
Penneys Math 7212, Projections and factors Spring 2024

4. Projections and factors

For this section, H is a Hilbert space and M ⊆ B(H) is a von Neumann algebra. We
denote the set of projections of M by P (M) and the group of unitaries in M by U(M).

4.1. Compressions and ideals.

Theorem 4.1.1. Suppose p ∈ P (M). Then pMp ⊆ B(pH) is a von Neumann algebra with
commutant (pMp)′ =M ′p.

Proof. Clearly pMp ⊆ B(pH) is an SOT-closed unital ∗-subalgebra and thus a von
Neumann algebra.
If y ∈M ′, then for all x ∈M ,

(yp)(pxp) = ypxp = pypx = (pxp)(yp)

so yp ∈ (pMp)′. For the converse, we use a clever trick. First, it suffices to prove every
unitary in (pMp)′ lies in M ′p, as every element of (pMp)′ is a linear combination of 4
unitaries (why?). Suppose u ∈ (pMp)′ and set K := MpH. Since K is both M and
M ′-invariant, pK ∈M ′ ∩M = Z(M).

Claim. We may extend u to K by ũ
∑
xipξ :=

∑
xiupξ.

Proof of claim. To see ũ is well-defined, we prove it is isometric:∥∥∥ũ∑xipξi

∥∥∥2 =∑
i,j

⟨xiupξi, xjupξj⟩∑
i,j

⟨px∗jxipuξi, uξj⟩ ([u, p] = 0)

=
∑
i,j

⟨upx∗jxipξi, uξj⟩ (u ∈ (pMp)′)

=
∑
i,j

⟨px∗jxipξi, ξj⟩ = · · · =
∥∥∥∑∑

xipξi

∥∥∥2 . □

Now by construction, ũ commutes with the action of M on K = MpH, and thus
ũpK ∈M ′ ⊆ B(H); indeed, for all x ∈M and all ξ ∈ H,

ũpKxξ = ũx pKξ︸︷︷︸
∈K

= xũpKξ.

Finally, we claim that u = ũpKp ∈M ′p; indeed, as u = up ∈M ′p, for all ξ ∈ H,

ũpKpξ = ũ(1Mpξ) = upξ = uξ. □

Definition 4.1.2. We call pMp,M ′p corners, compressions, or reductions of M,M ′ respec-
tively.
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Lemma 4.1.3. If J ⊆M is a σ-WOT closed left ideal, then J =Mp for a unique projection
p ∈M .

Proof. If p is any projection such that J = Mp, then since (xp)p = xp for all x ∈ M ,
yp = y for all y ∈ J . It follows that if Mq = J =Mp, then p ≤ q and q ≤ p, so p = q.
This also tells us how to construct p: find the largest projection in J .
If x ∈ J , then so are |x| = u∗x and χ[ε,∥x∥](|x|) for all ε > 0. Since χ[ε,∥x∥](|x|) ↗
supp(|x|) = supp(x) as ε↘ 0, supp(x) ∈ J .
Now observe that if there is a maximal projection p in J , then p ≥ supp(x) for all
x ∈ J , so x = x · supp(x) · p = xp for all x ∈ J . We thus have J ⊆Mp ⊆ J , and thus
equality holds.
Finally, to construct the maximal projection, since J is σ-WOT closed, it is a norm-
closed left ideal, and thus contains a right approximate identity (ei) such that 0 ≤ ei ≤
1 for all i, i ≤ j implies ei ≤ ej, and ∥x− xei∥ → 0 for all x ∈ J . Since J is σ-WOT
closed, p :=

∨
ei ∈ J , which is automatically self-adjoint. Since ∥p− pei∥ → 0, we see

that p = p2, so p is a projection, and since ∥x − xei∥ → 0, x = xp for all x ∈ J . We
conclude that p is the largest projection in J . □

Corollary 4.1.4. A left ideal J ⊆M is SOT/WOT-closed if and only if it is σ-SOT/σ-WOT
closed.

Proof. If J is σ-WOT closed, then J = Mp for some projection p ∈ J , so J is WOT
closed. The converse is trivial as WOT-closed sets are σ-WOT closed. □

Corollary 4.1.5. If J ⊆ M is a σ-WOT closed 2-sided ideal, then J = Mz for some
projection z ∈ Z(M).

Proof. Since J is σ-WOT closed, it is also WOT and hence SOT-closed. By Lemma
4.1.3, J =Mz for some projection z ∈M . But as J is 2-sided, for every unitary u ∈M ,
J = uJu∗. It follows that J = uJu∗ = uMzu∗ = uMu∗(uzu∗) = Muzu∗, so z = uzu∗

by the uniqueness statement in Lemma 4.1.3. We conclude z ∈M ′ ∩M = Z(M). □

4.2. Central support of a projection.

Definition 4.2.1. A factor is a von Neumann algebra with trivial center, i.e., Z(M) =
M ′ ∩M = C1.

Remark 4.2.2. By Corollary 4.1.5, factors have no non-trivial σ-WOT closed 2-sided ideals.

Just as von Neumann algebras come in pairs M,M ′, so do factors as Z(M) =M ′ ∩M =
Z(M ′).

Recall that for p, q ∈ P (M) ⊆ B(H), p ∧ q is the projection onto pH ∩ qH and p ∨ q is
the projection onto pH + qH. Observe we have the relation

p ∨ q = 1− (1− p) ∧ (1− q). (4.2.3)

For homework, you will show that p ∧ q, p ∨ q ∈ M . Thus P (M) is a lattice under these
operations.
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Lemma 4.2.4. For p, q ∈ P (M) and u ∈ U(M), u∗(p∨ q)u = u∗pu∨u∗qu and u∗(p∧ q)u =
u∗pu ∧ u∗qu.

Proof. Observe that ξ ∈ pH∩qH if and only if u∗ξ ∈ u∗puH∩u∗quH, and η ⊥ pH∩qH
if and only if u∗η ⊥ u∗puH ∩ u∗quH. Thus u∗(p ∧ q)u = u∗pu ∧ u∗qu. Now apply
(4.2.3) to get u∗(p ∨ q)u = u∗pu ∨ u∗qu. □

Definition 4.2.5. Given p ∈ P (M), we define its central support

z(p) :=
∨

u∈U(M)

u∗pu := lub pF

where pF :=
∨

u∈F u
∗pu for finite subsets F ⊂ U(M), ordered by inclusion. By Lemma 4.2.4,

for all w ∈ U(M),

w∗pFw =
∨
u∈F

w∗u∗puw =
∨

v∈Fw

v∗pv = pFw.

As z(p) is the SOT-limit of the pF and multiplication is separately SOT-continuous,

w∗z(p)w = w∗(lim SOTpF )w = lim SOTw∗pFw = lim SOTpFw = z(p).

This means wz(p) = z(p)w for all w ∈ U(M), so z(p) ∈M ′ ∩M = Z(M).

Lemma 4.2.6. Suppose p ∈ P (M).

(1) For x ∈M , xup = 0 for all u ∈ U(M) if and only if xz(p) = 0.
(2) For y ∈ M ′, yp = 0 if and only if yz(p) = 0. Hence the map M ′z(p) → M ′p given

by multiplication by p is a ∗-isomorphism.

Proof.

(1) If xup = 0 for all u ∈ U(M), then xupu∗ = 0 for all such u. Then xpF = 0
where pF =

∨
u∈F upu

∗ for any finite F ⊂ U(M),a and taking SOT limits, we

have xz(p) = x limSOT pF = 0.
Conversely, if xz(p) = 0, then x(upu∗)u = xz(p)(upu∗)u = 0 for all u ∈

U(M).
(2) Since yp = ypz(p) = yz(p)p, yz(p) = 0 implies yp = 0. Conversely, if yp = 0,

then yupu∗ = 0 for all u ∈ U(M) as y ∈ M ′. The argument from (1) shows
ypF = 0 for all finite F ⊂ U(M), so taking SOT limits, yz(p) = 0. □

aIf u1, . . . , un ∈ U(M) and ξi ∈ uipu
∗
iH for i = 1, . . . , n, then x

∑
ξi =

∑
xξi =

∑
xuipu

∗
i ξi = 0, so

xpF = 0.

Proposition 4.2.7. For a von Neumann algebra M and p, q ∈ P (M) \ {0}, the following
are equivalent.

(1) z(p)z(q) ̸= 0,
(2) there is a u ∈ U(M) such that puq ̸= 0, and
(3) there is a non-zero partial isometry v ∈M such that vv∗ ≤ p and v∗v ≤ q.
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Proof.
¬(2) ⇒ ¬(1): If puq = 0 for all u ∈ U(M), then pz(q) = 0 by Lemma 4.2.6(1). But

then 0 = qz(p)u = quz(p) for all u ∈ U(M), so by (the adjoint of) Lemma 4.2.6(1)
again, z(q)z(p) = 0.
(2) ⇒ (3): If puq ̸= 0, consider the polar decomposition puq = v|puq|. By construction,

vv∗H = vH = puqH ⊂ pH, so vv∗ ≤ p. Since ker(v) = ker(puq) ⊃ ker(q), we have
v∗v = pker(v)⊥ ≤ pker(q)⊥ = q.
(3) ⇒ (1): We prove that if z(p)z(q) = 0 and v ∈ M is a partial isometry such that

vv∗ ≤ p and v∗v ≤ q, then v = 0. Since vv∗ ≤ p ≤ z(p), vv∗ = vv∗z(p). Since
v∗v ≤ q ≤ z(q), v∗v = v∗vz(q). Then

v = vv∗v = z(p)vv∗vz(q) = vz(q)z(p) = 0. □

Corollary 4.2.8 (Ergodic property of factors). SupposeM is a factor and p, q ∈ P (M)\{0}.
There is a unitary u ∈ U(M) such that puq ̸= 0.

Proof. Since p, q ̸= 0, z(p) = z(q) = 1. Now apply Proposition 4.2.7. □

Corollary 4.2.9. Suppose M is a factor and p, q ∈ P (M) \ {0}. There is a non-zero partial
isometry u ∈ M such that uu∗ ≤ p and u∗u ≤ q. Moreover, we can find u ∈ M such that
uu∗ = p or u∗u = q.

Proof. The first part is immediate as z(p) = 1 = z(q). Consider the set of partial
isometries u ∈ M such that uu∗ ≤ p and u∗u ≤ q. We can order this set by u ≤ v if
uu∗ ≤ vv∗, u∗u ≤ v∗v, and v|uu∗H = u.

Claim. Any increasing chain has an upper bound.

Proof of Claim. If (vi) is an increasing chain, then the operator w :
⋃
v∗i viH →⋃

vjv
∗
jH given by ξ 7→ vkξ whenever ξ ∈ v∗kvkH is well-defined and unitary. It thus

extends to an isometry K :=
⋃
v∗i viH → H, and thus to a partial isometry on H by

defining w|K⊥ = 0. Clearly ww∗ ≤ p, w∗w ≤ q, and vi ≤ w for all i. □

We claim a maximal element satisfies uu∗ = p or u∗u = q. Indeed, if p − uu∗ ̸= 0 ̸=
q − u∗u, then there is a non-zero partial isometry w ∈ M such that ww∗ ≤ p − uu∗

and w∗w ≤ q − w∗w. Observe then that u + w is a partial isometry (why?) with
(u+ w)(u+ w)∗ ≤ p and (u+ w)∗(u+ w) ≤ q contradicting maximality. □

Exercise 4.2.10. Show that the central support z(p) is the smallest projection in Z(M)
such that p ≤ z(p).

Corollary 4.2.11. Z(pMp) = Z(M)p.

Proof (Dixmier). Clearly Z(M)p = p(M ′ ∩M)p ⊂ Z(pMp). Suppose x ∈ Z(pMp) =
pMp ∩M ′p. Then there is a y ∈ M ′ such that x = yp. Since p = z(p)p, replacing
y with yz(p), we may assume y = yz(p). We claim that y ∈ Z(Mz(p)) so that
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y ∈ M ′ ∩ Mz(p) ⊂ M ′ ∩ M = Z(M). Indeed, the map M ′z(p) → M ′p given by
multiplication by p is an isomorphism by Lemma 4.2.6(2), and thus maps the center
onto the center. Since yp = x ∈ Z(pMp), we conclude y = yz(p) ∈ Z(Mz(p)), as
desired. □

4.3. Classification of type I factors and their subfactors.

Definition 4.3.1. A (nonzero) projection p ∈ P (M) is called:

• minimal if q ∈ P (M) with q ≤ p implies q ∈ {0, p},
• abelian if pMp is abelian, and
• diffuse if there is no minimal projection q ≤ p.

Examples 4.3.2. Here are examples of such projections.

(1) The minimal projections in B(H) are the rank 1 projections.
(2) Every projection is diffuse in L∞([0, 1], λ) where λ is Lebesgue measure.

Exercise 4.3.3. Suppose µ is a regular finite Borel measure on a compact Hausdorff space
X. Show that the minimal projections of L∞(X,µ) correspond to atoms of X, i.e., x ∈ X
such that µ({x}) > 0.

Exercise 4.3.4. Suppose p ∈ P (M) is minimal and u ∈ M is a non-zero partial isometry
such that uu∗ ≤ p. Show that uu∗ = p and that u∗u is a minimal projection.

Definition 4.3.5. A von Neumann algebra M is called type I if for all z ∈ P (Z(M)) \ {0},
there is an abelian p ∈ P (M) \ {0} such that p ≤ z, i.e., every non-zero central projection
majorizes an abelian projection.

Examples 4.3.6. Examples of type I von Neumann algebras include abelian von Neumann
algebras and B(H).

Exercise 4.3.7. Here are some exercises on minimal projections.

(1) p ∈ P (M) is minimal if and only if pMp = Cp.
(2) If M is a factor and p is abelian, then p is minimal.
(3) If M is a factor, then M is type I if and only if M has a minimal projection.

Theorem 4.3.8 (Classification of type I factors). If M is a type I factor acting on a Hilbert
space H, there are Hilbert spaces K,L and a unitary u ∈ B(K ⊗L→ H) such that uMu∗ =
B(K)⊗ 1.

To prove this theorem, we will construct a system of matrix units for M , i.e., a family
{eij|i, j ∈ I} such that

• e∗ij = eji,
• eijekℓ = δj=keiℓ, and
•
∑
eii = 1 converging in SOT.

Lemma 4.3.9. If {eij}i,j∈I is a system of matrix units in B(H), then setting K := e11H
which should be viewed as a ‘multiplicity space,’ there is a unitary u : ℓ2I⊗K → H such that
u∗eiju = |δi⟩⟨δj| ⊗ 1 for all i, j. Thus u∗({eij}′′)u = B(ℓ2I)⊗ 1, and dim(H) = |I| dim(K).
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Proof. Let {ξj}j∈J be an ONB of K = e11H. Since e1i may be viewed as a unitary
from eiiH onto e11H, we see that {ei1ξj|j ∈ J} is an ONB for eiiH. Since H =

⊕
eiiH,

we see that {ei1ξj|i ∈ I, j ∈ J} is an ONB of H. Thus the map u : ℓ2I ⊗K → H by
δi ⊗ ξj 7→ ei1ξj is a unitary isomorphism. Finally, we calculate

u∗eiju(δk ⊗ ξℓ) = u∗eijek1ξℓ = δj=ku
∗ei1ξℓ = δj=k(δi ⊗ ξℓ),

so u∗eiju = |δi⟩⟨δj| ⊗ 1 as claimed. □

Remark 4.3.10. Observe that if {pi} is a family of mutually orthogonal projections such
that

∑
pi = 1 SOT, and {e1j}j ̸=1 is a family of partial isometries such that e1je

∗
1j = p1, and

e∗1je1j = pj, then setting e11 := p1 and eij := e∗1ie1j for all i, j with i ̸= 1 completes {e1j} to
a system of matrix units.

Proof of Theorem 4.3.8. Since M is a type I factor, it has a minimal projection p1.
Let {pi} be a maximal family of mutually orthogonal minimal projections.

Claim.
∑
pi = 1 SOT.

Proof. Otherwise, by Corollary 4.2.9, there is a non-zero partial isometry u ∈M such
that uu∗ ≤ p1 and u∗u ≤ 1−

∑
pi, so u

∗u ⊥ pi for all i. By minimality, uu∗ = p1, so
u∗u is also minimal. Then {pi} ⊊ {pi} ∪ {u∗u}, contradicting maximality. □

Now by Corollary 4.2.8, for each i, there is a non-zero partial isometry e1i such that
e1ie

∗
1i ≤ p1 and e∗1ie1i ≤ pi. My minimality, we must have e1ie

∗
1i = p1 and e∗1ie1i = pi

Setting eii := pi for all i, we can construct a system of matrix units {eij} as in Remark
4.3.10.

Claim. M = {eij}′′.

Proof. If x ∈M , then x = (
∑
pi)x (

∑
pj) =

∑
ij pixpj SOT. But by minimality, each

pixpj = e∗1ie1ixe
∗
1je1j = ei1 p1e1ixej1p1︸ ︷︷ ︸

=:λijp1∈Cp1

e1j = λijei1p1e1j = λijeij.

Hence x =
∑

ij λijeij, and M = {eij}′′. □

The final claim follows now from Lemma 4.3.9 □

Definition 4.3.11. We say a type I factor M is type In if M ∼= B(H) with dim(H) = n.

Fact 4.3.12. If u, v are two partial isometries with uu∗ ⊥ vv∗ and u∗u ⊥ v∗v, then u∗v =
0 = uv∗ and u+ v is a partial isometry.

Corollary 4.3.13. Suppose M,N are two type I subfactors of B(H). Let p ∈M and q ∈ N
be minimal projections. The following are equivalent.

(1) There is a unitary u ∈ U(H) such that u∗Mu = N .
(2) There are minimal p ∈ P (M) and q ∈ P (N) and a u ∈ U(H) such that u∗pu = q.
(3) There are minimal p ∈ P (M) and q ∈ P (N) and a partial isometry v ∈ B(H) such

that vv∗ = p and v∗v = q. (Note that this v is a unitary isomorphism between the
multiplicity spaces pH and qH for M and N respectively.)

6



Proof.
(1) ⇒ (2): If p ∈ P (M) is minimal, then so is u∗pu ∈ P (N).

(2) ⇒ (3): Take v = pu.

(3) ⇒ (1): Extend {p} and {q} to systems of matrix units {eij}i,j∈I for M with e11 = p

and {fk,ℓ}k,ℓ∈K for N with f11 = q respectively. Observe that for each i ∈ I and k ∈ K,

(ei1vf1k)(ei1vf1k)
∗ = ei1 vqv

∗︸︷︷︸
=p

e∗i1 = eii and (ei1vf1k)
∗(ei1vf1k) = f ∗

1k v
∗pv︸︷︷︸
=q

f1k = fkk.

Since
∑
eii = 1 =

∑
fkk, we see that |I| = |K|, and we may identify the two index

sets. By Fact 4.3.12, u :=
∑
ei1vf1i is a unitary such that ufiju

∗ = eij for all i, j. □

4.4. Comparison of projections.

Definition 4.4.1. For p, q ∈ P (M), we say p ≼ q if there is a partial isometry u ∈ M such
that uu∗ = p and u∗u ≤ q. We say p ≈ q if there is a partial isometry u ∈ M such that
uu∗ = p and u∗u = q.

Example 4.4.2. For x ∈ M and x = u|x| the polar decomposition, u ∈ M with u∗u =
supp(x) and uu∗ = range(x). Hence supp(x) ≈ range(x).

Example 4.4.3. Suppose u is a partial isometry such that uu∗ = p. Then for all q ≤ p, qu
is a partial isometry such that quu∗q = qpq = q, so u∗qu ≈ q.

Exercise 4.4.4. Show that ≈ is an equivalence relation on P (M) up to ≈.

Theorem 4.4.5. ≼ is a partial order on P (M).

Proof.
reflexive: p ≼ p via partial isometry p.
transitive: Suppose uu∗ = p, u∗u ≤ q = vv∗, and v∗v ≤ r. Then

uvv∗u∗ = uqu∗ = uu∗uqu∗ = uu∗uu∗ = uu∗ = p and

v∗u∗uv ≤ v∗qv = v∗vv∗v = v∗v ≤ r.

anti-symmetric: Suppose p ≼ q and q ≼ p. Let u, v ∈M br partial isometries such that
uu∗ = p, u∗u ≤ q, vv∗ = q, and v∗v ≤ p. Then for each p′ ≤ p,

u∗p′u ≤ u∗pu = u∗uu∗u = u∗u ≤ q,

and similarly, for each q′ ≤ q, v∗q′v ≤ p. That is, we have order preserving maps

{projections ≤ p} {projections ≤ q}
Ad(u)

Ad(v)
.

It immediately follows that inductively defining

pn+1 := v∗qnv p0 := p

qn+1 := u∗pnu q0 := q

yields two decreasing sequences of projections in M . Define p∞ := limSOT pn =
∧
pn

and q∞ := limSOT qn =
∧
qn, the orthogonal projections onto

⋂
pnH and

⋂
qnH
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respectively. The clever trick here is to write p = p0 and q = q0 as telescoping sums of
mutually orthogonal projections, which converge SOT:

p = (p0 − p1) + (p1 − p2) + (p2 − p3) + (p3 − p4) + · · ·+ p∞

q = (q0 − q1) + (q1 − q2) + (q2 − q3) + (q3 − q4) + · · ·+ q∞

We then pair up projections and sum up the partial isometries with orthogonal domains
and ranges.
First, since multiplication is separately SOT-continuous,

v∗q∞v = v∗(lim SOT qn)v = lim SOTv∗qnv = lim SOTpn = p∞.

Moreover, since q∞ ≤ q, q∞ = q∞qq∞ = q∞vv
∗q∞. Hence p∞ ≈ q∞ via the partial

isometry q∞v. Finally, observe that

Ad(u)(pn − pn+1) = u∗(pn − pn+1)u = u∗pnu− u∗pn+1u = qn+1 − qn+2

Ad(v)(qn − qn+1) = pn+1 − pn+2.

Thus (pn − pn+1)u is a partial isometry witnessing pn − pn+1 ≈ qn+1 − qn+2, and
(qn − qn+1)v is a partial isometry witnessing qn − qn+1 ≈ pn+1 − pn+2. □

Corollary 4.4.6. If M is a factor, then ≼ is a total order up to ≈.

Proof. This is a restatement of Corollary 4.2.9. □

Definition 4.4.7. A projection p ∈ P (M) is called:

• finite if for all projections q ≤ p, q ≈ p implies q = p.
• infinite if there is a q ≤ p with q ̸= p such that q ≈ p (not infinite). An infinite
projection is called:

– purely infinite if there is no non-zero finite q ≤ p, and
– properly infinite if for all z ∈ P (Z(M)) such that zp ̸= 0, zp is infinite.

A von Neumann algebra M is called finite or (purely/properly) infinite if 1M is respectively.

Exercise 4.4.8. Prove that abelian von Neumann algebras are finite. Deduce that p abelian
implies p is finite.

Definition 4.4.9. A von Neumann algebra M is called:

• type III if M is purely infinite.
• type II ifM has no abelian projections and any non-zero central projection majorizes
a non-zero finite projection. In this case, we call M :

– type II1 if M is finite, and
– type II∞ if there is no non-zero finite central projection.

Remark 4.4.10. The above definition is rather hard to parse, so here is another way to say
it. We will informally say that a von Neumann algebra M has sufficiently many projections
with property (P) if every non-zero central projection of M majorizes a non-zero projection
with property (P). Then M is:
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• type I if M has sufficiently many abelian projections,
• type II if M has no abelian projections, but has sufficiently many finite projections.
In this case, M is:
(1) type II1 if M is finite and
(2) type II∞ if has no non-zero finite central projections.

• type III if M has no abelian projections and no non-zero finite projections.

4.5. LΓ is a II1 factor when Γ is icc. Let Γ be a countable discrete group. Recall

LΓ := {λg|g ∈ Γ}′′ ⊂ B(ℓ2Γ) where (λgξ)(h) := ξ(g−1h).

The functions δg(h) := δg=h give a distinguished orthonormal basis of ℓ2Γ. Observe λgδh =
δgh. We also have a right Γ action on ℓ2Γ by (ρgξ)(h) := ξ(hg). Notice that ρg ∈ U(ℓ2Γ)∩LΓ′.

Facts 4.5.1. We compute some basic properties about LΓ.

(LΓ1) For all x ∈ LΓ, there a sequence (xg) ∈ ℓ2Γ such that xδe =
∑
xgδg.

(LΓ2) For all x ∈ LΓ and h ∈ Γ,

xδh = xρhδe = ρhxδe = ρh
∑

xgδg =
∑
g

xgδgh =
∑
g

xgh−1δg.

(LΓ3) x∗δe =
∑
xg−1δg since for all h ∈ Γ,

⟨x∗δe, δh⟩ = ⟨δe, xδh⟩ =
(LΓ2)

∑
xgh−1⟨δe, δg⟩ = xh−1 .

(LΓ4) If xδe =
∑
xgδg and yδe =

∑
ygδg, then xyδe =

∑
g (
∑

h xhyh−1g) δg. Thus the

convolution product (xg) ∗ (yh) ∈ ℓ2Γ.

Proof. For all g ∈ Γ,

⟨xyδe, δg⟩ = ⟨yδe, x∗δg⟩ =
(LΓ3)

∑
h,k

xh−1yk⟨δk, ρg−1δh⟩ =
∑
h,k

xh−1ykδk=hg,

which simplifies to
∑

h−1 xh−1yhg. This is the claimed formula swapping h with
h−1 as the index of summation. □

(LΓ5) δe is a cylic and separating vector for LΓ.

Proof. Clearly C[Γ]δe ⊂ LΓδe is dense in ℓ
2Γ, so δe is cyclic. If x ∈ LΓ such that

xδe = 0, then xδg = ρg−1xδe = 0 for all g, and x = 0. Thus δe is separating. □

(LΓ6) tr := ⟨ · δe, δe⟩ is a faithful σ-WOT continuous tracial state on LΓ with tr(x) = xe.

Proof. First, we have the tracial property as

⟨xyδe, δe⟩ =
(LΓ4)

∑
h

xhyh−1 =
∑
h

yhxh−1 =
(LΓ4)

⟨yxδe, δe⟩.

Next, tr(x∗x) =
∑

g |xg|2 = 0 if and only if xg = 0 for all g if and only if x = 0,
so tr is faithful. □

9



(LΓ7) All projections in LΓ are finite.

Proof. Suppose uu∗ = p and u∗u = q ≤ p. Then tr(p−q) = tr(uu∗)−tr(u∗u) =
0 which implies p− q = 0 as tr is faithful by (LΓ6). □

Example 4.5.2. If H is infinite dimensional, then B(H) does not admit a trace.

Proposition 4.5.3. If Γ is icc (infinite and all nontrivial conjugacy classes infinite), then
LΓ is a II1 factor.

Proof. If z ∈ Z(LΓ), then∑
zgδg = zδe = λh−1zλhδe =

∑
zh−1ghδg,

so (zg) ∈ ℓ2Γ is constant on conjugacy classes. Since Γ is icc, zg = 0 for g ̸= e, so
z ∈ C1 by (LΓ6), and LΓ is a factor.
Since LΓ is infinite dimensional and admits a trace, it cannot be type I by Exercise
4.5.2. Since LΓ is finite by (LΓ7) LΓ is type II1. □

4.6. II1 factor basics. This subsection follows Jones’ von Neumann algebra notes quite
closely.

Above, we exploited the trace on LΓ to prove Proposition 4.5.3. For this subsection,
we assume a II1 factor comes equipped with a σ-WOT continuous tracial state. We will
construct such a trace in Corollary 4.8.5 below.

Facts 4.6.1. Here are some elementary facts about a factorM equipped with a tracial state
tr, which is sometimes assumed to be faithful or σ-WOT continuous.

(tr1) A σ-WOT continuous tracial state on a factor M is faithful.

Proof. Let J = {x ∈M |tr(x∗x) = 0}. Since x∗y∗yx ≤ ∥y∗y∥x∗x, J is a left
ideal. But since tr is a trace, J is a 2-sided ideal. By Cauchy-Schwarz, tr(x∗x) =
0 if and only if tr(xy) = 0 for all y, so

J =
⋂
y∈M

ker( tr( · y)︸ ︷︷ ︸
σ-WOT cts

)

is σ-WOT closed. By Corollary 4.1.5, M has no non-trivial σ-WOT closed
2-sided ideals, so ker(tr) = 0. □

(tr2) If M is a factor with a faithful tracial state, then M is finite.

Proof. The proof of (LΓ7) applies verbatim. □

(tr3) An infinite dimensional factor M with a σ-WOT continuous tracial state is type II1.

Proof. The second part of the proof of Proposition 4.5.3 applies verbatim. □

(tr4) Suppose M is a factor and tr is faithful.
10



(a) p ≼ q if and only if tr(p) ≤ tr(q).
(b) p ≈ q if and only if tr(p) = tr(q).

Proof. For the forward direction, suppose p = uu∗ and u∗u ≤ q. Then

tr(p) = tr(uu∗) = tr(u∗u) ≤ tr(q)

with equality if and only if q = u∗u as tr is faithful.
Conversely, suppose tr(p) ≤ tr(q). Since M is a factor, then p ≼ q or q ≼ p. If
q ≼ p, then by the forward step, tr(q) ≤ tr(p), in which case tr(p) = tr(q) and
p = uu∗ by faithfulness of tr. Thus p ≈ q. □

Lemma 4.6.2. SupposeM is a II1 factor with a faithful trace. For every non-zero p ∈ P (M)
and 0 < ε < tr(p), there is a q ∈ P (M) with 0 ≤ q ≤ p and 0 < tr(q) < ε.

Proof. Let
δ := inf {tr(q)|q ∈ P (M) \ {0} such that q ≤ p} .

If 0 < δ ≤ tr(p), there is a non-zero q ∈ P (M) such that q ≤ p and tr(q) < 2δ by the
definition of the inf. Since M is not type I, q is not minimal, so there is a non-zero
projection r ≤ q with 0 ̸= r ̸= q. Then δ ≤ tr(r), but

tr(q − r) = tr(q)− tr(r) ≤ tr(q)− δ < 2δ − δ = δ,

a contradiction. □

Proposition 4.6.3. Suppose M is a II1 factor with a faithful trace. Then tr(P (M)) = [0, 1].

Proof. Fix r ∈ (0, 1), and consider {p ∈ P (M)|0 < tr(p) ≤ r} which is non-empty by
Lemma 4.6.2. Ordering this set by ≤, every ascending chain has an upper bound, so by
Zorn’s Lemma, there is a maximal element p. Suppose for contradiction that tr(p) < r.
Again by Lemma 4.6.2, there is a projection q ≤ 1− p with 0 < tr(q) < r− tr(p). But
then p+ q is a projection such that tr(p) < tr(p) + tr(q) < r, a contradiction. □

Exercise 4.6.4. Give a better description of a projection of arbitrary trace in [0, 1] in LF2

and LS∞.

Exercise 4.6.5. Let M be a II1 factor with σ-WOT continuous tracial state tr.

(1) Show that if p ∈ M is a non-zero projection, then for every 0 < r < tr(p), there is a
projection q ∈M with q ≤ p and tr(q) = r.

(2) For every n ∈ N, there is a unital subfactor N ⊆M with N ∼= Mn(C).
(3) M is algebraically simple, i.e., M has no 2-sided ideals.

Proposition 4.6.6. A finite von Neumann algebra M with a faithful σ-WOT continuous
tracial state tr is a II1 factor if and only if for any other σ-WOT continuous tracial state φ,
φ = tr.

Proof. Suppose M is a II1 factor. It suffices to prove both traces agree on projections.
By Exercise 4.6.5(2), the traces must agree on every subfactor N ∼= Mn(C) for all

11



n ∈ N. For an arbitrary projection p ∈ M , we can build a sequence (pi) of mutually
orthogonal projections such that p =

∑
pi SOT (and thus also σ-WOT) and tr(pi) =

1
ni

for some ni ∈ N for every i using Exercise 4.6.5(1).
Suppose now M is not a factor, and choose projection z ∈ Z(M) such that 0 ̸= z ̸= 1.
Then φ(x) := 1

tr(z)
tr(xz) is a σ-WOT continuous tracial state distinct from tr as

φ(1− z) = 0 ̸= tr(1− z). □

4.6.1. The hyperfinite II1 factor. We now use Proposition 4.6.6 to construct a II1 factor R
which can be well approximated by finite dimensional subalgebras.

For n ∈ N, let An :=
⊗nM2(C). Include An ↪→ An+1 by x 7→ x ⊗ 1, and let A∞ :=

lim−→An =
⊗∞M2(C). Since An

∼= M2n(C) has a unique normalized faithful tracial state
trn, tr∞ := lim−→ trn is the unique faithful trace on A∞, and it is positive definite in that
tr∞(x∗x) ≥ 0 for all x ∈ A∞ with equality if and only if x = 0. We can thus attempt to
apply the GNS construction, where there are several things we must check along the way. We
define H to be the completion of A∞ in ∥ · ∥2 under the sesqulinear form ⟨x, y⟩ := tr∞(y∗x).
We write Ω ∈ H for the image of 1 ∈ A∞ and aΩ ∈ H for the image of a = a1 ∈ A∞.

(R1) A∞ acts faithfully on the left of H by bounded operators by x(aΩ) = xaΩ. We can
thus define R := (A∞)′′ ⊂ B(H).

Proof. Since x∗x ≤ ∥x∗x∥An for all x ∈ An, and since the inclusions An ↪→ An+k

are all injective and thus norm-preserving, we have

∥xaΩ∥2 = tr∞(a∗x∗xa) ≤ ∥x∗x∥An · tr∞(a∗a) = ∥x∥2An
· ∥aΩ∥2.

Faithfulness of the action follows as Ω is separating for A∞ by faithfulness of
tr∞ on A∞. □

(R2) trR(x) := ⟨xΩ,Ω⟩ is a σ-WOT continuous tracial state on R such that trR |A∞ = tr∞.

Proof. For x ∈ A∞, trR(x) = ⟨xΩ,Ω⟩ = tr∞(x). Since trR is a vector state, it is
both SOT-continuous and σ-WOT continuous. For x, y ∈ R, by the Kaplansky
Density Theorem, we may pick bounded nets (xi), (yi) ⊂ A∞ with xi → x and
yi → y SOT. Since multiplication is jointly SOT-continuous on bounded sets,
xiyi → xy and yixi → yx SOT. We thus have

trR(xy) = lim SOT tr∞(xiyi) = lim SOT tr∞(yixi) = trR(yx). □

(R3) A∞ acts on the right of H by bounded operators by x(aΩ) = axΩ.

Proof. This is the step that uses that tr is a trace:

∥axΩ∥2 = tr∞(x∗a∗ax) = tr∞(axx∗a∗) ≤ ∥xx∗∥An · tr∞(aa∗)

= ∥x∗x∥An · tr∞(a∗a) = ∥x∥2An
· ∥aΩ∥2. □

(R4) trR is faithful on R so that R is a II1 factor by Proposition 4.6.6.
12



Proof. Suppose trR(x
∗x) = 0. Since the right A∞-action is bounded and com-

mutes with the left A∞-action on H and thus also commutes with R, for all
a ∈ A∞,

∥xaΩ∥2 = ∥xRaΩ∥2 = ∥RaxΩ∥2 ≤ ∥Ra∥2 · ∥xΩ∥2 = ∥Ra∥2 · trR(x∗x) = 0.

Since A∞Ω is dense in H, x = 0. □

Exercise 4.6.7. Build a projection of arbitrary trace in [0, 1] in R.

4.7. Useful results on comparison of projections. Our next task is to prove every
finite von Neumann algebra admits a tracial state. We begin with some general results on
projections in a von Neumann algebra. For this section, unless stated otherwise, M is a von
Neumann algebra and p, q ∈ P (M).

Facts 4.7.1. Here are some basic facts about comparison of projections.

(≼1) (Kaplansky’s formula) p ∨ q − p ≈ q − p ∧ q.

Proof. Consider x = (1− p)q. Then ker(x) = ker(q)⊕ (p ∧ q)H, so

pker(x) = (1− q) + p ∨ q and range(x∗) = 1− pker(x) = q − p ∧ q.
Since x = [(1− (1− q))(1− p)]∗, the above argument also tells us that

range(x) = (1− p)− (1− p) ∧ (1− q) = (1− p− (1− p ∨ q) = p ∨ q − p.

Since range(x∗) = supp(x), these projections are equivalent by Example 4.4.2.
□

(≼2) If p1 ≼ q1, p2 ≼ q2, and q1q2 = 0, then p1 ∨ p1 ≼ q1 + q2.

Proof. By (≼1), p1∨p2−p2 ≈ p1−p1∧p2 ≼ q1 so p1∨p2 = (p1∨p2−p2)+p2 ≼
q1 + q2. □

(≼3) (Comparison Theorem) There is a z ∈ P (Z(M)) such that pz ≼ qz and q(1 − z) ≼
p(1− z).

Proof. By Zorn’s Lemma, there are maximal families of mutually orthogonal
projections {pi}, {qi} such that

∑
pi ≤ p,

∑
qi ≤ q, and pi ≈ qi for all i. Set

z1 := z (p−
∑
pi) and z2 := z (q −

∑
qi). By maximailty, z1z2 = 0, so(

p−
∑

pi

)
≤ z1 ≤ 1− z2 =⇒ z2

(
p−

∑
pi

)
= 0(

q −
∑

qi

)
≤ z2 =⇒ (1− z2)

(
q −

∑
qi

)
= 0.

Since
∑
pi ≈

∑
qi, we see

z2p = z2
∑

pi ≈ z2
∑

qi ≤ z2q

(1− z2)q = (1− z2)
∑

qi ≈ (1− z2)
∑

pi ≤ (1− z2)p. □
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(≼4) If p, q are finite, so is p ∨ q.

We omit the proof, which is quite techinical. There is a much simpler proof
when p, q are central in addition, which you will do on homework.

(≼5) If p, q are finite and p ≈ q, then 1− p ≈ 1− q. Hence there is a u ∈ U(M) such that
u∗pu = q.

Remark 4.7.2. The proof below only uses (≼4) to reduce to the case that M
is finite. Since we will only use (≼5) for finite von Neumann algebras, the rest
of these notes is still self-contained without a proof of (≼4) above.

Proof. By (≼4), p ∨ q is finite, so replacing M by (p ∨ q)M(p ∨ q), we may
assume M is finite. By (≼3), there is a central projection z ∈ P (Z(M)) such
that (1 − p)z ≼ (1 − q)z and (1 − q)(1 − z) ≼ (1 − p)(1 − z). Since we can
consider Mz and M(1− z) separately, we may assume 1−p ≈ r ≤ 1− q. Since
1 = (1− p) + p ≈ r + q, and M is finite, r + q = 1, so 1− p ≈ r = 1− q. Now
if vv∗ = p, v∗v = q and ww∗ = 1− p, w∗w = 1− q, then u = v+w is a unitary
satisfing u∗pu = q. □

(≼6) Suppose p, q ∈ P (M) finite with p, q ≤ r.
(≼6a) If p ≈ q, then r − p ≈ r − q.
(≼6b) If p ≼ q, then r − q ≼ r − p.

Remark 4.7.3. Again, in the proof below, we will only use (≼4) to pass to
the case M is finite and r = 1.

Proof. Since p, q ≤ r implies p∨q ≤ r, passing to (p∨q)M(p∨q), we may assume
M is finite and r = 1 by (≼4). Now (≼6a) follows immediately from (≼5). For
(≼6b), let s ∈ P (M) with p ≈ s ≤ q. By (≼5) 1− p ≈ 1− s ≥ 1− q. □

(≼7) If (qn) is an inrcreasing sequence of finite projections and p ∈ P (M) such that qn ≼ p
for all n, then

∨
qn ≼ p.

Proof. We inductively define a sequence of mutually orthogonal projections
pn ≤ p such that p0 = q1 and for all n ∈ N, pn ≈ qn+1 − qn. Then

∞∨
n=1

qn = q1 +
∞∑
n=1

(qn+1 − qn) ≈
∞∑
0

pn ≤ p.

By assumption, q1 ≼ p, so there is a p0 ≤ p such that q1 ≈ p0. Suppose we
have p0, p1, . . . , pn.

Claim. qn+2 − qn+1 ≼ p−
∑n

i=0 pi.

Proof of Claim. Observe qn+2 ≼ p, so there is a partial isometry v such that
vv∗ = qn+2 and en+2 := v∗v ≤ p. Since qn+2 ≥ qn+1,

en+1 := v∗qn+1v ≤ v∗qn+2v = v∗vv∗v = v∗v ≤ p

14



and en+1 ≈ qn+1. Then

v∗(qn+2−qn+1)v = en+2−en+1 and (qn+2−qn+1)vv
∗(qn+2−qn+1) = qn+2−qn+1,

so qn+2 − qn+1 ≈ en+2 − en+1. By the induction hypothesis,

en+1 ≈ qn+1 = (qn+1 − qn) + (qn − qn−1) + · · ·+ (q2 − q1) + q1 ≈
n∑

i=0

pi ≤ p.

Since qn+2, qn+1 are finite, so are en+2, en+1 ≈
∑n

i=0 pi. We calculate

qn+2 − qn+1 ≈ en+2 − en+1 = (p− en+1)− (p− en+1) ≤ p− en+1 ≈
(≼6b)

p−
n∑

i=0

pi,

proving the claim. □

By the claim, we can find a projection qn+2 − qn+1 ≈ pn+1 ≤ p −
∑n

i=0 pi, so
we can inductively build the sequence as claimed. □

(≼8) Suppose M is a finite von Nuemann algebra and (pn) is an infinite sequence of mu-
tually orthogonal projections. Suppose (qn) is another sequence of projections with
pn ≈ qn for each n. Then qn → 0 SOT.

Proof. By induction using (≼2), for all m ≤ n,
n∨

i=m

qi ≼
n∑

i=m

pi ≤
∑
i≥m

pi.

Since
∨n

i=m qi is increasing in n,
∨

i≥m qi ≼
∑

i≥m pi by (≼7). Let p0 = 1 −∑∞
i=0 pi. By (≼6b),

p0 +
m−1∑
i=1

pi = 1−
∑
i≥m

pi ≼ 1−
∨
i≥m

qi ≤ 1−
∞∧

m=1

∨
i≥m

qi.

Again by (≼7), we can conclude that

1 = p0 +
∞∑
i=1

pi ≼ 1−
∞∧

m=1

∨
i≥m

qi.

Since M is finite, we must have

0 =
∞∧

m=1

∨
i≥m

qi︸ ︷︷ ︸
decreasing

= SOT− lim
∨
i≥m

qi︸ ︷︷ ︸
≥qm

.

Hence for all ξ ∈ H,

∥qm∥2 = ⟨qmξ, ξ⟩ ≤

〈∨
i≥m

qiξ, ξ

〉
=

∥∥∥∥∥∨
i≥m

qiξ

∥∥∥∥∥
2

m→∞−−−→ 0,

and thus qm → 0 SOT. □
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4.8. Existence of a trace on a finite von Neumann algebra. For this section, M is a
finite von Neumann algebra. Recall that the σ-WOT on M is the weak* topology induced
by M∗. Thus we may identify M∗ with the σ-WOT continuous linear functionals on M .

Definition 4.8.1. Let S(M) ⊂M∗ be the set of σ-WOT continuous states of M . Note that
U(M) acts on S(M) by u · φ := φ(u∗ · u).

Lemma 4.8.2. Let M be a von Neumann algebra and φ ∈ M∗ a state. The following are
equivalent.

(1) φ is tracial, i.e., φ(xy) = φ(yx) for all x, y ∈M .
(2) For all x ∈M , φ(xx∗) = φ(x∗x).
(3) For all u ∈ U(M), φ(u∗xu) = φ(x).

Proof.
(1) ⇒ (2) : Obvious.

(2) ⇒ (3) : For x ≥ 0, φ(u∗xu) = φ(u∗x1/2x1/2u) = φ(x1/2uu∗x1/2) = φ(x). Now use
that every x ∈M is a linear combination of 4 positive operators.
(3) ⇒ (1) : Replacing x with ux, we have φ(xu) = φ(ux) for all x ∈M and u ∈ U(M).
Now use that every y ∈M is a linear combination of 4 unitaries. □

So to construct a trace in S(M) for M finite, we will find a fixed point in S(M) under
the U(M)-action. To do this, we will use the Ryll-Nardzewski Fixed Point Theorem. Our
approach here follows the proof of Jacob Lurie.

Theorem 4.8.3 (Ryll-Nardzewski). Let X be a Banach space and K ⊂ X a weakly compact
convex subset. Suppose G ⊂ B(X) is a group of isometries with GK ⊆ K. Then there is an
x ∈ K such that gx = x for all g ∈ G.

For u ∈ U(M), we define πu ∈ B(M∗) by πuφ := φ(u∗ · u). Hence for our purposes,
G = π(U(M)) ⊂ B(M∗).
The following theorem is the main result of this section.

Theorem 4.8.4. Suppose M is a finite von Neumann algebra and fix φ ∈ S(M). Define

K0 := π(U(M))φ = {φ(u∗ · u)|u ∈ U(M)} ⊂ S(M),

and let K be the weakly closed convex hull of K0 in M∗. Then K is weakly compact.

Before proving this theorem, observe that combining it with the Ryll-Nardzewski Fixed
Point Theorem 4.8.3 yields the desired result.

Corollary 4.8.5. There exists a σ-WOT continuous tracial state on a finite von Neumann
algebra.

Proof. Let φ ∈ S(M). By Theorem 4.8.4, the weakly closed convex hull K ⊂ S(M)
of π(U(M))φ is weakly compact. As K is clearly π(U(M))-invariant, by the Ryll-
Nardzewski Fixed Point Theorem 4.8.3, there is a π(U(M))-fixed point tr ∈ K ⊂
S(M), which is a tracial state by Lemma 4.8.2. □
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Lemma 4.8.6. For a positive linear functional φ ∈M∗, the following are equivalent.

(1) φ is σ-WOT continuous.
(2) φ is normal: for all increasing nets of positive operators xi ↗ x in M , φ(xi) ↗ φ(x).
(3) φ is completely additive: for every family (pi) of mutually orthogonal projections in

M , φ (
∑
pi) =

∑
φ(pi).

Proof. Homework. □

Remark 4.8.7. Suppose (pi) is a family of mutually orthogonal projections in M . For all
positive φ ∈ M∗, and for all finite subsets F ⊂ I,

∑
i∈F φ(pi) = φ

(∑
i∈F pi

)
≤ φ (

∑
pi),

so
∑
φ(pi) ≤ φ (

∑
pi). Hence φ is completely additive if and only if for every family of

mutually orthogonal projections (pi) in M , for all ε > 0, there is a finite F ⊂ I such that
φ
(∑

i/∈F pi
)
≤ ε. Indeed,

∑
φ(pi) = sup

F⊂I

∑
i∈F

φ(pi) = sup
F⊂I

φ

(∑
i∈F

pi

)
= sup

F⊂I
φ
(∑

pi

)
− φ

(∑
i/∈F

pi

)

= φ
(∑

pi

)
− inf

F⊂I
φ

(∑
i/∈F

pi

)
.

Proof of Theorem 4.8.4. Recall that the relative weak* topology on X ⊆ X∗∗ is the
weak topology. To show K ⊂M∗ is weakly compact, by the Banach-Alaoglu Theorem,
it suffices to prove K ⊆ M∗∗

∗ = M∗ is weak* closed, as K ⊆ (M∗)1 which is weak*
compact.
Let ψ ∈ K, the weak* closure of K in M∗. We show ψ is completely additive, and
thus ψ ∈ M∗, so ψ ∈ K. Suppose for contradiction that ψ is not completely additive.
Then there is a family (pi)i∈I of mutually orthogonal projections and an ε > 0 such
that for all finite F ⊂ I, ψ

(∑
i/∈F pi

)
> ε.

Claim. If F ⊂ I is any finite set, there is a ϕ ∈ K0 and a finite set G ⊂ I \ F such
that ϕ(

∑
i∈G pi) > ε.

Proof. The convex hull conv(K0) is weakly dense in K, which is weak* dense in K, so
conv(K0) is weak* dense in K. Thus for all δ > 0, the weak* open neighborhood{

ϕ ∈M∗

∣∣∣∣∣
∣∣∣∣∣(ψ − ϕ)

(∑
i/∈F

pi

)∣∣∣∣∣ < δ

}
of ψ has non-empty intersection with conv(K0), so pick ϕ in this intersection. Since
ψ(
∑

i/∈F pi) > ε, choosing δ small, we have ϕ(
∑

i/∈F pi) > ε. Now if ϕ =
∑n

k=1 λkϕk is a
convex combination of ϕk ∈ K0, there must be a particular k so that ϕk(

∑
i/∈F pi) > ε.

Now since ϕk is completely additive, there is a finite G ⊂ I\F such that ϕk(
∑

i∈G pi) >
ε. □
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Claim. There is a sequence (Fn) of disjoint finite subsets of I and a sequence of states
(ϕn) ⊂ K0 such that for all n ∈ N,

ϕn

(∑
i∈Fn

pi

)
> ε.

Proof. We induct on n. Since ψ(
∑
pi) > ε, by the first claim, there is a ϕ1 ∈ K0

and a finite set F1 ⊂ I such that ϕ1(
∑

i∈F1
pi) > ε. Now suppose we have disjoint

sets F1, . . . , Fn ⊂ I and states ϕ1, . . . , ϕn ∈ K0 such that ϕk(
∑

i∈Fk
pi) > ε for all

k = 1, . . . , n. Since ψ is not completely additive,

ψ

 ∑
i/∈

∐n
j=1 Fj

pi

 > ε,

so again by the first claim, there is a ϕn+1 ∈ K0 and a set Fn+1 ⊂ I \
∐n

j=1 Fj such

that ϕn+1(
∑

i∈Fn+1
pi) > ε. □

Now by the above claim, for each ϕn ∈ K0, there is a unitary un ∈ U(M) such
that ϕn = φ(u∗n · un). Moreover, setting qn :=

∑
i∈Fn

pi, we have a sequence (qn)
of mutually orthogonal projections such that φ(u∗nqnun) > ε for all n. We now have
our desired contradiction. Since the Fn are disjoint, the qn are mutually orthogonal.
Since u∗nqnun ≈ qn for all n, u∗nqnun → 0 SOT (and thus also σ-WOT) by (≼8). But
φ ∈ S(M) is σ-WOT continuous and φ(u∗nqnun) > ε for all n, a contradiction. □

4.9. The proof of Ryll-Nardzewski. In this section, we prove the Ryll-Nardzewski Fixed
Point Theorem 4.8.3 following Lurie’s proof.
https://www.math.ias.edu/~lurie/261ynotes/lecture26.pdf.
We begin by restating (a version of) the Ryll-Nardzewski Fix Point Theorem.

Theorem (Ryll-Nardzewski, Theorem 4.8.3). Let X be a Banach space and K ⊂ X a weakly
compact convex subset. Suppose G ⊂ B(X) is a group of isometries with GK ⊆ K. Then
there is an x ∈ K such that gx = x for all g ∈ G.

Remark 4.9.1. Without loss of generality, we may assume G is finitely generated. Indeed,
write G =

⋃
Gi where each Gi is finitely generated. Then KG =

⋂
KGi . By compactness of

K and the finite intersection property,
⋂
KGi ̸= ∅ for all i implies KG ̸= ∅.

Fix a Banach space X and a weakly compact convex subset K ⊂ X. We begin with the
following warmup.

Lemma 4.9.2. Suppose T ∈ B(X) such that TK ⊆ K. There is an x ∈ K such that
Tx = x.

Proof. For n ∈ N, let Tn := 1
n

∑n−1
k=0 T

k and Kn = TnK ⊆ K as K is convex. We claim
that {Kn} has the finite intersection property. Indeed,

Kn1 ∩ · · · ∩Knk
⊇ Tn1 · · ·Tnk

K

as TmTn = TnTm for all m,n.
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Now let x ∈
⋂
Kn ̸= ∅. For each n ∈ N, there is a y ∈ K such that x = Tny, so

Tx− x = (T − 1)Tny =
1

n
(T − 1)

n−1∑
k=0

T ky =
1

n
(T ny − y) ∈ 1

n
(K −K).

Since K is weakly compact, so is K −K, and in particular, K −K is bounded.a Thus
for every open neighborhood U of K−K, there is an n ∈ N such that 1

n
(K−K) ⊂ U .

But this means Tx− x ∈ U for every open neighborhood U of 0, so Tx = x. □
aIf S ⊂ X ⊆ X∗∗ is weakly compact, then each s ∈ S is pointwise bounded as a map on X∗ by
compactness. Now apply the Uniform Boundedness Principle.

The strategy of the proof will be to take our finitely generated group G = ⟨g1, . . . , gn⟩ ⊆
B(X) of isometries and find a candidate fixed point x ∈ K for G using Lemma 4.9.2. We
will prove by contradiction that this candidate x ∈ K satisfies gix = x for each generator.
The next lemma is the second main ingredient to achieve our contradiction.

Lemma 4.9.3. Suppose g1, . . . gk ∈ B(X) are isometries and x ∈ X such that gi(x) ̸= x
for all i = 1, . . . , k. Let C be the weak closed convex hull of ⟨g1, . . . , gk⟩x, which is weakly
compact. Let ε > 0 such that ∥gi(x) − x∥ > ε for all i = 1, . . . , n. Then there is a weakly
compact subset C ⊊ C such that diam(C \ C ′) ≤ ε.

Assuming this lemma, we can now prove Theorem 4.8.3.

Proof of Theorem 4.8.3. Set T = 1
n

∑
gi ∈ B(X). By the warmup Lemma 4.9.2, there

is an x ∈ K such that Tx = x. If gi(x) = x for all i, we have our fixed point proving
Theorem 4.8.3. Otherwise, relabelling the gi, there is a 1 ≤ k ≤ n such that gi(x) ̸= x
for all i = 1, . . . , k and gi(x) = x for all i = k + 1, . . . , n. Then

x = Tx =
1

n

n∑
i=1

gi(x) =
1

n

k∑
i=1

gi(x) +
n− k

n
x,

which immediately implies that

x =
1

k

k∑
k=1

gi(x).

By Lemma 4.9.3, there is a weakly compact convex subset C ′ ⊊ C = ⟨g1, . . . , gk⟩x ⊆ K
such that diam(C − C ′) ≤ ε. Since C ′ ̸= C, there is an h ∈ G such that hx /∈ C ′, so

hx = hTx =
1

k

k∑
i=1

hgi(x) /∈ C ′.

Since C ′ is convex, there must be some 1 ≤ i ≤ k such that hgi(x) /∈ C ′, so both
hx, hgi(x) /∈ C ′. But since h is an isometry, we have

∥x− gi(x)∥ = ∥hx− hgi(x)∥ ≤ diam(C − C ′) ≤ ε,

a contradiction. □

We now prove the lemma.
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Proof of Lemma 4.9.3. To prove the lemma, it suffices to work in the closure of

span {gi1 · · · gimx|m ∈ N and 1 ≤ i1, . . . , im ≤ k} ,
which is a separable Banach space.
Let E = ∂extC ⊆ C be the set of extreme points. By the Krein-Milman Theorem, C
is the weak closed convex hull of E. Let E ⊆ C be the weak closure of E, and let
B = Bε/3(0) be the closed ball of radius ε/3. Since B is convex and norm closed, B is
also weakly closed as the norm and weak topology have the same closed convex sets.
Since X is separable, there is a sequence (yj) ⊂ X such that (yj +B) covers X. Thus
((yj+B)∩E) is a cover of the weakly compact set E. By the Baire Category Theorem,
there is a j such that (yj +B)∩E has non-empty interior U in E with respect to the
relative weak topology on E.
Now define

C1 := weak closed convex hull of E \ U
C2 := weak closed convex hull of (yj +B) ∩ E,

which are both weakly closed convex subsets of C. Since C is the closed convex hull
of

E ⊆ (E \ U) ∪ ((yj +B) ∩ E),
E is the convex join of C1 and C2, i.e., C = im(θ) for

θ : C1 × C2 × [0, 1] → X given by (a, b, t) 7→ ta+ (1− t)b.

We now consider the sets C(δ) := im(θ|C1×C2×[δ,1]).

Step 1: Each C(δ) is a weakly closed convex subset of C.
Closed: Since θ is continuous from the (weak,weak,standard) product topology to

the weak topology as X with the weak topology is a topological vector
space, K(δ) is weakly compact, and thus closed.

Convex: First, note that for all 0 < δ ≤ 1, δC1 + (1 − δ)C2 is convex. We claim
that

θ(C1 × C2 × [δ, 1]) = θ(C1 × (δC1 + (1− δ)C2)× [0, 1]),

which is manifestly convex.
⊆: If t ∈ [δ, 1], ta + (1− t)b = sa + (1− s)(δa + (1− δb)) for s ∈ [0, 1]

such that (1 − s)(1 − δ) = (1 − t). This condition is equivalent to
t = δ + s(1− δ).

⊇: If s ∈ [0, 1], then sa1 + (1 − s)[δa2 + (1 − δ)b] = ta + (1 − t)b for
t = s+ (1− s)δ = δ + s(1− δ) ∈ [δ, 1] as before and

a =
sa1 + (1− s)δa2
s+ (1− s)δ

∈ C1.

Step 2: For δ > 0 sufficiently small, diam(C \ C(δ)) ≤ ε.
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Since C is weakly compact, it is bounded, so C ⊂ BR(0) for some R > 0.
If y, y′ ∈ C \ C(δ), then there are 0 ≤ t, t′ < δ, a, a′ ∈ C1, and b, b

′ ∈ C2

such that

y = ta+ (1− t)b and y′ = t′a′ + (1− t′)b′.

Then

∥y − y′∥ = ∥t(a− b) + b− t′(a′ − b′)− b′∥
≤ t(∥a∥+ ∥b∥) + t′(∥a′∥+ ∥b′∥) + ∥ b− b′︸ ︷︷ ︸

b,b′∈C2

∥

≤ 4δR +
2

3
ε

as b, b′ ∈ C2 ⊂ yj +B which has diameter 2/3 · ε. Now choose δ < ε
12R

.

Step 3: For δ as in Step 2 above, C(δ) ̸= C.

Since U ⊆ E is a non-empty open subset, there is a y ∈ E∩U . We claim
that y /∈ C(δ). Since y ∈ E is an extreme point of C, it suffices to prove
y /∈ C1. (Indeed, if y /∈ C1 and y = ta + (1− t)b for a ∈ C1 and b ∈ C2,
since y is extreme, y = a = b. But since a ∈ C1 and y /∈ C1, we must
have t = 0. Thus y cannot be written as ta+ (1− t)b for a ∈ C1, b ∈ C2,
and t ∈ [δ, 1].) Since X with the weak topology is locally convex, there
is a weakly open convex neighborhood V of 0 such that the weak closure
V satisfies (y − V ) ∩ E ⊆ U . (Indeed, we can use here that E is weakly
compact and thus weakly normal.)
Now since E \U is weakly compact, it admits a weakly open cover {zi +
V }ki=1 where each zi ∈ E \ U . Thus C1 is contained in the closed convex
hull of

k⋃
i=1

(zi + V ) ∩ E ⊇ E \ U.

In turn,
⋃k

i=1(zi+V )∩E is contained in the convex join of the (zi+V )∩C.
If y ∈ C1, then y ∈ (zi+V )∩C for some i. But then zi ∈ (y−V )∩E ⊆ U ,
a contradiction to zi ∈ E \ U .

Thus if δ > 0 is sufficiently small, we can take C ′ = C(δ) ⊊ C. □
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