^q(H)$ as isometrically isomorphic to each other's dual spaces.

Proof. First, note that if $(x_n) \in \ell^q$, then $(|x_n|^{q-1}) \in \ell^p$ and $||x_n||_q^q = \sum |x_n|^q = \sum |x_n|^{(q-1)p} = ||(|x_n|^{q-1})||_p^p$ and $||x_n||_q^q = \left(\sum |x_n|^q\right)^{1/p+1/q} = \left(\sum |x_n|^{(q-1)p}\right)^{1/p} \left(\sum |x_n|^q\right)^{1/q} = ||(|x_n|^{q-1})||_p \cdot ||(x_n)||_q.$ We now proceed via the following steps. Step 1: The map $y \mapsto \operatorname{Tr}(\cdot y)$ is an isometry $\mathcal{L}^q(H) \to \mathcal{L}^p(H)^*$.

Proof. First, note that the map $\mathcal{L}^q(H) \to \mathcal{L}^p(H)^*$ given by $y \mapsto \operatorname{Tr}(\cdot y)$ is well-defined and norm-decreasing by Theorem 2.5.14. We use polar decomposition to write y = u|y|and note $|y| = u^* y \in \mathcal{L}^q(H)$. We claim that **Claim.** For every r > 0, $s_n(|y|)^r = s_n(|y|^r) = s_n(u|y|^r) = s_n(|y|^r u^*)$. Proof of claim. If $|y| = \sum \lambda_n |f_n\rangle \langle f_n|$ is the Schmidt decomposition, then $s_n(|y|)^r =$ $\lambda_n^r = s_n(|y|^r)$. Moreover, if $e_n = uf_n$ for all n, then $\implies \qquad \qquad u|y|^r = \sum \lambda_n^r |e_n\rangle \langle f_n|.$ $u|y| = \sum \lambda_n |e_n\rangle \langle f_n|$ Then since $(u|y|^r)^*u|y|^r = |y|^r u^*u|y|^r = \sum \lambda_n^{2n} |f_n\rangle \langle f_n|$, $s_n(u|y|^r) = s_n(|y|^r u^* u|y|^r)^{1/2} = \lambda_n^r$ Since for any z, $s_n(z^*z)^{1/2} = s_n(z)$, we have $s_n(u|y|^r) = \lambda_n^r$. Finally, $s_n(u|y|^r) = \lambda_n^r$ $s_n(|y|^r u^*)$ as the *n*-th singular value of adjoints agree, finishing the claim. Now using the claim above, we have $a_n := s_n(|y|^{q-1}) = s_n(|y|)^{q-1}$, so $(a_n) \in \ell^p$ and $|y|^{q-1} \in \mathcal{L}^p(H)$. For $x := |y|^{q-1}u^* \in \mathcal{L}^p(H)$, setting $\mu_n = s_n(y)$, $\operatorname{Tr}(xy) = \operatorname{Tr}(|y|^{q-1}u^*y) = \operatorname{Tr}(|y|^q) = \|y\|_q^q = \|(\mu_n)\|_q^q = \|(\mu_n^{q-1})\|_p \cdot \|(\mu_n)\|_q = \|x\|_p \cdot \|y\|_q$

Step 2: The map $y \mapsto \text{Tr}(\cdot y)$ from Step 4 is surjective.

Proof. Since 1 < p, $\mathcal{L}^{1}(H) \subseteq \mathcal{L}^{p}(H)$ with $\|\cdot\|_{1} \geq \|\cdot\|_{p}$. Thus if $\varphi \in \mathcal{L}^{p}(H)^{*}$, $\varphi|_{\mathcal{L}^{1}(H)} \in \mathcal{L}^{1}(H)^{*} = B(H)$, so there is a $y \in B(H)$ such that $\varphi|_{\mathcal{L}^{1}(H)} = \operatorname{Tr}(\cdot y)$ by Exercise 2.5.15. It remains to prove $y \in \mathcal{L}^{q}(H)$ and $\varphi = \operatorname{Tr}(\cdot y)$ on $\mathcal{L}^{p}(H)$.

Claim. $y \in K(H)$.

Proof of Claim. By polar decomposition y = u|y|, we may assume $y \ge 0$ as $y \in K(H)$ iff |y|inK(H), and

$$|\operatorname{Tr}(x|y|)| = |\operatorname{Tr}(xu^*y)| \le \|\varphi\| \cdot \|xu^*\|_p \le \|\varphi\| \cdot \|x\|_p.$$

If $y \notin K(H)$, then by Remark 2.4.13, there is a $\varepsilon > 0$ such that $p := \chi_{(\varepsilon,\infty)}(y)$ has infinite dimensional image. Pick an orthonormal sequence $(f_n) \subset pH$, and note that $y \ge \varepsilon$ on pH, i.e., $\langle yf_n, f_n \rangle \ge \varepsilon$ for all n. Pick $(\mu_n) \in \ell^p \setminus \ell^1$ (we may assume $\mu_n \ge 0$ for all n) and set $x_k = \sum_{n=0}^k \mu_n |f_n\rangle \langle f_n|$ and $x = \lim x_k \in \mathcal{L}^p(H)$. Then $x_k \in \mathcal{L}^1(H)$ for all k, and

$$\varepsilon \sum_{n=0}^{k} \mu_n \leq \sum_{n=0}^{k} \mu_n \langle yf_n, f_n \rangle = \operatorname{Tr}(x_k y) = \varphi(x_k) \xrightarrow{k \to \infty} \varphi(x)$$

But $(\mu_n) \notin \ell^1$, so $\varepsilon \sum_{n=0}^k \mu_n \to \infty$, a contradiction.

Since $y \in K(H)$, we can take a Schmidt decomposition $|y| = \sum \lambda_n |f_n\rangle \langle f_n|$, and let y = u|y| be the polar decomposition with $uf_n = e_n$ so that $y = \sum \lambda_n |e_n\rangle \langle f_n|$. For each k, let r_k be the orthogonal projection onto span $\{f_0, f_1, \ldots, f_k\}$, and observe that r_k commutes with $|y|^s$ for all s > 0. For each $k, x_k := |y|^{q-1}r_ku^*$ is finite rank and thus in $\mathcal{L}^2(H) \subseteq \mathcal{L}^p(H)$. Observe now that

$$x_{k}^{*}x_{k} = u|y|^{q-1}r_{k}|y|^{q-1}u^{*} = ur_{k}\left(\sum \lambda_{n}^{2q-2}|f_{n}\rangle\langle f_{n}|\right)u^{*} = \sum_{n=0}^{\kappa}\lambda_{n}^{2q-2}|e_{n}\rangle\langle e_{n}|$$

which implies that

$$||x_k||_p^p = \operatorname{Tr}((x_k^* x_k)^{p/2}) = \sum_{n=0}^k (\lambda_n^{2q-2})^{p/2} = \sum_{n=0}^k \lambda_n^q = \operatorname{Tr}(|y|^q r_k).$$

But note that also

$$\varphi(x_k) = \operatorname{Tr}(x_k y) = \operatorname{Tr}(|y|^{q-1} r_k u^* y) = \operatorname{Tr}(|y|^{q-1} r_k |y|) = \operatorname{Tr}(|y|^q r_k).$$

This means

$$\operatorname{Tr}(|y|^{q}r_{k}) = |\varphi(x_{k})| \leq \|\varphi\| \cdot \|x_{k}\|_{p} = \|\varphi\| \cdot \operatorname{Tr}(|y|^{q}r_{k})^{1/p}$$

which implies that

$$\operatorname{Tr}(|y|^{q}r_{k})^{1/q} = \operatorname{Tr}(|y|^{q}r_{k})^{1-1/p} \le \|\varphi\|.$$

Hence $\operatorname{Tr}(|y|^q r_k) \leq ||\varphi||^q$ for all k, and so $y \in \mathcal{L}^q(H)$. Finally, the finite rank operators are contained in $\mathcal{L}^2(H)$ and also dense in $\mathcal{L}^p(H)$. Indeed, if $x \in \mathcal{L}^p(H)^+$ has Schmidt decomposition $x = \sum \lambda_n |f_n\rangle \langle f_n|$, then $x_k := \sum_{n=0}^k \lambda_n |f_n\rangle \langle f_n|$ is finite rank, and

$$\|x - x_k\|_p^p = \left\|\sum_{n>k} \lambda_n |f_n\rangle \langle f_n|\right\|_p^p = \sum_{n>k} \lambda_n^p \xrightarrow{k \to \infty} 0.$$

Thus $\mathcal{L}^2(H)$ is dense in $\mathcal{L}^p(H)$, and so $\varphi = \operatorname{Tr}(\cdot y)$ on $\mathcal{L}^p(H)$.

Since our proof above did not distinguish p and q, we also conclude $\mathcal{L}^p(H) \cong \mathcal{L}^q(H)^*$. \Box