4. Projections and factors

For this section, H is a Hilbert space and $M \subseteq B(H)$ is a von Neumann algebra. We denote the set of projections of M by $P(M)$ and the group of unitaries in M by $U(M)$.

4.1. Compressions and ideals.

Theorem 4.1.1. Suppose $p \in P(M)$. Then $p M p \subseteq B(p H)$ is a von Neumann algebra with commutant $(p M p)^{\prime}=M^{\prime} p$.

Proof. Clearly $p M p \subseteq B(p H)$ is an SOT-closed unital $*$-subalgebra and thus a von Neumann algebra.
If $y \in M^{\prime}$, then for all $x \in M$,

$$
(y p)(p x p)=y p x p=p y p x=(p x p)(y p)
$$

so $y p \in(p M p)^{\prime}$. For the converse, we use a clever trick. First, it suffices to prove every unitary in $(p M p)^{\prime}$ lies in $M^{\prime} p$, as every element of $(p M p)^{\prime}$ is a linear combination of 4 unitaries (why?). Suppose $u \in(p M p)^{\prime}$ and set $K:=\overline{M p H}$. Since K is both M and M^{\prime}-invariant, $p_{K} \in M^{\prime} \cap M=Z(M)$.
Claim. We may extend u to K by $\widetilde{u} \sum x_{i} p \xi:=\sum x_{i} u p \xi$.
Proof of claim. To see \widetilde{u} is well-defined, we prove it is isometric:

$$
\begin{array}{rlrl}
\left\|\widetilde{u} \sum x_{i} p \xi_{i}\right\|^{2} & =\sum_{i, j}\left\langle x_{i} u p \xi_{i}, x_{j} u p \xi_{j}\right\rangle & & ([u, p]=0) \\
& \sum_{i, j}\left\langle p x_{j}^{*} x_{i} p u \xi_{i}, u \xi_{j}\right\rangle & & \left(u \in(p M p)^{\prime}\right) \\
& =\sum_{i, j}\left\langle u p x_{j}^{*} x_{i} p \xi_{i}, u \xi_{j}\right\rangle &
\end{array}
$$

Now by construction, \widetilde{u} commutes with the action of M on $K=\overline{M p H}$, and thus $\widetilde{u} p_{K} \in M^{\prime} \subseteq B(H)$; indeed, for all $x \in M$ and all $\xi \in H$,

$$
\widetilde{u} p_{K} x \xi=\widetilde{u} x \underbrace{p_{K} \xi}_{\in K}=x \widetilde{u} p_{K} \xi .
$$

Finally, we claim that $u=\widetilde{u} p_{K} p \in M^{\prime} p$; indeed, as $u=u p \in M^{\prime} p$, for all $\xi \in H$,

$$
\widetilde{u} p_{K} p \xi=\widetilde{u}\left(1_{M} p \xi\right)=u p \xi=u \xi
$$

Definition 4.1.2. We call $p M p, M^{\prime} p$ corners, compressions, or reductions of M, M^{\prime} respectively.

Lemma 4.1.3. If $J \subseteq M$ is a σ-WOT closed left ideal, then $J=M p$ for a unique projection $p \in M$.

Proof. If p is any projection such that $J=M p$, then since $(x p) p=x p$ for all $x \in M$, $y p=y$ for all $y \in J$. It follows that if $M q=J=M p$, then $p \leq q$ and $q \leq p$, so $p=q$. This also tells us how to construct p : find the largest projection in J.
If $x \in J$, then so are $|x|=u^{*} x$ and $\chi_{[\varepsilon,\|x\|]}(|x|)$ for all $\varepsilon>0$. Since $\chi_{[\varepsilon, \| x| |]}(|x|) \nearrow$ $\operatorname{supp}(|x|)=\operatorname{supp}(x)$ as $\varepsilon \searrow 0, \operatorname{supp}(x) \in J$.
Now observe that if there is a maximal projection p in J, then $p \geq \operatorname{supp}(x)$ for all $x \in J$, so $x=x \cdot \operatorname{supp}(x) \cdot p=x p$ for all $x \in J$. We thus have $J \subseteq M p \subseteq J$, and thus equality holds.
Finally, to construct the maximal projection, since J is σ-WOT closed, it is a normclosed left ideal, and thus contains a right approximate identity $\left(e_{i}\right)$ such that $0 \leq e_{i} \leq$ 1 for all $i, i \leq j$ implies $e_{i} \leq e_{j}$, and $\left\|x-x e_{i}\right\| \rightarrow 0$ for all $x \in J$. Since J is σ-WOT closed, $p:=\bigvee e_{i} \in J$, which is automatically self-adjoint. Since $\left\|p-p e_{i}\right\| \rightarrow 0$, we see that $p=p^{2}$, so p is a projection, and since $\left\|x-x e_{i}\right\| \rightarrow 0, x=x p$ for all $x \in J$. We conclude that p is the largest projection in J.

Corollary 4.1.4. A left ideal $J \subseteq M$ is SOT/WOT-closed if and only if it is $\sigma-S O T / \sigma-W O T$ closed.

Proof. If J is σ-WOT closed, then $J=M p$ for some projection $p \in J$, so J is WOT closed. The converse is trivial as WOT-closed sets are σ-WOT closed.

Corollary 4.1.5. If $J \subseteq M$ is a σ-WOT closed 2-sided ideal, then $J=M z$ for some projection $z \in Z(M)$.

Proof. Since J is σ-WOT closed, it is also WOT and hence SOT-closed. By Lemma 4.1.3, $J=M z$ for some projection $z \in M$. But as J is 2 -sided, for every unitary $u \in M$, $J=u J u^{*}$. It follows that $J=u J u^{*}=u M z u^{*}=u M u^{*}\left(u z u^{*}\right)=M u z u^{*}$, so $z=u z u^{*}$ by the uniqueness statement in Lemma 4.1.3. We conclude $z \in M^{\prime} \cap M=Z(M)$.

4.2. Central support of a projection.

Definition 4.2.1. A factor is a von Neumann algebra with trivial center, i.e., $Z(M)=$ $M^{\prime} \cap M=\mathbb{C} 1$.

Remark 4.2.2. By Corollary 4.1.5, factors have no non-trivial σ-WOT closed 2-sided ideals.
Just as von Neumann algebras come in pairs M, M^{\prime}, so do factors as $Z(M)=M^{\prime} \cap M=$ $Z\left(M^{\prime}\right)$.
 the projection onto $\overline{p H+q H}$. Observe we have the relation

$$
\begin{equation*}
p \vee q=1-(1-p) \wedge(1-q) \tag{4.2.3}
\end{equation*}
$$

For homework, you will show that $p \wedge q, p \vee q \in M$. Thus $P(M)$ is a lattice under these operations.

Lemma 4.2.4. For $p, q \in P(M)$ and $u \in U(M), u^{*}(p \vee q) u=u^{*} p u \vee u^{*} q u$ and $u^{*}(p \wedge q) u=$ $u^{*} p u \wedge u^{*} q u$.

Proof. Observe that $\xi \in p H \cap q H$ if and only if $u^{*} \xi \in u^{*} p u H \cap u^{*} q u H$, and $\eta \perp p H \cap q H$ if and only if $u^{*} \eta \perp u^{*} p u H \cap u^{*} q u H$. Thus $u^{*}(p \wedge q) u=u^{*} p u \wedge u^{*} q u$. Now apply (4.2.3) to get $u^{*}(p \vee q) u=u^{*} p u \vee u^{*} q u$.

Definition 4.2.5. Given $p \in P(M)$, we define its central support

$$
z(p):=\bigvee_{u \in U(M)} u^{*} p u:=\operatorname{lub} p_{F}
$$

where $p_{F}:=\bigvee_{u \in F} u^{*} p u$ for finite subsets $F \subset U(M)$, ordered by inclusion. By Lemma 4.2.4, for all $w \in U(M)$,

$$
w^{*} p_{F} w=\bigvee_{u \in F} w^{*} u^{*} p u w=\bigvee_{v \in F w} v^{*} p v=p_{F w}
$$

As $z(p)$ is the SOT-limit of the p_{F} and multiplication is separately SOT-continuous,

$$
w^{*} z(p) w=w^{*}\left(\lim ^{S O T} p_{F}\right) w=\lim ^{S O T} w^{*} p_{F} w=\lim ^{S O T} p_{F w}=z(p)
$$

This means $w z(p)=z(p) w$ for all $w \in U(M)$, so $z(p) \in M^{\prime} \cap M=Z(M)$.
Lemma 4.2.6. Suppose $p \in P(M)$.
(1) For $x \in M$, xup $=0$ for all $u \in U(M)$ if and only if $x z(p)=0$.
(2) For $y \in M^{\prime}, y p=0$ if and only if $y z(p)=0$. Hence the map $M^{\prime} z(p) \rightarrow M^{\prime} p$ given by multiplication by p is $a *$-isomorphism.

Proof.
(1) If $x u p=0$ for all $u \in U(M)$, then $x u p u^{*}=0$ for all such u. Then $x p_{F}=0$ where $p_{F}=\bigvee_{u \in F} u p u^{*}$ for any finite $F \subset U(M),{ }^{a}$ and taking SOT limits, we have $x z(p)=x \lim ^{S O T} p_{F}=0$.

Conversely, if $x z(p)=0$, then $x\left(u p u^{*}\right) u=x z(p)\left(u p u^{*}\right) u=0$ for all $u \in$ $U(M)$.
(2) Since $y p=y p z(p)=y z(p) p, y z(p)=0$ implies $y p=0$. Conversely, if $y p=0$, then $y u p u^{*}=0$ for all $u \in U(M)$ as $y \in M^{\prime}$. The argument from (1) shows $y p_{F}=0$ for all finite $F \subset U(M)$, so taking SOT limits, $y z(p)=0$.
${ }^{{ }^{a} \text { If }} u_{1}, \ldots, u_{n} \in U(M)$ and $\xi_{i} \in u_{i} p u_{i}^{*} H$ for $i=1, \ldots, n$, then $x \sum \xi_{i}=\sum x \xi_{i}=\sum x u_{i} p u_{i}^{*} \xi_{i}=0$, so $x p_{F}=0$.

Proposition 4.2.7. For a von Neumann algebra M and $p, q \in P(M) \backslash\{0\}$, the following are equivalent.
(1) $z(p) z(q) \neq 0$,
(2) there is a $u \in U(M)$ such that $p u q \neq 0$, and
(3) there is a non-zero partial isometry $v \in M$ such that $v v^{*} \leq p$ and $v^{*} v \leq q$.

Proof.
$\neg(2) \Rightarrow \neg(1)$: If $p u q=0$ for all $u \in U(M)$, then $p z(q)=0$ by Lemma 4.2.6(1). But then $0=q z(p) u=q u z(p)$ for all $u \in U(M)$, so by (the adjoint of) Lemma 4.2.6(1) again, $z(q) z(p)=0$.
$(2) \Rightarrow(3):$ If $p u q \neq 0$, consider the polar decomposition $p u q=v|p u q|$. By construction, $v v^{*} H=v H=\overline{p u q H} \subset p H$, so $v v^{*} \leq p$. Since $\operatorname{ker}(v)=\operatorname{ker}(p u q) \supset \operatorname{ker}(q)$, we have $v^{*} v=p_{\operatorname{ker}(v)^{\perp}} \leq p_{\operatorname{ker}(q)^{\perp}}=q$.
$(3) \Rightarrow(1)$: We prove that if $z(p) z(q)=0$ and $v \in M$ is a partial isometry such that $v v^{*} \leq p$ and $v^{*} v \leq q$, then $v=0$. Since $v v^{*} \leq p \leq z(p), v v^{*}=v v^{*} z(p)$. Since $v^{*} v \leq q \leq z(q), v^{*} v=v^{*} v z(q)$. Then

$$
v=v v^{*} v=z(p) v v^{*} v z(q)=v z(q) z(p)=0 .
$$

Corollary 4.2.8 (Ergodic property of factors). Suppose M is a factor and $p, q \in P(M) \backslash\{0\}$. There is a unitary $u \in U(M)$ such that $p u q \neq 0$.

Proof. Since $p, q \neq 0, z(p)=z(q)=1$. Now apply Proposition 4.2.7.

Corollary 4.2.9. Suppose M is a factor and $p, q \in P(M) \backslash\{0\}$. There is a non-zero partial isometry $u \in M$ such that $u u^{*} \leq p$ and $u^{*} u \leq q$. Moreover, we can find $u \in M$ such that $u u^{*}=p$ or $u^{*} u=q$.

Proof. The first part is immediate as $z(p)=1=z(q)$. Consider the set of partial isometries $u \in M$ such that $u u^{*} \leq p$ and $u^{*} u \leq q$. We can order this set by $u \leq v$ if $u u^{*} \leq v v^{*}, u^{*} u \leq v^{*} v$, and $\left.v\right|_{u u^{*} H}=u$.
Claim. Any increasing chain has an upper bound.
Proof of Claim. If $\left(v_{i}\right)$ is an increasing chain, then the operator $w: \bigcup v_{i}^{*} v_{i} H \rightarrow$ $\bigcup v_{j} v_{j}^{*} H$ given by $\xi \mapsto v_{k} \xi$ whenever $\xi \in v_{k}^{*} v_{k} H$ is well-defined and unitary. It thus extends to an isometry $K:=\overline{\bigcup v_{i}^{*} v_{i} H} \rightarrow H$, and thus to a partial isometry on H by defining $\left.w\right|_{K^{\perp}}=0$. Clearly $w w^{*} \leq p, w^{*} w \leq q$, and $v_{i} \leq w$ for all i.
We claim a maximal element satisfies $u u^{*}=p$ or $u^{*} u=q$. Indeed, if $p-u u^{*} \neq 0 \neq$ $q-u^{*} u$, then there is a non-zero partial isometry $w \in M$ such that $w w^{*} \leq p-u u^{*}$ and $w^{*} w \leq q-w^{*} w$. Observe then that $u+w$ is a partial isometry (why?) with $(u+w)(u+w)^{*} \leq p$ and $(u+w)^{*}(u+w) \leq q$ contradicting maximality.

Exercise 4.2.10. Show that the central support $z(p)$ is the smallest projection in $Z(M)$ such that $p \leq z(p)$.
Corollary 4.2.11. $Z(p M p)=Z(M) p$.
Proof (Dixmier). Clearly $Z(M) p=p\left(M^{\prime} \cap M\right) p \subset Z(p M p)$. Suppose $x \in Z(p M p)=$ $p M p \cap M^{\prime} p$. Then there is a $y \in M^{\prime}$ such that $x=y p$. Since $p=z(p) p$, replacing y with $y z(p)$, we may assume $y=y z(p)$. We claim that $y \in Z(M z(p))$ so that
$y \in M^{\prime} \cap M z(p) \subset M^{\prime} \cap M=Z(M)$. Indeed, the map $M^{\prime} z(p) \rightarrow M^{\prime} p$ given by multiplication by p is an isomorphism by Lemma 4.2.6(2), and thus maps the center onto the center. Since $y p=x \in Z(p M p)$, we conclude $y=y z(p) \in Z(M z(p))$, as desired.

4.3. Classification of type I factors and their subfactors.

Definition 4.3.1. A (nonzero) projection $p \in P(M)$ is called:

- minimal if $q \in P(M)$ with $q \leq p$ implies $q \in\{0, p\}$,
- abelian if $p M p$ is abelian, and
- diffuse if there is no minimal projection $q \leq p$.

Examples 4.3.2. Here are examples of such projections.
(1) The minimal projections in $B(H)$ are the rank 1 projections.
(2) Every projection is diffuse in $L^{\infty}([0,1], \lambda)$ where λ is Lebesgue measure.

Exercise 4.3.3. Suppose μ is a regular finite Borel measure on a compact Hausdorff space X. Show that the minimal projections of $L^{\infty}(X, \mu)$ correspond to atoms of X, i.e., $x \in X$ such that $\mu(\{x\})>0$.
Exercise 4.3.4. Suppose $p \in P(M)$ is minimal and $u \in M$ is a non-zero partial isometry such that $u u^{*} \leq p$. Show that $u u^{*}=p$ and that $u^{*} u$ is a minimal projection.
Definition 4.3.5. A von Neumann algebra M is called type I if for all $z \in P(Z(M)) \backslash\{0\}$, there is an abelian $p \in P(M) \backslash\{0\}$ such that $p \leq z$, i.e., every non-zero central projection majorizes an abelian projection.
Examples 4.3.6. Examples of type I von Neumann algebras include abelian von Neumann algebras and $B(H)$.
Exercise 4.3.7. Here are some exercises on minimal projections.
(1) $p \in P(M)$ is minimal if and only if $p M p=\mathbb{C} p$.
(2) If M is a factor and p is abelian, then p is minimal.
(3) If M is a factor, then M is type I if and only if M has a minimal projection.

Theorem 4.3.8 (Classification of type I factors). If M is a type I factor acting on a Hilbert space H, there are Hilbert spaces K, L and a unitary $u \in B(K \otimes L \rightarrow H)$ such that $u M u^{*}=$ $B(K) \otimes 1$.

To prove this theorem, we will construct a system of matrix units for M, i.e., a family $\left\{e_{i j} \mid i, j \in I\right\}$ such that

- $e_{i j}^{*}=e_{j i}$,
- $e_{i j} e_{k \ell}=\delta_{j=k} e_{i \ell}$, and
- $\sum e_{i i}=1$ converging in SOT.

Lemma 4.3.9. If $\left\{e_{i j}\right\}_{i, j \in I}$ is a system of matrix units in $B(H)$, then setting $K:=e_{11} H$ which should be viewed as a 'multiplicity space,' there is a unitary $u: \ell^{2} I \otimes K \rightarrow H$ such that $u^{*} e_{i j} u=\left|\delta_{i}\right\rangle\left\langle\delta_{j}\right| \otimes 1$ for all i, j. Thus $u^{*}\left(\left\{e_{i j}\right\}^{\prime \prime}\right) u=B\left(\ell^{2} I\right) \otimes 1$, and $\operatorname{dim}(H)=|I| \operatorname{dim}(K)$.

Proof. Let $\left\{\xi_{j}\right\}_{j \in J}$ be an ONB of $K=e_{11} H$. Since $e_{1 i}$ may be viewed as a unitary from $e_{i i} H$ onto $e_{11} H$, we see that $\left\{e_{i 1} \xi_{j} \mid j \in J\right\}$ is an ONB for $e_{i i} H$. Since $H=\bigoplus e_{i i} H$, we see that $\left\{e_{i 1} \xi_{j} \mid i \in I, j \in J\right\}$ is an ONB of H. Thus the map $u: \ell^{2} I \otimes K \rightarrow H$ by $\delta_{i} \otimes \xi_{j} \mapsto e_{i 1} \xi_{j}$ is a unitary isomorphism. Finally, we calculate

$$
u^{*} e_{i j} u\left(\delta_{k} \otimes \xi_{\ell}\right)=u^{*} e_{i j} e_{k 1} \xi_{\ell}=\delta_{j=k} u^{*} e_{i 1} \xi_{\ell}=\delta_{j=k}\left(\delta_{i} \otimes \xi_{\ell}\right),
$$

so $u^{*} e_{i j} u=\left|\delta_{i}\right\rangle\left\langle\delta_{j}\right| \otimes 1$ as claimed.

Remark 4.3.10. Observe that if $\left\{p_{i}\right\}$ is a family of mutually orthogonal projections such that $\sum p_{i}=1$ SOT, and $\left\{e_{1 j}\right\}_{j \neq 1}$ is a family of partial isometries such that $e_{1 j} e_{1 j}^{*}=p_{1}$, and $e_{1 j}^{*} e_{1 j}=p_{j}$, then setting $e_{11}:=p_{1}$ and $e_{i j}:=e_{1 i}^{*} e_{1 j}$ for all i, j with $i \neq 1$ completes $\left\{e_{1 j}\right\}$ to a system of matrix units.

Proof of Theorem 4.3.8. Since M is a type I factor, it has a minimal projection p_{1}. Let $\left\{p_{i}\right\}$ be a maximal family of mutually orthogonal minimal projections.

Claim. $\sum p_{i}=1$ SOT.
Proof. Otherwise, by Corollary 4.2.9, there is a non-zero partial isometry $u \in M$ such that $u u^{*} \leq p_{1}$ and $u^{*} u \leq 1-\sum p_{i}$, so $u^{*} u \perp p_{i}$ for all i. By minimality, $u u^{*}=p_{1}$, so $u^{*} u$ is also minimal. Then $\left\{p_{i}\right\} \subsetneq\left\{p_{i}\right\} \cup\left\{u^{*} u\right\}$, contradicting maximality.

Now by Corollary 4.2.8, for each i, there is a non-zero partial isometry $e_{1 i}$ such that $e_{1 i} e_{1 i}^{*} \leq p_{1}$ and $e_{1 i}^{*} e_{1 i} \leq p_{i}$. My minimality, we must have $e_{1 i} e_{1 i}^{*}=p_{1}$ and $e_{1 i}^{*} e_{1 i}=p_{i}$ Setting $e_{i i}:=p_{i}$ for all i, we can construct a system of matrix units $\left\{e_{i j}\right\}$ as in Remark 4.3.10.

Claim. $M=\left\{e_{i j}\right\}^{\prime \prime}$.
Proof. If $x \in M$, then $x=\left(\sum p_{i}\right) x\left(\sum p_{j}\right)=\sum_{i j} p_{i} x p_{j}$ SOT. But by minimality, each

$$
p_{i} x p_{j}=e_{1 i}^{*} e_{1 i} x e_{1 j}^{*} e_{1 j}=e_{i 1} \underbrace{p_{1} e_{1 i} x e_{j 1} p_{1}}_{=: \lambda_{i j} p_{1} \in \mathbb{C}_{1}} e_{1 j}=\lambda_{i j} e_{i 1} p_{1} e_{1 j}=\lambda_{i j} e_{i j} .
$$

Hence $x=\sum_{i j} \lambda_{i j} e_{i j}$, and $M=\left\{e_{i j}\right\}^{\prime \prime}$.
The final claim follows now from Lemma 4.3.9

Definition 4.3.11. We say a type I factor M is type I_{n} if $M \cong B(H)$ with $\operatorname{dim}(H)=n$.
Fact 4.3.12. If u, v are two partial isometries with $u u^{*} \perp v v^{*}$ and $u^{*} u \perp v^{*} v$, then $u^{*} v=$ $0=u v^{*}$ and $u+v$ is a partial isometry.
Corollary 4.3.13. Suppose M, N are two type I subfactors of $B(H)$. Let $p \in M$ and $q \in N$ be minimal projections. The following are equivalent.
(1) There is a unitary $u \in U(H)$ such that $u^{*} M u=N$.
(2) There are minimal $p \in P(M)$ and $q \in P(N)$ and a $u \in U(H)$ such that $u^{*} p u=q$.
(3) There are minimal $p \in P(M)$ and $q \in P(N)$ and a partial isometry $v \in B(H)$ such that $v v^{*}=p$ and $v^{*} v=q$. (Note that this v is a unitary isomorphism between the multiplicity spaces $p H$ and $q H$ for M and N respectively.)

Proof.
$(1) \Rightarrow(2)$: If $p \in P(M)$ is minimal, then so is $u^{*} p u \in P(N)$.
$\overline{(2) \Rightarrow(3):}$ Take $v=p u$.
$\overline{(3) \Rightarrow(1)}$: Extend $\{p\}$ and $\{q\}$ to systems of matrix units $\left\{e_{i j}\right\}_{i, j \in I}$ for M with $e_{11}=p$ and $\left\{f_{k, \ell}\right\}_{k, \ell \in K}$ for N with $f_{11}=q$ respectively. Observe that for each $i \in I$ and $k \in K$,

$$
\left(e_{i 1} v f_{1 k}\right)\left(e_{i 1} v f_{1 k}\right)^{*}=e_{i 1} \underbrace{v q v^{*}}_{=p} e_{i 1}^{*}=e_{i i} \quad \text { and } \quad\left(e_{i 1} v f_{1 k}\right)^{*}\left(e_{i 1} v f_{1 k}\right)=f_{1 k}^{*} \underbrace{v^{*} p v}_{=q} f_{1 k}=f_{k k} .
$$

Since $\sum e_{i i}=1=\sum f_{k k}$, we see that $|I|=|K|$, and we may identify the two index sets. By Fact 4.3.12, $u:=\sum e_{i 1} v f_{1 i}$ is a unitary such that $u f_{i j} u^{*}=e_{i j}$ for all i, j.

4.4. Comparison of projections.

Definition 4.4.1. For $p, q \in P(M)$, we say $p \preccurlyeq q$ if there is a partial isometry $u \in M$ such that $u u^{*}=p$ and $u^{*} u \leq q$. We say $p \approx q$ if there is a partial isometry $u \in M$ such that $u u^{*}=p$ and $u^{*} u=q$.
Example 4.4.2. For $x \in M$ and $x=u|x|$ the polar decomposition, $u \in M$ with $u^{*} u=$ $\operatorname{supp}(x)$ and $u u^{*}=\operatorname{range}(x)$. Hence $\operatorname{supp}(x) \approx \operatorname{range}(x)$.
Example 4.4.3. Suppose u is a partial isometry such that $u u^{*}=p$. Then for all $q \leq p, q u$ is a partial isometry such that $q u u^{*} q=q p q=q$, so $u^{*} q u \approx q$.
Exercise 4.4.4. Show that \approx is an equivalence relation on $P(M)$ up to \approx.
Theorem 4.4.5. \preccurlyeq is a partial order on $P(M)$.

Proof.

reflexive: $p \preccurlyeq p$ via partial isometry p.
transitive: Suppose $u u^{*}=p, u^{*} u \leq q=v v^{*}$, and $v^{*} v \leq r$. Then

$$
\begin{aligned}
& u v v^{*} u^{*}=u q u^{*}=u u^{*} u q u^{*}=u u^{*} u u^{*}=u u^{*}=p \quad \text { and } \\
& v^{*} u^{*} u v \leq v^{*} q v=v^{*} v v^{*} v=v^{*} v \leq r .
\end{aligned}
$$

anti-symmetric: Suppose $p \preccurlyeq q$ and $q \preccurlyeq p$. Let $u, v \in M$ br partial isometries such that $u u^{*}=p, u^{*} u \leq q, v v^{*}=q$, and $v^{*} v \leq p$. Then for each $p^{\prime} \leq p$,

$$
u^{*} p^{\prime} u \leq u^{*} p u=u^{*} u u^{*} u=u^{*} u \leq q
$$

and similarly, for each $q^{\prime} \leq q, v^{*} q^{\prime} v \leq p$. That is, we have order preserving maps

$$
\{\text { projections } \leq p\} \underset{\operatorname{Ad}(v)}{\stackrel{\operatorname{Ad}(u)}{\leftrightarrows}}\{\text { projections } \leq q\}
$$

It immediately follows that inductively defining

$$
\begin{aligned}
p_{n+1} & :=v^{*} q_{n} v & p_{0}:=p \\
q_{n+1} & :=u^{*} p_{n} u & q_{0}:=q
\end{aligned}
$$

yields two decreasing sequences of projections in M. Define $p_{\infty}:=\lim ^{S O T} p_{n}=\bigwedge p_{n}$ and $q_{\infty}:=\lim ^{S O T} q_{n}=\bigwedge q_{n}$, the orthogonal projections onto $\bigcap p_{n} H$ and $\bigcap q_{n} H$
respectively. The clever trick here is to write $p=p_{0}$ and $q=q_{0}$ as telescoping sums of mutually orthogonal projections, which converge SOT:

We then pair up projections and sum up the partial isometries with orthogonal domains and ranges.
First, since multiplication is separately SOT-continuous,

$$
v^{*} q_{\infty} v=v^{*}\left(\lim ^{S O T} q_{n}\right) v=\lim ^{S O T} v^{*} q_{n} v=\lim ^{S O T} p_{n}=p_{\infty} .
$$

Moreover, since $q_{\infty} \leq q, q_{\infty}=q_{\infty} q q_{\infty}=q_{\infty} v v^{*} q_{\infty}$. Hence $p_{\infty} \approx q_{\infty}$ via the partial isometry $q_{\infty} v$. Finally, observe that

$$
\begin{aligned}
\operatorname{Ad}(u)\left(p_{n}-p_{n+1}\right) & =u^{*}\left(p_{n}-p_{n+1}\right) u=u^{*} p_{n} u-u^{*} p_{n+1} u=q_{n+1}-q_{n+2} \\
\operatorname{Ad}(v)\left(q_{n}-q_{n+1}\right) & =p_{n+1}-p_{n+2}
\end{aligned}
$$

Thus $\left(p_{n}-p_{n+1}\right) u$ is a partial isometry witnessing $p_{n}-p_{n+1} \approx q_{n+1}-q_{n+2}$, and $\left(q_{n}-q_{n+1}\right) v$ is a partial isometry witnessing $q_{n}-q_{n+1} \approx p_{n+1}-p_{n+2}$.

Corollary 4.4.6. If M is a factor, then \preccurlyeq is a total order up to \approx.
Proof. This is a restatement of Corollary 4.2.9.

Definition 4.4.7. A projection $p \in P(M)$ is called:

- finite if for all projections $q \leq p, q \approx p$ implies $q=p$.
- infinite if there is a $q \leq p$ with $q \neq p$ such that $q \approx p$ (not infinite). An infinite projection is called:
- purely infinite if there is no non-zero finite $q \leq p$, and
- properly infinite if for all $z \in P(Z(M))$ such that $z p \neq 0, z p$ is infinite.

A von Neumann algebra M is called finite or (purely/properly) infinite if 1_{M} is respectively.
Exercise 4.4.8. Prove that abelian von Neumann algebras are finite. Deduce that p abelian implies p is finite.
Definition 4.4.9. A von Neumann algebra M is called:

- type III if M is purely infinite.
- type II if M has no abelian projections and any non-zero central projection majorizes a non-zero finite projection. In this case, we call M :
- type II_{1} if M is finite, and
- type II_{∞} if there is no non-zero finite central projection.

Remark 4.4.10. The above definition is rather hard to parse, so here is another way to say it. We will informally say that a von Neumann algebra M has sufficiently many projections with property (P) if every non-zero central projection of M majorizes a non-zero projection with property (P). Then M is:

- type I if M has sufficiently many abelian projections,
- type II if M has no abelian projections, but has sufficiently many finite projections. In this case, M is:
(1) type II_{1} if M is finite and
(2) type II_{∞} if has no non-zero finite central projections.
- type III if M has no abelian projections and no non-zero finite projections.
4.5. $L \Gamma$ is a I_{1} factor when Γ is icc. Let Γ be a countable discrete group. Recall

$$
L \Gamma:=\left\{\lambda_{g} \mid g \in \Gamma\right\}^{\prime \prime} \subset B\left(\ell^{2} \Gamma\right) \quad \text { where } \quad\left(\lambda_{g} \xi\right)(h):=\xi\left(g^{-1} h\right)
$$

The functions $\delta_{g}(h):=\delta_{g=h}$ give a distinguished orthonormal basis of $\ell^{2} \Gamma$. Observe $\lambda_{g} \delta_{h}=$ $\delta_{g h}$. We also have a right Γ action on $\ell^{2} \Gamma$ by $\left(\rho_{g} \xi\right)(h):=\xi(h g)$. Notice that $\rho_{g} \in U\left(\ell^{2} \Gamma\right) \cap L \Gamma^{\prime}$.

Facts 4.5.1. We compute some basic properties about $L \Gamma$.
(LГ1) For all $x \in L \Gamma$, there a sequence $\left(x_{g}\right) \in \ell^{2} \Gamma$ such that $x \delta_{e}=\sum x_{g} \delta_{g}$.
(LГ2) For all $x \in L \Gamma$ and $h \in \Gamma$,

$$
x \delta_{h}=x \rho_{h} \delta_{e}=\rho_{h} x \delta_{e}=\rho_{h} \sum x_{g} \delta_{g}=\sum_{g} x_{g} \delta_{g h}=\sum_{g} x_{g h^{-1}} \delta_{g} .
$$

$(L \Gamma 3) x^{*} \delta_{e}=\sum \overline{x_{g^{-1}}} \delta_{g}$ since for all $h \in \Gamma$,

$$
\left\langle x^{*} \delta_{e}, \delta_{h}\right\rangle=\left\langle\delta_{e}, x \delta_{h}\right\rangle \underset{(L \Gamma 2)}{\overline{=}} \sum \overline{x_{g h^{-1}}}\left\langle\delta_{e}, \delta_{g}\right\rangle=\overline{x_{h^{-1}}} .
$$

$(L \Gamma 4)$ If $x \delta_{e}=\sum x_{g} \delta_{g}$ and $y \delta_{e}=\sum y_{g} \delta_{g}$, then $x y \delta_{e}=\sum_{g}\left(\sum_{h} x_{h} y_{h^{-1} g}\right) \delta_{g}$. Thus the convolution product $\left(x_{g}\right) *\left(y_{h}\right) \in \ell^{2} \Gamma$.

Proof. For all $g \in \Gamma$,

$$
\left\langle x y \delta_{e}, \delta_{g}\right\rangle=\left\langle y \delta_{e}, x^{*} \delta_{g}\right\rangle \underset{(L \Gamma 3)}{=} \sum_{h, k} x_{h^{-1}} y_{k}\left\langle\delta_{k}, \rho_{g^{-1}} \delta_{h}\right\rangle=\sum_{h, k} x_{h^{-1}} y_{k} \delta_{k=h g},
$$

which simplifies to $\sum_{h^{-1}} x_{h^{-1}} y_{h g}$. This is the claimed formula swapping h with h^{-1} as the index of summation.
$(L \Gamma 5) \delta_{e}$ is a cylic and separating vector for $L \Gamma$.
Proof. Clearly $\mathbb{C}[\Gamma] \delta_{e} \subset L \Gamma \delta_{e}$ is dense in $\ell^{2} \Gamma$, so δ_{e} is cyclic. If $x \in L \Gamma$ such that $x \delta_{e}=0$, then $x \delta_{g}=\rho_{g^{-1}} x \delta_{e}=0$ for all g, and $x=0$. Thus δ_{e} is separating.
(LГ6) $\operatorname{tr}:=\left\langle\cdot \delta_{e}, \delta_{e}\right\rangle$ is a faithful σ-WOT continuous tracial state on $L \Gamma$ with $\operatorname{tr}(x)=x_{e}$.
Proof. First, we have the tracial property as

$$
\left\langle x y \delta_{e}, \delta_{e}\right\rangle \underset{(L \Gamma 4)}{\overline{=}} \sum_{h} x_{h} y_{h^{-1}}=\sum_{h} y_{h} x_{h^{-1}} \underset{(L \Gamma 4)}{\overline{=}}\left\langle y x \delta_{e}, \delta_{e}\right\rangle .
$$

Next, $\operatorname{tr}\left(x^{*} x\right)=\sum_{g}\left|x_{g}\right|^{2}=0$ if and only if $x_{g}=0$ for all g if and only if $x=0$, so tr is faithful.
($L \Gamma 7$) All projections in $L \Gamma$ are finite.
Proof. Suppose $u u^{*}=p$ and $u^{*} u=q \leq p$. Then $\operatorname{tr}(p-q)=\operatorname{tr}\left(u u^{*}\right)-\operatorname{tr}\left(u^{*} u\right)=$ 0 which implies $p-q=0$ as tr is faithful by (LГ6).

Example 4.5.2. If H is infinite dimensional, then $B(H)$ does not admit a trace.
Proposition 4.5.3. If Γ is icc (infinite and all nontrivial conjugacy classes infinite), then $L \Gamma$ is a II_{1} factor.

Proof. If $z \in Z(L \Gamma)$, then

$$
\sum z_{g} \delta_{g}=z \delta_{e}=\lambda_{h^{-1}} z \lambda_{h} \delta_{e}=\sum z_{h^{-1} g h} \delta_{g}
$$

so $\left(z_{g}\right) \in \ell^{2} \Gamma$ is constant on conjugacy classes. Since Γ is icc, $z_{g}=0$ for $g \neq e$, so $z \in \mathbb{C} 1$ by ($L \Gamma 6$), and $L \Gamma$ is a factor.
Since $L \Gamma$ is infinite dimensional and admits a trace, it cannot be type I by Exercise 4.5.2. Since $L \Gamma$ is finite by $(L \Gamma 7) L \Gamma$ is type II_{1}.
4.6. II_{1} factor basics. This subsection follows Jones' von Neumann algebra notes quite closely.

Above, we exploited the trace on $L \Gamma$ to prove Proposition 4.5.3. For this subsection, we assume a II_{1} factor comes equipped with a σ-WOT continuous tracial state. We will construct such a trace in Corollary 4.8.5 below.

Facts 4.6.1. Here are some elementary facts about a factor M equipped with a tracial state tr, which is sometimes assumed to be faithful or σ-WOT continuous.
(tr1) A σ-WOT continuous tracial state on a factor M is faithful.
Proof. Let $J=\left\{x \in M \mid \operatorname{tr}\left(x^{*} x\right)=0\right\}$. Since $x^{*} y^{*} y x \leq\left\|y^{*} y\right\| x^{*} x, J$ is a left ideal. But since tr is a trace, J is a 2 -sided ideal. By Cauchy-Schwarz, $\operatorname{tr}\left(x^{*} x\right)=$ 0 if and only if $\operatorname{tr}(x y)=0$ for all y, so

$$
J=\bigcap_{y \in M} \operatorname{ker}(\underbrace{\operatorname{tr}(\cdot y)}_{\sigma \text {-WOT cts }})
$$

is σ-WOT closed. By Corollary 4.1.5, M has no non-trivial σ-WOT closed 2-sided ideals, so $\operatorname{ker}(\operatorname{tr})=0$.
$(\operatorname{tr} 2)$ If M is a factor with a faithful tracial state, then M is finite.
Proof. The proof of ($L \Gamma 7$) applies verbatim.
(tr3) An infinite dimensional factor M with a σ-WOT continuous tracial state is type II_{1}.
Proof. The second part of the proof of Proposition 4.5.3 applies verbatim.
$(\operatorname{tr} 4)$ Suppose M is a factor and tr is faithful.
(a) $p \preccurlyeq q$ if and only if $\operatorname{tr}(p) \leq \operatorname{tr}(q)$.
(b) $p \approx q$ if and only if $\operatorname{tr}(p)=\operatorname{tr}(q)$.

Proof. For the forward direction, suppose $p=u u^{*}$ and $u^{*} u \leq q$. Then

$$
\operatorname{tr}(p)=\operatorname{tr}\left(u u^{*}\right)=\operatorname{tr}\left(u^{*} u\right) \leq \operatorname{tr}(q)
$$

with equality if and only if $q=u^{*} u$ as tr is faithful.
Conversely, suppose $\operatorname{tr}(p) \leq \operatorname{tr}(q)$. Since M is a factor, then $p \preccurlyeq q$ or $q \preccurlyeq p$. If $q \preccurlyeq p$, then by the forward step, $\operatorname{tr}(q) \leq \operatorname{tr}(p)$, in which case $\operatorname{tr}(p)=\operatorname{tr}(q)$ and $p=u u^{*}$ by faithfulness of tr . Thus $p \approx q$.

Lemma 4.6.2. Suppose M is a II_{1} factor with a faithful trace. For every non-zero $p \in P(M)$ and $0<\varepsilon<\operatorname{tr}(p)$, there is a $q \in P(M)$ with $0 \leq q \leq p$ and $0<\operatorname{tr}(q)<\varepsilon$.

Proof. Let

$$
\delta:=\inf \{\operatorname{tr}(q) \mid q \in P(M) \backslash\{0\} \text { such that } q \leq p\}
$$

If $0<\delta \leq \operatorname{tr}(p)$, there is a non-zero $q \in P(M)$ such that $q \leq p$ and $\operatorname{tr}(q)<2 \delta$ by the definition of the inf. Since M is not type I, q is not minimal, so there is a non-zero projection $r \leq q$ with $0 \neq r \neq q$. Then $\delta \leq \operatorname{tr}(r)$, but

$$
\operatorname{tr}(q-r)=\operatorname{tr}(q)-\operatorname{tr}(r) \leq \operatorname{tr}(q)-\delta<2 \delta-\delta=\delta
$$

a contradiction.
Proposition 4.6.3. Suppose M is a II_{1} factor with a faithful trace. Then $\operatorname{tr}(P(M))=[0,1]$.
Proof. Fix $r \in(0,1)$, and consider $\{p \in P(M) \mid 0<\operatorname{tr}(p) \leq r\}$ which is non-empty by Lemma 4.6.2. Ordering this set by \leq, every ascending chain has an upper bound, so by Zorn's Lemma, there is a maximal element p. Suppose for contradiction that $\operatorname{tr}(p)<r$. Again by Lemma 4.6.2, there is a projection $q \leq 1-p$ with $0<\operatorname{tr}(q)<r-\operatorname{tr}(p)$. But then $p+q$ is a projection such that $\operatorname{tr}(p)<\operatorname{tr}(p)+\operatorname{tr}(q)<r$, a contradiction.

Exercise 4.6.4. Give a better description of a projection of arbitrary trace in $[0,1]$ in $L \mathbb{F}_{2}$ and $L S_{\infty}$.
Exercise 4.6.5. Let M be a II_{1} factor with σ-WOT continuous tracial state tr.
(1) Show that if $p \in M$ is a non-zero projection, then for every $0<r<\operatorname{tr}(p)$, there is a projection $q \in M$ with $q \leq p$ and $\operatorname{tr}(q)=r$.
(2) For every $n \in \mathbb{N}$, there is a unital subfactor $N \subseteq M$ with $N \cong M_{n}(\mathbb{C})$.
(3) M is algebraically simple, i.e., M has no 2 -sided ideals.

Proposition 4.6.6. A finite von Neumann algebra M with a faithful σ-WOT continuous tracial state tr is a II_{1} factor if and only if for any other σ-WOT continuous tracial state φ, $\varphi=\operatorname{tr}$.

Proof. Suppose M is a II_{1} factor. It suffices to prove both traces agree on projections. By Exercise 4.6.5(2), the traces must agree on every subfactor $N \cong M_{n}(\mathbb{C})$ for all
$n \in \mathbb{N}$. For an arbitrary projection $p \in M$, we can build a sequence $\left(p_{i}\right)$ of mutually orthogonal projections such that $p=\sum p_{i}$ SOT (and thus also σ-WOT) and $\operatorname{tr}\left(p_{i}\right)=\frac{1}{n_{i}}$ for some $n_{i} \in \mathbb{N}$ for every i using Exercise 4.6.5(1).
Suppose now M is not a factor, and choose projection $z \in Z(M)$ such that $0 \neq z \neq 1$. Then $\varphi(x):=\frac{1}{\operatorname{tr}(z)} \operatorname{tr}(x z)$ is a σ-WOT continuous tracial state distinct from tr as $\varphi(1-z)=0 \neq \operatorname{tr}(1-z)$.
4.6.1. The hyperfinite II_{1} factor. We now use Proposition 4.6.6 to construct a II_{1} factor R which can be well approximated by finite dimensional subalgebras.

For $n \in \mathbb{N}$, let $A_{n}:=\bigotimes^{n} M_{2}(\mathbb{C})$. Include $A_{n} \hookrightarrow A_{n+1}$ by $x \mapsto x \otimes 1$, and let $A_{\infty}:=$ $\xrightarrow{\lim } A_{n}=\bigotimes^{\infty} M_{2}(\mathbb{C})$. Since $A_{n} \cong M_{2^{n}}(\mathbb{C})$ has a unique normalized faithful tracial state $\overrightarrow{\operatorname{tr}_{n}}, \operatorname{tr}_{\infty}:=\underset{\longrightarrow}{\lim } \operatorname{tr}_{n}$ is the unique faithful trace on A_{∞}, and it is positive definite in that $\operatorname{tr}_{\infty}\left(x^{*} x\right) \geq \overrightarrow{0}$ for all $x \in A_{\infty}$ with equality if and only if $x=0$. We can thus attempt to apply the GNS construction, where there are several things we must check along the way. We define H to be the completion of A_{∞} in $\|\cdot\|_{2}$ under the sesqulinear form $\langle x, y\rangle:=\operatorname{tr}_{\infty}\left(y^{*} x\right)$. We write $\Omega \in H$ for the image of $1 \in A_{\infty}$ and $a \Omega \in H$ for the image of $a=a 1 \in A_{\infty}$.
(R1) A_{∞} acts faithfully on the left of H by bounded operators by $x(a \Omega)=x a \Omega$. We can thus define $R:=\left(A_{\infty}\right)^{\prime \prime} \subset B(H)$.

Proof. Since $x^{*} x \leq\left\|x^{*} x\right\|_{A_{n}}$ for all $x \in A_{n}$, and since the inclusions $A_{n} \hookrightarrow A_{n+k}$ are all injective and thus norm-preserving, we have

$$
\|x a \Omega\|^{2}=\operatorname{tr}_{\infty}\left(a^{*} x^{*} x a\right) \leq\left\|x^{*} x\right\|_{A_{n}} \cdot \operatorname{tr}_{\infty}\left(a^{*} a\right)=\|x\|_{A_{n}}^{2} \cdot\|a \Omega\|^{2}
$$

Faithfulness of the action follows as Ω is separating for A_{∞} by faithfulness of $\operatorname{tr}_{\infty}$ on A_{∞}.
(R2) $\operatorname{tr}_{R}(x):=\langle x \Omega, \Omega\rangle$ is a σ-WOT continuous tracial state on R such that $\left.\operatorname{tr}_{R}\right|_{A_{\infty}}=\operatorname{tr}_{\infty}$.
Proof. For $x \in A_{\infty}, \operatorname{tr}_{R}(x)=\langle x \Omega, \Omega\rangle=\operatorname{tr}_{\infty}(x)$. Since tr_{R} is a vector state, it is both SOT-continuous and σ-WOT continuous. For $x, y \in R$, by the Kaplansky Density Theorem, we may pick bounded nets $\left(x_{i}\right),\left(y_{i}\right) \subset A_{\infty}$ with $x_{i} \rightarrow x$ and $y_{i} \rightarrow y$ SOT. Since multiplication is jointly SOT-continuous on bounded sets, $x_{i} y_{i} \rightarrow x y$ and $y_{i} x_{i} \rightarrow y x$ SOT. We thus have

$$
\operatorname{tr}_{R}(x y)=\lim ^{\text {SOT }} \operatorname{tr}_{\infty}\left(x_{i} y_{i}\right)=\lim { }^{\text {SOT }} \operatorname{tr}_{\infty}\left(y_{i} x_{i}\right)=\operatorname{tr}_{R}(y x) .
$$

(R3) A_{∞} acts on the right of H by bounded operators by $x(a \Omega)=a x \Omega$.
Proof. This is the step that uses that tr is a trace:

$$
\begin{aligned}
\|a x \Omega\|^{2} & =\operatorname{tr}_{\infty}\left(x^{*} a^{*} a x\right)=\operatorname{tr}_{\infty}\left(a x x^{*} a^{*}\right) \leq\left\|x x^{*}\right\|_{A_{n}} \cdot \operatorname{tr}_{\infty}\left(a a^{*}\right) \\
& =\left\|x^{*} x\right\|_{A_{n}} \cdot \operatorname{tr}_{\infty}\left(a^{*} a\right)=\|x\|_{A_{n}}^{2} \cdot\|a \Omega\|^{2}
\end{aligned}
$$

(R4) tr_{R} is faithful on R so that R is a I_{1} factor by Proposition 4.6.6.

Proof. Suppose $\operatorname{tr}_{R}\left(x^{*} x\right)=0$. Since the right A_{∞}-action is bounded and commutes with the left A_{∞}-action on H and thus also commutes with R, for all $a \in A_{\infty}$,

$$
\|x a \Omega\|^{2}=\left\|x R_{a} \Omega\right\|^{2}=\left\|R_{a} x \Omega\right\|^{2} \leq\left\|R_{a}\right\|^{2} \cdot\|x \Omega\|^{2}=\left\|R_{a}\right\|^{2} \cdot \operatorname{tr}_{R}\left(x^{*} x\right)=0
$$

Since $A_{\infty} \Omega$ is dense in $H, x=0$.

Exercise 4.6.7. Build a projection of arbitrary trace in $[0,1]$ in R.
4.7. Useful results on comparison of projections. Our next task is to prove every finite von Neumann algebra admits a tracial state. We begin with some general results on projections in a von Neumann algebra. For this section, unless stated otherwise, M is a von Neumann algebra and $p, q \in P(M)$.

Facts 4.7.1. Here are some basic facts about comparison of projections.
$(\preccurlyeq 1)$ (Kaplansky's formula) $p \vee q-p \approx q-p \wedge q$.
Proof. Consider $x=(1-p) q$. Then $\operatorname{ker}(x)=\operatorname{ker}(q) \oplus(p \wedge q) H$, so

$$
p_{\operatorname{ker}(x)}=(1-q)+p \vee q \quad \text { and } \quad \operatorname{range}\left(x^{*}\right)=1-p_{\operatorname{ker}(x)}=q-p \wedge q .
$$

Since $x=[(1-(1-q))(1-p)]^{*}$, the above argument also tells us that

$$
\operatorname{range}(x)=(1-p)-(1-p) \wedge(1-q)=(1-p-(1-p \vee q)=p \vee q-p
$$

Since range $\left(x^{*}\right)=\operatorname{supp}(x)$, these projections are equivalent by Example 4.4.2.
$(\preccurlyeq 2)$ If $p_{1} \preccurlyeq q_{1}, p_{2} \preccurlyeq q_{2}$, and $q_{1} q_{2}=0$, then $p_{1} \vee p_{1} \preccurlyeq q_{1}+q_{2}$.
Proof. By $(\preccurlyeq 1), p_{1} \vee p_{2}-p_{2} \approx p_{1}-p_{1} \wedge p_{2} \preccurlyeq q_{1}$ so $p_{1} \vee p_{2}=\left(p_{1} \vee p_{2}-p_{2}\right)+p_{2} \preccurlyeq$ $q_{1}+q_{2}$.
$(\preccurlyeq 3)$ (Comparison Theorem) There is a $z \in P(Z(M))$ such that $p z \preccurlyeq q z$ and $q(1-z) \preccurlyeq$ $p(1-z)$.

Proof. By Zorn's Lemma, there are maximal families of mutually orthogonal projections $\left\{p_{i}\right\},\left\{q_{i}\right\}$ such that $\sum p_{i} \leq p, \sum q_{i} \leq q$, and $p_{i} \approx q_{i}$ for all i. Set $z_{1}:=z\left(p-\sum p_{i}\right)$ and $z_{2}:=z\left(q-\sum q_{i}\right)$. By maximailty, $z_{1} z_{2}=0$, so

$$
\begin{aligned}
\left(p-\sum p_{i}\right) \leq z_{1} \leq 1-z_{2} & & \Longrightarrow & z_{2}\left(p-\sum p_{i}\right)=0 \\
\left(q-\sum q_{i}\right) \leq z_{2} & & \Longrightarrow & \left(1-z_{2}\right)\left(q-\sum q_{i}\right)=0
\end{aligned}
$$

Since $\sum p_{i} \approx \sum q_{i}$, we see

$$
\begin{aligned}
z_{2} p & =z_{2} \sum p_{i} \approx z_{2} \sum q_{i} \leq z_{2} q \\
\left(1-z_{2}\right) q & =\left(1-z_{2}\right) \sum q_{i} \approx\left(1-z_{2}\right) \sum p_{i} \leq\left(1-z_{2}\right) p
\end{aligned}
$$

$(\preccurlyeq 4)$ If p, q are finite, so is $p \vee q$.
We omit the proof, which is quite techinical. There is a much simpler proof when p, q are central in addition, which you will do on homework.
$(\preccurlyeq 5)$ If p, q are finite and $p \approx q$, then $1-p \approx 1-q$. Hence there is a $u \in U(M)$ such that $u^{*} p u=q$.

Remark 4.7.2. The proof below only uses ($\preccurlyeq 4)$ to reduce to the case that M is finite. Since we will only use ($\preccurlyeq 5)$ for finite von Neumann algebras, the rest of these notes is still self-contained without a proof of $(\preccurlyeq 4)$ above.
Proof. By $(\preccurlyeq 4), p \vee q$ is finite, so replacing M by $(p \vee q) M(p \vee q)$, we may assume M is finite. By $(\preccurlyeq 3)$, there is a central projection $z \in P(Z(M))$ such that $(1-p) z \preccurlyeq(1-q) z$ and $(1-q)(1-z) \preccurlyeq(1-p)(1-z)$. Since we can consider $M z$ and $M(1-z)$ separately, we may assume $1-p \approx r \leq 1-q$. Since $1=(1-p)+p \approx r+q$, and M is finite, $r+q=1$, so $1-p \approx r=1-q$. Now if $v v^{*}=p, v^{*} v=q$ and $w w^{*}=1-p, w^{*} w=1-q$, then $u=v+w$ is a unitary satisfing $u^{*} p u=q$.
$(\preccurlyeq 6)$ Suppose $p, q \in P(M)$ finite with $p, q \leq r$.
($\preccurlyeq 6 \mathrm{a})$ If $p \approx q$, then $r-p \approx r-q$.
$(\preccurlyeq 6 \mathrm{~b})$ If $p \preccurlyeq q$, then $r-q \preccurlyeq r-p$.
Remark 4.7.3. Again, in the proof below, we will only use ($\preccurlyeq 4)$ to pass to the case M is finite and $r=1$.

Proof. Since $p, q \leq r$ implies $p \vee q \leq r$, passing to $(p \vee q) M(p \vee q)$, we may assume M is finite and $r=1$ by ($\preccurlyeq 4$). Now ($\preccurlyeq 6$ a) follows immediately from ($\preccurlyeq 5)$. For $(\preccurlyeq 6 \mathrm{~b})$, let $s \in P(M)$ with $p \approx s \leq q$. By $(\preccurlyeq 5) 1-p \approx 1-s \geq 1-q$.
$(\preccurlyeq 7)$ If $\left(q_{n}\right)$ is an inrcreasing sequence of finite projections and $p \in P(M)$ such that $q_{n} \preccurlyeq p$ for all n, then $\bigvee q_{n} \preccurlyeq p$.

Proof. We inductively define a sequence of mutually orthogonal projections $p_{n} \leq p$ such that $p_{0}=q_{1}$ and for all $n \in \mathbb{N}, p_{n} \approx q_{n+1}-q_{n}$. Then

$$
\bigvee_{n=1}^{\infty} q_{n}=q_{1}+\sum_{n=1}^{\infty}\left(q_{n+1}-q_{n}\right) \approx \sum_{0}^{\infty} p_{n} \leq p
$$

By assumption, $q_{1} \preccurlyeq p$, so there is a $p_{0} \leq p$ such that $q_{1} \approx p_{0}$. Suppose we have $p_{0}, p_{1}, \ldots, p_{n}$.
Claim. $q_{n+2}-q_{n+1} \preccurlyeq p-\sum_{i=0}^{n} p_{i}$.
Proof of Claim. Observe $q_{n+2} \preccurlyeq p$, so there is a partial isometry v such that $v v^{*}=q_{n+2}$ and $e_{n+2}:=v^{*} v \leq p$. Since $q_{n+2} \geq q_{n+1}$,

$$
e_{n+1}:=v^{*} q_{n+1} v \leq v^{*} q_{n+2} v=v^{*} v v^{*} v=v^{*} v \leq p
$$

and $e_{n+1} \approx q_{n+1}$. Then
$v^{*}\left(q_{n+2}-q_{n+1}\right) v=e_{n+2}-e_{n+1} \quad$ and $\quad\left(q_{n+2}-q_{n+1}\right) v v^{*}\left(q_{n+2}-q_{n+1}\right)=q_{n+2}-q_{n+1}$, so $q_{n+2}-q_{n+1} \approx e_{n+2}-e_{n+1}$. By the induction hypothesis,

$$
e_{n+1} \approx q_{n+1}=\left(q_{n+1}-q_{n}\right)+\left(q_{n}-q_{n-1}\right)+\cdots+\left(q_{2}-q_{1}\right)+q_{1} \approx \sum_{i=0}^{n} p_{i} \leq p
$$

Since q_{n+2}, q_{n+1} are finite, so are $e_{n+2}, e_{n+1} \approx \sum_{i=0}^{n} p_{i}$. We calculate
$q_{n+2}-q_{n+1} \approx e_{n+2}-e_{n+1}=\left(p-e_{n+1}\right)-\left(p-e_{n+1}\right) \leq p-e_{n+1} \underset{(\preccurlyeq 6 \mathrm{~b})}{\approx} p-\sum_{i=0}^{n} p_{i}$,
proving the claim.
By the claim, we can find a projection $q_{n+2}-q_{n+1} \approx p_{n+1} \leq p-\sum_{i=0}^{n} p_{i}$, so we can inductively build the sequence as claimed.
$(\preccurlyeq 8)$ Suppose M is a finite von Nuemann algebra and $\left(p_{n}\right)$ is an infinite sequence of mutually orthogonal projections. Suppose $\left(q_{n}\right)$ is another sequence of projections with $p_{n} \approx q_{n}$ for each n. Then $q_{n} \rightarrow 0$ SOT.

Proof. By induction using ($\preccurlyeq 2)$, for all $m \leq n$,

$$
\bigvee_{i=m}^{n} q_{i} \preccurlyeq \sum_{i=m}^{n} p_{i} \leq \sum_{i \geq m} p_{i}
$$

Since $\bigvee_{i=m}^{n} q_{i}$ is increasing in $n, \bigvee_{i \geq m} q_{i} \preccurlyeq \sum_{i \geq m} p_{i}$ by $(\preccurlyeq 7)$. Let $p_{0}=1-$ $\sum_{i=0}^{\infty} p_{i}$. By $(\preccurlyeq 6 \mathrm{~b})$,

$$
p_{0}+\sum_{i=1}^{m-1} p_{i}=1-\sum_{i \geq m} p_{i} \preccurlyeq 1-\bigvee_{i \geq m} q_{i} \leq 1-\bigwedge_{m=1}^{\infty} \bigvee_{i \geq m} q_{i} .
$$

Again by ($\preccurlyeq 7$), we can conclude that

$$
1=p_{0}+\sum_{i=1}^{\infty} p_{i} \preccurlyeq 1-\bigwedge_{m=1}^{\infty} \bigvee_{i \geq m} q_{i}
$$

Since M is finite, we must have

$$
0=\bigwedge_{m=1}^{\infty} \underbrace{\bigvee_{i \geq m} q_{i}}_{\text {decreasing }}=\mathrm{SOT}-\lim \underbrace{\bigvee q_{i}}_{\geq q_{m}} .
$$

Hence for all $\xi \in H$,

$$
\left\|q_{m}\right\|^{2}=\left\langle q_{m} \xi, \xi\right\rangle \leq\left\langle\bigvee_{i \geq m} q_{i} \xi, \xi\right\rangle=\left\|\bigvee_{i \geq m} q_{i} \xi\right\|^{2} \xrightarrow{m \rightarrow \infty} 0,
$$

and thus $q_{m} \rightarrow 0$ SOT.
4.8. Existence of a trace on a finite von Neumann algebra. For this section, M is a finite von Neumann algebra. Recall that the σ-WOT on M is the weak* topology induced by M_{*}. Thus we may identify M_{*} with the σ-WOT continuous linear functionals on M.

Definition 4.8.1. Let $S(M) \subset M_{*}$ be the set of σ-WOT continuous states of M. Note that $U(M)$ acts on $S(M)$ by $u \cdot \varphi:=\varphi\left(u^{*} \cdot u\right)$.

Lemma 4.8.2. Let M be a von Neumann algebra and $\varphi \in M^{*}$ a state. The following are equivalent.
(1) φ is tracial, i.e., $\varphi(x y)=\varphi(y x)$ for all $x, y \in M$.
(2) For all $x \in M, \varphi\left(x x^{*}\right)=\varphi\left(x^{*} x\right)$.
(3) For all $u \in U(M), \varphi\left(u^{*} x u\right)=\varphi(x)$.

Proof.

$(1) \Rightarrow(2):$ Obvious.
$(2) \Rightarrow(3):$ For $x \geq 0, \varphi\left(u^{*} x u\right)=\varphi\left(u^{*} x^{1 / 2} x^{1 / 2} u\right)=\varphi\left(x^{1 / 2} u u^{*} x^{1 / 2}\right)=\varphi(x)$. Now use that every $x \in M$ is a linear combination of 4 positive operators.
$(3) \Rightarrow(1):$ Replacing x with $u x$, we have $\varphi(x u)=\varphi(u x)$ for all $x \in M$ and $u \in U(M)$.
Now use that every $y \in M$ is a linear combination of 4 unitaries.

So to construct a trace in $S(M)$ for M finite, we will find a fixed point in $S(M)$ under the $U(M)$-action. To do this, we will use the Ryll-Nardzewski Fixed Point Theorem. Our approach here follows the proof of Jacob Lurie.
Theorem 4.8.3 (Ryll-Nardzewski). Let X be a Banach space and $K \subset X$ a weakly compact convex subset. Suppose $G \subset B(X)$ is a group of isometries with $G K \subseteq K$. Then there is an $x \in K$ such that $g x=x$ for all $g \in G$.

For $u \in U(M)$, we define $\pi_{u} \in B\left(M_{*}\right)$ by $\pi_{u} \varphi:=\varphi\left(u^{*} \cdot u\right)$. Hence for our purposes, $G=\pi(U(M)) \subset B\left(M_{*}\right)$.

The following theorem is the main result of this section.
Theorem 4.8.4. Suppose M is a finite von Neumann algebra and fix $\varphi \in S(M)$. Define

$$
K_{0}:=\pi(U(M)) \varphi=\left\{\varphi\left(u^{*} \cdot u\right) \mid u \in U(M)\right\} \subset S(M),
$$

and let K be the weakly closed convex hull of K_{0} in M_{*}. Then K is weakly compact.
Before proving this theorem, observe that combining it with the Ryll-Nardzewski Fixed Point Theorem 4.8.3 yields the desired result.

Corollary 4.8.5. There exists a σ-WOT continuous tracial state on a finite von Neumann algebra.

Proof. Let $\varphi \in S(M)$. By Theorem 4.8.4, the weakly closed convex hull $K \subset S(M)$ of $\pi(U(M)) \varphi$ is weakly compact. As K is clearly $\pi(U(M))$-invariant, by the RyllNardzewski Fixed Point Theorem 4.8.3, there is a $\pi(U(M)$)-fixed point $\operatorname{tr} \in K \subset$ $S(M)$, which is a tracial state by Lemma 4.8.2.

Lemma 4.8.6. For a positive linear functional $\varphi \in M^{*}$, the following are equivalent.
(1) φ is σ-WOT continuous.
(2) φ is normal: for all increasing nets of positive operators $x_{i} \nearrow x$ in $M, \varphi\left(x_{i}\right) \nearrow \varphi(x)$.
(3) φ is completely additive: for every family $\left(p_{i}\right)$ of mutually orthogonal projections in $M, \varphi\left(\sum p_{i}\right)=\sum \varphi\left(p_{i}\right)$.

Proof. Homework.

Remark 4.8.7. Suppose $\left(p_{i}\right)$ is a family of mutually orthogonal projections in M. For all positive $\varphi \in M^{*}$, and for all finite subsets $F \subset I, \sum_{i \in F} \varphi\left(p_{i}\right)=\varphi\left(\sum_{i \in F} p_{i}\right) \leq \varphi\left(\sum p_{i}\right)$, so $\sum \varphi\left(p_{i}\right) \leq \varphi\left(\sum p_{i}\right)$. Hence φ is completely additive if and only if for every family of mutually orthogonal projections $\left(p_{i}\right)$ in M, for all $\varepsilon>0$, there is a finite $F \subset I$ such that $\varphi\left(\sum_{i \notin F} p_{i}\right) \leq \varepsilon$. Indeed,

$$
\begin{aligned}
\sum \varphi\left(p_{i}\right) & =\sup _{F \subset I} \sum_{i \in F} \varphi\left(p_{i}\right)=\sup _{F \subset I} \varphi\left(\sum_{i \in F} p_{i}\right)=\sup _{F \subset I} \varphi\left(\sum p_{i}\right)-\varphi\left(\sum_{i \notin F} p_{i}\right) \\
& =\varphi\left(\sum p_{i}\right)-\inf _{F \subset I} \varphi\left(\sum_{i \notin F} p_{i}\right) .
\end{aligned}
$$

Proof of Theorem 4.8.4. Recall that the relative weak* topology on $X \subseteq X^{* *}$ is the weak topology. To show $K \subset M_{*}$ is weakly compact, by the Banach-Alaoglu Theorem, it suffices to prove $K \subseteq M_{*}^{* *}=M^{*}$ is weak* closed, as $K \subseteq\left(M^{*}\right)_{1}$ which is weak* compact.
Let $\psi \in \bar{K}$, the weak* closure of K in M^{*}. We show ψ is completely additive, and thus $\psi \in M_{*}$, so $\psi \in K$. Suppose for contradiction that ψ is not completely additive. Then there is a family $\left(p_{i}\right)_{i \in I}$ of mutually orthogonal projections and an $\varepsilon>0$ such that for all finite $F \subset I, \psi\left(\sum_{i \notin F} p_{i}\right)>\varepsilon$.
Claim. If $F \subset I$ is any finite set, there is a $\phi \in K_{0}$ and a finite set $G \subset I \backslash F$ such that $\phi\left(\sum_{i \in G} p_{i}\right)>\varepsilon$.
Proof. The convex hull $\operatorname{conv}\left(K_{0}\right)$ is weakly dense in K, which is weak* dense in \bar{K}, so $\operatorname{conv}\left(K_{0}\right)$ is weak* dense in \bar{K}. Thus for all $\delta>0$, the weak* open neighborhood

$$
\left\{\phi \in M^{*}| |(\psi-\phi)\left(\sum_{i \notin F} p_{i}\right) \mid<\delta\right\}
$$

of ψ has non-empty intersection with $\operatorname{conv}\left(K_{0}\right)$, so pick ϕ in this intersection. Since $\psi\left(\sum_{i \notin F} p_{i}\right)>\varepsilon$, choosing δ small, we have $\phi\left(\sum_{i \notin F} p_{i}\right)>\varepsilon$. Now if $\phi=\sum_{k=1}^{n} \lambda_{k} \phi_{k}$ is a convex combination of $\phi_{k} \in K_{0}$, there must be a particular k so that $\phi_{k}\left(\sum_{i \notin F} p_{i}\right)>\varepsilon$. Now since ϕ_{k} is completely additive, there is a finite $G \subset I \backslash F$ such that $\phi_{k}\left(\sum_{i \in G} p_{i}\right)>$ ε.

Claim. There is a sequence $\left(F_{n}\right)$ of disjoint finite subsets of I and a sequence of states $\left(\phi_{n}\right) \subset K_{0}$ such that for all $n \in \mathbb{N}$,

$$
\phi_{n}\left(\sum_{i \in F_{n}} p_{i}\right)>\varepsilon .
$$

Proof. We induct on n. Since $\psi\left(\sum p_{i}\right)>\varepsilon$, by the first claim, there is a $\phi_{1} \in K_{0}$ and a finite set $F_{1} \subset I$ such that $\phi_{1}\left(\sum_{i \in F_{1}} p_{i}\right)>\varepsilon$. Now suppose we have disjoint sets $F_{1}, \ldots, F_{n} \subset I$ and states $\phi_{1}, \ldots, \phi_{n} \in K_{0}$ such that $\phi_{k}\left(\sum_{i \in F_{k}} p_{i}\right)>\varepsilon$ for all $k=1, \ldots, n$. Since ψ is not completely additive,

$$
\psi\left(\sum_{i \notin \coprod_{j=1}^{n} F_{j}} p_{i}\right)>\varepsilon
$$

so again by the first claim, there is a $\phi_{n+1} \in K_{0}$ and a set $F_{n+1} \subset I \backslash \coprod_{j=1}^{n} F_{j}$ such that $\phi_{n+1}\left(\sum_{i \in F_{n+1}} p_{i}\right)>\varepsilon$.
Now by the above claim, for each $\phi_{n} \in K_{0}$, there is a unitary $u_{n} \in U(M)$ such that $\phi_{n}=\varphi\left(u_{n}^{*} \cdot u_{n}\right)$. Moreover, setting $q_{n}:=\sum_{i \in F_{n}} p_{i}$, we have a sequence $\left(q_{n}\right)$ of mutually orthogonal projections such that $\varphi\left(u_{n}^{*} q_{n} u_{n}\right)>\varepsilon$ for all n. We now have our desired contradiction. Since the F_{n} are disjoint, the q_{n} are mutually orthogonal. Since $u_{n}^{*} q_{n} u_{n} \approx q_{n}$ for all $n, u_{n}^{*} q_{n} u_{n} \rightarrow 0$ SOT (and thus also σ-WOT) by ($\left.\preccurlyeq 8\right)$. But $\varphi \in S(M)$ is σ-WOT continuous and $\varphi\left(u_{n}^{*} q_{n} u_{n}\right)>\varepsilon$ for all n, a contradiction.
4.9. The proof of Ryll-Nardzewski. In this section, we prove the Ryll-Nardzewski Fixed Point Theorem 4.8.3 following Lurie's proof.
https://www.math.ias.edu/~lurie/261ynotes/lecture26.pdf.
We begin by restating (a version of) the Ryll-Nardzewski Fix Point Theorem.
Theorem (Ryll-Nardzewski, Theorem 4.8.3). Let X be a Banach space and $K \subset X$ a weakly compact convex subset. Suppose $G \subset B(X)$ is a group of isometries with $G K \subseteq K$. Then there is an $x \in K$ such that $g x=x$ for all $g \in G$.
Remark 4.9.1. Without loss of generality, we may assume G is finitely generated. Indeed, write $G=\bigcup G_{i}$ where each G_{i} is finitely generated. Then $K^{G}=\bigcap K^{G_{i}}$. By compactness of K and the finite intersection property, $\bigcap K^{G_{i}} \neq \emptyset$ for all i implies $K^{G} \neq \emptyset$.

Fix a Banach space X and a weakly compact convex subset $K \subset X$. We begin with the following warmup.
Lemma 4.9.2. Suppose $T \in B(X)$ such that $T K \subseteq K$. There is an $x \in K$ such that $T x=x$.

Proof. For $n \in \mathbb{N}$, let $T_{n}:=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}$ and $K_{n}=T_{n} K \subseteq K$ as K is convex. We claim that $\left\{K_{n}\right\}$ has the finite intersection property. Indeed,

$$
K_{n_{1}} \cap \cdots \cap K_{n_{k}} \supseteq T_{n_{1}} \cdots T_{n_{k}} K
$$

as $T_{m} T_{n}=T_{n} T_{m}$ for all m, n.

Now let $x \in \bigcap K_{n} \neq \emptyset$. For each $n \in \mathbb{N}$, there is a $y \in K$ such that $x=T_{n} y$, so

$$
T x-x=(T-1) T_{n} y=\frac{1}{n}(T-1) \sum_{k=0}^{n-1} T^{k} y=\frac{1}{n}\left(T^{n} y-y\right) \in \frac{1}{n}(K-K)
$$

Since K is weakly compact, so is $K-K$, and in particular, $K-K$ is bounded. ${ }^{a}$ Thus for every open neighborhood U of $K-K$, there is an $n \in \mathbb{N}$ such that $\frac{1}{n}(K-K) \subset U$. But this means $T x-x \in U$ for every open neighborhood U of 0 , so $T x=x$.
${ }^{a}$ If $S \subset X \subseteq X^{* *}$ is weakly compact, then each $s \in S$ is pointwise bounded as a map on X^{*} by compactness. Now apply the Uniform Boundedness Principle.

The strategy of the proof will be to take our finitely generated group $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle \subseteq$ $B(X)$ of isometries and find a candidate fixed point $x \in K$ for G using Lemma 4.9.2. We will prove by contradiction that this candidate $x \in K$ satisfies $g_{i} x=x$ for each generator. The next lemma is the second main ingredient to achieve our contradiction.
Lemma 4.9.3. Suppose $g_{1}, \ldots g_{k} \in B(X)$ are isometries and $x \in X$ such that $g_{i}(x) \neq x$ for all $i=1, \ldots, k$. Let C be the weak closed convex hull of $\left\langle g_{1}, \ldots, g_{k}\right\rangle x$, which is weakly compact. Let $\varepsilon>0$ such that $\left\|g_{i}(x)-x\right\|>\varepsilon$ for all $i=1, \ldots, n$. Then there is a weakly compact subset $C \subsetneq C$ such that $\operatorname{diam}\left(C \backslash C^{\prime}\right) \leq \varepsilon$.

Assuming this lemma, we can now prove Theorem 4.8.3.
Proof of Theorem 4.8.3. Set $T=\frac{1}{n} \sum g_{i} \in B(X)$. By the warmup Lemma 4.9.2, there is an $x \in K$ such that $T x=x$. If $g_{i}(x)=x$ for all i, we have our fixed point proving Theorem 4.8.3. Otherwise, relabelling the g_{i}, there is a $1 \leq k \leq n$ such that $g_{i}(x) \neq x$ for all $i=1, \ldots, k$ and $g_{i}(x)=x$ for all $i=k+1, \ldots, n$. Then

$$
x=T x=\frac{1}{n} \sum_{i=1}^{n} g_{i}(x)=\frac{1}{n} \sum_{i=1}^{k} g_{i}(x)+\frac{n-k}{n} x,
$$

which immediately implies that

$$
x=\frac{1}{k} \sum_{k=1}^{k} g_{i}(x) .
$$

By Lemma 4.9.3, there is a weakly compact convex subset $C^{\prime} \subsetneq C=\left\langle g_{1}, \ldots, g_{k}\right\rangle x \subseteq K$ such that $\operatorname{diam}\left(C-C^{\prime}\right) \leq \varepsilon$. Since $C^{\prime} \neq C$, there is an $h \in G$ such that $h x \notin C^{\prime}$, so

$$
h x=h T x=\frac{1}{k} \sum_{i=1}^{k} h g_{i}(x) \notin C^{\prime} .
$$

Since C^{\prime} is convex, there must be some $1 \leq i \leq k$ such that $h g_{i}(x) \notin C^{\prime}$, so both $h x, h g_{i}(x) \notin C^{\prime}$. But since h is an isometry, we have

$$
\left\|x-g_{i}(x)\right\|=\left\|h x-h g_{i}(x)\right\| \leq \operatorname{diam}\left(C-C^{\prime}\right) \leq \varepsilon
$$

a contradiction.
We now prove the lemma.

Proof of Lemma 4.9.3. To prove the lemma, it suffices to work in the closure of

$$
\operatorname{span}\left\{g_{i_{1}} \cdots g_{i_{m}} x \mid m \in \mathbb{N} \text { and } 1 \leq i_{1}, \ldots, i_{m} \leq k\right\}
$$

which is a separable Banach space.
Let $E=\partial_{\text {ext }} C \subseteq C$ be the set of extreme points. By the Krein-Milman Theorem, C is the weak closed convex hull of E. Let $\bar{E} \subseteq C$ be the weak closure of E, and let $B=\overline{B_{\varepsilon / 3}(0)}$ be the closed ball of radius $\varepsilon / 3$. Since B is convex and norm closed, B is also weakly closed as the norm and weak topology have the same closed convex sets. Since X is separable, there is a sequence $\left(y_{j}\right) \subset X$ such that $\left(y_{j}+B\right)$ covers X. Thus $\left(\left(y_{j}+B\right) \cap \bar{E}\right)$ is a cover of the weakly compact set \bar{E}. By the Baire Category Theorem, there is a j such that $\left(y_{j}+B\right) \cap \bar{E}$ has non-empty interior U in \bar{E} with respect to the relative weak topology on \bar{E}.
Now define

$$
\begin{aligned}
& C_{1}:=\text { weak closed convex hull of } \bar{E} \backslash U \\
& C_{2}:=\text { weak closed convex hull of }\left(y_{j}+B\right) \cap \bar{E},
\end{aligned}
$$

which are both weakly closed convex subsets of C. Since C is the closed convex hull of

$$
E \subseteq(\bar{E} \backslash U) \cup\left(\left(y_{j}+B\right) \cap \bar{E}\right)
$$

E is the convex join of C_{1} and C_{2}, i.e., $C=\operatorname{im}(\theta)$ for

$$
\theta: C_{1} \times C_{2} \times[0,1] \rightarrow X \quad \text { given by } \quad(a, b, t) \mapsto t a+(1-t) b
$$

We now consider the sets $C(\delta):=\operatorname{im}\left(\left.\theta\right|_{C_{1} \times C_{2} \times[\delta, 1]}\right)$.
Step 1: Each $C(\delta)$ is a weakly closed convex subset of C.
Closed: Since θ is continuous from the (weak,weak,standard) product topology to the weak topology as X with the weak topology is a topological vector space, $K(\delta)$ is weakly compact, and thus closed.
Convex: First, note that for all $0<\delta \leq 1, \delta C_{1}+(1-\delta) C_{2}$ is convex. We claim that

$$
\theta\left(C_{1} \times C_{2} \times[\delta, 1]\right)=\theta\left(C_{1} \times\left(\delta C_{1}+(1-\delta) C_{2}\right) \times[0,1]\right)
$$

which is manifestly convex.

$$
\subseteq: \text { If } t \in[\delta, 1], t a+(1-t) b=s a+(1-s)(\delta a+(1-\delta b)) \text { for } s \in[0,1]
$$ such that $(1-s)(1-\delta)=(1-t)$. This condition is equivalent to $t=\delta+s(1-\delta)$.

〇: If $s \in[0,1]$, then $s a_{1}+(1-s)\left[\delta a_{2}+(1-\delta) b\right]=t a+(1-t) b$ for $t=s+(1-s) \delta=\delta+s(1-\delta) \in[\delta, 1]$ as before and

$$
a=\frac{s a_{1}+(1-s) \delta a_{2}}{s+(1-s) \delta} \in C_{1} .
$$

Step 2: For $\delta>0$ sufficiently small, $\operatorname{diam}(C \backslash C(\delta)) \leq \varepsilon$.

Since C is weakly compact, it is bounded, so $C \subset B_{R}(0)$ for some $R>0$. If $y, y^{\prime} \in C \backslash C(\delta)$, then there are $0 \leq t, t^{\prime}<\delta, a, a^{\prime} \in C_{1}$, and $b, b^{\prime} \in C_{2}$ such that

$$
y=t a+(1-t) b \quad \text { and } \quad y^{\prime}=t^{\prime} a^{\prime}+\left(1-t^{\prime}\right) b^{\prime}
$$

Then

$$
\begin{aligned}
\left\|y-y^{\prime}\right\| & =\left\|t(a-b)+b-t^{\prime}\left(a^{\prime}-b^{\prime}\right)-b^{\prime}\right\| \\
& \leq t(\|a\|+\|b\|)+t^{\prime}\left(\left\|a^{\prime}\right\|+\left\|b^{\prime}\right\|\right)+\|\underbrace{b-b^{\prime}}_{b, b^{\prime} \in C_{2}}\| \\
& \leq 4 \delta R+\frac{2}{3} \varepsilon
\end{aligned}
$$

as $b, b^{\prime} \in C_{2} \subset y_{j}+B$ which has diameter $2 / 3 \cdot \varepsilon$. Now choose $\delta<\frac{\varepsilon}{12 R}$.
Step 3: For δ as in Step 2 above, $C(\delta) \neq C$.
Since $U \subseteq \bar{E}$ is a non-empty open subset, there is a $y \in E \cap U$. We claim that $y \notin C(\delta)$. Since $y \in E$ is an extreme point of C, it suffices to prove $y \notin C_{1}$. (Indeed, if $y \notin C_{1}$ and $y=t a+(1-t) b$ for $a \in C_{1}$ and $b \in C_{2}$, since y is extreme, $y=a=b$. But since $a \in C_{1}$ and $y \notin C_{1}$, we must have $t=0$. Thus y cannot be written as $t a+(1-t) b$ for $a \in C_{1}, b \in C_{2}$, and $t \in[\delta, 1]$.) Since X with the weak topology is locally convex, there is a weakly open convex neighborhood V of 0 such that the weak closure \bar{V} satisfies $(y-\bar{V}) \cap \bar{E} \subseteq U$. (Indeed, we can use here that \bar{E} is weakly compact and thus weakly normal.)
Now since $\bar{E} \backslash U$ is weakly compact, it admits a weakly open cover $\left\{z_{i}+\right.$ $V\}_{i=1}^{k}$ where each $z_{i} \in \bar{E} \backslash U$. Thus C_{1} is contained in the closed convex hull of

$$
\bigcup_{i=1}^{k}\left(z_{i}+V\right) \cap \bar{E} \supseteq \bar{E} \backslash U
$$

In turn, $\bigcup_{i=1}^{k}\left(z_{i}+V\right) \cap \bar{E}$ is contained in the convex join of the $\left(z_{i}+\bar{V}\right) \cap C$. If $y \in C_{1}$, then $y \in\left(z_{i}+\bar{V}\right) \cap C$ for some i. But then $z_{i} \in(y-\bar{V}) \cap \bar{E} \subseteq U$, a contradiction to $z_{i} \in \bar{E} \backslash U$.

Thus if $\delta>0$ is sufficiently small, we can take $C^{\prime}=C(\delta) \subsetneq C$.

