The notes in this section are compiled from:

- Notes from a graduate course I took at Berkeley from Don Sarason in 2006,
- Pedersen's Analysis Now, and

2. Hilbert space Basics

For this section, H is a Hilbert space. Recall the polarization identity, which holds for any sesquilinear form:

$$
\begin{equation*}
\langle\eta, \xi\rangle=\frac{1}{4} \sum_{k=0}^{3} i^{k}\left\langle\eta+i^{k} \xi, \eta+i^{k} \xi\right\rangle \quad \forall \eta, \xi \in H \tag{2.0.1}
\end{equation*}
$$

Exercise 2.0.2. Prove that a positive sesquilinear form is self adjoint.
The adjoint is defined via the Riesz-Representation Theorem, i.e., if $x \in B(H \rightarrow K)$, for all $\xi \in K, \eta \mapsto\langle x \eta, \xi\rangle_{K}$ is a bounded linear functional on H, so there is a unique $x^{*} \xi \in H$ such that

$$
\langle x \eta, \xi\rangle_{K}=\left\langle\eta, x^{*} \xi\right\rangle_{H} \quad \forall \eta \in H, \forall \xi \in K .
$$

The assignment $\xi \mapsto x^{*} \xi$ is linear and bounded, so $x^{*} \in B(H)$.
Exercise 2.0.3. Explain the relationship between x, x^{*}, \bar{x}, x^{t} where $\bar{x}: \bar{H} \rightarrow \bar{K}$ is the conjugate operator given by $\overline{x \eta}:=\overline{x \eta}$, and x^{t} is the transpose, given by the Banach adjoint $K^{*} \rightarrow H^{*}$ by $\langle\xi| \mapsto\langle\xi| \circ x$.
2.1. Operators in $B(H)$. We have various types of operators as in the C^{*}-algebra notes. We call $x \in B(H)$:

- self-adjoint if $x=x^{*}$,
- positive if there is a $y \in B(H)$ such that $x=y^{*} y$,
- normal if $x x^{*}=x^{*} x$,
- a projection if $x=x^{*}=x^{2}$,
- an isometry if $x^{*} x=1$,
- a unitary if $x^{*} x=1=x x^{*}$ (equivalently, an invertible isometry),
- a partial isometry if $x^{*} x$ is a projection.

Here are some elementary properties about $B(H)$:
(B1) $\operatorname{ker}\left(x^{*}\right)=(x H)^{\perp}$.
Proof. Since $\langle x \eta, \xi\rangle=\left\langle\eta, x^{*} \xi\right\rangle$, we have $\xi \perp x H$ if and only if $x^{*} \xi \perp H$ if and only if $x^{*} \xi=0$.
(B2) $x=y$ if and only if $\langle x \xi, \xi\rangle=\langle y \xi, \xi\rangle$ for all $\xi \in H$.
Proof. Replacing x with $x-y$, we may assume $y=0$. The forward direction is trivial. Suppose $\langle x \xi, \xi\rangle=0$ for all $\xi \in H$. Polarization (2.0.1) applied to the form $\langle x \cdot, \cdot\rangle$ implies $\langle x \eta, \xi\rangle=0$ for all $\eta, \xi \in H$. Thus $x \eta \perp H$ for all $\eta \in H$, so $x=0$.
(B3) x is normal if and only if $\|x \xi\|=\left\|x^{*} \xi\right\|$ for all $\xi \in H$.
Proof. By (B2), $x^{*} x=x x^{*}$ if and only if $\left\langle x^{*} x \xi, \xi\right\rangle=\left\langle x x^{*} \xi, \xi\right\rangle$ for all $\xi \in H$. But this holds if and only if $\|x \xi\|^{2}=\left\|x^{*} \xi\right\|^{2}$ for all $\xi \in H$.
(B4) $x \in B(H)$ is self-adjoint if and only if $\langle x \xi, \xi\rangle \in \mathbb{R}$ for all $\xi \in H$.
Proof. Homework.
2.2. Normal operators. We now prove some elementary properties about normal operators. For the following properties, $x \in B(H)$ is normal.
(N1) $x \xi=\lambda \xi$ if and only if $x^{*} \xi=\bar{\lambda} \xi$.
Proof. Immediate from (B3) applied to $x-\lambda$.
(N2) $x \eta=\lambda \eta$ and $x \xi=\mu \xi$ with $\lambda \neq \mu$ implies $\eta \perp \xi$.
(N3) Every $\lambda \in \operatorname{sp}(x)$ is an approximate eigenvalue of x, i.e., there is a sequence of unit vectors $\left(\xi_{n}\right)$ such that $(x-\lambda) \xi_{n} \rightarrow 0$.

Proof. Suppose λ is not an approximate eigenvalue of x. Then there is a $\varepsilon>0$ such that $\|(x-\lambda) \xi\| \geq \varepsilon\|\xi\|$ for all $\xi \in H$. Then $x-\lambda$ is injective with closed range, and by (B3), so is $x^{*}-\bar{\lambda}$. But $0=\operatorname{ker}\left(x^{*}-\bar{\lambda}\right)=((x-\lambda) H)^{\perp}$ by (B1). Thus $x-\lambda$ is surjective, and thus $x-\lambda$ is bijective and bounded, hence invertible. Thus $\lambda \notin \operatorname{sp}(x)$.
(N4) $\|x\|=\sup \{|\langle x \xi, \xi\rangle|\| \| \xi=1\}$
Proof. Since $r(x)=\|x\|$, there is a $\lambda \in \operatorname{sp}(x)$ such that $|\lambda|=\|x\|$. Then since λ is an approximate eigenvalue by (N3), there is a sequence $\left(\xi_{n}\right)$ of unit vectors such that $(x-\lambda) \xi_{n} \rightarrow 0$. Thus

$$
\begin{aligned}
\left|\left\langle x \xi_{n}, \xi_{n}\right\rangle-\lambda\right| & =\left|\left\langle x \xi_{n}, \xi_{n}\right\rangle-\lambda\left\langle\xi_{n}, \xi_{n}\right\rangle\right| \\
& =\left|\left\langle(x-\lambda) \xi_{n}, \xi_{n}\right\rangle\right| \\
& (\overline{\mathrm{CS})}|\mid x \xi_{n}-\lambda \xi_{n} \| \cdot \underbrace{\left\|\xi_{n}\right\|}_{=1} \xrightarrow{n \rightarrow \infty} 0 .
\end{aligned}
$$

(N5) If $x=x^{*}$,

$$
\begin{aligned}
\sup \{\langle x \xi, \xi\rangle \mid\|\xi\| & =1\} \\
\inf \{\langle x \xi, \xi\rangle \mid\|\xi\| & =1\}
\end{aligned}=\max \{\lambda \mid \lambda \in \operatorname{sp}(x)\} \quad \text { and }\{\lambda \mid \lambda \in \operatorname{sp}(x)\} \quad \text {. }
$$

Proof. Set $M:=\max \{\lambda \mid \lambda \in \operatorname{sp}(x)\}$. By the Spectral Mapping Theorem, $\operatorname{sp}(x+$ $\|x\|)=\operatorname{sp}(x)+\|x\| \subset[0, \infty)$, and thus $x+\|x\|$ is (spectrally) positive. Then

$$
\begin{aligned}
& M+\|x\| \underset{(\mathrm{SMT})}{=} \max \{\lambda \mid \lambda \in \operatorname{sp}(x+\|x\|)\} \underset{(\mathrm{N} 4)}{=} \sup \{\langle(x+\|x\|) \xi, \xi\rangle \mid\|\xi\|=1\} \\
& \quad=\sup \{\langle x \xi, \xi\rangle\|\xi \xi\|=1\}+\|x\| .
\end{aligned}
$$

The proof for the second is similar swapping min and inf for max and sup, and subtracting $\|x\|$.

Remark 2.2.1. The set

$$
R(x):=\{\langle x \xi, \xi\rangle \mid\|\xi\|=1\}
$$

is called the numerical range of $x \in B(H)$. It is always convex subset of \mathbb{C}; this is easy to show when x is self-adjoint. Indeed, since $\xi \mapsto\langle x \xi, \xi\rangle$ is continuous and the unit sphere is connected, $R(T)$ is then a connected subset of \mathbb{R}, i.e., an interval.

Proposition 2.2.2. The following are equivalent for $x \in B(H)$.
(1) $\langle x \xi, \xi\rangle \geq 0$ for all $\xi \in H$.
(2) x is normal and $\operatorname{sp}(x) \subset[0, \infty)$.
(3) x is positive.

Proof.
$(1) \Rightarrow(2)$: Assuming (1), we have

$$
\langle x \xi, \xi\rangle=\overline{\langle x \xi, \xi\rangle}=\langle\xi, x \xi\rangle=\left\langle x^{*} \xi, \xi\right\rangle \quad \forall \xi \in H
$$

so $x=x^{*}$ by (B2). By (N4),

$$
\operatorname{sp}(x) \subset \overline{R(x)} \subset[0, \infty)
$$

$(2) \Rightarrow(3)$: Since x is normal and $\operatorname{sp}(x) \subset[0, \infty)$, we can use the continuous functional calculus to get a self-adjoint operator $\sqrt{x} \in B(H)$ such that $\sqrt{x}^{2}=x$.
$(3) \Rightarrow(1)$: If $x=y^{*} y$ for some $y \in B(H)$, then

$$
\langle x \xi, \xi\rangle=\left\langle y^{*} y \xi, \xi\right\rangle=\langle y \xi, y \xi\rangle=\|y \xi\|^{2} \quad \forall \xi \in H
$$

Theorem 2.2.3 (Fuglede). Suppose $x, y \in B(H)$ such that $x y=y x$. If x is normal, then $x^{*} y=y x^{*}$.

Proof due to Rosenblum. Since $x y=y x, y e^{i \bar{\lambda} x}=e^{i \bar{\lambda} x} y$, so $x=e^{i \bar{\lambda} x} y e^{-i \bar{\lambda} x}$ for all $\lambda \in \mathbb{C}$. We define $f: \mathbb{C} \rightarrow B(H)$ by

$$
f(\lambda):=e^{i \lambda x^{*}} y e^{-i \lambda x^{*}}=e^{i \lambda x^{*}} e^{i \bar{\lambda} x} y e^{-i \bar{\lambda} x} e^{-i \lambda x^{*}}=e^{i\left(\lambda x^{*}+\bar{\lambda} x\right)} y e^{-i\left(\lambda x^{*}+\bar{\lambda} x\right)}
$$

Since $\lambda x^{*}+\bar{\lambda} x$ is self-adjoint, $e^{i\left(\lambda x^{*}+\bar{\lambda} x\right)}$ is unitary. Hence $f: \mathbb{C} \rightarrow B(H)$ is a bounded $B(H)$-valued entire function, and thus constant by Liouville. Thus

$$
0=-\left.i \cdot \frac{d}{d \lambda}\right|_{\lambda=0} f(\lambda)=x^{*} y-y x^{*}
$$

(Take the power series expansion to first order.)

Exercise 2.2.4. Where is normality of x used in the proof of Fuglede's Theorem 2.2.3?
Corollary 2.2.5. If $x \in B(H)$ is normal and $x y=y x$, then $y f(x)=f(x) y$ for all $f \in$ $C(\operatorname{sp}(x))$.

Proof. By Fuglede's Theorem 2.2.3, the result holds for all polynomials in x and x^{*}. The result now follows by density of these polynomials in $C(\operatorname{sp}(x))$ by StoneWeierstrass.

Remark 2.2.6. The results in this section also hold for operators in a unital C^{*}-algebra, not just $B(H)$.

2.3. Projections and partial isometries.

Example 2.3.1. Let $x \in B(H)$. The support projection of x is $\operatorname{supp}(x):=1-p_{\operatorname{ker}(x)}=$

Observe that $x=\operatorname{range}(x) \cdot x \cdot \operatorname{supp}(x)$. By (B1), range $(x)=\operatorname{supp}\left(x^{*}\right)$. If x is normal, then since $\operatorname{ker}(x)=\operatorname{ker}\left(x^{*} x\right)=\operatorname{ker}\left(x x^{*}\right)=\operatorname{ker}\left(x^{*}\right), \operatorname{supp}(x)=\operatorname{range}(x)$.

Lemma 2.3.2. The map $p \mapsto p H$ is a bijective correspondence between projections and closed subspaces of H.

Proof. It is clear that $p H \subseteq H$ is a closed subspace as p is continuous and $p=p^{2}$. Moreover, since $p=p^{*}, p H^{\perp}=\operatorname{ker}\left(p^{*}\right)=\operatorname{ker}(p)=(1-p) H$.
Conversely, every closed subspace $K \subseteq H$ has an orthogonal complement $K^{\perp}, H=$ $K \oplus K^{\perp}$, and projection p_{K} onto K is an idempotent. We claim it is self-adjoint. Indeed, $\operatorname{ker}\left(p_{K}^{*}\right)=p_{K} H^{\perp}=K^{\perp}=\operatorname{ker}\left(p_{K}\right)$, which implies $p_{K}^{*}\left(1-p_{K}\right)=0$, and thus $p_{K}^{*} p_{K}=p_{K}^{*}$. But $p_{K}^{*} p_{K}$ is self-adjoint, and thus $p_{K}=p_{K}^{*}$.
One checks these two constructions are mutually inverse.

Lemma 2.3.3. For $p, q \in P(M)$, the following are equivalent.
(1) $p \leq q(q-p \geq 0)$,
(2) $p H \subseteq q H$, and
(3) $p=p q$.

Proof.
$(1) \Rightarrow(2)$: We show $(1-q) H \subseteq(1-p) H$, and the result follows by taking orthogonal complements. Suppose $\xi \in(1-q) H$ so $q \xi=0$. Then since $0 \leq q-p$,

$$
0 \leq\langle(q-p) \xi, \xi\rangle=\underbrace{\langle q \xi, \xi\rangle}_{=0}-\langle p \xi, \xi\rangle=-\langle p \xi, \xi\rangle=-\|p \xi\|^{2} .
$$

Thus $p \xi=0$, so $\xi \in(1-p) H$.
$(2) \Rightarrow(3)$: If $p H \subseteq q H$, then projecting to $q H$ and then to $p H$ is the same as just projecting to $p H$.
$(3) \Rightarrow(1)$: If $p=p q$, then $p=p^{*}=q p$. Thus $q-p=q-q p q=q(1-p) q \geq 0$.

Exercise 2.3.4. We say projections p, q are mutually orthogonal, denoted $p \perp q$, if $p H \perp$ $q H$. Show that $p \perp q$ if and only if $p q=0$.

Exercise 2.3.5. For projections p, q, we define $p \wedge q$ to be the projection onto $p H \cap q H$ and $p \vee q$ to be the projection onto $\overline{p H+q H}$. Prove that $p \vee q=1-(1-p) \wedge(1-q)$.

Exercise 2.3.6. Prove the following statements about projections and invariant subspaces.
(1) $K \subseteq H$ is x-invariant if and only if $p_{K} x p_{K}=x p_{K}$.
(2) $K \subseteq H$ is x-invariant if and only if K^{\perp} is x^{*}-invariant.
(3) $K \subseteq H$ is x and x^{*}-invariant if and only if $x p_{K}=p_{K} x$.

Exercise 2.3.7. The following are equivalent for a $u \in B(H \rightarrow K)$.
(1) u is a partial isometry.
(2) $u=u u^{*} u$.
(3) u^{*} is a partial isometry.
(4) $u^{*}=u^{*} u u^{*}$.

Hint: Use the C^{*}-identity.
Remark 2.3.8. By the exercise, a partial isometry $u \in B(H \rightarrow K)$ is a unitary from $u^{*} u H$ onto $u u^{*} K$.

Exercise 2.3.9. Suppose $u, v \in B(H)$ are partial isometries with $u u^{*} \perp v v^{*}$ and $u^{*} u \perp v^{*} v$. Show that $u+v$ is again a partial isometry.

Proposition 2.3.10 (Polar decomposition). For each $x \in B(H \rightarrow K)$, there is a unique positive $|x| \in B(H)$ such that $|x|^{2}=x^{*} x$ and $\|x \xi\|=\||x| \xi\|$ for all $\xi \in H$. Moreover, there is a unique partial isometry $u \in B(H \rightarrow K)$ such that $u|x|=x$ and $\operatorname{ker}(u)=\operatorname{ker}(x)=\operatorname{ker}(|x|)$. In particular, $u^{*} x=|x|$.

Proof. If $y \geq 0$ such that $\|y \xi\|=\|x \xi\|$ for all $\xi \in H$, then

$$
\left\langle x^{*} x \xi, \xi\right\rangle=\|x \xi\|^{2}=\|y \xi\|^{2}=\left\langle y^{2} \xi, \xi\right\rangle
$$

so $x^{*} x=y^{2}$ by (B2), and thus $y=\sqrt{x^{*} x}$ by the uniqueness of the positive square root. Now define $u:|x| H \rightarrow K$ by $u|x| \xi:=x \xi$, and note

$$
\|u|x| \xi\|=\|x \xi\|=\||x| \xi\| \quad \forall \xi \in H
$$

So u is an isometry on $|x| H$, and is thus well-defined. We can extend u to $\overline{|x| H}$ by continuity, and define $u=0$ on $(|x| H)^{\perp}=\operatorname{ker}(|x|)$ by (B1), and $\operatorname{ker}(|x|)=\operatorname{ker}(x)$ by construction. We will call this extension u again by a slight abuse of notation. Then u is a partial isometry and $u|x|=x$.
If $v \in B(H)$ is another partial isometry with $\operatorname{ker}(v)=\operatorname{ker}(x)=\operatorname{ker}(u)$ and $v|x|=x$, then $u|x| \xi=v|x| \xi$ for all $\xi \in H$, so $u=v$ on $\overline{|x| H}$. But $u=v=0$ on $(|x| H)^{\perp}$, so $u=v$.
Finally, $u^{*} u$ is the projection onto $\overline{|x| H}$, so $u^{*} x \xi=u^{*} u|x| \xi=|x| \xi$ for all $\xi \in H$.

Exercise 2.3.11. Suppose $x=u|x|$ is the polar decomposition. Prove that $x=\left|x^{*}\right| u$ and the polar decomposition of x^{*} is given by $u^{*}\left|x^{*}\right|$.

Corollary 2.3.12. If $x=u|x|$ is the polar decomposition, then $u^{*} u=\operatorname{supp}(x)$ and $u u^{*}=$ range (x).

Proof. Since $\operatorname{ker}(u)=\operatorname{ker}(x), \operatorname{supp}(x)=p_{\operatorname{ker}(x)^{\perp}}=p_{\operatorname{ker}(u)^{\perp}}=u^{*} u$. Since $x^{*}=u^{*}\left|x^{*}\right|$ is the polar decomposition of x^{*}, we have range $(x)=\operatorname{supp}\left(x^{*}\right)=u u^{*}$.

Remark 2.3.13. If x is invertible, then so are x^{*} and $x^{*} x$, and by the CFC for $x^{*} x$, so is $|x|$. If $x=u|x|$ is the polar decomposition, then $u=x|x|^{-1} \in \mathrm{C}^{*}(x)$ is a unitary. Hence if A is a unital C^{*}-algebra and $a \in A$ is invertible, then a has a unique polar decomposition in A.
2.4. Compact operators. Recall $x \in B(H \rightarrow K)$ is called compact if it maps bounded subsets of H to precompact subsets (subset with compact closure) of K. We write $K(H \rightarrow$ K) for the subset of compact operators in $B(H \rightarrow K)$, and we write $K(H)$ for the compact operators in $B(H)$. Recall that $K(H)$ is a closed 2-sided ideal in $B(H)$.

Fact 2.4.1 (Spectra of compact operators). Suppose $x \in K(H)$. The non-zero points of $\mathrm{sp}(x)$ are isolated eigenvalues, and all correspondonding eigenspaces are finite dimensional. There are only countably many of them, and zero is the only possible accumulation point.

Exercise 2.4.2. An operator $x \in B(H)$ is called finite rank if $x H$ is finite dimensional.
(1) Show that every finite rank operator is compact.
(2) Show that the finite rank operators form a $*$-closed 2-sided ideal in $B(H)$.

Fact 2.4.3. Every $*$-closed 2 -sided ideal $J \subseteq B(H)$ is spanned by its positive operators. First, note that every self-adjoint $x \in J$ can be written as $x=x_{+}-x_{-}$with $x_{ \pm} \geq 0$ and $x_{+} x_{-}=0$ by setting $x_{+}:=\chi_{[0, \infty)}(x) x$ and $x_{-}:=\chi_{(-\infty, 0]}(x) x$. Clearly $x_{ \pm} \in J$, so every self-adjoint in J is in the span of the positives of J. Second, every $x=\operatorname{Re}(x)+i \operatorname{Im}(x)$ with $\operatorname{Re}(x)=\left(x+x^{*}\right) / 2$ and $\operatorname{Im}(x)=\left(x-x^{*}\right) /(2 i)$. Since J is $*$-closed, $\operatorname{Re}(x)$ and $\operatorname{Im}(x)$ are in J. Thus $\operatorname{Re}(x)_{ \pm}, \operatorname{Im}(x)_{ \pm} \in J$, and x is a linear combination of these 4 positives.

Lemma 2.4.4. There is a net $\left(p_{i}\right)$ of finite rank projections such that $p_{i} \xi \rightarrow \xi$ for all $\xi \in H$. In other words, $p_{i} \rightarrow 1$ in the strong operator topology (the topology of pointwise convergence).

Proof. Let $\left(e_{i}\right)_{i \in I}$ be an ONB of H. Let \mathcal{F} be the subset of finite subsets of I, ordered by inclusion. For $F \in \mathcal{F}$, define p_{F} to be the projection onto the finite dimensional (and thus closed) subspace span $\left\{e_{i} \mid i \in F\right\}$. By Parseval's identity, $\left\|p_{F} \xi-\xi\right\| \rightarrow 0$ for all $\xi \in H$.

Theorem 2.4.5. The following are equivalent for $x \in B(H)$. Below, B denotes the normclosed unit ball in H.
(K1) x is compact.
(K2) x is in the norm closure of the finite rank operators in $B(H)$.
(K3) $\left.x\right|_{B}$ is weak-norm continuous $B \rightarrow H$
(K4) $x B$ is compact in H.
Proof.
$(1) \Rightarrow(2):$ Let $x \in K(H)$ and let $\left(p_{i}\right)$ be a net as in Lemma 2.4.4. We claim that $p_{i} x \rightarrow x$ in norm. Otherwise, there is a $\varepsilon>0$ such that (passing to a subnet if necessary) for all i, there is a $\xi_{i} \in H$ with $\left\|\xi_{i}\right\|=1$ and $\varepsilon \leq\left\|\left(1-p_{i}\right) x \xi_{i}\right\|$ and $x \xi_{i} \rightarrow \eta$ in H (by compactness of $x)$. Then

$$
\varepsilon \leq\left\|\left(1-p_{i}\right) x \xi_{i}\right\| \leq\left\|\left(1-p_{i}\right)\left(x \xi_{i}-\eta\right)\right\|+\left\|\left(1-p_{i}\right) \eta\right\| \leq\left\|x \xi_{i}-\eta\right\|+\left\|\left(1-p_{i}\right) \eta\right\| \rightarrow 0,
$$

a contradiction.
$(2) \Rightarrow(3)$: Suppose x is a norm limit of finite rank operators and $\left(\xi_{i}\right)$ is a net of vectors in B converging weakly to $\xi \in B$. Let $\varepsilon>0$. Choose a finite $\operatorname{rank} y \in B(H)$ such that $\|x-y\|<\varepsilon$. We claim that $y \xi_{i} \rightarrow y \xi$. Indeed, choosing an ONB $\left\{e_{1}, \ldots, e_{n}\right\}$ for the finite dimensional Hilbert space $y H$,

$$
\left\|y\left(\xi_{i}-\xi\right)\right\|^{2}=\sum_{k=1}^{n}\left|\left\langle y\left(\xi_{i}-\xi\right), e_{k}\right\rangle\right|^{2}=\sum_{k=1}^{n}\left|\left\langle\xi_{i}-\xi, y^{*} e_{k}\right\rangle\right|^{2} \longrightarrow 0 .
$$

Now pick j so that $i>j$ implies $\left\|y \xi_{i}-y \xi\right\|<\varepsilon$. For all $i>j$,

$$
\left\|x \xi_{i}-x \xi\right\| \leq\left\|x \xi_{i}-y \xi_{i}\right\|+\left\|y \xi_{i}-y \xi\right\|+\|x \xi-y \xi\|<3 \varepsilon .
$$

The result follows.
$(3) \Rightarrow(4)$: Since B is weakly compact by Banach-Alaoglu, $x B$ is the continuous image of a compact set which is thus compact.
$(4) \Rightarrow(1)$: If $S \subset H$ is bounded, then $S \subset B_{r}=B_{r}\left(0_{H}\right)$ for some $r>0$. Then $x B_{r}=r x B$ is compact, so the closure of $x S$ is compact.

Exercise 2.4.6. Prove that if $x \in B(H)$ is finite rank, then so is x^{*}. Deduce that $K(H)$ is *-closed.

Notation 2.4.7. We write $\langle\eta \mid \xi\rangle:=\langle\xi, \eta\rangle$, which is linear on the right, and conjugate linear on the left. For $\eta \in H$, we write $\langle\eta| \in H^{*}$ for $\xi \mapsto\langle\eta \mid \xi\rangle$, and we can also denote $\xi \in H$ by $|\xi\rangle$. This allows us to define the rank one operator $|\eta\rangle\langle\xi| \in B(H)$ by $\zeta \mapsto|\eta\rangle\langle\xi \mid \zeta\rangle=\langle\zeta, \xi\rangle \eta$.

Exercise 2.4.8. Prove the following statements about rank one operators.
(1) $|\eta\rangle\left\langle\left.\xi\right|^{*}=\mid \xi\right\rangle\langle\eta|$
(2) $\left|\eta_{1}\right\rangle\left\langle\eta_{2}\right| \cdot\left|\xi_{1}\right\rangle\left\langle\xi_{2}\right|=\left\langle\eta_{2} \mid \xi_{1}\right\rangle \cdot\left|\eta_{1}\right\rangle\left\langle\xi_{2}\right|$
(3) If $\|\xi\|=1$, then $|\xi\rangle\langle\xi|$ is the rank one projection onto $\mathbb{C} \xi$.

Definition 2.4.9. An operator $x \in B(H)$ is orthogonally diagonalizable if there is an ONB $\left(e_{i}\right)$ of eigenvectors for x.

Exercise 2.4.10. Show that if $x \in B(H)$ is orthogonally diagonalizable, then the eigenvalues $\left(\lambda_{i}\right)$ for $\left(e_{i}\right)$ are in $\ell^{\infty}(I)$, where I is given counting measure.

Lemma 2.4.11. An orthogonally diagonalizable operator $x \in B(H)$ is compact if and only if the eigenvalues $\left(\lambda_{i}\right)$ for $\left(e_{i}\right)$ is in $c_{0}(I)$, where I has the discrete topology, and $x=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$, where the sum converges in norm.

Proof. By Fact 2.4.1, since $\operatorname{sp}(x) \subseteq\left\{\lambda_{i} \mid i \in I\right\} \cup\{0\}$, we must have $\left(\lambda_{i}\right) \in c_{0}(I)$.
Conversely, if $\left(\lambda_{i}\right) \in c_{0}(I)$, then $\sum \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$ converges in operator norm to x. Indeed, if we define $x_{F}:=\sum_{i \in F} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$ for each finite $F \subset I$, then picking $F \subset I$ so that $\left|\lambda_{i}\right|<\varepsilon$ for all $i \in F^{c}$, we have

$$
\left\|\left(x-x_{F}\right) \xi\right\|^{2}=\| \sum_{i \notin F} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i} \mid \xi\right\rangle\left\|^{2}=\sum_{i \notin F}\left|\lambda_{i}\right|^{2}\left|\left\langle\xi, e_{i}\right\rangle\right|^{2}<\varepsilon^{2}\right\| \xi \|^{2},
$$

so $x_{F} \rightarrow x$ in norm.

Theorem 2.4.12 (Spectral theorem for compact normal operators). Compact normal operators are diagonalizable.

Proof. Suppose $x \in K(H)$ is normal. It suffices to prove H is the orthogonal direct sum of eigenspaces of x. We may assume $\operatorname{dim}(H)=\infty$. Using Fact 2.4.1, let $\left(\lambda_{n}\right)$ be the non-zero eigenvalues of x, which is either a finite list or $\lambda_{n} \searrow 0$. Let E_{n} be the corresponding eigenspaces. Then E_{n} is an eigenspace for x^{*} with eigenvalue $\bar{\lambda}$ by (N1), and $E_{n} \perp E_{k}$ for all $1 \leq k<n$. Since each E_{n} is x and x^{*}-invariant, so is $\bigoplus_{n \geq 1} E_{n}$. Setting $E_{0}:=\left(\bigoplus_{n \geq 1} E_{n}\right)^{\perp}$, we have E_{0} is x and x^{*}-invariant by Exercise 2.3.6. Then $\left.x\right|_{E_{0}}$ is compact and has no non-zero eigenvalues, and so $\left.x\right|_{E_{0}}=0$. We conclude that $H=\bigoplus_{n \geq 0} E_{n}$ is the desired direct sum decomposition into eigenspaces.

Remark 2.4.13. Using the Borel functional calculus and Theorem 2.4.12, one can show that a positive operator $x \in B(H)$ is compact if and only if for all $\varepsilon>0$, the spectral projection $\chi_{(\varepsilon, \infty)}(x)$ is finite rank.
Corollary 2.4.14. If $x \in B(H \rightarrow K)$ such that $x^{*} x$ is compact, then x is compact.
Proof. Writing $x^{*} x=\sum \lambda_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right|$ with $\lambda_{n} \searrow 0$ by Theorem 2.4.12, we have $|x|=$ $\sum \sqrt{\lambda_{n}}\left|e_{n}\right\rangle\left\langle e_{n}\right|$ with $\sqrt{\lambda_{n}} \searrow 0$. Thus $|x|$ is compact by Lemma 2.4.11, and so is $x=u|x|$ using polar decomposition 2.3.10.

Definition 2.4.15. Suppose $x \in K(H)$, so $|x|=\left(x^{*} x\right)^{1 / 2}$ is compact. Enumerate the eigenvalues of $|x|$ by

$$
\lambda_{0} \geq \lambda_{1} \geq \lambda_{2} \geq \cdots
$$

with multiplicity as necessary. Note that $\lambda_{0}=\|x\|$.
We define $s_{n}(x):=\lambda_{n}$, called the n-th singular value of x.
Now pick orthonormal vectors $\left(f_{n}\right)$ such that $|x| f_{n}=\lambda_{n} f_{n}$ and $|x|=\sum \lambda_{n}\left|f_{n}\right\rangle\left\langle f_{n}\right|$, which converges in operator norm. Set $e_{n}:=u f_{n}$ where $x=u|x|$ is the polar decomposition 2.3.10. Then (e_{n}) is an orthonormal set, and $x=u|x|=u \sum \lambda_{n}\left|f_{n}\right\rangle\left\langle f_{n}\right|=\sum \lambda_{n}\left|e_{n}\right\rangle\left\langle f_{n}\right|$, where the sum converges in operator norm. This is called a Schmidt representation of x.

Warning 2.4.16. We warn the reader that a Schmidt decomposition of $x \in K(H)$ is not unique, but the singular values are well-defined. The usefulness of a Schmidt decomposition is that x is realized as an explicit norm-limit of finite rank operators.

For a unique representation, we can define $p_{n}=p_{E_{n}}$ to be the (finite rank) orthogonal projection with range E_{n}, the eigenspace of $|x|$ corresponding to $s_{n}(x)$. Then $|x|=\sum s_{n}(x) p_{n}$ and $x=\sum s_{n}(x) u p_{n}$.

Here are some elementary properties about singular values.
(SV1) $s_{n}(x)=s_{n}\left(x^{*}\right)$ for all n.
Proof. Let $x=\sum s_{n}(x)\left|e_{n}\right\rangle\left\langle f_{n}\right|$ be a Schmidt decomposition for x. Using Exercise 2.3.11, one can see that

$$
x^{*}=\sum s_{n}(x)\left|f_{n}\right\rangle\left\langle e_{n}\right|=u^{*} \sum s_{n}(x)\left|e_{n}\right\rangle\left\langle e_{n}\right|
$$

is a Schmidt decomposition for x^{*}, and thus $s_{n}\left(x^{*}\right)=s_{n}(x)$. Alternatively, we see that $x x^{*}=\sum s_{n}(x)^{2}\left|e_{n}\right\rangle\left\langle e_{n}\right|$ converges in norm, so $\left|x^{*}\right|=\sum s_{n}(x)\left|e_{n}\right\rangle\left\langle e_{n}\right|$, which also implies $s_{n}\left(x^{*}\right)=s_{n}(x)$.
(SV2) (Minimax) Suppose $x \in K(H)$ is positive and non-zero. Then for all $n \geq 0$ such that $n \leq \operatorname{dim}(H)$,

$$
\begin{equation*}
s_{n}(x)=\min _{\substack{E \subseteq H \\ \operatorname{codim}(E)=n \\ \| \xi \in=1}} \max _{\substack{\xi \in E \\\|\xi\|}}\langle x \xi, \xi\rangle . \tag{2.4.17}
\end{equation*}
$$

Proof. First, we prove that $\max \{\langle x \xi, \xi\rangle \mid \xi \in E$ and $\|\xi\|=1\}$ exists. By (K4), x is weak-norm continuous on B_{E}. Second, $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{C}$ is jointly continuous on norm bounded sets in the product topology where the first factor has the norm topology and the second factor has the weak topology. Indeed, if $\eta_{i} \rightarrow \eta$ in norm and $\xi_{i} \rightarrow \xi$ weakly, we can find j in our index set so that $i>j$ implies $\left\|\eta_{i}-\eta\right\|<\varepsilon / M$ where M is a bound for the norm of all ξ_{i} and ξ. Then

$$
\left|\left\langle\eta_{i}, \xi_{i}\right\rangle-\langle\eta, \xi\rangle\right| \leq \underbrace{\left|\left\langle\eta_{i}-\eta, \xi_{i}\right\rangle\right|}_{\leq\left\|\eta_{i}-\eta\right\| \cdot\left\|\xi_{i}\right\|<\varepsilon}+\underbrace{\left|\left\langle\eta, \xi_{i}-\xi\right\rangle\right|}_{\rightarrow 0} .
$$

Hence the map $\xi \mapsto(x \xi, \xi) \mapsto\langle x \xi, \xi\rangle$ is continuous on B_{E} equipped with the weak topology. Since B_{E} is weakly compact by Banach-Alaoglu, the max exists.
Now denote the right hand side of (2.4.17) by m_{n}. We know the case $n=0$ holds. Assume $n>0$ and let $\left(f_{k}\right)$ be an orthonormal subset such that $x=$ $\sum s_{k}(x)\left|f_{k}\right\rangle\left\langle f_{k}\right|$ with $\lambda_{k} \searrow 0$. For $E=\operatorname{span}\left\{f_{0}, \ldots, f_{n-1}\right\}^{\perp}$, we have $f_{n} \in E$ and $\left\langle x f_{n}, f_{n}\right\rangle=s_{n}(x)$, so $m_{n} \leq \lambda_{n}$.
Conversely, if $\operatorname{codim}(E)=n$, then there is a $\xi \in E \cap \operatorname{span}\left\{f_{0}, \ldots, f_{n}\right\}$ with $\|\xi\|=1$. Then writing $\xi=\sum_{i=0}^{n} \alpha_{i} f_{i}$ with $\alpha_{i}=\left\langle\xi, f_{i}\right\rangle$ and $\sum\left|\alpha_{i}\right|^{2}=1$, we have

$$
\langle x \xi, \xi\rangle=\sum_{i=0}^{n} s_{i}(x)\left|\alpha_{i}\right|^{2} \geq s_{n}(x)
$$

Hence $s_{n}(x) \leq m_{n}$.
(SV3) If $x \in K(H)$, then

Proof. Observe that $s_{n}(x)=\sqrt{s_{n}\left(x^{*} x\right)}$ and $\left\langle x^{*} x \xi, \xi\right\rangle=\|x \xi\|^{2}$. Apply Minimax (SV2) for $x^{*} x$ and take square roots.
(SV4) If $x \in K(H)$ and $y \in B(H)$, then both $s_{n}(x y), s_{n}(y x) \leq\|y\| s_{n}(x)$.
Proof. Using Minimax (2.4.18), we have ${ }^{a}$

$$
s_{n}(y x)=\min _{\substack{E \subseteq H \\ \operatorname{codim}(E)=n}} \max _{\substack{\xi \in E \\\|\xi\|=1}}\|y x \xi\| \leq \min _{\substack{E \subseteq H \\ \operatorname{codim}(E)=n \\ \xi \in E \in=1}} \max _{\substack{\xi \in E \\\|\xi\|=1}}\|y\| \cdot\|x \xi\|=\|y\| \cdot s_{n}(x) .
$$

Observe now that

$$
s_{n}(x y)=s_{n}\left(y^{*} x^{*}\right) \leq\left\|y^{*}\right\| \cdot s_{n}\left(x^{*}\right)=\|y\| \cdot s_{n}(x)
$$

${ }^{a}$ Starting with $\|y x \xi\| \leq\|y\| \cdot\|x \xi\|$, add max on the right then the left, and then add min on the left then the right.
(SV5) For $x \in K(H), s_{n}(x)=\operatorname{dist}\left(x, F_{n}:=\{\operatorname{rank} \leq n\right.$ operators $\left.\}\right)$.
Proof. Write $x=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle f_{i}\right|$ in Schmidt representation. The operator $y:=$ $\sum_{i=0}^{n-1} \lambda_{i}\left|e_{i}\right\rangle\left\langle f_{i}\right|$ is in F_{n} and $x-y=\sum_{i \geq n} \lambda_{i}\left|e_{i}\right\rangle\left\langle f_{i}\right|$ has norm λ_{n}. Hence $\operatorname{dist}\left(x, F_{n}\right) \leq \lambda_{n}$. Now for all $y \in F_{n}$, $\operatorname{dim} \operatorname{span}\left\{f_{0}, \ldots, f_{n}\right\}=n+1$, so there is a $\xi \in F_{n}$ with $\|\xi\|=1$ and $y \xi=0$. Then

$$
\|x-y\| \geq\|(x-y) \xi\|=\|x \xi\| \geq \lambda_{n}
$$

(SV6) If $x, y \in K(H)$, then $s_{m+n}(x+y) \leq s_{m}(x)+s_{n}(y)$.
Proof. Let $\varepsilon>0$. Using (SV5), take $z_{1} \in F_{m}$ such that $\left\|x-z_{1}\right\|<s_{m}(x)+\varepsilon$ and take $z_{2} \in F_{n}$ such that $\left\|y-z_{2}\right\|<s_{n}(y)+\varepsilon$. Then $z_{1}+z_{2} \in F_{m+n}$ and thus

$$
\begin{aligned}
s_{m+n}(x+y) & =\operatorname{dist}\left(x+y, F_{m+n}\right) \leq\left\|x+y-\left(z_{1}+z_{2}\right)\right\| \\
& \leq\left\|x-z_{1}\right\|+\left\|y-z_{2}\right\|<s_{m}(x)+s_{n}(y)+2 \varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, the result follows.
2.5. The trace and the Schatten p-classes. Let $\left(e_{i}\right)$ be an orthonormal basis of H. Define $\operatorname{Tr}: B(H)_{+} \rightarrow[0, \infty]$ by $\operatorname{Tr}(x):=\sum_{i}\left\langle x e_{i}, e_{i}\right\rangle$.

Here are some basic properties about the trace.
(Tr1) Tr is positive-linear, i.e., $\operatorname{Tr}(\lambda x+y)=\lambda \operatorname{Tr}(x)+\operatorname{Tr}(y)$ for all $\lambda>0$ and $x, y \in B(H)_{+}$.
(Tr2) Tr is lower semicontinuous on $B(H)_{+}$.

Proof. This follows immediately from the fact that each functional $x \mapsto\left\langle x e_{i}, e_{i}\right\rangle$ is continuous and $[0, \infty)$-valued together with the following exercise.
Exercise 2.5.1. Let X be a topological space and $\left(f_{n}\right)$ a sequence of lower semicontinuous $[0, \infty)$-valued functions. Prove that $\sum f_{n}: X \rightarrow[0, \infty)$ defined by $\left(\sum f_{n}\right)(x)=\sum f_{n}(x)$ is again lower semicontinuous.
(Tr3) $\operatorname{Tr}\left(x^{*} x\right)=\operatorname{Tr}\left(x x^{*}\right)$ for all $x \in B(H)$.
Proof. Since the sum of positive numbers is independent of ordering,

$$
\begin{aligned}
\sum_{i}\left\langle x^{*} x e_{i}, e_{i}\right\rangle & =\sum_{i}\left\langle x e_{i}, x e_{i}\right\rangle=\sum_{i, j}\left\langle\left\langle x e_{i}, e_{j}\right\rangle e_{j}, x e_{i}\right\rangle=\sum_{i, j}\left\langle x e_{i}, e_{j}\right\rangle\left\langle e_{j}, x e_{i}\right\rangle \\
& =\sum_{i, j}\left\langle x^{*} e_{j}, e_{i}\right\rangle\left\langle e_{i}, x^{*} e_{j}\right\rangle=\sum_{j, i}\left\langle x^{*} e_{j}, e_{i}\right\rangle\left\langle e_{i}, x^{*} e_{j}\right\rangle \\
& =\sum_{j, i}\left\langle\left\langle x^{*} e_{j}, e_{i}\right\rangle e_{i}, x^{*} e_{j}\right\rangle=\sum_{j}\left\langle x^{*} e_{j}, x^{*} e_{j}\right\rangle=\sum_{j}\left\langle x x^{*} e_{j}, e_{j}\right\rangle .
\end{aligned}
$$

(Tr4) $\operatorname{Tr}(x)=\operatorname{Tr}\left(u^{*} x u\right)$ for all unitaries $u \in B(H)$ and $x \geq 0$. Hence if $\left(f_{i}\right)$ is another orthonormal basis of H, then $\operatorname{Tr}(x)=\sum_{i}\left\langle x f_{i}, f_{i}\right\rangle$.

Proof. Write $x=\sqrt{x}^{2}$ so that by (Tr3),

$$
\operatorname{Tr}\left(u^{*} x u\right)=\operatorname{Tr}\left((\sqrt{x} u)^{*}(\sqrt{x} u)\right)=\operatorname{Tr}\left((\sqrt{x} u)(\sqrt{x} u)^{*}\right)=\operatorname{Tr}\left(\sqrt{x}^{2}\right)=\operatorname{Tr}(x) .
$$

Now if $\left(f_{i}\right)$ is another ONB, then define a unitary $v \in B(H)$ by $e_{i} \mapsto f_{i}$. Then

$$
\operatorname{Tr}(x)=\operatorname{Tr}\left(u^{*} x u\right)=\sum_{i}\left\langle u^{*} x u e_{i}, e_{i}\right\rangle=\sum_{i}\left\langle x u e_{i}, u e_{i}\right\rangle=\sum_{i}\left\langle x f_{i}, f_{i}\right\rangle .
$$

(Tr5) If $x \geq 0$, then $\operatorname{Tr}(x) \geq\|x\|$.
Proof. If $x \geq 0$, then by (N5), there is a unit vector $\xi \in H$ such that $\langle x \xi, \xi\rangle=$ $\max \{\lambda \mid \lambda \in \operatorname{sp}(x)\}=\|x\|$. Extend $\{\xi\}$ to an ONB $\{\xi\} \amalg\left(f_{i}\right)$, and observe that

$$
\operatorname{Tr}(x)=\langle x \xi, \xi\rangle+\sum_{i}\left\langle x f_{i}, f_{i}\right\rangle \geq\langle x \xi, \xi\rangle=\|x\|
$$

Lemma 2.5.2.

(1) If $x \in K(H)$, then $\operatorname{Tr}\left(|x|^{p}\right)=\sum s_{n}(x)^{p}$.
(2) If $\operatorname{Tr}\left(|x|^{p}\right)<\infty$ for some $p>0$, then x is compact.
(1) Write $|x|=\sum \lambda_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right|$ with $\lambda_{n} \searrow 0$ by Theorem 2.4.12 so that $|x|^{p}=$ $\sum \lambda_{n}^{p}\left|e_{n}\right\rangle\left\langle e_{n}\right|$. Extending $\left(e_{n}\right)$ to an ONB $\left(e_{i}\right)$, we see

$$
\operatorname{Tr}(x)=\sum_{i}\left\langle x e_{i}, e_{i}\right\rangle=\sum_{n} \lambda_{n}^{p}=\sum_{n} s_{n}(x)^{p} .
$$

(2) Let $\left(e_{i}\right)$ be an ONB and suppose $\varepsilon>0$. There is a finite subset $F \subset I$ such that $\left.\left.\sum_{i \notin F}\langle | x\right|^{p} e_{i}, e_{i}\right\rangle<\varepsilon$. Let p_{F} denote the projection onto span $\left\{e_{i} \mid i \in F\right\}$, and observe that
$\left.\left\||x|^{p / 2}\left(1-p_{F}\right)\right\|^{2}=\left\|\left(1-p_{F}\right)|x|^{p}\left(1-p_{F}\right)\right\| \leq \operatorname{Tr}\left(\left(1-p_{F}\right)|x|^{p}\left(1-p_{F}\right)\right)=\left.\sum_{i \notin F}\langle | x\right|^{p} e_{i}, e_{i}\right\rangle<\varepsilon$.
Thus we may approximate $|x|^{p / 2}$ by finite rank operators, so $|x|^{p / 2}$ is compact, and thus so is $|x|^{p}$. Using the Spectral Theorem for compact normal operators 2.4.12, we can write $|x|^{p}=\sum \lambda_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right|$ with $\lambda_{n} \searrow 0$. But then $|x|=\sum \lambda_{n}^{1 / p}\left|e_{n}\right\rangle\left\langle e_{n}\right|$ and $\lambda_{n}^{1 / p} \searrow 0$, so $|x|$ is compact by Lemma 2.4.11. Hence $x=u|x|$ is compact.

Definition 2.5.3. The Schatten p-class $/ p$-ideal is the set

$$
\mathcal{L}^{p}(H):=\left\{x \in B(H) \mid \operatorname{Tr}\left(|x|^{p}\right)=\sum s_{n}(x)^{p}<\infty\right\} .
$$

We call $\mathcal{L}^{1}(H)$ the trace class operators and $\mathcal{L}^{2}(H)$ the Hilbert-Schmidt operators. Observe that $\mathcal{L}^{p}(H) \subset K(H)$ by Lemma 2.5.2.
Remark 2.5.4. Recall that when $1 \leq q \leq p, \ell^{q} \subseteq \ell^{p}$ with $\|\cdot\|_{q} \geq\|\cdot\|_{p}$. Since $\operatorname{Tr}\left(|x|^{p}\right)=$ $\left\|\left(s_{n}(x)\right)\right\|_{\ell^{p}}, \mathcal{L}^{q}(H) \subseteq \mathcal{L}^{p}(H)$ with $\|\cdot\|_{q} \geq\|\cdot\|_{p}$.

Lemma 2.5.5. The Schatten p-class $\mathcal{L}^{p}(H)$ is a $*$-closed 2-sided ideal of $B(H)$ which is algebraically spanned by its positive operators.

Proof.
-closed: $s_{n}(x)=s_{n}\left(x^{}\right)$ for all $n \geq 0$.
+-closed: $s_{2 n}(x+y) \leq s_{n}(x)+s_{n}(y)$, so $\left(s_{n}(x)\right),\left(s_{n}(y)\right) \in \ell^{p}$ implies $\left(s_{2 n}(x+y)\right) \in \ell^{p}$. Similarly, $s_{2 n+1}(x+y) \leq s_{n}(x)+s_{n+1}(y)$, so $\left(s_{n}(x)\right),\left(s_{n}(y)\right) \in \ell^{p}$ implies $\left(s_{2 n+1}(x+y)\right) \in$ ℓ^{p}. Thus $\left(s_{n}(x+y)\right) \in \ell^{p}$.
ideal: For all $x \in B(H)$ and $y \in \mathcal{L}^{p}(H), s_{n}(x y), s_{n}(y x) \leq s_{0}(x) s_{n}(y)=\|x\| s_{n}(y)$, so $x y, y x \in \mathcal{L}^{p}(H)$.
positive spanning: Immediate by Fact 2.4.3.

Corollary 2.5.6. $\mathcal{L}^{1}(H)=\operatorname{span}\{x \geq 0 \mid \operatorname{Tr}(x)<\infty\}$.
Proposition 2.5.7. Tr extends to a linear map $\mathcal{L}^{1}(H) \rightarrow \mathbb{C}$ satisfying:

- $x \leq y$ implies $\operatorname{Tr}(x) \leq \operatorname{Tr}(y)$ (when x, y are self-adjoint) and
- $|\operatorname{Tr}(x)| \leq \operatorname{Tr}(|x|)$.

Proof. For $x \in \mathcal{L}^{1}(H)$, we can write $x=\sum_{k=0}^{3} i^{k} x_{k}$ with each $x_{k} \in \mathcal{L}^{1}(H)_{+}$. Define $\operatorname{Tr}(x)=\sum_{k=0}^{3} i^{k} \operatorname{Tr}\left(x_{k}\right)$. This formula is clearly linear as long as it is well-defined.

First, suppose x is self-adjoint. Since $\operatorname{Re}(x)=x_{0}-x_{2}$ and $\operatorname{Im}(x)=x_{1}-x_{3}=0$, we must have $x_{1}=x_{3}$, so $x=x_{0}-x_{2}$. If $x=y_{0}-y_{2}$ for $y_{0}, y_{2} \in \mathcal{L}^{1}(H)_{+}$, then

$$
x_{0}-x_{2}=x=y_{0}-y_{2} \quad \Longleftrightarrow \quad x_{0}+y_{2}=y_{0}+x_{2}
$$

Thus $\operatorname{Tr}\left(x_{0}\right)+\operatorname{Tr}\left(y_{2}\right)=\operatorname{Tr}\left(y_{0}\right)+\operatorname{Tr}\left(x_{2}\right)$, and since these numbers are finite, $\operatorname{Tr}\left(x_{0}\right)-\operatorname{Tr}\left(x_{2}\right)=\operatorname{Tr}\left(y_{0}\right)-\operatorname{Tr}\left(y_{2}\right)$. Now when x is arbitrary, if we can also write $x=\sum_{k=0}^{3} i^{k} y_{k}$ with each $y_{k} \in \mathcal{L}^{1}(H)_{+}$, then $\operatorname{Re}(x)=y_{0}-y_{2}$ and $\operatorname{Im}(x)=y_{1}-y_{3}$. Hence $\sum_{k=0}^{3} i^{k} \operatorname{Tr}\left(y_{k}\right)=\operatorname{Tr}(\operatorname{Re}(x))-i \operatorname{Tr}(\operatorname{Im}(x))$ which is independent of the $y_{k} \geq 0$. Now suppose $x \leq y$ in $\mathcal{L}^{1}(H)$. Then $y-x \geq 0$, so $0 \leq \operatorname{Tr}(y-x)=\operatorname{Tr}(y)-\operatorname{Tr}(x)$.
To prove the last relation, take a Schmidt decomposition $x=\sum_{n} s_{n}(x)\left|e_{n}\right\rangle\left\langle f_{n}\right|$ with $\left(e_{n}\right)$ and $\left(f_{n}\right)$ orthonormal. Then

$$
\begin{aligned}
|\operatorname{Tr}(x)| & =\left|\sum_{i}\left\langle\sum_{n} s_{n}(x) \mid e_{n}\right\rangle\left\langle f_{n} \mid f_{i}, f_{i}\right\rangle\right|=\left|\sum_{n} s_{n}(x)\left\langle e_{n}, f_{n}\right\rangle\right| \\
& \leq \sum_{n} s_{n}(x)\left|\left\langle e_{n}, f_{n}\right\rangle\right|=\sum_{n} s_{n}(x)=\operatorname{Tr}(|x|)
\end{aligned}
$$

Proposition 2.5.8. For $x, y \in \mathcal{L}^{2}(H), x^{*} y \in \mathcal{L}^{1}(H)$. The space $\mathcal{L}^{2}(H)$ is a Hilbert space with inner product $\langle x, y\rangle_{\mathcal{L}^{2}}:=\operatorname{Tr}\left(y^{*} x\right)$.

Proof. First, if $x \in \mathcal{L}^{2}(H)$ if and only if $x^{*} x \in \mathcal{L}^{1}(H)$ as $\operatorname{Tr}\left(|x|^{2}\right)=\operatorname{Tr}\left(x^{*} x\right)$. By polarization,

$$
y^{*} x=\frac{1}{4} \sum_{k=0}^{3} i^{k} \underbrace{\left(x+i^{k} y\right)^{*} \underbrace{\left(x+i^{k} y\right)}_{\in \mathcal{L}^{2}(H)}}_{\in \mathcal{L}^{1}(H)}
$$

It is clear that $\langle\cdot, \cdot\rangle_{\mathcal{L}^{2}(H)}$ is a positive sesquilinear form. Definiteness follows from the estimate

$$
\|x\|_{2}^{2}:=\operatorname{Tr}\left(x^{*} x\right) \underset{(\operatorname{Tr} 5)}{\geq}\left\|x^{*} x\right\|=\|x\|^{2} .
$$

This also shows every $\|\cdot\|_{2}$-Cauchy sequence is $\|\cdot\|$-Cauchy. To see $\mathcal{L}^{2}(H)$ is complete with respect to $\|\cdot\|_{2}$, it suffices to prove that if $\left(x_{n}\right)$ is $\|\cdot\|_{2}$-Cauchy with $x_{n} \rightarrow x$ in $\|\cdot\|$, then $x_{n} \rightarrow x$ in $\|\cdot\|_{2}$. First, $x \in K(H)$ as $K(H)$ is closed. Next, for all finite rank projections p,

$$
\begin{aligned}
\left\|\left(x-x_{n}\right) p\right\|_{2}^{2} & =\operatorname{Tr}\left(p\left(x-x_{n}\right)^{*}\left(x-x_{n}\right) p\right) \stackrel{(!)}{=} \lim _{m} \operatorname{Tr}\left(p\left(x_{m}-x_{n}\right)^{*}\left(x_{m}-x_{n}\right) p\right) \\
& =\lim _{m} \operatorname{Tr}\left(\left(x_{m}-x_{n}\right) p\left(x_{m}-x_{n}\right)^{*}\right) \leq \underset{m}{\lim \sup ^{\operatorname{Tr}}\left(\left(x_{m}-x_{n}\right)\left(x_{m}-x_{n}\right)^{*}\right)} \\
& =\limsup _{m} \operatorname{Tr}\left(\left(x_{m}-x_{n}\right)^{*}\left(x_{m}-x_{n}\right)\right)=\limsup _{m}\left\|x_{m}-x_{n}\right\|_{2}^{2} .
\end{aligned}
$$

In the equality marked (!) above, we are using the fact that there is only one trace on $B(p H) \cong M_{k}(\mathbb{C})$, where $p H$ is a finite dimensional Hilbert space with dimension k.

Thus $x_{m} \rightarrow x$ in norm implies $p\left(x_{m}-x_{n}\right)^{*}\left(x_{m}-x_{n}\right) p \rightarrow p\left(x-x_{n}\right)^{*}\left(x-x_{n}\right) p$ in norm, and we know the trace on $B(p H)$ is continuous.
Since p was arbitrary, we conclude that

$$
\left\|x-x_{n}\right\|_{2}^{2} \leq \underset{m}{\lim \sup }\left\|x_{m}-x_{n}\right\|_{2}^{2}
$$

which implies both $x \in \mathcal{L}^{2}(H)$ and $x_{n} \rightarrow x$ in $\|\cdot\|_{2}$.

Exercise 2.5.9. Suppose H is a Hilbert space (which you may assume is separable) with ONBs $\left(e_{i}\right)$ and $\left(f_{i}\right)$.
(1) Show that for every $x \in \mathcal{L}^{2}(H), \sum_{i, j}\left|\left\langle x e_{j}, f_{i}\right\rangle\right|^{2}=\sum_{n}\left|s_{n}(x)\right|^{2}=\sum_{n}\left\|x e_{n}\right\|^{2}$.
(2) Show that for each $a=\left(a_{i j}\right) \in \ell^{2}\left(\mathbb{N}^{2}\right)$, there is an $a \in \mathcal{L}^{2}(H)$ such that $a_{i j}=\left\langle a e_{j}, f_{i}\right\rangle$.
(3) Construct a unitary isomorphism $\mathcal{L}^{2}(H) \rightarrow \ell^{2}\left(\mathbb{N}^{2}\right)$.
(4) Construct a canonical isomorphism $\mathcal{L}^{2}(H) \cong H \otimes H^{*}$.

Corollary 2.5.10. For all $x \in \mathcal{L}^{1}(H)$ and $y \in \mathcal{B}(H),|\operatorname{Tr}(x y)|,|\operatorname{Tr}(y x)| \leq\|y\| \cdot \operatorname{Tr}(|x|)$.
Proof. Since $x y \in \mathcal{L}^{1}(H),|\operatorname{Tr}(x y)| \leq \operatorname{Tr}(|x y|)$. Since $s_{n}(|x y|) \leq\|y\| \cdot s_{n}(x)$ by (SV4),

$$
\operatorname{Tr}(|x y|)=\sum s_{n}(|x y|) \leq \sum\|y\| s_{n}(x)=\|y\| \sum s_{n}(x)=\|y\| \operatorname{Tr}(|x|)
$$

Similarly, $\operatorname{Tr}(|y x|) \leq\|y\| \operatorname{Tr}(|x|)$.

Lemma 2.5.11. For $x, y \in \mathcal{L}^{2}(H), \operatorname{Tr}(x y)=\operatorname{Tr}(y x)$. The conclusion also holds for $x \in$ $\mathcal{L}^{1}(H)$ and $y \in \mathcal{B}(H)$.

Proof. As $(x, y) \mapsto \operatorname{Tr}\left(x^{*} y\right)$ and $(y, x) \mapsto \operatorname{Tr}\left(y x^{*}\right)$ are both sesquilinear forms on $\mathcal{L}^{2}(H)$, by polarization, they agree if and only if they agree on the diagonal. But $\operatorname{Tr}\left(x^{*} x\right)=$ $\operatorname{Tr}\left(x x^{*}\right)$, so $\operatorname{Tr}\left(x^{*} y\right)=\operatorname{Tr}\left(y x^{*}\right)$ for all $x, y \in \mathcal{L}^{2}(H)$.
For the second part, by linearity in x, we may assume $x \in \mathcal{L}^{1}(H)_{+}$so that $\sqrt{x} \in$ $\mathcal{L}^{2}(H)_{+}$. We then calculate

$$
\operatorname{Tr}(x y)=\operatorname{Tr}(\sqrt{x}(\sqrt{x} y))=\operatorname{Tr}((\sqrt{x} y) \sqrt{x})=\operatorname{Tr}(\sqrt{x}(y \sqrt{x}))=\operatorname{Tr}((y \sqrt{x}) \sqrt{x})=\operatorname{Tr}(y x)
$$

Proposition 2.5.12. $\mathcal{L}^{1}(H)$ is a Banach $*$-algebra with $\|x\|_{1}:=\operatorname{Tr}(|x|)=\sum s_{n}(x)$.
Proof. We show $\|\cdot\|_{1}$ has the required properties.
Homogeneous: $\|\lambda x\|_{1}=\operatorname{Tr}(|\lambda x|)=\operatorname{Tr}(|\lambda| \cdot|x|)=|\lambda| \operatorname{Tr}(|x|)=|\lambda| \cdot\|x\|_{1}$
Definite: $\|x\|_{1}=\operatorname{Tr}(|x|)=0$ implies $|x|=0$, so $x=0$.
Subadditive: Let $x+y=u|x+y|$ be the polar decomposition so that $|x+y|=u^{*} x+u^{*} y$.
Since $u^{*} x, u^{*} y \in \mathcal{L}^{1}(H)$,

$$
\begin{aligned}
\|x+y\|_{1} & =\operatorname{Tr}(|x+y|)=\operatorname{Tr}\left(u^{*} x+u^{*} y\right)=\operatorname{Tr}\left(u^{*} x\right)+\operatorname{Tr}\left(u^{*} y\right) \\
& \leq\left|\operatorname{Tr}\left(u^{*} x\right)\right|+\left|\operatorname{Tr}\left(u^{*} y\right)\right| \leq\left\|u^{*}\right\| \operatorname{Tr}(|x|)+\left\|u^{*}\right\| \operatorname{Tr}(|y|) \\
& \leq \operatorname{Tr}(|x|)+\operatorname{Tr}(|y|)=\|x\|_{1}+\|y\|_{1} .
\end{aligned}
$$

Submultiplicative: Let $x y=u|x y|$ be the polar decomposition so that $|x y|=u^{*} x y$. Then

$$
\operatorname{Tr}(|x y|)=\operatorname{Tr}\left(u^{*} x y\right) \underset{\text { (Cor. }}{\leq} \text { 2.5.10) } \underbrace{\left\|u^{*} x\right\|}_{=\||x|\|} \operatorname{Tr}(|y|) \underset{\text { (Trr) }}{\leq} \operatorname{Tr}(|x|) \operatorname{Tr}(|y|)=\|x\|_{1} \cdot\|y\|_{1} .
$$

-isometric: $\|x\|_{1}=\operatorname{Tr}(|x|)=\sum s_{n}(x)=\sum s_{n}\left(x^{}\right)=\operatorname{Tr}\left(\left|x^{*}\right|\right)=\left\|x^{*}\right\|_{1}$.
Complete: Suppose $\left(x_{n}\right)$ is $\|\cdot\|_{1}$-Cauchy. By (Tr5),

$$
\left\|x_{m}-x_{n}\right\|_{1}=\operatorname{Tr}\left(\left|x_{m}-x_{n}\right|\right) \geq\left\|\left|x_{m}-x_{n}\right|\right\|=\left\|x_{m}-x_{n}\right\|,
$$

so $\left(x_{n}\right)$ is $\|\cdot\|$-Cauchy. Since $K(H)$ is closed, there is an $x \in K(H)$ with $x_{n} \rightarrow x$ in norm. Consider the polar decomposition $x-x_{n}=u_{n}\left|x-x_{n}\right|$. For all finite rank projections p,

$$
\begin{aligned}
\operatorname{Tr}\left(p\left|x-x_{n}\right|\right) & =\operatorname{Tr}\left(p u_{n}^{*}\left(x-x_{n}\right) p\right)=\left|\operatorname{Tr}\left(p u_{n}^{*}\left(x-x_{n}\right) p\right)\right| \\
& =\lim _{m}\left|\operatorname{Tr}\left(p u_{n}^{*}\left(x_{m}-x_{n}\right) p\right)\right| \underset{(\text { Cor. 2.5.10) }}{\leq} \underset{m}{\lim \sup }\left\|x_{m}-x_{n}\right\|_{1} .
\end{aligned}
$$

This implies $x \in \mathcal{L}^{1}(H)$ and $x_{n} \rightarrow x$ in $\|\cdot\|_{1}$.

Proposition 2.5.13. For all $1<p<\infty, \mathcal{L}^{p}(H)$ is a Banach space with $\|x\|_{p}^{p}:=\operatorname{Tr}\left(|x|^{p}\right)=$ $\left\|\left(s_{n}(x)\right)\right\|_{\ell \ell^{p}}$.

We omit the proof which is similar to those for $\mathcal{L}^{2}(H)$ and $\mathcal{L}^{1}(H)$.

Theorem 2.5.14. Suppose $1<q, p<\infty$ with $1 / p+1 / q=1$. For all $x \in \mathcal{L}^{p}(H)$ and $y \in \mathcal{L}^{q}(H), x y \in \mathcal{L}^{1}(H)$ and $|\operatorname{Tr}(x y)| \leq\|x\|_{p} \cdot\|y\|_{q}$.

Proof. Without loss of generality, $2 \leq p$. We proceed via the following steps.
Step 1: If $x \in \mathcal{L}^{p}(H)_{+}$with $p \geq 2$ and $\xi \in H$ with $\|\xi\|=1$, then $\left\langle x^{2} \xi, \xi\right\rangle^{p / 2} \leq\left\langle x^{p} \xi, \xi\right\rangle$.
Proof. Let $\left(e_{n}\right)$ be an ONB with $x=\sum \lambda_{n}\left|e_{n}\right\rangle\left\langle e_{n}\right|$. For all $\xi \in \operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$,

$$
\left\langle x^{2} \xi, \xi\right\rangle=\sum_{i, j=1}^{k}\left\langle\left\langle\xi, e_{i}\right\rangle x^{2} e_{i},\left\langle\xi, e_{j}\right\rangle e_{j}\right\rangle=\sum_{i, j=1}^{k}\left\langle\xi, e_{i}\right\rangle \overline{\left\langle\xi, e_{j}\right\rangle}\left\langle x^{2} e_{i}, e_{j}\right\rangle=\sum_{i=1}^{k}\left|\left\langle\xi, e_{i}\right\rangle\right|^{2} \lambda_{i}^{2} .
$$

Since the function $r \mapsto r^{p / 2}$ is convex and $\sum_{i=1}^{k}\left|\left\langle\xi, e_{i}\right\rangle\right|^{2}=\|\xi\|^{2}=1$, we have

$$
\left\langle x^{2} \xi, \xi\right\rangle^{p / 2}=\left(\sum_{i=1}^{k}\left|\left\langle\xi, e_{i}\right\rangle\right|^{2} \lambda_{i}^{2}\right)^{p / 2} \leq \sum_{i=1}^{k}\left|\left\langle\xi, e_{i}\right\rangle\right|^{2} \lambda_{i}^{p}=\left\langle x^{p} \xi, \xi\right\rangle .
$$

Hence the desired inequality holds on the algebraic span of the e_{i}, which is dense in H. Since the continuous function $\xi \mapsto\left\langle x^{p} \xi, \xi\right\rangle-\left\langle x^{2} \xi, \xi\right\rangle^{p / 2}$ is non-negative on a dense subspace, the result follows.

Step 2: If $x \in \mathcal{L}^{p}(H)_{+}$with $p \geq 2$ and $y \in \mathcal{L}^{q}(H)_{+}$with $1 / p+1 / q=1$, then $x y \in \mathcal{L}^{1}(H)$ and $\operatorname{Tr}(|x y|) \leq\|x\|_{p} \cdot\|y\|_{q}$.

Proof. Pick an ONB $\left(f_{n}\right)$ such that $y=\sum \mu_{n}\left|f_{n}\right\rangle\left\langle f_{n}\right|$. For every $n \in \mathbb{N}$,

$$
\begin{aligned}
\left.|\langle | x y| f_{n}, f_{n}\right\rangle\left.\right|^{2} & \underset{(\mathrm{CS})}{\leq}\left\||x y| f_{n}\right\|^{2} \cdot \underbrace{\left\|f_{n}\right\|}_{=1}=|\langle | x y|^{2} f_{n}, f_{n}\rangle\left|=\left|\left\langle y^{*} x^{*} x y f_{n}, f_{n}\right\rangle\right|\right. \\
& \left.=\left|\left\langle x^{*} x y f_{n}, y f_{n}\right\rangle\right|=\mu_{n}^{2}|\langle | x|^{2} f_{n}, f_{n}\right\rangle \mid .
\end{aligned}
$$

Hence by Step 1, we have

$$
\left.\left.\langle | x y\left|f_{n}, f_{n}\right\rangle \leq\left.\mu_{n}\langle | x\right|^{2} f_{n}, f_{n}\right\rangle\left.^{1 / 2} \underset{(\text { Step 1) }}{\leq} \mu_{n}\langle | x\right|^{p} f_{n}, f_{n}\right\rangle^{1 / p} .
$$

Now setting $\left.a_{n}=\left.\langle | x\right|^{p} f_{n}, f_{n}\right\rangle^{1 / p},\left(a_{n}\right) \in \ell^{p}$ as $x \in \mathcal{L}^{p}(H)$:

$$
\left.\left\|\left(a_{n}\right)\right\|_{p}^{p}=\left.\sum_{n}\langle | x\right|^{p} f_{n}, f_{n}\right\rangle=\operatorname{Tr}\left(|x|^{p}\right)<\infty
$$

Also, $\left(\mu_{n}\right) \in \ell^{q}$ as $\sum_{n} \mu_{n}^{q}=\operatorname{Tr}\left(|y|^{q}\right)<\infty$ since $y \in \mathcal{L}^{q}(H)$. By Hölder's Inequality,
$\left.\operatorname{Tr}(|x y|)=\sum_{n}\langle | x y\left|f_{n}, f_{n}\right\rangle \leq\left.\sum_{n} \mu_{n}\langle | x\right|^{p} f_{n}, f_{n}\right\rangle^{1 / p} \leq\left\|\left(a_{n}\right)\right\|_{p} \cdot\left\|\left(\mu_{n}\right)\right\|_{q}=\|x\|_{p} \cdot\|y\|_{q}$.
Step 3: For arbitrary $x \in \mathcal{L}^{p}(H)$ with $p \geq 2$ and $y \in \mathcal{L}^{q}(H)$ with $1 / p+1 / q=1, x y \in \mathcal{L}^{1}(H)$ and $|\operatorname{Tr}(x y)| \leq\|x\|_{p} \cdot\|y\|_{q}$.

Proof. Consider the polar decompositions $x=u|x|$ and $y^{*}=v\left|y^{*}\right|$ and note that $|x|,\left|y^{*}\right| \geq 0,|x|=u^{*} x \in \mathcal{L}^{p}(H)$, and $\left|y^{*}\right|=v^{*} y^{*} \in \mathcal{L}^{q}(H)$. By Step 2, we have $|x| \cdot\left|y^{*}\right| \in \mathcal{L}^{1}(H)$ and

$$
\operatorname{Tr}\left(||x| \cdot| y^{*}| |\right) \leq\|x\|_{p} \cdot\|y\|_{q}
$$

It follows immediately that

$$
x y=x\left(y^{*}\right)^{*}=u|x|\left(v\left|y^{*}\right|\right)^{*}=u|x|\left|y^{*}\right| v^{*} \in \mathcal{L}^{1}(H) .
$$

and

$$
\begin{aligned}
|\operatorname{Tr}(x y)| & =\left|\operatorname{Tr}\left(u|x|\left|y^{*}\right| v^{*}\right)\right| \underset{(\text { Cor. }}{\leq} \underset{\text { (Step 2) } 20)}{\leq}\|u\| \cdot\left\|v^{*}\right\| \cdot \operatorname{Tr}\left(| | x|\cdot| y^{*}| |\right) \\
& \left\|\left|y^{*}\right|\right\|_{q}=\|x\|_{p} \cdot\|y\|_{q} .
\end{aligned}
$$

Exercise 2.5.15. Show that the pairing $(x, y) \mapsto \operatorname{Tr}(x y)$ implements a duality exhibiting an isometric isomorphisms $K(H)^{*} \cong \mathcal{L}^{1}(H)$ and $\mathcal{L}^{1}(H)^{*} \cong B(H)$. Explain how one can view this as an analogy of the facts that $c_{0}^{*} \cong \ell^{1}$ and $\left(\ell^{1}\right)^{*} \cong \ell^{\infty}$.

Theorem 2.5.16. Suppose $1<p, q<\infty$ with $1 / p+1 / q=1$. The bilinear form $(x, y):=$ $\operatorname{Tr}(x y)$ implements a duality exhibiting $\mathcal{L}^{p}(H)$ and $\mathcal{L}^{q}(H)$ as isometrically isomorphic to each other's dual spaces.

Proof. First, note that if $\left(x_{n}\right) \in \ell^{q}$, then $\left(\left|x_{n}\right|^{q-1}\right) \in \ell^{p}$ and
$\left\|x_{n}\right\|_{q}^{q}=\sum\left|x_{n}\right|^{q}=\sum\left|x_{n}\right|^{(q-1) p}=\left\|\left(\left|x_{n}\right|^{q-1}\right)\right\|_{p}^{p}$
and
$\left\|x_{n}\right\|_{q}^{q}=\left(\sum\left|x_{n}\right|^{q}\right)^{1 / p+1 / q}=\left(\sum\left|x_{n}\right|^{(q-1) p}\right)_{16}^{1 / p}\left(\sum\left|x_{n}\right|^{q}\right)^{1 / q}=\left\|\left(\left|x_{n}\right|^{q-1}\right)\right\|_{p} \cdot\left\|\left(x_{n}\right)\right\|_{q}$.

We now proceed via the following steps.
Step 1: The map $y \mapsto \operatorname{Tr}(\cdot y)$ is an isometry $\mathcal{L}^{q}(H) \rightarrow \mathcal{L}^{p}(H)^{*}$.
Proof. First, note that the map $\mathcal{L}^{q}(H) \rightarrow \mathcal{L}^{p}(H)^{*}$ given by $y \mapsto \operatorname{Tr}(\cdot y)$ is well-defined and norm-decreasing by Theorem 2.5.14. We use polar decomposition to write $y=u|y|$ and note $|y|=u^{*} y \in \mathcal{L}^{q}(H)$.
We claim that
Claim. For every $r>0, s_{n}(|y|)^{r}=s_{n}\left(|y|^{r}\right)=s_{n}\left(u|y|^{r}\right)=s_{n}\left(|y|^{r} u^{*}\right)$.
Proof of claim. If $|y|=\sum \lambda_{n}\left|f_{n}\right\rangle\left\langle f_{n}\right|$ is the Schmidt decomposition, then $s_{n}(|y|)^{r}=$ $\lambda_{n}^{r}=s_{n}\left(|y|^{r}\right)$. Moreover, if $e_{n}=u f_{n}$ for all n, then

$$
u|y|=\sum \lambda_{n}\left|e_{n}\right\rangle\left\langle f_{n}\right| \quad \Longrightarrow \quad u|y|^{r}=\sum \lambda_{n}^{r}\left|e_{n}\right\rangle\left\langle f_{n}\right|
$$

Then since $\left(u|y|^{r}\right)^{*} u|y|^{r}=|y|^{r} u^{*} u|y|^{r}=\sum \lambda_{n}^{2 n}\left|f_{n}\right\rangle\left\langle f_{n}\right|$,

$$
s_{n}\left(u|y|^{r}\right)=s_{n}\left(|y|^{r} u^{*} u|y|^{r}\right)^{1 / 2}=\lambda_{n}^{r} .
$$

Since for any $z, s_{n}\left(z^{*} z\right)^{1 / 2}=s_{n}(z)$, we have $s_{n}\left(u|y|^{r}\right)=\lambda_{n}^{r}$. Finally, $s_{n}\left(u|y|^{r}\right)=$ $s_{n}\left(|y|^{r} u^{*}\right)$ as the n-th singular value of adjoints agree, finishing the claim.
Now using the claim above, we have $a_{n}:=s_{n}\left(|y|^{q-1}\right)=s_{n}(|y|)^{q-1}$, so $\left(a_{n}\right) \in \ell^{p}$ and $|y|^{q-1} \in \mathcal{L}^{p}(H)$. For $x:=|y|^{q-1} u^{*} \in \mathcal{L}^{p}(H)$, setting $\mu_{n}=s_{n}(y)$,
$\operatorname{Tr}(x y)=\operatorname{Tr}\left(|y|^{q-1} u^{*} y\right)=\operatorname{Tr}\left(|y|^{q}\right)=\|y\|_{q}^{q}=\left\|\left(\mu_{n}\right)\right\|_{q}^{q}=\left\|\left(\mu_{n}^{q-1}\right)\right\|_{p} \cdot\left\|\left(\mu_{n}\right)\right\|_{q}=\|x\|_{p} \cdot\|y\|_{q}$

Step 2: The map $y \mapsto \operatorname{Tr}(\cdot y)$ from Step 4 is surjective.
Proof. Since $1<p, \mathcal{L}^{1}(H) \subseteq \mathcal{L}^{p}(H)$ with $\|\cdot\|_{1} \geq\|\cdot\|_{p}$. Thus if $\varphi \in \mathcal{L}^{p}(H)^{*}$, $\left.\varphi\right|_{\mathcal{L}^{1}(H)} \in \mathcal{L}^{1}(H)^{*}=B(H)$, so there is a $y \in B(H)$ such that $\left.\varphi\right|_{\mathcal{L}^{1}(H)}=\operatorname{Tr}(\cdot y)$ by Exercise 2.5.15. It remains to prove $y \in \mathcal{L}^{q}(H)$ and $\varphi=\operatorname{Tr}(\cdot y)$ on $\mathcal{L}^{p}(H)$.
Claim. $y \in K(H)$.
Proof of Claim. By polar decomposition $y=u|y|$, we may assume $y \geq 0$ as $y \in K(H)$ iff $|y| \operatorname{inK}(H)$, and

$$
|\operatorname{Tr}(x|y|)|=\left|\operatorname{Tr}\left(x u^{*} y\right)\right| \leq\|\varphi\| \cdot\left\|x u^{*}\right\|_{p} \underset{(\mathrm{SV} 4)}{\leq}\|\varphi\| \cdot\|x\|_{p}
$$

If $y \notin K(H)$, then by Remark 2.4.13, there is a $\varepsilon>0$ such that $p:=\chi_{(\varepsilon, \infty)}(y)$ has infinite dimensional image. Pick an orthonormal sequence $\left(f_{n}\right) \subset p H$, and note that $y \geq \varepsilon$ on $p H$, i.e., $\left\langle y f_{n}, f_{n}\right\rangle \geq \varepsilon$ for all n. Pick $\left(\mu_{n}\right) \in \ell^{p} \backslash \ell^{1}$ (we may assume $\mu_{n} \geq 0$ for all n) and set $x_{k}=\sum_{n=0}^{k} \mu_{n}\left|f_{n}\right\rangle\left\langle f_{n}\right|$ and $x=\lim x_{k} \in \mathcal{L}^{p}(H)$. Then $x_{k} \in \mathcal{L}^{1}(H)$ for all k, and

$$
\varepsilon \sum_{n=0}^{k} \mu_{n} \leq \sum_{n=0}^{k} \mu_{n}\left\langle y f_{n}, f_{n}\right\rangle=\operatorname{Tr}\left(x_{k} y\right)=\varphi\left(x_{k}\right) \xrightarrow{k \rightarrow \infty} \varphi(x) .
$$

But $\left(\mu_{n}\right) \notin \ell^{1}$, so $\varepsilon \sum_{n=0}^{k} \mu_{n} \rightarrow \infty$, a contradiction.

Since $y \in K(H)$, we can take a Schmidt decomposition $|y|=\sum \lambda_{n}\left|f_{n}\right\rangle\left\langle f_{n}\right|$, and let $y=u|y|$ be the polar decomposition with $u f_{n}=e_{n}$ so that $y=\sum \lambda_{n}\left|e_{n}\right\rangle\left\langle f_{n}\right|$. For each k, let r_{k} be the orthogonal projection onto $\operatorname{span}\left\{f_{0}, f_{1}, \ldots, f_{k}\right\}$, and observe that r_{k} commutes with $|y|^{s}$ for all $s>0$. For each $k, x_{k}:=|y|^{q-1} r_{k} u^{*}$ is finite rank and thus in $\mathcal{L}^{2}(H) \subseteq \mathcal{L}^{p}(H)$. Observe now that

$$
x_{k}^{*} x_{k}=u|y|^{q-1} r_{k}|y|^{q-1} u^{*}=u r_{k}\left(\sum \lambda_{n}^{2 q-2}\left|f_{n}\right\rangle\left\langle f_{n}\right|\right) u^{*}=\sum_{n=0}^{k} \lambda_{n}^{2 q-2}\left|e_{n}\right\rangle\left\langle e_{n}\right|
$$

which implies that

$$
\left\|x_{k}\right\|_{p}^{p}=\operatorname{Tr}\left(\left(x_{k}^{*} x_{k}\right)^{p / 2}\right)=\sum_{n=0}^{k}\left(\lambda_{n}^{2 q-2}\right)^{p / 2}=\sum_{n=0}^{k} \lambda_{n}^{q}=\operatorname{Tr}\left(|y|^{q} r_{k}\right) .
$$

But note that also

$$
\varphi\left(x_{k}\right)=\operatorname{Tr}\left(x_{k} y\right)=\operatorname{Tr}\left(|y|^{q-1} r_{k} u^{*} y\right)=\operatorname{Tr}\left(|y|^{q-1} r_{k}|y|\right)=\operatorname{Tr}\left(|y|^{q} r_{k}\right)
$$

This means

$$
\operatorname{Tr}\left(|y|^{q} r_{k}\right)=\left|\varphi\left(x_{k}\right)\right| \leq\|\varphi\| \cdot\left\|x_{k}\right\|_{p}=\|\varphi\| \cdot \operatorname{Tr}\left(|y|^{q} r_{k}\right)^{1 / p}
$$

which implies that

$$
\operatorname{Tr}\left(|y|^{q} r_{k}\right)^{1 / q}=\operatorname{Tr}\left(|y|^{q} r_{k}\right)^{1-1 / p} \leq\|\varphi\| .
$$

Hence $\operatorname{Tr}\left(|y|^{q} r_{k}\right) \leq\|\varphi\|^{q}$ for all k, and so $y \in \mathcal{L}^{q}(H)$.
Finally, the finite rank operators are contained in $\mathcal{L}^{2}(H)$ and also dense in $\mathcal{L}^{p}(H)$. Indeed, if $x \in \mathcal{L}^{p}(H)^{+}$has Schmidt decomposition $x=\sum \lambda_{n}\left|f_{n}\right\rangle\left\langle f_{n}\right|$, then $x_{k}:=$ $\sum_{n=0}^{k} \lambda_{n}\left|f_{n}\right\rangle\left\langle f_{n}\right|$ is finite rank, and

$$
\left\|x-x_{k}\right\|_{p}^{p}=\| \sum_{n>k} \lambda_{n}\left|f_{n}\right\rangle\left\langle f_{n}\right| \|_{p}^{p}=\sum_{n>k} \lambda_{n}^{p} \xrightarrow{k \rightarrow \infty} 0 .
$$

Thus $\mathcal{L}^{2}(H)$ is dense in $\mathcal{L}^{p}(H)$, and so $\varphi=\operatorname{Tr}(\cdot y)$ on $\mathcal{L}^{p}(H)$.
Since our proof above did not distinguish p and q, we also conclude $\mathcal{L}^{p}(H) \cong \mathcal{L}^{q}(H)^{*}$.

