Penneys Math 7212, Projections and factors Spring 2024

4. PROJECTIONS AND FACTORS

For this section, H is a Hilbert space and M C B(H) is a von Neumann algebra. We
denote the set of projections of M by P(M) and the group of unitaries in M by U(M).

4.1. Compressions and ideals.

Theorem 4.1.1. Suppose p € P(M). Then pMp C B(pH) is a von Neumann algebra with
commutant (pMp)' = M'p.

Proof. Clearly pMp C B(pH) is an SOT-closed unital *-subalgebra and thus a von
Neumann algebra.
If y € M', then for all x € M,

(yp)(pxp) = ypxp = pypr = (pzp)(yp)
so yp € (pMp)'. For the converse, we use a clever trick. First, it suffices to prove every
unitary in (pMp)’ lies in M'p, as every element of (pMp)’ is a linear combination of 4

unitaries (why?). Suppose u € (pMp)" and set K := MpH. Since K is both M and
M'-invariant, px € M'NM = Z(M).

Claim. We may extend u to K by ud_ x;p€ = > x;upk.

Proof of claim. To see u is well-defined, we prove it is isometric:

Hﬂz z;p&; : =

- Z(wiup&, zjupé;)

,J

Z(P@fﬁpu@, ué;) ([u,p] = 0)
= (upzjzipé;, ué;) (u € (pMp)')

2

O

- Z(ple'ipfmfj) Sooo = HZ inp@
4,3

Now by construction, @ commutes with the action of M on K = MpH, and thus
upx € M' C B(H); indeed, for all x € M and all £ € H,
upg € = ur pr& = TUPKS.
K
S

Finally, we claim that u = upgp € M'p; indeed, as u = up € M'p, for all £ € H,
upxpé = u(1yp§) = upé = ué. O

Definition 4.1.2. We call pMp, M'p corners, compressions, or reductions of M, M’ respec-
tively.
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Lemma 4.1.3. If J C M is a 0-WOT closed left ideal, then J = Mp for a unique projection
pe M.

Proof. 1f p is any projection such that J = Mp, then since (xp)p = xp for all z € M,
yp =y for all y € J. It follows that if Mg = J = Mp, then p < g and ¢ < p, sop=q.
This also tells us how to construct p: find the largest projection in J.

If x € J, then so are |I| = u*zr and X[E,HJ;H]HZL’D for all € > 0. Since X[g7||x“](|x|) /‘
supp(|z|) = supp(z) as € \, 0, supp(z) € J.

Now observe that if there is a maximal projection p in J, then p > supp(z) for all
x € J,s0x =ux-supp(z)-p=axp for all x € J. We thus have J C Mp C J, and thus
equality holds.

Finally, to construct the maximal projection, since J is o-WOT closed, it is a norm-
closed left ideal, and thus contains a right approximate identity (e;) such that 0 < e; <
1 for all 4, ¢ < j implies e; < e;, and ||z — ze;|| — 0 for all z € J. Since J is o-WOT
closed, p := \/ e; € J, which is automatically self-adjoint. Since ||p — pe;|| — 0, we see
that p = p?, so p is a projection, and since ||z — xe;|| — 0, z = ap for all x € J. We
conclude that p is the largest projection in J. U

Corollary 4.1.4. A left ideal J C M is SOT/WOT-closed if and only if it is 0-SOT/o-WOT
closed.

Proof. It J is 0-WQOT closed, then J = Mp for some projection p € J, so J is WOT
closed. The converse is trivial as WOT-closed sets are o-WO'T closed. [l

Corollary 4.1.5. If J C M is a o-WOT closed 2-sided ideal, then J = Mz for some
projection z € Z(M).

Proof. Since J is o-WOT closed, it is also WOT and hence SOT-closed. By Lemma
4.1.3, J = Mz for some projection z € M. But as J is 2-sided, for every unitary u € M,
J = uJu*. It follows that J = uJu* = uMzu* = uMu*(uzu*) = Muzu*, so z = uzu*
by the uniqueness statement in Lemma 4.1.3. We conclude z € M'NM = Z(M). O

4.2. Central support of a projection.

Definition 4.2.1. A factor is a von Neumann algebra with trivial center, i.e., Z(M) =
M nM =ClL.

Remark 4.2.2. By Corollary 4.1.5, factors have no non-trivial c-WQO'T closed 2-sided ideals.

Just as von Neumann algebras come in pairs M, M’, so do factors as Z(M) = M'NM =
Z(M).

Recall that for p,q € P(M) C B(H), p A q is the projection onto pH N gH and p V ¢ is
the projection onto pH + qH. Observe we have the relation

pVg=1—-(1-p)A(1-ygq). (4.2.3)

For homework, you will show that p A ¢,pV ¢ € M. Thus P(M) is a lattice under these

operations.
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Lemma 4.2.4. Forp,q € P(M) andu € U(M), u*(pV q)u = u*puV u*qu and u*(p A\ q)u =
u*pu A\ u*qu.

Proof. Observe that ¢ € pHNqH if and only if u*¢ € w*puHNu*quH, and n L pHNqH
if and only if u*n L w*puH Nu*quH. Thus u*(p A ¢)u = u*pu A u*qu. Now apply
(4.2.3) to get u*(p V q)u = u*pu V u*qu. O

Definition 4.2.5. Given p € P(M), we define its central support

where pr = \/, . u*pu for finite subsets F' C U(M), ordered by inclusion. By Lemma 4.2.4,
for all w e U(M),

w'prpw = \/ wruFpuw = \/ VPV = Dpy.
ueF veFw
As z(p) is the SOT-limit of the pr and multiplication is separately SOT-continuous,

SOTUﬁ oT

Prw = 2(p)-
This means wz(p) = z(p)w for all w € U(M), so z(p) € M'NM = Z(M).

w*z(p)w = w*(lim SOTPF)UJ = lim PRW = lim ©

Lemma 4.2.6. Suppose p € P(M).
(1) Forx € M, zup =0 for all w € U(M) if and only if xz(p) = 0.
(2) Fory € M', yp = 0 if and only if yz(p) = 0. Hence the map M'z(p) — M'p given
by multiplication by p is a *-isomorphism.

Proof.
(1) If zup = 0 for all w € U(M), then zupu* = 0 for all such u. Then zpp = 0
where pp = \/ o upu® for any finite ' C U(M),” and taking SOT limits, we
have zz(p) = = 1im*°% pp = 0.
Conversely, if zz(p) = 0, then z(upu*)u = zz(p)(upu*)u = 0 for all u €
U(M).
(2) Since yp = ypz(p) = yz(p)p, yz(p) = 0 implies yp = 0. Conversely, if yp = 0,
then yupu* = 0 for all w € U(M) as y € M’'. The argument from (1) shows
ypr = 0 for all finite F' C U(M), so taking SOT limits, yz(p) = 0. O

If uy,...,up, € UM) and & € ujpulH for i =1,...,n, then ) & = > x& = Y zupulé; =0, so
zpp = 0.

Proposition 4.2.7. For a von Neumann algebra M and p,q € P(M) \ {0}, the following
are equivalent.

(1) z(p)z(q) # 0,
(2) there is a u € U(M) such that pug # 0, and

(3) there is a non-zero partial isometry v € M such that vo* < p and v*v < q.
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Proof.

—(2) = —(1): If pug = 0 for all u € U(M), then pz(q) = 0 by Lemma 4.2.6(1). But
then 0 = gz(p)u = quz(p) for all u € U(M), so by (the adjoint of) Lemma 4.2.6(1)
again, z(q)z(p) = 0.

(2) = (3): If pug # 0, consider the polar decomposition puq = v|pugq|. By construction,
w*H = vH = pugH C pH, so vv* < p. Since ker(v) = ker(pugq) D ker(q), we have
V'V = Prer(v)t < Prer(q)t = G-

(3) = (1): We prove that if z(p)z(q) = 0 and v € M is a partial isometry such that
vv* < p and v*v < ¢, then v = 0. Since vv* < p < z(p), vv* = vv*z(p). Since
v*v < ¢ < 2(q), v'v = v*vz(q). Then

v = vv*v = z(p)vv*vz(q) = vz(q)z(p) = 0. O

Corollary 4.2.8 (Ergodic property of factors). Suppose M is a factor and p,q € P(M)\{0}.
There is a unitary u € U(M) such that puq # 0.

[ Proof. Since p,q # 0, z(p) = z(¢) = 1. Now apply Proposition 4.2.7. O ]

Corollary 4.2.9. Suppose M is a factor and p,q € P(M)\{0}. There is a non-zero partial
isometry uw € M such that uu* < p and u*u < q. Moreover, we can find uw € M such that
uu* =p or u'u = q.

Proof. The first part is immediate as z(p) = 1 = z(q). Consider the set of partial
isometries © € M such that uu* < p and w*u < q. We can order this set by u < v if
wu* < vv*, uru < v'v, and vy g = u.

Claim. Any increasing chain has an upper bound.

Proof of Claim. If (v;) is an increasing chain, then the operator w : |Jvfv;H —
U'Ujij given by & — vx€ whenever & € vjv,H is well-defined and unitary. It thus

extends to an isometry K := |Jvfv;H — H, and thus to a partial isometry on H by
defining w|g1 = 0. Clearly ww* < p, w*w < ¢, and v; < w for all 1. O

We claim a maximal element satisfies uu* = p or u*u = ¢. Indeed, if p — uu* # 0 #
q — u*u, then there is a non-zero partial isometry w € M such that ww* < p — uu*
and w*w < ¢ — w*w. Observe then that u + w is a partial isometry (why?) with
(u+w)(u+w)* <pand (u+w)*(u+ w) < g contradicting maximality. O

Exercise 4.2.10. Show that the central support z(p) is the smallest projection in Z(M)
such that p < z(p).

Corollary 4.2.11. Z(pMp) = Z(M)p.

Proof (Dizmier). Clearly Z(M)p = p(M' N M)p C Z(pMp). Suppose x € Z(pMp) =
pMp N M'p. Then there is a y € M’ such that x = yp. Since p = z(p)p, replacing
y with yz(p), we may assume y = yz(p). We claim that y € Z(Mz(p)) so that
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y € M'NMz(p) c M'NM = Z(M). Indeed, the map M'z(p) — M'p given by
multiplication by p is an isomorphism by Lemma 4.2.6(2), and thus maps the center
onto the center. Since yp = = € Z(pMp), we conclude y = yz(p) € Z(M=z(p)), as
desired. O

4.3. Classification of type I factors and their subfactors.

Definition 4.3.1. A (nonzero) projection p € P(M) is called:
e minimal if ¢ € P(M) with ¢ < p implies ¢ € {0, p},
e abelian if pMp is abelian, and
e diffuse if there is no minimal projection ¢ < p.

Examples 4.3.2. Here are examples of such projections.

(1) The minimal projections in B(H) are the rank 1 projections.
(2) Every projection is diffuse in L>°([0, 1], A) where X is Lebesgue measure.

Exercise 4.3.3. Suppose u is a regular finite Borel measure on a compact Hausdorff space
X. Show that the minimal projections of L>(X, u) correspond to atoms of X, ie., z € X
such that p({z}) > 0.

Exercise 4.3.4. Suppose p € P(M) is minimal and u € M is a non-zero partial isometry
such that uu* < p. Show that uu* = p and that u*u is a minimal projection.

Definition 4.3.5. A von Neumann algebra M is called type I if for all z € P(Z(M))\ {0},
there is an abelian p € P(M) \ {0} such that p < z, i.e., every non-zero central projection
majorizes an abelian projection.

Examples 4.3.6. Examples of type I von Neumann algebras include abelian von Neumann
algebras and B(H).

Exercise 4.3.7. Here are some exercises on minimal projections.
(1) p € P(M) is minimal if and only if pMp = Cp.
(2) If M is a factor and p is abelian, then p is minimal.
(3) If M is a factor, then M is type I if and only if M has a minimal projection.

Theorem 4.3.8 (Classification of type I factors). If M is a type I factor acting on a Hilbert
space H, there are Hilbert spaces K, L and a unitary u € B(K ® L — H) such that uMu* =
B(K)®1.

To prove this theorem, we will construct a system of matrix units for M, i.e., a family
{esjli,j € I} such that
o €;~kj = €ji,
® €;jCryr = 5j:kei€7 and
e > ¢e; = 1 converging in SOT.

Lemma 4.3.9. If {e;;}ijer is a system of matriz units in B(H), then setting K = ey H

which should be viewed as a ‘multiplicity space,” there is a unitary u: (21 @ K — H such that

u*ejju = 10;)(0;| ® 1 for all i, 5. Thus u*({e;;}")u = B((*I) ® 1, and dim(H) = |I| dim(K).
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Proof. Let {{;}e; be an ONB of K = e;; H. Since e;; may be viewed as a unitary
from e;; H onto ej1 H, we see that {e;1§;|j € J} is an ONB for e;; H. Since H = @Pe; H,
we see that {e;&;|i € I, j € J} is an ONB of H. Thus the map u: I ® K — H by
0; ® & — e;1&; is a unitary isomorphism. Finally, we calculate

ue;ju(0r ® &) = u'eernéy = dj=pu’en&e = 0;=1(6; ® &),

so u*e;ju = |0;)(0;] ® 1 as claimed. O

Remark 4.3.10. Observe that if {p;} is a family of mutually orthogonal projections such
that > p; =1 SOT, and {ey;};1 is a family of partial isometries such that ejje]; = p1, and
ei;e1; = pj, then setting ey; = p; and e;; = ej;eq; for all 4, j with 7 # 1 completes {e;;} to
a system of matrix units.

Proof of Theorem 4.53.8. Since M is a type I factor, it has a minimal projection p;.
Let {p;} be a maximal family of mutually orthogonal minimal projections.

Claim. ) p, =1 SOT.

Proof. Otherwise, by Corollary 4.2.9, there is a non-zero partial isometry u € M such
that wu* < p; and u*u < 1— > p;, so u*u L p; for all i. By minimality, uu* = py, so
w*u is also minimal. Then {p;} C {p;} U {u*u}, contradicting maximality. O

Now by Corollary 4.2.8, for each i, there is a non-zero partial isometry eq; such that
erie}; < p1 and eje;; < p;. My minimality, we must have ey;e]; = p1 and ej,e;; = p;
Setting e;; = p; for all 7, we can construct a system of matrix units {e;;} as in Remark
4.3.10.

Claim. M = {e;;}".

Proof. If x € M, then x = (D _pi) x (D_p;) = Zij pizp; SOT. But by minimality, each
bixp; = 63611‘%61}61;' = €;1 P1€1;T€;1P1 €15 = )\ijeilplelj = /\ijeij-
—_———
=:Ai;p1€Cp1
Hence z = 3 _;: Aijei;, and M = {e;;}". O

The final claim follows now from Lemma 4.3.9 [l

.

Definition 4.3.11. We say a type I factor M is type I, if M = B(H) with dim(H) = n.

Fact 4.3.12. If u,v are two partial isometries with uvu* L vv* and v*u L v*v, then u*v =
0 = wv* and u + v is a partial isometry.

Corollary 4.3.13. Suppose M, N are two type I subfactors of B(H). Letp € M and ¢ € N
be minimal projections. The following are equivalent.
(1) There is a unitary w € U(H) such that uw*Mu = N.
(2) There are minimal p € P(M) and ¢ € P(N) and a uw € U(H) such that u*pu = q.
(3) There are minimal p € P(M) and ¢ € P(N) and a partial isometry v € B(H) such
that vv* = p and v*v = q. (Note that this v is a unitary isomorphism between the

multiplicity spaces pH and qH for M and N respectively.)
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Proof.
(1) = (2): If p € P(M) is minimal, then so is u*pu € P(N).
(2) = (3): Take v = pu.

(3) = (1): Extend {p} and {¢} to systems of matrix units {e;;}; jer for M with e;; = p
and { fi.¢}roex for N with fi; = g respectively. Observe that for each i € [ and k € K,
(eavfir)(envfie)” = eavqu e = e; and  (eavfir) (envfix) = fix VPV fir = fr-

—— ——
=p =q
Since > e; =1 = frx, we see that |I| = | K|, and we may identify the two index
sets. By Fact 4.3.12, u := ) ejvfi; is a unitary such that uf;;u* = e;; for all 4, j. O

4.4. Comparison of projections.

Definition 4.4.1. For p,q € P(M), we say p < q if there is a partial isometry u € M such
that uu* = p and v*u < gq. We say p = ¢ if there is a partial isometry u € M such that
wu* = p and u*u = q.

Example 4.4.2. For x € M and x = u|x| the polar decomposition, u € M with u*u =
supp(z) and wu* = range(x). Hence supp(x) & range(z).

Example 4.4.3. Suppose u is a partial isometry such that uu* = p. Then for all ¢ < p, qu
is a partial isometry such that quu*q = qpq = q, so u*qu = q.

Exercise 4.4.4. Show that & is an equivalence relation on P(M) up to ~.

Theorem 4.4.5. < is a partial order on P(M).

s ~

Proof.
reflexive: p < p via partial isometry p.
transitive: Suppose uu* = p, v*u < ¢ = vv*, and v*v < r. Then

uvv*u” = uqu® = wuuqu® = wutuut = uut = p and
viutur < vtqu = viovtv = vt < 7.
anti-symmetric: Suppose p < ¢ and ¢ < p. Let u,v € M br partial isometries such that
uu* = p, u*u < ¢, vv* = ¢, and v*v < p. Then for each p’ < p,

wp'u < u'pu = vruutu = vu < g,
and similarly, for each ¢’ < ¢, v*¢’v < p. That is, we have order preserving maps
Ad(u)
{projections < p} = {projections < ¢} .
Ad(v)
It immediately follows that inductively defining
Pyl = U QU Po =
(n+1 = U Ppu Qo =q
yields two decreasing sequences of projections in M. Define py = lim®°7 p, = N\ P
and ¢y := 1im“"¢, = A, the orthogonal projections onto (\p,H and ()¢, H
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respectively. The clever trick here is to write p = py and ¢ = ¢ as telescoping sums of
mutually orthogonal projections, which converge SOT:

p=(po—p1)+ (1 —p2)+ (P2—p3)+ (3 —pa) + -+ + Poo

|

q=(p—q)+ (@ —q)+(@—q)+ (@ —q)+ -+ g

We then pair up projections and sum up the partial isometries with orthogonal domains
and ranges.
First, since multiplication is separately SOT-continuous,

SoT SOT , or

v*goov = v*(1im *T'g, v = lim 9T v*g,v = lim *Tp,, = pe.

Moreover, since ¢so < ¢, oo = (000 = (oo¥VV (s. Hence ps, = go via the partial
isometry ¢..v. Finally, observe that

Ad(w)(pr — Pot1) = U (Pn — Pos1)u = WP — WPt = Qi1 — Gnro
Ad(”)(qn - qn+1) = Pn+1 — Pn+2-

Thus (p, — pny1)u is a partial isometry witnessing p, — Pniy1 = Gnt1 — @i, and
(Gn — Gn+1)v is a partial isometry witnessing ¢, — ¢n+1 = Pnt1 — Dnto- O

Corollary 4.4.6. If M is a factor, then < is a total order up to ~.

Proof. This is a restatement of Corollary 4.2.9. U]

Definition 4.4.7. A projection p € P(M) is called:
e finite if for all projections ¢ < p, ¢ = p implies g = p.
e infinite if there is a ¢ < p with ¢ # p such that ¢ &~ p (not infinite). An infinite
projection is called:

— purely infinite if there is no non-zero finite ¢ < p, and
— properly infinite if for all z € P(Z(M)) such that zp # 0, zp is infinite.

A von Neumann algebra M is called finite or (purely/properly) infinite if 1, is respectively.

Exercise 4.4.8. Prove that abelian von Neumann algebras are finite. Deduce that p abelian
implies p is finite.

Definition 4.4.9. A von Neumann algebra M is called:

e type III if M is purely infinite.
e type Il if M has no abelian projections and any non-zero central projection majorizes
a non-zero finite projection. In this case, we call M:
— type II; if M is finite, and
— type Il if there is no non-zero finite central projection.

Remark 4.4.10. The above definition is rather hard to parse, so here is another way to say
it. We will informally say that a von Neumann algebra M has sufficiently many projections
with property (P) if every non-zero central projection of M majorizes a non-zero projection
with property (P). Then M is:
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e type I if M has sufficiently many abelian projections,

e type Il if M has no abelian projections, but has sufficiently many finite projections.
In this case, M is:
(1) type II; if M is finite and
(2) type Il if has no non-zero finite central projections.

e type III if M has no abelian projections and no non-zero finite projections.

4.5. LT is a II; factor when I is icc. Let I' be a countable discrete group. Recall
LT = {)\|g €T} C B(f*T)  where  (\&)(h) = &(g 1 h).

The functions d,(h) == d,p, give a distinguished orthonormal basis of (?I. Observe \,0, =
dgn- We also have a right T action on /2T by (p,€)(h) = &(hg). Notice that p, € U(FF)HLF’

Facts 4.5.1. We compute some basic properties about LI

(LT'1) For all € LT, there a sequence (z,) € ¢*T such that xd, = >_ 2,4,
(LI'2) For all z € LT and h € T,

0 = Tppde = Pprde = pp, ngég = ngégh = nghfﬁg.
g g
(LT'3) x*6, = ) T,104 since for all h € T,
(%5, 63) = 5e,x5h ngh T(0e, 0y) = Ty

(LI'4) If 20, = Y x40, and yd. = Zyg g then xyd, = > (3, nyn-14) 65 Thus the
convolution product (x,) * (yn) € T

Proof. For all g € T,
(zyde, ) = (yde, 70, Z%‘h 1Y Ok, Pg-10n) = th—lykfsk:hg;

which simplifies to >, 1 Zp-1ypg- ThlS is the claimed formula swapping h with
h~! as the index of summation. O

(L'5) 6. is a cylic and separating vector for LI

Proof. Clearly C[']d, C LT'd, is dense in £*T, so 4. is cyclic. If # € LT such that
xd. = 0, then 26, = py-120, = 0 for all g, and = 0. Thus J. is separating. [

(LT6) tr = (-0, 0¢) is a faithful o-WOT continuous tracial state on LI" with tr(z) = z..

Proof. First, we have the tracial property as

(zyde, 3c) thyh 1= thxh v (e ).

Next, tr(z*z) = >_, |aztg|2 = 0 if and only 1f z, = 0 for all ¢ if and only if x = 0,
so tr is faithful. O




(LI'7) All projections in LI" are finite.

Proof. Suppose uu* = p and u*u = ¢ < p. Then tr(p—q) = tr(uvu*) —tr(u*u) =
0 which implies p — ¢ = 0 as tr is faithful by (LI'6). O

Example 4.5.2. If H is infinite dimensional, then B(H) does not admit a trace.

Proposition 4.5.3. If " is icc (infinite and all nontrivial conjugacy classes infinite), then
LT is a 11y factor.

Proof. If z € Z(LT'), then
D 240, = 200 = Mp-12Mnbe = 3 zh-1g0g,

so (z,) € £*T is constant on conjugacy classes. Since T is icc, z, = 0 for g # e, so
z € C1 by (LI'6), and LT is a factor.

Since LI' is infinite dimensional and admits a trace, it cannot be type I by Exercise
4.5.2. Since LT is finite by (LI'7) LI is type II;. O

4.6. I1; factor basics. This subsection follows Jones’ von Neumann algebra notes quite
closely.

Above, we exploited the trace on LI' to prove Proposition 4.5.3. For this subsection,
we assume a II; factor comes equipped with a o-WOT continuous tracial state. We will
construct such a trace in Corollary 4.8.5 below.

Facts 4.6.1. Here are some elementary facts about a factor M equipped with a tracial state
tr, which is sometimes assumed to be faithful or o-WO'T continuous.

(trl) A 0-WOT continuous tracial state on a factor M is faithful.

Proof. Let J = {x € M|tr(z*z) = 0}. Since z*y*yx < ||y*y|lz*z, J is a left
ideal. But since tr is a trace, J is a 2-sided ideal. By Cauchy-Schwarz, tr(z*z) =
0 if and only if tr(zy) = 0 for all y, so

J = ﬂ ker( tr(-y) )

g o-WOT cts
is 0-WOT closed. By Corollary 4.1.5, M has no non-trivial o-WO'T closed
2-sided ideals, so ker(tr) = 0. O

(tr2) If M is a factor with a faithful tracial state, then M is finite.

Proof. The proof of (LI'7) applies verbatim. O

(tr3) An infinite dimensional factor M with a o-WOT continuous tracial state is type II;.

Proof. The second part of the proof of Proposition 4.5.3 applies verbatim. [

(trd) Suppose M is a factor and tr is faithful.
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(a) p < ¢ if and only if tr(p) < tr(q).
(b) p &~ ¢ if and only if tr(p) = tr(q).

Proof. For the forward direction, suppose p = uu* and u*u < ¢q. Then
tr(p) = tr(uu®) = tr(u*u) < tr(q)
with equality if and only if ¢ = u*u as tr is faithful.
Conversely, suppose tr(p) < tr(q). Since M is a factor, then p < g or ¢ < p. If
)

q < p, then by the forward step, tr(q) < tr(p), in which case tr(p) = tr(q) and
p = uu* by faithfulness of tr. Thus p =~ q. d

Lemma 4.6.2. Suppose M is a 11y factor with a faithful trace. For every non-zerop € P(M)
and 0 < e < tr(p), there is a ¢ € P(M) with 0 < ¢ <p and 0 < tr(q) < .

Proof. Let

0 :=inf {tr(q)|q¢ € P(M) \ {0} such that ¢ < p}.
If 0 < ¢ < tr(p), there is a non-zero ¢ € P(M) such that ¢ < p and tr(q) < 20 by the
definition of the inf. Since M is not type I, ¢ is not minimal, so there is a non-zero
projection r < ¢ with 0 # r # ¢. Then ¢ < tr(r), but

tr(q —r) =tr(q) — tr(r) <tr(q) —0 <26 — =4,

a contradiction. O

Proposition 4.6.3. Suppose M is a 11, factor with a faithful trace. Then tr(P(M)) = [0, 1].

Proof. Fix r € (0,1), and consider {p € P(M)|0 < tr(p) < r} which is non-empty by
Lemma 4.6.2. Ordering this set by <, every ascending chain has an upper bound, so by
Zorn’s Lemma, there is a maximal element p. Suppose for contradiction that tr(p) < r.
Again by Lemma 4.6.2, there is a projection ¢ < 1 —p with 0 < tr(q) < r — tr(p). But
then p + ¢ is a projection such that tr(p) < tr(p) + tr(q) < r, a contradiction. O

Exercise 4.6.4. Give a better description of a projection of arbitrary trace in [0, 1] in LI,
and LS.

Exercise 4.6.5. Let M be a II; factor with o-WOT continuous tracial state tr.

(1) Show that if p € M is a non-zero projection, then for every 0 < r < tr(p), there is a
projection ¢ € M with ¢ < p and tr(q) = r.

(2) For every n € N, there is a unital subfactor N C M with N = M, (C).

(3) M is algebraically simple, i.e., M has no 2-sided ideals.

Proposition 4.6.6. A finite von Neumann algebra M with a faithful o-WOT continuous
tracial state tr is a 11y factor if and only if for any other o-WOT continuous tracial state o,
p = tr.

Proof. Suppose M is a II; factor. It suffices to prove both traces agree on projections.
By Exercise 4.6.5(2), the traces must agree on every subfactor N = M, (C) for all

11



n € N. For an arbitrary projection p € M, we can build a sequence (p;) of mutually
orthogonal projections such that p = > p; SOT (and thus also o-WOT) and tr(p;) = n%
for some n; € N for every ¢ using Exercise 4.6.5(1).

Suppose now M is not a factor, and choose projection z € Z(M) such that 0 # z # 1.
Then p(z) = ﬁtr(wz) is a 0-WOT continuous tracial state distinct from tr as

o(l—2)=0#tr(1— 2). O

4.6.1. The hyperfinite 11 factor. We now use Proposition 4.6.6 to construct a II; factor R
which can be well approximated by finite dimensional subalgebras.

For n € N, let A, := ®" My(C). Include A, < A,41 by z — 2 ® 1, and let A, :=
lim A, = Q™ M,(C). Since A,, = Ms:(C) has a unique normalized faithful tracial state
tr,, tro := limtr, is the unique faithful trace on A., and it is positive definite in that
troo(x*z) > 0 for all z € A, with equality if and only if x = 0. We can thus attempt to
apply the GNS construction, where there are several things we must check along the way. We
define H to be the completion of Ay in || - ||2 under the sesqulinear form (z,y) := tro(y*x).
We write €2 € H for the image of 1 € Ay, and af2 € H for the image of a = al € A.

(R1) A acts faithfully on the left of H by bounded operators by z(a2) = za2. We can
thus define R := (Aw)” C B(H).

Proof. Since z*z < ||x*x|| 4, for all z € A,,, and since the inclusions A,, < A, 1
are all injective and thus norm-preserving, we have

lzaQ]|* = treo(a*z"wa) < [l272]| 4, - tro(a’a) = [z, - a2

Faithfulness of the action follows as €2 is separating for A, by faithfulness of
treo ONn As. O

.

(R2) trg(z) := (2, Q) is a 0-WOT continuous tracial state on R such that trg |4, = treo.

Proof. For x € A, trr(x) = (2, Q) = troo(z). Since trg is a vector state, it is
both SOT-continuous and o-WO'T continuous. For z,y € R, by the Kaplansky
Density Theorem, we may pick bounded nets (;), (y;) C Aw with ; — = and
y; — y SOT. Since multiplication is jointly SOT-continuous on bounded sets,
x;y; — xy and y;x; — yxr SOT. We thus have

trp(zy) = lim 5O tr o (z;1:) = lim 5T trog (ys2;) = tre(yz). O

(R3) A acts on the right of H by bounded operators by z(af2) = azfQ.

Proof. This is the step that uses that tr is a trace:
|azQ||? = troo (z*a*ar) = troo(aza*a®) < ||x2*|| 4, - troo(aa®)

= llz"z]la, - tros(a”a) = |4, - a2, [

(R4) trg is faithful on R so that R is a II; factor by Proposition 4.6.6.
12



Proof. Suppose trg(z*z) = 0. Since the right A.-action is bounded and com-
mutes with the left A -action on H and thus also commutes with R, for all
a € A,

lzaQ||* = [z RQ* = |Ra2Q||* < [|Rall® - [|2Q1|* = || Rall® - trr(z*z) = 0.
Since A,€) is dense in H, z = 0. 0

Exercise 4.6.7. Build a projection of arbitrary trace in [0, 1] in R.

4.7. Useful results on comparison of projections. Our next task is to prove every
finite von Neumann algebra admits a tracial state. We begin with some general results on
projections in a von Neumann algebra. For this section, unless stated otherwise, M is a von
Neumann algebra and p,q € P(M).

Facts 4.7.1. Here are some basic facts about comparison of projections.

(<1)

(<3)

(Kaplansky’s formula) pVg¢—p~qg—pAq.

Proof. Consider = (1 — p)g. Then ker(z) = ker(q) ® (p A q)H, so
Pxer(z) = (1 - Q) +pVyg and range(x*) =1- Pxer(z) =4 — P Ng.
Since z = [(1 — (1 — ¢))(1 — p)]*, the above argument also tells us that
range(z) = (1-p) = (1-p)A(1-g)=(10-p-(1-pVg=pVq—p

Since range(x*) = supp(x), these projections are equivalent by Example 4.4.2.
]

If p1 < q1, p2 < @2, and ¢1q2 = 0, then p; Vp1 < 1 + ¢o.

Proof. By (1), p1Vpa—p2 = p1—p1/Ap2 < 150 p1Vps = (p1Vp2—p2) +p2 <
¢+ Q2. O

\.

(Comparison Theorem) There is a z € P(Z(M)) such that pz < ¢z and ¢(1 — 2) <
p(1—2).

Proof. By Zorn’s Lemma, there are maximal families of mutually orthogonal
projections {p;}, {¢;} such that > p; < p, > ¢ < q, and p; = ¢; for all i. Set
z1:=z(p—>Y.p) and 29 := 2 (¢ — >_ ¢;). By maximailty, 2122 = 0, so

(p—zpi>§21§1—2’2 = z2<p—2pi>:0
(q—zqz‘)§22 — (1—z2)<q—2qi>:0.

Since Y p; & Y ¢;, we see

Zzp:?«ész‘ 5222% < 229
(1—22)q:(1—z2)2qi (1 — 2p) Zpl_ 1—29)p O
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(x4) If p, q are finite, so is p V q.

We omit the proof, which is quite techinical. There is a much simpler proof
when p, ¢ are central in addition, which you will do on homework.

(x5) If p, q are finite and p =~ ¢, then 1 — p ~ 1 — ¢q. Hence there is a u € U(M) such that
u'pu = q.

Remark 4.7.2. The proof below only uses (<4) to reduce to the case that M
is finite. Since we will only use (x5) for finite von Neumann algebras, the rest
of these notes is still self-contained without a proof of (x4) above.

Proof. By (x4), p V q is finite, so replacing M by (p V ¢q)M(p V q), we may
assume M is finite. By (<3), there is a central projection z € P(Z(M)) such
that (1 —=p)z < (1 —¢)zand (1 —¢)(1 —2) < (1 —p)(1 — z). Since we can
consider Mz and M (1 — z) separately, we may assume 1 —p =~ r < 1—q. Since
l=(1—-p)+p=r+gq,and M is finite, r + g=1,s0 l —=p~r =1—¢q. Now
if vo* =p, v'v = ¢ and ww* =1—p, ww =1— ¢, then v = v+ w is a unitary
satisfing u*pu = q. 0

(x6) Suppose p,q € P(M) finite with p,q <.
(x6a) If p~ ¢, thenr —p~r—q.
(x6b) If p< g, then r —qg < r—p.

Remark 4.7.3. Again, in the proof below, we will only use (<4) to pass to
the case M is finite and r = 1.

Proof. Since p,q < rimplies pVq < r, passing to (pVq) M (pVq), we may assume
M is finite and r = 1 by (54). Now (x6a) follows immediately from (<5). For
(X6b),let s€e P(M) withprs<gq. By (5)1—-pr1l—s5>1—gq. O

(X7) If (g,) is an inrcreasing sequence of finite projections and p € P(M) such that ¢, < p
for all n, then \/ ¢, < p.

7

Proof. We inductively define a sequence of mutually orthogonal projections
pn < p such that po = ¢; and for all n € N, p,, = ¢,11 — ¢n- Then

oo 0o 0o
\/ qn = Q1 + Z(Qn—i-l - Qn) ~ an < b-
n=1 n=1 0

By assumption, ¢; < p, so there is a pg < p such that ¢; = py. Suppose we
have Po; D1y - -, Pn-

Claim. ¢,12 — Gui1 S P— D i o Pi-

Proof of Claim. Observe q,.2 < p, so there is a partial isometry v such that
vU* = @uyo and e, 9 := v*v < p. Since g2 > Gpit,

Enil ‘= UV Gni1V < V@i = vvv'v =v*v < p

14



and €,1 & ¢,41. Then

U*(Qn+2—Qn+1)U = eént2—€py1  and (Qn+2—Qn+1)UU*(Qn+2—Qn+1) = gn+2—qn+1,

SO Qni2 — Qni1 = €490 — €p11. By the induction hypothesis,

Ent1 X Gt = (Gt — @) + (Gn — Guot) + -+ (@ —@) + a1~ Y _pi <p.
=0

Since ¢pni2, ¢nt1 are finite, so are e,49,€n41 ~ Y. p;. We calculate

_ ~ _ = (p— —(p— <
dn+2 dn+1 En+2 €n+1 (p €n+1) (p en-i—l) SpPp— \Gb p— sza

proving the claim. 0

By the claim, we can find a projection ¢+o — ¢nt1 = Pps1 < P — > oo Pi, SO
we can inductively build the sequence as claimed. 0

(<8) Suppose M is a finite von Nuemann algebra and (p,) is an infinite sequence of mu-
tually orthogonal projections. Suppose (g,) is another sequence of projections with
Pn & @y, for each n. Then ¢, — 0 SOT.

Proof. By induction using (<2), for all m <mn,

n
\/ ¢ < sz < sz
i=m

i>m

Since \/i_,, ¢ is increasing in n, V5, ¢ < D5 Pi by (S7). Let pg = 1 —
Y o Di- By (x6b),

po+2pz—1—2pml—\/qi§1—/\ V 4

i>m >m m=11i>m

Again by (7), we can conclude that

o0 (o]
1:p0+zpi\ /\\/
i=1 m=1i>m

Since M is finite, we must have

0= 71 \ ¢ =80T —1lim \/ ¢

m=1 >m >m
~—— ——
decreasing >qm

Hence for all £ € H,

and thus ¢,, — 0 SOT. 0

2
m—00

— 0,

\/ 1S

>m
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4.8. Existence of a trace on a finite von Neumann algebra. For this section, M is a
finite von Neumann algebra. Recall that the o-WOT on M is the weak™ topology induced
by M,. Thus we may identify M, with the o-WO'T continuous linear functionals on M.

Definition 4.8.1. Let S(M) C M, be the set of 0-WOT continuous states of M. Note that
U(M) acts on S(M) by u- ¢ := p(u* - u).

Lemma 4.8.2. Let M be a von Neumann algebra and ¢ € M* a state. The following are
equivalent.

(1) ¢ is tracial, i.e., p(xy) = @(yx) for all x,y € M.
(2) For all x € M, p(xa*) = p(z*x).
(3) For allu e UM), ¢(u*zu) = p(x).

Proof.

(1) = (2) : Obvious.

(2) = (3): For z > 0, p(u*zu) = o(u*z'/?2'2u) = p(z?uu*s/?) = p(x). Now use
that every x € M is a linear combination of 4 positive operators.

(3) = (1) : Replacing z with uz, we have p(xu) = p(uz) for all z € M and u € U(M).
Now use that every y € M is a linear combination of 4 unitaries. 0

. J

So to construct a trace in S(M) for M finite, we will find a fixed point in S(M) under
the U(M)-action. To do this, we will use the Ryll-Nardzewski Fixed Point Theorem. Our
approach here follows the proof of Jacob Lurie.

Theorem 4.8.3 (Ryll-Nardzewski). Let X be a Banach space and K C X a weakly compact
convex subset. Suppose G C B(X) is a group of isometries with GK C K. Then there is an
x € K such that gr = x for all g € G.

For u € U(M), we define 7, € B(M,) by m,p := @(u* - u). Hence for our purposes,
G =n(U(M)) C B(M,).
The following theorem is the main result of this section.

Theorem 4.8.4. Suppose M is a finite von Neumann algebra and fix ¢ € S(M). Define
Ko :=m(U(M))p = {e(u"-u)lu e UM)} C S(M),
and let K be the weakly closed convex hull of Ko in M,. Then K is weakly compact.

Before proving this theorem, observe that combining it with the Ryll-Nardzewski Fixed
Point Theorem 4.8.3 yields the desired result.

Corollary 4.8.5. There exists a o-WOT continuous tracial state on a finite von Neumann
algebra.

Proof. Let ¢ € S(M). By Theorem 4.8.4, the weakly closed convex hull K C S(M)
of m(U(M))p is weakly compact. As K is clearly w(U(M))-invariant, by the Ryll-
Nardzewski Fixed Point Theorem 4.8.3, there is a 7(U(M))-fixed point tr € K C
S(M), which is a tracial state by Lemma 4.8.2. O
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Lemma 4.8.6. For a positive linear functional ¢ € M*, the following are equivalent.

(1) ¢ is o-WOT continuous.

(2) ¢ is normal: for all increasing nets of positive operators x; / x in M, p(z;) / p(z).
(3) ¢ is completely additive: for every family (p;) of mutually orthogonal projections in

M, o (>_pi) =D @)

Proof. Homework. 0

Remark 4.8.7. Suppose (p;) is a family of mutually orthogonal projections in M. For all

positive ¢ € M*, and for all finite subsets ' C I, >, po(pi) = ¢ (X icrpi) < ¢ (O pi),

so Y. @(pi) < ¢ (> . p;i). Hence ¢ is completely additive if and only if for every family of
mutually orthogonal projections (p;) in M, for all € > 0, there is a finite / C I such that

¥ (Zigppi) < ¢e. Indeed,

2 #(p) =sup > o(pi) = supie <Zm> —supi (Dom) — ¢ (Zm)

FcI

i€F i€F i¢F
= ¢ <Zpi) — inf (Zm) .
i F

Proof of Theorem J.8./. Recall that the relative weak® topology on X C X** is the
weak topology. To show K C M, is weakly compact, by the Banach-Alaoglu Theorem,
it suffices to prove K C M** = M* is weak™ closed, as K C (M*); which is weak™*
compact.

Let ¢ € K, the weak* closure of K in M*. We show ¢ is completely additive, and
thus ¢ € M,, so ¢ € K. Suppose for contradiction that v is not completely additive.
Then there is a family (p;);e; of mutually orthogonal projections and an € > 0 such
that for all finite ' C I, ¢ (Zingi) > e.

Claim. If ' C I is any finite set, there is a ¢ € Ko and a finite set G C I \ F' such
that ¢(3 e pi) > €.

Proof. The convex hull conv(K)y) is weakly dense in K, which is weak™ dense in K, so
conv(Ky) is weak™ dense in K. Thus for all § > 0, the weak™ open neighborhood

(¥ —¢) (sz) < 6}

i¢F
of ¢ has non-empty intersection with conv(Kj), so pick ¢ in this intersection. Since
V(D igr i) > €, choosing  small, we have ¢(3 .. pi) > €. Nowif ¢ =3, Aoy is a
convex combination of ¢, € Ky, there must be a particular k so that ¢(> ... pi) > €.
Now since ¢y, is completely additive, there is a finite G C I'\ F' such that gbk(fieG pi) >
E. U

{gbeM*

17




Claim. There is a sequence (F),) of disjoint finite subsets of I and a sequence of states
(pn) C Ko such that for alln € N,

Gn (Z pi) > €.

1€Fy,

Proof. We induct on n. Since ¥(>_p;) > ¢, by the first claim, there is a ¢; € K
and a finite set Fy C I such that ¢(}_;cpn pi) > €. Now suppose we have disjoint
sets Fy,...,F, C I and states ¢q,...,¢, € K; such that gbk(zzekaz) > ¢ for all
k=1,...,n. Since 9 is not completely additive,

(0 Z pi| > ¢,

Z'%H;‘Lzl Fy
so again by the first claim, there is a ¢,1 € Ko and a set Fj,.qy C I\ [[j_, Fj such
that qb"""l(Zian_H pl) > E. ]
Now by the above claim, for each ¢, € K, there is a unitary u, € U(M) such
that ¢, = p(u;, - u,). Moreover, setting ¢, := > ..n pi, we have a sequence (¢,)

of mutually orthogonal projections such that ¢(u’g,u,) > € for all n. We now have
our desired contradiction. Since the F), are disjoint, the ¢, are mutually orthogonal.
Since u! gnu, = gy for all n, u’g,u, — 0 SOT (and thus also 0-WOT) by (<8). But
p € S(M) is o-WOT continuous and ¢ (u)gnu,) > € for all n, a contradiction. O

. J

4.9. The proof of Ryll-Nardzewski. In this section, we prove the Ryll-Nardzewski Fixed
Point Theorem 4.8.3 following Lurie’s proof.
https://www.math.ias.edu/~lurie/261ynotes/lecture26.pdf.

We begin by restating (a version of) the Ryll-Nardzewski Fix Point Theorem.

Theorem (Ryll-Nardzewski, Theorem 4.8.3). Let X be a Banach space and K C X a weakly
compact convex subset. Suppose G C B(X) is a group of isometries with GK C K. Then
there is an x € K such that gr = x for all g € G.

Remark 4.9.1. Without loss of generality, we may assume G is finitely generated. Indeed,
write G = | G; where each G, is finitely generated. Then K¢ = (| K% . By compactness of
K and the finite intersection property, (| K% # ) for all 7 implies K # ().

Fix a Banach space X and a weakly compact convex subset K C X. We begin with the
following warmup.

Lemma 4.9.2. Suppose T € B(X) such that TK C K. There is an © € K such that
Tr=u=x.

s ~

Proof. For n € N, let T, := %ZZ;& TF and K, = T,K C K as K is convex. We claim
that {K,} has the finite intersection property. Indeed,

K,n---nK, 2T, ---T,K
as 1,,T,, = T,T,, for all m,n.
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Now let z € (| K,, # 0. For each n € N, there is a y € K such that x = Ty, so
1 — 1 1
Tr—z=T-DTy==-(T-1))» Try==-(T"y—y) € (K - K).
v—z=(T =Ty = )kzzoyn(yy)n( )
Since K is weakly compact, so is K — K, and in particular, X — K is bounded.* Thus

for every open neighborhood U of K — K, there is an n € N such that %(K - K)cU.
But this means Tx — x € U for every open neighborhood U of 0, so Tx = . (|

of S ¢ X C X** is weakly compact, then each s € S is pointwise bounded as a map on X* by
compactness. Now apply the Uniform Boundedness Principle.

The strategy of the proof will be to take our finitely generated group G = (g1,...,9n) C
B(X) of isometries and find a candidate fixed point x € K for G using Lemma 4.9.2. We
will prove by contradiction that this candidate x € K satisfies g;x = x for each generator.
The next lemma is the second main ingredient to achieve our contradiction.

Lemma 4.9.3. Suppose g1,...qgx € B(X) are isometries and x € X such that g;(z) # x
foralli =1,... k. Let C be the weak closed conver hull of {g1,...,gr)x, which is weakly
compact. Let € > 0 such that ||g;(x) — z|| > ¢ for alli =1,...,n. Then there is a weakly
compact subset C' C C' such that diam(C'\ C") < ¢.

Assuming this lemma, we can now prove Theorem 4.8.3.

Proof of Theorem 4.8.3. Set T = £ 3~ g; € B(X). By the warmup Lemma 4.9.2, there
is an x € K such that Tx = x. If g;(x) = x for all i, we have our fixed point proving
Theorem 4.8.3. Otherwise, relabelling the g;, there is a 1 < k < n such that g;(z) # =
foralli=1,...,k and g;(x) =z foralli =k +1,...,n. Then

n k
1 1 n—k
90:T$:ﬁ§ gl(m)ZEE gi(z) + _——
i=1 i=1

which immediately implies that

1t
T = E;QZ(@

By Lemma 4.9.3, there is a weakly compact convex subset C' C C' = (g1,...,9x)x C K
such that diam(C' — C") < e. Since C" # C, there is an h € G such that hz ¢ C’, so

k
1 /
hx = hTx = % ;:1 hg;(z) ¢ C".

Since C' is convex, there must be some 1 < i < k such that hg;(x) ¢ C’, so both
hz,hg;(z) ¢ C'. But since h is an isometry, we have

|z — g;(z)|| = ||hx — hg;(z)|| < diam(C' — C") <,

a contradiction. O

We now prove the lemma.
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Proof of Lemma 4.9.5. To prove the lemma, it suffices to work in the closure of
span{g;, - - gi,,xlm € Nand 1 <iy,...,4, <k},

which is a separable Banach space.

Let £ = 0.C C C be the set of extreme points. By the Krein-Milman Theorem, C
is the weak closed convex hull of E. Let E C C be the weak closure of E, and let
B = B,/3(0) be the closed ball of radius /3. Since B is convex and norm closed, B is
also weakly closed as the norm and weak topology have the same closed convex sets.
Since X is separable, there is a sequence (y;) C X such that (y; + B) covers X. Thus
((y;+B)NE) is a cover of the weakly compact set E. By the Baire Category Theorem,
there is a j such that (y; + B) N E has non-empty interior U in E with respect to the

relative weak topology on E.
Now define

C, := weak closed convex hull of £\ U
Cy := weak closed convex hull of (y; + B) N E,

which are both weakly closed convex subsets of C'. Since C' is the closed convex hull
of
EC (B\U)U((y+B)NE),
E is the convex join of Cy and Cy, i.e., C' = im(6) for
0:Cy xCyx[0,1] > X given by (a,b,t) — ta+ (1 —1)b.
We now consider the sets C'(6) := im(6|c, xcyx[5,1])-
Step 1: Each C(9) is a weakly closed convex subset of C'.

Closed: Since # is continuous from the (weak,weak,standard) product topology to
the weak topology as X with the weak topology is a topological vector
space, K (0) is weakly compact, and thus closed.

Convex: First, note that for all 0 < § < 1, 6C} + (1 — §)Cy is convex. We claim
that

9(01 X CQ X [6, ]_]) = Q(Cl X (501 + (]_ — 6)02) X [0, 1]),

which is manifestly convex.

C:Iftefo,1],ta+ (1 —t)b=sa+ (1 —s)(da+ (1—0b)) for s € [0, 1]
such that (1 — s)(1 —d) = (1 — ¢). This condition is equivalent to
t=29+s(1-29).

D: If s € [0,1], then sa; + (1 — s)[das + (1 — 0)b] = ta + (1 — )b for
t=s4+(1—5)d =04 s(l—43) € [),1] as before and

_say + (1 —s)day
s+ (1—s)8
Step 2: For 0 > 0 sufficiently small, diam(C' \ C(9)) < ¢

€ (.
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Since C'is weakly compact, it is bounded, so C' C Bg(0) for some R > 0.
If y,y/ € C'\ C(0), then there are 0 < t,t' < 6, a,a’ € Cy, and b, b’ € Cy
such that

y=ta+(1—tb and ¢y =td+(1-1t).
Then
ly =4/l = llt(a = b) + b = #'(a" = V) = V|
< ¢ 1A / Y,
< t([lall + [161]) + ¢(lla'l] + [16°]]) + 1] o = &
by ECh

2
S 4(SR+ 56

as b,0' € Cy C y; + B which has diameter 2/3 - . Now choose § < 155.

Step 3: For § as in Step 2 above, C'(9) # C.

\.

Since U C F is a non-empty open subset, there is a y € ENU. We claim
that y ¢ C'(9). Since y € F is an extreme point of C, it suffices to prove
y ¢ Cy. (Indeed, if y ¢ Cy and y = ta+ (1 —t)b for a € C; and b € Oy,
since y is extreme, y = a = b. But since a € C; and y ¢ Cy, we must
have t = 0. Thus y cannot be written as ta+ (1 —t)b for a € C, b € Cy,
and t € [§,1].) Since X with the weak topology is locally convex, there
is a weakly open convex neighborhood V' of 0 such that the weak closure
V satisfies (y — V)N E C U. (Indeed, we can use here that E is weakly
compact and thus weakly normal.)

Now since E \ U is weakly compact, it admits a weakly open cover {z; +
V}E_ where each z; € E'\ U. Thus (] is contained in the closed convex
hull of

In turn, |, (2:4+V)NE is contained in the convex join of the (z;+V)NC.
Ify € Cy, theny € (2;+V)NC for some i. But then 2; € (y—V)NE C U,
a contradiction to z; € E\ U.

\

Thus if 6 > 0 is sufficiently small, we can take C' = C(J) C C.
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