
Penneys Math 7212, Operators on Hilbert spaces Spring 2024

The notes in this section are compiled from:

• Notes from a graduate course I took at Berkeley from Don Sarason in 2006,
• Pedersen’s Analysis Now, and

2. Hilbert space basics

For this section, H is a Hilbert space. Recall the polarization identity, which holds for
any sesquilinear form:

⟨η, ξ⟩ = 1

4

3∑
k=0

ik⟨η + ikξ, η + ikξ⟩ ∀ η, ξ ∈ H. (2.0.1)

Exercise 2.0.2. Prove that a positive sesquilinear form is self adjoint.

The adjoint is defined via the Riesz-Representation Theorem, i.e., if x ∈ B(H → K), for
all ξ ∈ K, η 7→ ⟨xη, ξ⟩K is a bounded linear functional on H, so there is a unique x∗ξ ∈ H
such that

⟨xη, ξ⟩K = ⟨η, x∗ξ⟩H ∀ η ∈ H, ∀ ξ ∈ K.

The assignment ξ 7→ x∗ξ is linear and bounded, so x∗ ∈ B(H).

Exercise 2.0.3. Explain the relationship between x, x∗, x, xt where x : H → K is the con-
jugate operator given by xη := xη, and xt is the transpose, given by the Banach adjoint
K∗ → H∗ by ⟨ξ| 7→ ⟨ξ| ◦ x.

2.1. Operators in B(H). We have various types of operators as in the C∗-algebra notes.
We call x ∈ B(H):

• self-adjoint if x = x∗,
• positive if there is a y ∈ B(H) such that x = y∗y,
• normal if xx∗ = x∗x,
• a projection if x = x∗ = x2,
• an isometry if x∗x = 1,
• a unitary if x∗x = 1 = xx∗ (equivalently, an invertible isometry),
• a partial isometry if x∗x is a projection.

Here are some elementary properties about B(H):

(B1) ker(x∗) = (xH)⊥.

Proof. Since ⟨xη, ξ⟩ = ⟨η, x∗ξ⟩, we have ξ ⊥ xH if and only if x∗ξ ⊥ H if and
only if x∗ξ = 0. □

(B2) x = y if and only if ⟨xξ, ξ⟩ = ⟨yξ, ξ⟩ for all ξ ∈ H.

Proof. Replacing x with x − y, we may assume y = 0. The forward direction
is trivial. Suppose ⟨xξ, ξ⟩ = 0 for all ξ ∈ H. Polarization (2.0.1) applied to the
form ⟨x · , · ⟩ implies ⟨xη, ξ⟩ = 0 for all η, ξ ∈ H. Thus xη ⊥ H for all η ∈ H,
so x = 0. □
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(B3) x is normal if and only if ∥xξ∥ = ∥x∗ξ∥ for all ξ ∈ H.

Proof. By (B2), x∗x = xx∗ if and only if ⟨x∗xξ, ξ⟩ = ⟨xx∗ξ, ξ⟩ for all ξ ∈ H.
But this holds if and only if ∥xξ∥2 = ∥x∗ξ∥2 for all ξ ∈ H. □

(B4) x ∈ B(H) is self-adjoint if and only if ⟨xξ, ξ⟩ ∈ R for all ξ ∈ H.

Proof. Homework. □

2.2. Normal operators. We now prove some elementary properties about normal opera-
tors. For the following properties, x ∈ B(H) is normal.

(N1) xξ = λξ if and only if x∗ξ = λξ.

Proof. Immediate from (B3) applied to x− λ. □

(N2) xη = λη and xξ = µξ with λ ̸= µ implies η ⊥ ξ.
(N3) Every λ ∈ sp(x) is an approximate eigenvalue of x, i.e., there is a sequence of unit

vectors (ξn) such that (x− λ)ξn → 0.

Proof. Suppose λ is not an approximate eigenvalue of x. Then there is a ε > 0
such that ∥(x− λ)ξ∥ ≥ ε∥ξ∥ for all ξ ∈ H. Then x− λ is injective with closed
range, and by (B3), so is x∗ − λ. But 0 = ker(x∗ − λ) = ((x − λ)H)⊥ by
(B1). Thus x− λ is surjective, and thus x− λ is bijective and bounded, hence
invertible. Thus λ /∈ sp(x). □

(N4) ∥x∥ = sup {|⟨xξ, ξ⟩||∥ξ∥ = 1}

Proof. Since r(x) = ∥x∥, there is a λ ∈ sp(x) such that |λ| = ∥x∥. Then since
λ is an approximate eigenvalue by (N3), there is a sequence (ξn) of unit vectors
such that (x− λ)ξn → 0. Thus

|⟨xξn, ξn⟩ − λ| = |⟨xξn, ξn⟩ − λ⟨ξn, ξn⟩|
= |⟨(x− λ)ξn, ξn⟩|

≤
(CS)

∥xξn − λξn∥ · ∥ξn∥︸︷︷︸
=1

n→∞−−−→ 0. □

(N5) If x = x∗,

sup {⟨xξ, ξ⟩|∥ξ∥ = 1} = max {λ|λ ∈ sp(x)} and

inf {⟨xξ, ξ⟩|∥ξ∥ = 1} = min {λ|λ ∈ sp(x)}
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Proof. SetM := max {λ|λ ∈ sp(x)}. By the Spectral Mapping Theorem, sp(x+
∥x∥) = sp(x) + ∥x∥ ⊂ [0,∞), and thus x+ ∥x∥ is (spectrally) positive. Then

M + ∥x∥ =
(SMT)

max {λ|λ ∈ sp(x+ ∥x∥)} =
(N4)

sup {⟨(x+ ∥x∥)ξ, ξ⟩|∥ξ∥ = 1}

= sup {⟨xξ, ξ⟩|∥ξ∥ = 1}+ ∥x∥.
The proof for the second is similar swapping min and inf for max and sup, and
subtracting ∥x∥. □

Remark 2.2.1. The set
R(x) := {⟨xξ, ξ⟩|∥ξ∥ = 1}

is called the numerical range of x ∈ B(H). It is always convex subset of C; this is easy to
show when x is self-adjoint. Indeed, since ξ 7→ ⟨xξ, ξ⟩ is continuous and the unit sphere is
connected, R(T ) is then a connected subset of R, i.e., an interval.

Proposition 2.2.2. The following are equivalent for x ∈ B(H).

(1) ⟨xξ, ξ⟩ ≥ 0 for all ξ ∈ H.
(2) x is normal and sp(x) ⊂ [0,∞).
(3) x is positive.

Proof.
(1) ⇒ (2): Assuming (1), we have

⟨xξ, ξ⟩ = ⟨xξ, ξ⟩ = ⟨ξ, xξ⟩ = ⟨x∗ξ, ξ⟩ ∀ξ ∈ H,

so x = x∗ by (B2). By (N4),

sp(x) ⊂ R(x) ⊂ [0,∞).

(2) ⇒ (3): Since x is normal and sp(x) ⊂ [0,∞), we can use the continuous functional calculus

to get a self-adjoint operator
√
x ∈ B(H) such that

√
x
2
= x.

(3) ⇒ (1): If x = y∗y for some y ∈ B(H), then

⟨xξ, ξ⟩ = ⟨y∗yξ, ξ⟩ = ⟨yξ, yξ⟩ = ∥yξ∥2 ∀ξ ∈ H. □

Theorem 2.2.3 (Fuglede). Suppose x, y ∈ B(H) such that xy = yx. If x is normal, then
x∗y = yx∗.

Proof due to Rosenblum. Since xy = yx, yeiλx = eiλxy, so x = eiλxye−iλx for all λ ∈ C.
We define f : C → B(H) by

f(λ) := eiλx
∗
ye−iλx∗

= eiλx
∗
eiλxye−iλxe−iλx∗

= ei(λx
∗+λx)ye−i(λx∗+λx).

Since λx∗ + λx is self-adjoint, ei(λx
∗+λx) is unitary. Hence f : C → B(H) is a bounded

B(H)-valued entire function, and thus constant by Liouville. Thus

0 = −i · d

dλ

∣∣∣∣
λ=0

f(λ) = x∗y − yx∗.

(Take the power series expansion to first order.) □
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Exercise 2.2.4. Where is normality of x used in the proof of Fuglede’s Theorem 2.2.3?

Corollary 2.2.5. If x ∈ B(H) is normal and xy = yx, then yf(x) = f(x)y for all f ∈
C(sp(x)).

Proof. By Fuglede’s Theorem 2.2.3, the result holds for all polynomials in x and
x∗. The result now follows by density of these polynomials in C(sp(x)) by Stone-
Weierstrass. □

Remark 2.2.6. The results in this section also hold for operators in a unital C∗-algebra,
not just B(H).

2.3. Projections and partial isometries.

Example 2.3.1. Let x ∈ B(H). The support projection of x is supp(x) := 1 − pker(x) =
pker(x)⊥ . The range projection of x is range(x) := pxH .
Observe that x = range(x) · x · supp(x). By (B1), range(x) = supp(x∗). If x is normal,

then since ker(x) = ker(x∗x) = ker(xx∗) = ker(x∗), supp(x) = range(x).

Lemma 2.3.2. The map p 7→ pH is a bijective correspondence between projections and
closed subspaces of H.

Proof. It is clear that pH ⊆ H is a closed subspace as p is continuous and p = p2.
Moreover, since p = p∗, pH⊥ = ker(p∗) = ker(p) = (1− p)H.
Conversely, every closed subspace K ⊆ H has an orthogonal complement K⊥, H =
K ⊕ K⊥, and projection pK onto K is an idempotent. We claim it is self-adjoint.
Indeed, ker(p∗K) = pKH

⊥ = K⊥ = ker(pK), which implies p∗K(1 − pK) = 0, and thus
p∗KpK = p∗K . But p

∗
KpK is self-adjoint, and thus pK = p∗K .

One checks these two constructions are mutually inverse. □

Lemma 2.3.3. For p, q ∈ P (M), the following are equivalent.

(1) p ≤ q (q − p ≥ 0),
(2) pH ⊆ qH, and
(3) p = pq.

Proof.
(1) ⇒ (2): We show (1− q)H ⊆ (1− p)H, and the result follows by taking orthogonal

complements. Suppose ξ ∈ (1− q)H so qξ = 0. Then since 0 ≤ q − p,

0 ≤ ⟨(q − p)ξ, ξ⟩ = ⟨qξ, ξ⟩︸ ︷︷ ︸
=0

−⟨pξ, ξ⟩ = −⟨pξ, ξ⟩ = −∥pξ∥2.

Thus pξ = 0, so ξ ∈ (1− p)H.
(2) ⇒ (3): If pH ⊆ qH, then projecting to qH and then to pH is the same as just
projecting to pH.
(3) ⇒ (1): If p = pq, then p = p∗ = qp. Thus q − p = q − qpq = q(1− p)q ≥ 0. □
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Exercise 2.3.4. We say projections p, q are mutually orthogonal, denoted p ⊥ q, if pH ⊥
qH. Show that p ⊥ q if and only if pq = 0.

Exercise 2.3.5. For projections p, q, we define p∧ q to be the projection onto pH ∩ qH and
p ∨ q to be the projection onto pH + qH. Prove that p ∨ q = 1− (1− p) ∧ (1− q).

Exercise 2.3.6. Prove the following statements about projections and invariant subspaces.

(1) K ⊆ H is x-invariant if and only if pKxpK = xpK .
(2) K ⊆ H is x-invariant if and only if K⊥ is x∗-invariant.
(3) K ⊆ H is x and x∗-invariant if and only if xpK = pKx.

Exercise 2.3.7. The following are equivalent for a u ∈ B(H → K).

(1) u is a partial isometry.
(2) u = uu∗u.
(3) u∗ is a partial isometry.
(4) u∗ = u∗uu∗.

Hint: Use the C∗-identity.

Remark 2.3.8. By the exercise, a partial isometry u ∈ B(H → K) is a unitary from u∗uH
onto uu∗K.

Exercise 2.3.9. Suppose u, v ∈ B(H) are partial isometries with uu∗ ⊥ vv∗ and u∗u ⊥ v∗v.
Show that u+ v is again a partial isometry.

Proposition 2.3.10 (Polar decomposition). For each x ∈ B(H → K), there is a unique
positive |x| ∈ B(H) such that |x|2 = x∗x and ∥xξ∥ = ∥|x|ξ∥ for all ξ ∈ H. Moreover, there is
a unique partial isometry u ∈ B(H → K) such that u|x| = x and ker(u) = ker(x) = ker(|x|).
In particular, u∗x = |x|.

Proof. If y ≥ 0 such that ∥yξ∥ = ∥xξ∥ for all ξ ∈ H, then

⟨x∗xξ, ξ⟩ = ∥xξ∥2 = ∥yξ∥2 = ⟨y2ξ, ξ⟩
so x∗x = y2 by (B2), and thus y =

√
x∗x by the uniqueness of the positive square root.

Now define u : |x|H → K by u|x|ξ := xξ, and note

∥u|x|ξ∥ = ∥xξ∥ = ∥|x|ξ∥ ∀ ξ ∈ H.

So u is an isometry on |x|H, and is thus well-defined. We can extend u to |x|H by
continuity, and define u = 0 on (|x|H)⊥ = ker(|x|) by (B1), and ker(|x|) = ker(x) by
construction. We will call this extension u again by a slight abuse of notation. Then
u is a partial isometry and u|x| = x.
If v ∈ B(H) is another partial isometry with ker(v) = ker(x) = ker(u) and v|x| = x,

then u|x|ξ = v|x|ξ for all ξ ∈ H, so u = v on |x|H. But u = v = 0 on (|x|H)⊥, so
u = v.
Finally, u∗u is the projection onto |x|H, so u∗xξ = u∗u|x|ξ = |x|ξ for all ξ ∈ H. □

Exercise 2.3.11. Suppose x = u|x| is the polar decomposition. Prove that x = |x∗|u and
the polar decomposition of x∗ is given by u∗|x∗|.
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Corollary 2.3.12. If x = u|x| is the polar decomposition, then u∗u = supp(x) and uu∗ =
range(x).

Proof. Since ker(u) = ker(x), supp(x) = pker(x)⊥ = pker(u)⊥ = u∗u. Since x∗ = u∗|x∗| is
the polar decomposition of x∗, we have range(x) = supp(x∗) = uu∗. □

Remark 2.3.13. If x is invertible, then so are x∗ and x∗x, and by the CFC for x∗x, so is
|x|. If x = u|x| is the polar decomposition, then u = x|x|−1 ∈ C∗(x) is a unitary. Hence if A
is a unital C∗-algebra and a ∈ A is invertible, then a has a unique polar decomposition in A.

2.4. Compact operators. Recall x ∈ B(H → K) is called compact if it maps bounded
subsets of H to precompact subsets (subset with compact closure) of K. We write K(H →
K) for the subset of compact operators in B(H → K), and we write K(H) for the compact
operators in B(H). Recall that K(H) is a closed 2-sided ideal in B(H).

Fact 2.4.1 (Spectra of compact operators). Suppose x ∈ K(H). The non-zero points of
sp(x) are isolated eigenvalues, and all correspondonding eigenspaces are finite dimensional.
There are only countably many of them, and zero is the only possible accumulation point.

Exercise 2.4.2. An operator x ∈ B(H) is called finite rank if xH is finite dimensional.

(1) Show that every finite rank operator is compact.
(2) Show that the finite rank operators form a ∗-closed 2-sided ideal in B(H).

Fact 2.4.3. Every ∗-closed 2-sided ideal J ⊆ B(H) is spanned by its positive operators.
First, note that every self-adjoint x ∈ J can be written as x = x+ − x− with x± ≥ 0 and
x+x− = 0 by setting x+ := χ[0,∞)(x)x and x− := χ(−∞,0](x)x. Clearly x± ∈ J , so every
self-adjoint in J is in the span of the positives of J . Second, every x = Re(x) + i Im(x) with
Re(x) = (x+ x∗)/2 and Im(x) = (x− x∗)/(2i). Since J is ∗-closed, Re(x) and Im(x) are in
J . Thus Re(x)±, Im(x)± ∈ J , and x is a linear combination of these 4 positives.

Lemma 2.4.4. There is a net (pi) of finite rank projections such that piξ → ξ for all ξ ∈ H.
In other words, pi → 1 in the strong operator topology (the topology of pointwise convergence).

Proof. Let (ei)i∈I be an ONB of H. Let F be the subset of finite subsets of I, ordered
by inclusion. For F ∈ F , define pF to be the projection onto the finite dimensional
(and thus closed) subspace span {ei|i ∈ F}. By Parseval’s identity, ∥pF ξ − ξ∥ → 0 for
all ξ ∈ H. □

Theorem 2.4.5. The following are equivalent for x ∈ B(H). Below, B denotes the norm-
closed unit ball in H.

(K1) x is compact.
(K2) x is in the norm closure of the finite rank operators in B(H).
(K3) x|B is weak-norm continuous B → H
(K4) xB is compact in H.

Proof.
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(1) ⇒ (2): Let x ∈ K(H) and let (pi) be a net as in Lemma 2.4.4. We claim that pix → x

in norm. Otherwise, there is a ε > 0 such that (passing to a subnet if necessary) for all i,
there is a ξi ∈ H with ∥ξi∥ = 1 and ε ≤ ∥(1− pi)xξi∥ and xξi → η in H (by compactness of
x). Then

ε ≤ ∥(1− pi)xξi∥ ≤ ∥(1− pi)(xξi − η)∥+ ∥(1− pi)η∥ ≤ ∥xξi − η∥+ ∥(1− pi)η∥ −→ 0,

a contradiction.
(2) ⇒ (3): Suppose x is a norm limit of finite rank operators and (ξi) is a net of vectors in B

converging weakly to ξ ∈ B. Let ε > 0. Choose a finite rank y ∈ B(H) such that ∥x−y∥ < ε.
We claim that yξi → yξ. Indeed, choosing an ONB {e1, . . . , en} for the finite dimensional
Hilbert space yH,

∥y(ξi − ξ)∥2 =
n∑

k=1

|⟨y(ξi − ξ), ek⟩|2 =
n∑

k=1

|⟨ξi − ξ, y∗ek⟩|2 −→ 0.

Now pick j so that i > j implies ∥yξi − yξ∥ < ε. For all i > j,

∥xξi − xξ∥ ≤ ∥xξi − yξi∥+ ∥yξi − yξ∥+ ∥xξ − yξ∥ < 3ε.

The result follows.
(3) ⇒ (4): Since B is weakly compact by Banach-Alaoglu, xB is the continuous image of a
compact set which is thus compact.
(4) ⇒ (1): If S ⊂ H is bounded, then S ⊂ Br = Br(0H) for some r > 0. Then xBr = rxB is
compact, so the closure of xS is compact. □

Exercise 2.4.6. Prove that if x ∈ B(H) is finite rank, then so is x∗. Deduce that K(H) is
∗-closed.

Notation 2.4.7. We write ⟨η|ξ⟩ := ⟨ξ, η⟩, which is linear on the right, and conjugate linear
on the left. For η ∈ H, we write ⟨η| ∈ H∗ for ξ 7→ ⟨η|ξ⟩, and we can also denote ξ ∈ H by
|ξ⟩. This allows us to define the rank one operator |η⟩⟨ξ| ∈ B(H) by ζ 7→ |η⟩⟨ξ|ζ⟩ = ⟨ζ, ξ⟩η.

Exercise 2.4.8. Prove the following statements about rank one operators.

(1) |η⟩⟨ξ|∗ = |ξ⟩⟨η|
(2) |η1⟩⟨η2| · |ξ1⟩⟨ξ2| = ⟨η2|ξ1⟩ · |η1⟩⟨ξ2|
(3) If ∥ξ∥ = 1, then |ξ⟩⟨ξ| is the rank one projection onto Cξ.

Definition 2.4.9. An operator x ∈ B(H) is orthogonally diagonalizable if there is an ONB
(ei) of eigenvectors for x.

Exercise 2.4.10. Show that if x ∈ B(H) is orthogonally diagonalizable, then the eigenvalues
(λi) for (ei) are in ℓ∞(I), where I is given counting measure.

Lemma 2.4.11. An orthogonally diagonalizable operator x ∈ B(H) is compact if and
only if the eigenvalues (λi) for (ei) is in c0(I), where I has the discrete topology, and
x =

∑
i λi|ei⟩⟨ei|, where the sum converges in norm.
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Proof. By Fact 2.4.1, since sp(x) ⊆ {λi|i ∈ I} ∪ {0}, we must have (λi) ∈ c0(I).
Conversely, if (λi) ∈ c0(I), then

∑
λi|ei⟩⟨ei| converges in operator norm to x. Indeed,

if we define xF :=
∑

i∈F λi|ei⟩⟨ei| for each finite F ⊂ I, then picking F ⊂ I so that
|λi| < ε for all i ∈ F c, we have

∥(x− xF )ξ∥2 =

∥∥∥∥∥∑
i/∈F

λi|ei⟩⟨ei|ξ⟩

∥∥∥∥∥
2

=
∑
i/∈F

|λi|2|⟨ξ, ei⟩|2 < ε2∥ξ∥2,

so xF → x in norm. □

Theorem 2.4.12 (Spectral theorem for compact normal operators). Compact normal oper-
ators are diagonalizable.

Proof. Suppose x ∈ K(H) is normal. It suffices to prove H is the orthogonal direct
sum of eigenspaces of x. We may assume dim(H) = ∞. Using Fact 2.4.1, let (λn) be
the non-zero eigenvalues of x, which is either a finite list or λn ↘ 0. Let En be the
corresponding eigenspaces. Then En is an eigenspace for x∗ with eigenvalue λ by (N1),
and En ⊥ Ek for all 1 ≤ k < n. Since each En is x and x∗-invariant, so is

⊕
n≥1En.

Setting E0 := (
⊕

n≥1En)
⊥, we have E0 is x and x∗-invariant by Exercise 2.3.6. Then

x|E0 is compact and has no non-zero eigenvalues, and so x|E0 = 0. We conclude that
H =

⊕
n≥0En is the desired direct sum decomposition into eigenspaces. □

Remark 2.4.13. Using the Borel functional calculus and Theorem 2.4.12, one can show that
a positive operator x ∈ B(H) is compact if and only if for all ε > 0, the spectral projection
χ(ε,∞)(x) is finite rank.

Corollary 2.4.14. If x ∈ B(H → K) such that x∗x is compact, then x is compact.

Proof. Writing x∗x =
∑

λn|en⟩⟨en| with λn ↘ 0 by Theorem 2.4.12, we have |x| =∑√
λn|en⟩⟨en| with

√
λn ↘ 0. Thus |x| is compact by Lemma 2.4.11, and so is

x = u|x| using polar decomposition 2.3.10. □

Definition 2.4.15. Suppose x ∈ K(H), so |x| = (x∗x)1/2 is compact. Enumerate the
eigenvalues of |x| by

λ0 ≥ λ1 ≥ λ2 ≥ · · ·
with multiplicity as necessary. Note that λ0 = ∥x∥.

We define sn(x) := λn, called the n-th singular value of x.
Now pick orthonormal vectors (fn) such that |x|fn = λnfn and |x| =

∑
λn|fn⟩⟨fn|, which

converges in operator norm. Set en := ufn where x = u|x| is the polar decomposition 2.3.10.
Then (en) is an orthonormal set, and x = u|x| = u

∑
λn|fn⟩⟨fn| =

∑
λn|en⟩⟨fn|, where the

sum converges in operator norm. This is called a Schmidt representation of x.

Warning 2.4.16. We warn the reader that a Schmidt decomposition of x ∈ K(H) is not
unique, but the singular values are well-defined. The usefulness of a Schmidt decomposition
is that x is realized as an explicit norm-limit of finite rank operators.

8



For a unique representation, we can define pn = pEn to be the (finite rank) orthogonal
projection with range En, the eigenspace of |x| corresponding to sn(x). Then |x| =

∑
sn(x)pn

and x =
∑

sn(x)upn.

Here are some elementary properties about singular values.

(SV1) sn(x) = sn(x
∗) for all n.

Proof. Let x =
∑

sn(x)|en⟩⟨fn| be a Schmidt decomposition for x. Using
Exercise 2.3.11, one can see that

x∗ =
∑

sn(x)|fn⟩⟨en| = u∗
∑

sn(x)|en⟩⟨en|

is a Schmidt decomposition for x∗, and thus sn(x
∗) = sn(x). Alternatively, we

see that xx∗ =
∑

sn(x)
2|en⟩⟨en| converges in norm, so |x∗| =

∑
sn(x)|en⟩⟨en|,

which also implies sn(x
∗) = sn(x). □

(SV2) (Minimax) Suppose x ∈ K(H) is positive and non-zero. Then for all n ≥ 0 such that
n ≤ dim(H),

sn(x) = min
E⊆H

codim(E)=n

max
ξ∈E
∥ξ∥=1

⟨xξ, ξ⟩. (2.4.17)

Proof. First, we prove that max {⟨xξ, ξ⟩|ξ ∈ E and ∥ξ∥ = 1} exists. By (K4),
x is weak-norm continuous on BE. Second, ⟨ · , · ⟩ : H × H → C is jointly
continuous on norm bounded sets in the product topology where the first factor
has the norm topology and the second factor has the weak topology. Indeed, if
ηi → η in norm and ξi → ξ weakly, we can find j in our index set so that i > j
implies ∥ηi− η∥ < ε/M where M is a bound for the norm of all ξi and ξ. Then

|⟨ηi, ξi⟩ − ⟨η, ξ⟩| ≤ |⟨ηi − η, ξi⟩|︸ ︷︷ ︸
≤∥ηi−η∥·∥ξi∥<ε

+ |⟨η, ξi − ξ⟩|︸ ︷︷ ︸
→0

.

Hence the map ξ 7→ (xξ, ξ) 7→ ⟨xξ, ξ⟩ is continuous on BE equipped with
the weak topology. Since BE is weakly compact by Banach-Alaoglu, the max
exists.
Now denote the right hand side of (2.4.17) by mn. We know the case n = 0
holds. Assume n > 0 and let (fk) be an orthonormal subset such that x =∑

sk(x)|fk⟩⟨fk| with λk ↘ 0. For E = span{f0, . . . , fn−1}⊥, we have fn ∈ E
and ⟨xfn, fn⟩ = sn(x), so mn ≤ λn.
Conversely, if codim(E) = n, then there is a ξ ∈ E ∩ span{f0, . . . , fn} with
∥ξ∥ = 1. Then writing ξ =

∑n
i=0 αifi with αi = ⟨ξ, fi⟩ and

∑
|αi|2 = 1, we

have

⟨xξ, ξ⟩ =
n∑

i=0

si(x)|αi|2 ≥ sn(x).

Hence sn(x) ≤ mn. □
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(SV3) If x ∈ K(H), then

sn(x) = min
E⊆H

codim(E)=n

max
ξ∈E
∥ξ∥=1

∥xξ∥. (2.4.18)

Proof. Observe that sn(x) =
√

sn(x∗x) and ⟨x∗xξ, ξ⟩ = ∥xξ∥2. Apply Minimax
(SV2) for x∗x and take square roots. □

(SV4) If x ∈ K(H) and y ∈ B(H), then both sn(xy), sn(yx) ≤ ∥y∥sn(x).

Proof. Using Minimax (2.4.18), we havea

sn(yx) = min
E⊆H

codim(E)=n

max
ξ∈E
∥ξ∥=1

∥yxξ∥ ≤ min
E⊆H

codim(E)=n

max
ξ∈E
∥ξ∥=1

∥y∥ · ∥xξ∥ = ∥y∥ · sn(x).

Observe now that

sn(xy) = sn(y
∗x∗) ≤ ∥y∗∥ · sn(x∗) = ∥y∥ · sn(x). □

aStarting with ∥yxξ∥ ≤ ∥y∥ · ∥xξ∥, add max on the right then the left, and then add min on
the left then the right.

(SV5) For x ∈ K(H), sn(x) = dist(x, Fn := {rank ≤ n operators}).

Proof. Write x =
∑

i λi|ei⟩⟨fi| in Schmidt representation. The operator y :=∑n−1
i=0 λi|ei⟩⟨fi| is in Fn and x − y =

∑
i≥n λi|ei⟩⟨fi| has norm λn. Hence

dist(x, Fn) ≤ λn. Now for all y ∈ Fn, dim span{f0, . . . , fn} = n+ 1, so there is
a ξ ∈ Fn with ∥ξ∥ = 1 and yξ = 0. Then

∥x− y∥ ≥ ∥(x− y)ξ∥ = ∥xξ∥ ≥ λn. □

(SV6) If x, y ∈ K(H), then sm+n(x+ y) ≤ sm(x) + sn(y).

Proof. Let ε > 0. Using (SV5), take z1 ∈ Fm such that ∥x − z1∥ < sm(x) + ε
and take z2 ∈ Fn such that ∥y − z2∥ < sn(y) + ε. Then z1 + z2 ∈ Fm+n and
thus

sm+n(x+ y) = dist(x+ y, Fm+n) ≤ ∥x+ y − (z1 + z2)∥
≤ ∥x− z1∥+ ∥y − z2∥ < sm(x) + sn(y) + 2ε.

Since ε > 0 was arbitrary, the result follows. □

2.5. The trace and the Schatten p-classes. Let (ei) be an orthonormal basis of H.
Define Tr: B(H)+ → [0,∞] by Tr(x) :=

∑
i⟨xei, ei⟩.

Here are some basic properties about the trace.

(Tr1) Tr is positive-linear, i.e., Tr(λx+y) = λTr(x)+Tr(y) for all λ > 0 and x, y ∈ B(H)+.
(Tr2) Tr is lower semicontinuous on B(H)+.
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Proof. This follows immediately from the fact that each functional x 7→ ⟨xei, ei⟩
is continuous and [0,∞)-valued together with the following exercise.

Exercise 2.5.1. Let X be a topological space and (fn) a sequence of lower
semicontinuous [0,∞)-valued functions. Prove that

∑
fn : X → [0,∞) defined

by (
∑

fn)(x) =
∑

fn(x) is again lower semicontinuous. □

(Tr3) Tr(x∗x) = Tr(xx∗) for all x ∈ B(H).

Proof. Since the sum of positive numbers is independent of ordering,∑
i

⟨x∗xei, ei⟩ =
∑
i

⟨xei, xei⟩ =
∑
i,j

⟨⟨xei, ej⟩ej, xei⟩ =
∑
i,j

⟨xei, ej⟩⟨ej, xei⟩

=
∑
i,j

⟨x∗ej, ei⟩⟨ei, x∗ej⟩ =
∑
j,i

⟨x∗ej, ei⟩⟨ei, x∗ej⟩

=
∑
j,i

⟨⟨x∗ej, ei⟩ei, x∗ej⟩ =
∑
j

⟨x∗ej, x
∗ej⟩ =

∑
j

⟨xx∗ej, ej⟩. □

(Tr4) Tr(x) = Tr(u∗xu) for all unitaries u ∈ B(H) and x ≥ 0. Hence if (fi) is another
orthonormal basis of H, then Tr(x) =

∑
i⟨xfi, fi⟩.

Proof. Write x =
√
x
2
so that by (Tr3),

Tr(u∗xu) = Tr((
√
xu)∗(

√
xu)) = Tr((

√
xu)(

√
xu)∗) = Tr(

√
x
2
) = Tr(x).

Now if (fi) is another ONB, then define a unitary v ∈ B(H) by ei 7→ fi. Then

Tr(x) = Tr(u∗xu) =
∑
i

⟨u∗xuei, ei⟩ =
∑
i

⟨xuei, uei⟩ =
∑
i

⟨xfi, fi⟩. □

(Tr5) If x ≥ 0, then Tr(x) ≥ ∥x∥.

Proof. If x ≥ 0, then by (N5), there is a unit vector ξ ∈ H such that ⟨xξ, ξ⟩ =
max {λ|λ ∈ sp(x)} = ∥x∥. Extend {ξ} to an ONB {ξ}⨿ (fi), and observe that

Tr(x) = ⟨xξ, ξ⟩+
∑
i

⟨xfi, fi⟩ ≥ ⟨xξ, ξ⟩ = ∥x∥. □

Lemma 2.5.2.

(1) If x ∈ K(H), then Tr(|x|p) =
∑

sn(x)
p.

(2) If Tr(|x|p) < ∞ for some p > 0, then x is compact.

Proof.
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(1) Write |x| =
∑

λn|en⟩⟨en| with λn ↘ 0 by Theorem 2.4.12 so that |x|p =∑
λp
n|en⟩⟨en|. Extending (en) to an ONB (ei), we see

Tr(x) =
∑
i

⟨xei, ei⟩ =
∑
n

λp
n =

∑
n

sn(x)
p.

(2) Let (ei) be an ONB and suppose ε > 0. There is a finite subset F ⊂ I such that∑
i/∈F ⟨|x|pei, ei⟩ < ε. Let pF denote the projection onto span {ei|i ∈ F}, and observe

that

∥|x|p/2(1−pF )∥2 = ∥(1−pF )|x|p(1−pF )∥ ≤ Tr((1−pF )|x|p(1−pF )) =
∑
i/∈F

⟨|x|pei, ei⟩ < ε.

Thus we may approximate |x|p/2 by finite rank operators, so |x|p/2 is compact, and thus
so is |x|p. Using the Spectral Theorem for compact normal operators 2.4.12, we can

write |x|p =
∑

λn|en⟩⟨en| with λn ↘ 0. But then |x| =
∑

λ
1/p
n |en⟩⟨en| and λ

1/p
n ↘ 0,

so |x| is compact by Lemma 2.4.11. Hence x = u|x| is compact. □

Definition 2.5.3. The Schatten p-class/p-ideal is the set

Lp(H) :=
{
x ∈ B(H)

∣∣∣Tr(|x|p) =∑ sn(x)
p < ∞

}
.

We call L1(H) the trace class operators and L2(H) the Hilbert-Schmidt operators. Observe
that Lp(H) ⊂ K(H) by Lemma 2.5.2.

Remark 2.5.4. Recall that when 1 ≤ q ≤ p, ℓq ⊆ ℓp with ∥ · ∥q ≥ ∥ · ∥p. Since Tr(|x|p) =
∥(sn(x))∥ℓp , Lq(H) ⊆ Lp(H) with ∥ · ∥q ≥ ∥ · ∥p.
Lemma 2.5.5. The Schatten p-class Lp(H) is a ∗-closed 2-sided ideal of B(H) which is
algebraically spanned by its positive operators.

Proof.
∗-closed: sn(x) = sn(x

∗) for all n ≥ 0.
+-closed: s2n(x+ y) ≤ sn(x) + sn(y), so (sn(x)), (sn(y)) ∈ ℓp implies (s2n(x+ y)) ∈ ℓp.
Similarly, s2n+1(x+y) ≤ sn(x)+sn+1(y), so (sn(x)), (sn(y)) ∈ ℓp implies (s2n+1(x+y)) ∈
ℓp. Thus (sn(x+ y)) ∈ ℓp.
ideal: For all x ∈ B(H) and y ∈ Lp(H), sn(xy), sn(yx) ≤ s0(x)sn(y) = ∥x∥sn(y) , so
xy, yx ∈ Lp(H).
positive spanning: Immediate by Fact 2.4.3. □

Corollary 2.5.6. L1(H) = span {x ≥ 0|Tr(x) < ∞}.
Proposition 2.5.7. Tr extends to a linear map L1(H) → C satisfying:

• x ≤ y implies Tr(x) ≤ Tr(y) (when x, y are self-adjoint) and
• |Tr(x)| ≤ Tr(|x|).

Proof. For x ∈ L1(H), we can write x =
∑3

k=0 i
kxk with each xk ∈ L1(H)+. Define

Tr(x) =
∑3

k=0 i
k Tr(xk). This formula is clearly linear as long as it is well-defined.
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First, suppose x is self-adjoint. Since Re(x) = x0 − x2 and Im(x) = x1 − x3 = 0, we
must have x1 = x3, so x = x0 − x2. If x = y0 − y2 for y0, y2 ∈ L1(H)+, then

x0 − x2 = x = y0 − y2 ⇐⇒ x0 + y2 = y0 + x2.

Thus Tr(x0) + Tr(y2) = Tr(y0) + Tr(x2), and since these numbers are finite,
Tr(x0) − Tr(x2) = Tr(y0) − Tr(y2). Now when x is arbitrary, if we can also write
x =

∑3
k=0 i

kyk with each yk ∈ L1(H)+, then Re(x) = y0 − y2 and Im(x) = y1 − y3.

Hence
∑3

k=0 i
k Tr(yk) = Tr(Re(x))− iTr(Im(x)) which is independent of the yk ≥ 0.

Now suppose x ≤ y in L1(H). Then y − x ≥ 0, so 0 ≤ Tr(y − x) = Tr(y)− Tr(x).
To prove the last relation, take a Schmidt decomposition x =

∑
n sn(x)|en⟩⟨fn| with

(en) and (fn) orthonormal. Then

|Tr(x)| =

∣∣∣∣∣∑
i

〈∑
n

sn(x)|en⟩⟨fn|fi, fi

〉∣∣∣∣∣ =
∣∣∣∣∣∑

n

sn(x)⟨en, fn⟩

∣∣∣∣∣
≤
∑
n

sn(x)|⟨en, fn⟩| =
∑
n

sn(x) = Tr(|x|). □

Proposition 2.5.8. For x, y ∈ L2(H), x∗y ∈ L1(H). The space L2(H) is a Hilbert space
with inner product ⟨x, y⟩L2 := Tr(y∗x).

Proof. First, if x ∈ L2(H) if and only if x∗x ∈ L1(H) as Tr(|x|2) = Tr(x∗x). By
polarization,

y∗x =
1

4

3∑
k=0

ik (x+ iky)∗ (x+ iky)︸ ︷︷ ︸
∈L2(H)︸ ︷︷ ︸

∈L1(H)

.

It is clear that ⟨ · , · ⟩L2(H) is a positive sesquilinear form. Definiteness follows from the
estimate

∥x∥22 := Tr(x∗x) ≥
(Tr5)

∥x∗x∥ = ∥x∥2.

This also shows every ∥ · ∥2-Cauchy sequence is ∥ · ∥-Cauchy. To see L2(H) is complete
with respect to ∥ · ∥2, it suffices to prove that if (xn) is ∥ · ∥2-Cauchy with xn → x in
∥ · ∥, then xn → x in ∥ · ∥2. First, x ∈ K(H) as K(H) is closed. Next, for all finite
rank projections p,

∥(x− xn)p∥22 = Tr(p(x− xn)
∗(x− xn)p)

(!)
= lim

m
Tr(p(xm − xn)

∗(xm − xn)p)

= lim
m

Tr((xm − xn)p(xm − xn)
∗) ≤ lim sup

m
Tr((xm − xn)(xm − xn)

∗)

= lim sup
m

Tr((xm − xn)
∗(xm − xn)) = lim sup

m
∥xm − xn∥22.

In the equality marked (!) above, we are using the fact that there is only one trace on
B(pH) ∼= Mk(C), where pH is a finite dimensional Hilbert space with dimension k.
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Thus xm → x in norm implies p(xm − xn)
∗(xm − xn)p → p(x− xn)

∗(x− xn)p in norm,
and we know the trace on B(pH) is continuous.
Since p was arbitrary, we conclude that

∥x− xn∥22 ≤ lim sup
m

∥xm − xn∥22,

which implies both x ∈ L2(H) and xn → x in ∥ · ∥2. □

Exercise 2.5.9. Suppose H is a Hilbert space (which you may assume is separable) with
ONBs (ei) and (fi).

(1) Show that for every x ∈ L2(H),
∑

i,j |⟨xej, fi⟩|2 =
∑

n |sn(x)|2 =
∑

n ∥xen∥2.
(2) Show that for each a = (aij) ∈ ℓ2(N2), there is an a ∈ L2(H) such that aij = ⟨aej, fi⟩.
(3) Construct a unitary isomorphism L2(H) → ℓ2(N2).
(4) Construct a canonical isomorphism L2(H) ∼= H ⊗H∗.

Corollary 2.5.10. For all x ∈ L1(H) and y ∈ B(H), |Tr(xy)|, |Tr(yx)| ≤ ∥y∥ · Tr(|x|).

Proof. Since xy ∈ L1(H), |Tr(xy)| ≤ Tr(|xy|). Since sn(|xy|) ≤ ∥y∥ · sn(x) by (SV4),

Tr(|xy|) =
∑

sn(|xy|) ≤
∑

∥y∥sn(x) = ∥y∥
∑

sn(x) = ∥y∥Tr(|x|).

Similarly, Tr(|yx|) ≤ ∥y∥Tr(|x|). □

Lemma 2.5.11. For x, y ∈ L2(H), Tr(xy) = Tr(yx). The conclusion also holds for x ∈
L1(H) and y ∈ B(H).

Proof. As (x, y) 7→ Tr(x∗y) and (y, x) 7→ Tr(yx∗) are both sesquilinear forms on L2(H),
by polarization, they agree if and only if they agree on the diagonal. But Tr(x∗x) =
Tr(xx∗), so Tr(x∗y) = Tr(yx∗) for all x, y ∈ L2(H).
For the second part, by linearity in x, we may assume x ∈ L1(H)+ so that

√
x ∈

L2(H)+. We then calculate

Tr(xy) = Tr(
√
x(
√
xy)) = Tr((

√
xy)

√
x) = Tr(

√
x(y

√
x)) = Tr((y

√
x)
√
x) = Tr(yx).

□

Proposition 2.5.12. L1(H) is a Banach ∗-algebra with ∥x∥1 := Tr(|x|) =
∑

sn(x).

Proof. We show ∥ · ∥1 has the required properties.
Homogeneous: ∥λx∥1 = Tr(|λx|) = Tr(|λ| · |x|) = |λ|Tr(|x|) = |λ| · ∥x∥1
Definite: ∥x∥1 = Tr(|x|) = 0 implies |x| = 0, so x = 0.
Subadditive: Let x+y = u|x+y| be the polar decomposition so that |x+y| = u∗x+u∗y.
Since u∗x, u∗y ∈ L1(H),

∥x+ y∥1 = Tr(|x+ y|) = Tr(u∗x+ u∗y) = Tr(u∗x) + Tr(u∗y)

≤ |Tr(u∗x)|+ |Tr(u∗y)| ≤ ∥u∗∥Tr(|x|) + ∥u∗∥Tr(|y|)
≤ Tr(|x|) + Tr(|y|) = ∥x∥1 + ∥y∥1.

14



Submultiplicative: Let xy = u|xy| be the polar decomposition so that |xy| = u∗xy.
Then

Tr(|xy|) = Tr(u∗xy) ≤
(Cor. 2.5.10)

∥u∗x∥︸ ︷︷ ︸
=∥|x|∥

Tr(|y|) ≤
(Tr5)

Tr(|x|) Tr(|y|) = ∥x∥1 · ∥y∥1.

∗-isometric: ∥x∥1 = Tr(|x|) =
∑

sn(x) =
∑

sn(x
∗) = Tr(|x∗|) = ∥x∗∥1.

Complete: Suppose (xn) is ∥ · ∥1-Cauchy. By (Tr5),

∥xm − xn∥1 = Tr(|xm − xn|) ≥ ∥|xm − xn|∥ = ∥xm − xn∥,
so (xn) is ∥ · ∥-Cauchy. Since K(H) is closed, there is an x ∈ K(H) with xn → x
in norm. Consider the polar decomposition x − xn = un|x − xn|. For all finite rank
projections p,

Tr(p|x− xn|) = Tr(pu∗
n(x− xn)p) = |Tr(pu∗

n(x− xn)p)|
= lim

m
|Tr(pu∗

n(xm − xn)p)| ≤
(Cor. 2.5.10)

lim sup
m

∥xm − xn∥1.

This implies x ∈ L1(H) and xn → x in ∥ · ∥1. □

Proposition 2.5.13. For all 1 < p < ∞, Lp(H) is a Banach space with ∥x∥pp := Tr(|x|p) =
∥(sn(x))∥ℓp.

We omit the proof which is similar to those for L2(H) and L1(H). □

Theorem 2.5.14. Suppose 1 < q, p < ∞ with 1/p + 1/q = 1. For all x ∈ Lp(H) and
y ∈ Lq(H), xy ∈ L1(H) and |Tr(xy)| ≤ ∥x∥p · ∥y∥q.

Proof. Without loss of generality, 2 ≤ p. We proceed via the following steps.
Step 1: If x ∈ Lp(H)+ with p ≥ 2 and ξ ∈ H with ∥ξ∥ = 1, then ⟨x2ξ, ξ⟩p/2 ≤ ⟨xpξ, ξ⟩.

Proof. Let (en) be an ONB with x =
∑

λn|en⟩⟨en|. For all ξ ∈ span{e1, . . . , ek},

⟨x2ξ, ξ⟩ =
k∑

i,j=1

⟨⟨ξ, ei⟩x2ei, ⟨ξ, ej⟩ej⟩ =
k∑

i,j=1

⟨ξ, ei⟩⟨ξ, ej⟩⟨x2ei, ej⟩ =
k∑

i=1

|⟨ξ, ei⟩|2λ2
i .

Since the function r 7→ rp/2 is convex and
∑k

i=1 |⟨ξ, ei⟩|2 = ∥ξ∥2 = 1, we have

⟨x2ξ, ξ⟩p/2 =

(
k∑

i=1

|⟨ξ, ei⟩|2λ2
i

)p/2

≤
k∑

i=1

|⟨ξ, ei⟩|2λp
i = ⟨xpξ, ξ⟩.

Hence the desired inequality holds on the algebraic span of the ei, which is dense in
H. Since the continuous function ξ 7→ ⟨xpξ, ξ⟩ − ⟨x2ξ, ξ⟩p/2 is non-negative on a dense
subspace, the result follows. □

Step 2: If x ∈ Lp(H)+ with p ≥ 2 and y ∈ Lq(H)+ with 1/p+1/q = 1, then xy ∈ L1(H) and
Tr(|xy|) ≤ ∥x∥p · ∥y∥q.
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Proof. Pick an ONB (fn) such that y =
∑

µn|fn⟩⟨fn|. For every n ∈ N,
|⟨|xy|fn, fn⟩|2 ≤

(CS)
∥|xy|fn∥2 · ∥fn∥︸︷︷︸

=1

= |⟨|xy|2fn, fn⟩| = |⟨y∗x∗xyfn, fn⟩|

= |⟨x∗xyfn, yfn⟩| = µ2
n|⟨|x|2fn, fn⟩|.

Hence by Step 1, we have

⟨|xy|fn, fn⟩ ≤ µn⟨|x|2fn, fn⟩1/2 ≤
(Step 1)

µn⟨|x|pfn, fn⟩1/p.

Now setting an = ⟨|x|pfn, fn⟩1/p, (an) ∈ ℓp as x ∈ Lp(H):

∥(an)∥pp =
∑
n

⟨|x|pfn, fn⟩ = Tr(|x|p) < ∞.

Also, (µn) ∈ ℓq as
∑

n µ
q
n = Tr(|y|q) < ∞ since y ∈ Lq(H). By Hölder’s Inequality,

Tr(|xy|) =
∑
n

⟨|xy|fn, fn⟩ ≤
∑
n

µn⟨|x|pfn, fn⟩1/p ≤ ∥(an)∥p ·∥(µn)∥q = ∥x∥p ·∥y∥q. □

Step 3: For arbitrary x ∈ Lp(H) with p ≥ 2 and y ∈ Lq(H) with 1/p+ 1/q = 1, xy ∈ L1(H)
and |Tr(xy)| ≤ ∥x∥p · ∥y∥q.

Proof. Consider the polar decompositions x = u|x| and y∗ = v|y∗| and note that
|x|, |y∗| ≥ 0, |x| = u∗x ∈ Lp(H), and |y∗| = v∗y∗ ∈ Lq(H). By Step 2, we have
|x| · |y∗| ∈ L1(H) and

Tr
(∣∣ |x| · |y∗| ∣∣) ≤ ∥x∥p · ∥y∥q.

It follows immediately that

xy = x(y∗)∗ = u|x|(v|y∗|)∗ = u|x||y∗|v∗ ∈ L1(H).

and

|Tr(xy)| = |Tr(u|x||y∗|v∗)| ≤
(Cor. 2.5.10)

∥u∥ · ∥v∗∥ · Tr
(∣∣ |x| · |y∗| ∣∣)

≤
(Step 2)

∥|x|∥p · ∥|y∗|∥q = ∥x∥p · ∥y∥q. □

Exercise 2.5.15. Show that the pairing (x, y) 7→ Tr(xy) implements a duality exhibiting an
isometric isomorphisms K(H)∗ ∼= L1(H) and L1(H)∗ ∼= B(H). Explain how one can view
this as an analogy of the facts that c∗0

∼= ℓ1 and (ℓ1)∗ ∼= ℓ∞.

Theorem 2.5.16. Suppose 1 < p, q < ∞ with 1/p + 1/q = 1. The bilinear form (x, y) :=
Tr(xy) implements a duality exhibiting Lp(H) and Lq(H) as isometrically isomorphic to each
other’s dual spaces.

Proof. First, note that if (xn) ∈ ℓq, then (|xn|q−1) ∈ ℓp and

∥xn∥qq =
∑

|xn|q =
∑

|xn|(q−1)p = ∥(|xn|q−1)∥pp and

∥xn∥qq =
(∑

|xn|q
)1/p+1/q

=
(∑

|xn|(q−1)p
)1/p (∑

|xn|q
)1/q

= ∥(|xn|q−1)∥p · ∥(xn)∥q.
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We now proceed via the following steps.
Step 1: The map y 7→ Tr( · y) is an isometry Lq(H) → Lp(H)∗.

Proof. First, note that the map Lq(H) → Lp(H)∗ given by y 7→ Tr( · y) is well-defined
and norm-decreasing by Theorem 2.5.14. We use polar decomposition to write y = u|y|
and note |y| = u∗y ∈ Lq(H).
We claim that

Claim. For every r > 0, sn(|y|)r = sn(|y|r) = sn(u|y|r) = sn(|y|ru∗).

Proof of claim. If |y| =
∑

λn|fn⟩⟨fn| is the Schmidt decomposition, then sn(|y|)r =
λr
n = sn(|y|r). Moreover, if en = ufn for all n, then

u|y| =
∑

λn|en⟩⟨fn| =⇒ u|y|r =
∑

λr
n|en⟩⟨fn|.

Then since (u|y|r)∗u|y|r = |y|ru∗u|y|r =
∑

λ2n
n |fn⟩⟨fn|,

sn(u|y|r) = sn(|y|ru∗u|y|r)1/2 = λr
n.

Since for any z, sn(z
∗z)1/2 = sn(z), we have sn(u|y|r) = λr

n. Finally, sn(u|y|r) =
sn(|y|ru∗) as the n-th singular value of adjoints agree, finishing the claim. □

Now using the claim above, we have an := sn(|y|q−1) = sn(|y|)q−1, so (an) ∈ ℓp and
|y|q−1 ∈ Lp(H). For x := |y|q−1u∗ ∈ Lp(H), setting µn = sn(y),

Tr(xy) = Tr(|y|q−1u∗y) = Tr(|y|q) = ∥y∥qq = ∥(µn)∥qq = ∥(µq−1
n )∥p ·∥(µn)∥q = ∥x∥p ·∥y∥q

□

Step 2: The map y 7→ Tr( · y) from Step 4 is surjective.

Proof. Since 1 < p, L1(H) ⊆ Lp(H) with ∥ · ∥1 ≥ ∥ · ∥p. Thus if φ ∈ Lp(H)∗,
φ|L1(H) ∈ L1(H)∗ = B(H), so there is a y ∈ B(H) such that φ|L1(H) = Tr( · y) by
Exercise 2.5.15. It remains to prove y ∈ Lq(H) and φ = Tr( · y) on Lp(H).

Claim. y ∈ K(H).

Proof of Claim. By polar decomposition y = u|y|, we may assume y ≥ 0 as y ∈ K(H)
iff |y|inK(H), and

|Tr(x|y|)| = |Tr(xu∗y)| ≤ ∥φ∥ · ∥xu∗∥p ≤
(SV4)

∥φ∥ · ∥x∥p.

If y /∈ K(H), then by Remark 2.4.13, there is a ε > 0 such that p := χ(ε,∞)(y) has
infinite dimensional image. Pick an orthonormal sequence (fn) ⊂ pH, and note that
y ≥ ε on pH, i.e., ⟨yfn, fn⟩ ≥ ε for all n. Pick (µn) ∈ ℓp \ ℓ1 (we may assume µn ≥ 0

for all n) and set xk =
∑k

n=0 µn|fn⟩⟨fn| and x = limxk ∈ Lp(H). Then xk ∈ L1(H)
for all k, and

ε

k∑
n=0

µn ≤
k∑

n=0

µn⟨yfn, fn⟩ = Tr(xky) = φ(xk)
k→∞−−−→ φ(x).

But (µn) /∈ ℓ1, so ε
∑k

n=0 µn → ∞, a contradiction. □
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Since y ∈ K(H), we can take a Schmidt decomposition |y| =
∑

λn|fn⟩⟨fn|, and let
y = u|y| be the polar decomposition with ufn = en so that y =

∑
λn|en⟩⟨fn|. For each

k, let rk be the orthogonal projection onto span{f0, f1, . . . , fk}, and observe that rk
commutes with |y|s for all s > 0. For each k, xk := |y|q−1rku

∗ is finite rank and thus
in L2(H) ⊆ Lp(H). Observe now that

x∗
kxk = u|y|q−1rk|y|q−1u∗ = urk

(∑
λ2q−2
n |fn⟩⟨fn|

)
u∗ =

k∑
n=0

λ2q−2
n |en⟩⟨en|

which implies that

∥xk∥pp = Tr((x∗
kxk)

p/2) =
k∑

n=0

(λ2q−2
n )p/2 =

k∑
n=0

λq
n = Tr(|y|qrk).

But note that also

φ(xk) = Tr(xky) = Tr(|y|q−1rku
∗y) = Tr(|y|q−1rk|y|) = Tr(|y|qrk).

This means

Tr(|y|qrk) = |φ(xk)| ≤ ∥φ∥ · ∥xk∥p = ∥φ∥ · Tr(|y|qrk)1/p

which implies that
Tr(|y|qrk)1/q = Tr(|y|qrk)1−1/p ≤ ∥φ∥.

Hence Tr(|y|qrk) ≤ ∥φ∥q for all k, and so y ∈ Lq(H).
Finally, the finite rank operators are contained in L2(H) and also dense in Lp(H).
Indeed, if x ∈ Lp(H)+ has Schmidt decomposition x =

∑
λn|fn⟩⟨fn|, then xk :=∑k

n=0 λn|fn⟩⟨fn| is finite rank, and

∥x− xk∥pp =

∥∥∥∥∥∑
n>k

λn|fn⟩⟨fn|

∥∥∥∥∥
p

p

=
∑
n>k

λp
n

k→∞−−−→ 0.

Thus L2(H) is dense in Lp(H), and so φ = Tr( · y) on Lp(H). □

Since our proof above did not distinguish p and q, we also conclude Lp(H) ∼= Lq(H)∗. □
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