4. Projections and factors

For this section, H is a Hilbert space and $M \subseteq B(H)$ is a von Neumann algebra. We denote the set of projections of M by P(M) and the group of unitaries in M by U(M).

4.1. Compressions and ideals.

Theorem 4.1.1. Suppose $p \in P(M)$. Then $pMp \subseteq B(pH)$ is a von Neumann algebra with commutant (pMp)' = M'p.

Proof. Clearly $pMp \subseteq B(pH)$ is an SOT-closed unital *-subalgebra and thus a von Neumann algebra.

If $y \in M'$, then for all $x \in M$,

$$(yp)(pxp) = ypxp = pypx = (pxp)(yp)$$

so $yp \in (pMp)'$. For the converse, we use a clever trick. First, it suffices to prove every unitary in (pMp)' lies in M'p, as every element of (pMp)' is a linear combination of 4 unitaries (why?). Suppose $u \in (pMp)'$ and set $K := \overline{MpH}$. Since K is both M and M'-invariant, $p_K \in M' \cap M = Z(M)$.

Claim. We may extend u to K by $\widetilde{u} \sum x_i p \xi := \sum x_i u p \xi$.

Proof of claim. To see \tilde{u} is well-defined, we prove it is isometric:

$$\left\| \widetilde{u} \sum x_i p \xi_i \right\|^2 = \sum_{i,j} \langle x_i u p \xi_i, x_j u p \xi_j \rangle$$

$$\sum_{i,j} \langle p x_j^* x_i p u \xi_i, u \xi_j \rangle \qquad ([u, p] = 0)$$

$$= \sum_{i,j} \langle u p x_j^* x_i p \xi_i, u \xi_j \rangle \qquad (u \in (pMp)')$$

$$= \sum_{i,j} \langle p x_j^* x_i p \xi_i, \xi_j \rangle = \dots = \left\| \sum \sum x_i p \xi_i \right\|^2.$$

Now by construction, \tilde{u} commutes with the action of M on $K = \overline{MpH}$, and thus $\tilde{u}p_K \in M' \subseteq B(H)$; indeed, for all $x \in M$ and all $\xi \in H$,

$$\widetilde{u}p_K x \xi = \widetilde{u} x \underbrace{p_K \xi}_{\in K} = x \widetilde{u} p_K \xi.$$

Finally, we claim that $u = \widetilde{u}p_K p \in M'p$; indeed, as $u = up \in M'p$, for all $\xi \in H$, $\widetilde{u}p_K p\xi = \widetilde{u}(1_M p\xi) = up\xi = u\xi.$

Definition 4.1.2. We call pMp, M'p corners, compressions, or reductions of M, M' respectively.

Lemma 4.1.3. If $J \subseteq M$ is a σ -WOT closed left ideal, then J = Mp for a unique projection $p \in M$.

Proof. If p is any projection such that J = Mp, then since (xp)p = xp for all $x \in M$, yp = y for all $y \in J$. It follows that if Mq = J = Mp, then $p \leq q$ and $q \leq p$, so p = q. This also tells us how to construct p: find the largest projection in J. If $x \in J$, then so are $|x| = u^*x$ and $\chi_{[\varepsilon, ||x||]}(|x|)$ for all $\varepsilon > 0$. Since $\chi_{[\varepsilon, ||x||]}(|x|) \nearrow$ $\operatorname{supp}(|x|) = \operatorname{supp}(x)$ as $\varepsilon \searrow 0$, $\operatorname{supp}(x) \in J$. Now observe that if there is a maximal projection p in J, then $p \geq \operatorname{supp}(x)$ for all $x \in J$, so $x = x \cdot \operatorname{supp}(x) \cdot p = xp$ for all $x \in J$. We thus have $J \subseteq Mp \subseteq J$, and thus equality holds. Finally, to construct the maximal projection, since J is σ -WOT closed, it is a normclosed left ideal, and thus contains a right approximate identity (e_i) such that $0 \leq e_i \leq 1$ 1 for all $i, i \leq j$ implies $e_i \leq e_j$, and $||x - xe_i|| \to 0$ for all $x \in J$. Since J is σ -WOT closed, $p := \bigvee e_i \in J$, which is automatically self-adjoint. Since $||p - pe_i|| \to 0$, we see that $p = p^2$, so p is a projection, and since $||x - xe_i|| \to 0, x = xp$ for all $x \in J$. We conclude that p is the largest projection in J.

Corollary 4.1.4. A left ideal $J \subseteq M$ is SOT/WOT-closed if and only if it is σ -SOT/ σ -WOT closed.

Proof. If J is σ -WOT closed, then J = Mp for some projection $p \in J$, so J is WOT closed. The converse is trivial as WOT-closed sets are σ -WOT closed.

Corollary 4.1.5. If $J \subseteq M$ is a σ -WOT closed 2-sided ideal, then J = Mz for some projection $z \in Z(M)$.

Proof. Since J is σ -WOT closed, it is also WOT and hence SOT-closed. By Lemma 4.1.3, J = Mz for some projection $z \in M$. But as J is 2-sided, for every unitary $u \in M$, $J = uJu^*$. It follows that $J = uJu^* = uMzu^* = uMu^*(uzu^*) = Muzu^*$, so $z = uzu^*$ by the uniqueness statement in Lemma 4.1.3. We conclude $z \in M' \cap M = Z(M)$. \Box

4.2. Central support of a projection.

Definition 4.2.1. A factor is a von Neumann algebra with trivial center, i.e., $Z(M) = M' \cap M = \mathbb{C}1$.

Remark 4.2.2. By Corollary 4.1.5, factors have no non-trivial σ -WOT closed 2-sided ideals.

Just as von Neumann algebras come in pairs M, M', so do factors as $Z(M) = M' \cap M = Z(M')$.

Recall that for $p, q \in P(M) \subseteq B(H)$, $p \wedge q$ is the projection onto $pH \cap qH$ and $p \vee q$ is the projection onto $\overline{pH + qH}$. Observe we have the relation

$$p \lor q = 1 - (1 - p) \land (1 - q). \tag{4.2.3}$$

For homework, you will show that $p \wedge q, p \vee q \in M$. Thus P(M) is a lattice under these operations.

Lemma 4.2.4. For $p, q \in P(M)$ and $u \in U(M)$, $u^*(p \lor q)u = u^*pu \lor u^*qu$ and $u^*(p \land q)u = u^*pu \land u^*qu$.

Proof. Observe that $\xi \in pH \cap qH$ if and only if $u^*\xi \in u^*puH \cap u^*quH$, and $\eta \perp pH \cap qH$ if and only if $u^*\eta \perp u^*puH \cap u^*quH$. Thus $u^*(p \wedge q)u = u^*pu \wedge u^*qu$. Now apply (4.2.3) to get $u^*(p \lor q)u = u^*pu \lor u^*qu$.

Definition 4.2.5. Given $p \in P(M)$, we define its central support

$$z(p) \coloneqq \bigvee_{u \in U(M)} u^* p u \coloneqq \operatorname{lub} p_F$$

where $p_F \coloneqq \bigvee_{u \in F} u^* pu$ for finite subsets $F \subset U(M)$, ordered by inclusion. By Lemma 4.2.4, for all $w \in U(M)$,

$$w^* p_F w = \bigvee_{u \in F} w^* u^* p u w = \bigvee_{v \in F w} v^* p v = p_{Fw}.$$

As z(p) is the SOT-limit of the p_F and multiplication is separately SOT-continuous,

$$w^* z(p)w = w^* (\lim {}^{SOT} p_F)w = \lim {}^{SOT} w^* p_F w = \lim {}^{SOT} p_{Fw} = z(p).$$

This means wz(p) = z(p)w for all $w \in U(M)$, so $z(p) \in M' \cap M = Z(M)$.

Lemma 4.2.6. Suppose $p \in P(M)$.

- (1) For $x \in M$, xup = 0 for all $u \in U(M)$ if and only if xz(p) = 0.
- (2) For $y \in M'$, yp = 0 if and only if yz(p) = 0. Hence the map $M'z(p) \to M'p$ given by multiplication by p is a *-isomorphism.

Proof.

(1) If xup = 0 for all $u \in U(M)$, then $xupu^* = 0$ for all such u. Then $xp_F = 0$ where $p_F = \bigvee_{u \in F} upu^*$ for any finite $F \subset U(M)$,^{*a*} and taking SOT limits, we have $xz(p) = x \lim^{SOT} p_F = 0$. Conversely, if xz(p) = 0, then $x(upu^*)u = xz(p)(upu^*)u = 0$ for all $u \in$

Conversely, if xz(p) = 0, then x(apa)u = xz(p)(apa)u = 0 for all $u \in U(M)$.

(2) Since yp = ypz(p) = yz(p)p, yz(p) = 0 implies yp = 0. Conversely, if yp = 0, then $yupu^* = 0$ for all $u \in U(M)$ as $y \in M'$. The argument from (1) shows $yp_F = 0$ for all finite $F \subset U(M)$, so taking SOT limits, yz(p) = 0.

^{*a*}If $u_1, \ldots, u_n \in U(M)$ and $\xi_i \in u_i p u_i^* H$ for $i = 1, \ldots, n$, then $x \sum \xi_i = \sum x \xi_i = \sum x u_i p u_i^* \xi_i = 0$, so $x p_F = 0$.

Proposition 4.2.7. For a von Neumann algebra M and $p, q \in P(M) \setminus \{0\}$, the following are equivalent.

- (1) $z(p)z(q) \neq 0$,
- (2) there is a $u \in U(M)$ such that $puq \neq 0$, and
- (3) there is a non-zero partial isometry $v \in M$ such that $vv^* \leq p$ and $v^*v \leq q$.

Proof. ¬(2) ⇒ ¬(1): If puq = 0 for all $u \in U(M)$, then pz(q) = 0 by Lemma 4.2.6(1). But then 0 = qz(p)u = quz(p) for all $u \in U(M)$, so by (the adjoint of) Lemma 4.2.6(1) again, z(q)z(p) = 0. (2) ⇒ (3): If $puq \neq 0$, consider the polar decomposition puq = v|puq|. By construction, $vv^*H = vH = \overline{puqH} \subset pH$, so $vv^* \leq p$. Since $\ker(v) = \ker(puq) \supset \ker(q)$, we have $v^*v = p_{\ker(v)^{\perp}} \leq p_{\ker(q)^{\perp}} = q$. (3) ⇒ (1): We prove that if z(p)z(q) = 0 and $v \in M$ is a partial isometry such that $\overline{vv^* \leq p}$ and $v^*v \leq q$, then v = 0. Since $vv^* \leq p \leq z(p)$, $vv^* = vv^*z(p)$. Since $v^*v \leq q \leq z(q)$, $v^*v = v^*vz(q)$. Then $v = vv^*v = z(p)vv^*vz(q) = vz(q)z(p) = 0$.

Corollary 4.2.8 (Ergodic property of factors). Suppose M is a factor and $p, q \in P(M) \setminus \{0\}$. There is a unitary $u \in U(M)$ such that $puq \neq 0$.

Proof. Since $p, q \neq 0, z(p) = z(q) = 1$. Now apply Proposition 4.2.7.

Corollary 4.2.9. Suppose M is a factor and $p, q \in P(M) \setminus \{0\}$. There is a non-zero partial isometry $u \in M$ such that $uu^* \leq p$ and $u^*u \leq q$. Moreover, we can find $u \in M$ such that $uu^* = p$ or $u^*u = q$.

Proof. The first part is immediate as z(p) = 1 = z(q). Consider the set of partial isometries $u \in M$ such that $uu^* \leq p$ and $u^*u \leq q$. We can order this set by $u \leq v$ if $uu^* \leq vv^*$, $u^*u \leq v^*v$, and $v|_{uu^*H} = u$.

Claim. Any increasing chain has an upper bound.

Proof of Claim. If (v_i) is an increasing chain, then the operator $w : \bigcup v_i^* v_i H \to \bigcup v_i v_j^* H$ given by $\xi \mapsto v_k \xi$ whenever $\xi \in v_k^* v_k H$ is well-defined and unitary. It thus extends to an isometry $K := \overline{\bigcup v_i^* v_i H} \to H$, and thus to a partial isometry on H by defining $w|_{K^{\perp}} = 0$. Clearly $ww^* \leq p, w^* w \leq q$, and $v_i \leq w$ for all i. \Box

We claim a maximal element satisfies $uu^* = p$ or $u^*u = q$. Indeed, if $p - uu^* \neq 0 \neq q - u^*u$, then there is a non-zero partial isometry $w \in M$ such that $ww^* \leq p - uu^*$ and $w^*w \leq q - w^*w$. Observe then that u + w is a partial isometry (why?) with $(u+w)(u+w)^* \leq p$ and $(u+w)^*(u+w) \leq q$ contradicting maximality. \Box

Exercise 4.2.10. Show that the central support z(p) is the smallest projection in Z(M) such that $p \leq z(p)$.

Corollary 4.2.11. Z(pMp) = Z(M)p.

Proof (Dixmier). Clearly $Z(M)p = p(M' \cap M)p \subset Z(pMp)$. Suppose $x \in Z(pMp) = pMp \cap M'p$. Then there is a $y \in M'$ such that x = yp. Since p = z(p)p, replacing y with yz(p), we may assume y = yz(p). We claim that $y \in Z(Mz(p))$ so that

 $y \in M' \cap Mz(p) \subset M' \cap M = Z(M)$. Indeed, the map $M'z(p) \to M'p$ given by multiplication by p is an isomorphism by Lemma 4.2.6(2), and thus maps the center onto the center. Since $yp = x \in Z(pMp)$, we conclude $y = yz(p) \in Z(Mz(p))$, as desired. \square

4.3. Classification of type I factors and their subfactors.

Definition 4.3.1. A (nonzero) projection $p \in P(M)$ is called:

- minimal if $q \in P(M)$ with q < p implies $q \in \{0, p\}$,
- abelian if pMp is abelian, and
- diffuse if there is no minimal projection q < p.

Examples 4.3.2. Here are examples of such projections.

- (1) The minimal projections in B(H) are the rank 1 projections.
- (2) Every projection is diffuse in $L^{\infty}([0,1],\lambda)$ where λ is Lebesgue measure.

Exercise 4.3.3. Suppose μ is a regular finite Borel measure on a compact Hausdorff space X. Show that the minimal projections of $L^{\infty}(X,\mu)$ correspond to atoms of X, i.e., $x \in X$ such that $\mu(\{x\}) > 0$.

Exercise 4.3.4. Suppose $p \in P(M)$ is minimal and $u \in M$ is a non-zero partial isometry such that $uu^* \leq p$. Show that $uu^* = p$ and that u^*u is a minimal projection.

Definition 4.3.5. A von Neumann algebra M is called type I if for all $z \in P(Z(M)) \setminus \{0\}$, there is an abelian $p \in P(M) \setminus \{0\}$ such that $p \leq z$, i.e., every non-zero central projection majorizes an abelian projection.

Examples 4.3.6. Examples of type I von Neumann algebras include abelian von Neumann algebras and B(H).

Exercise 4.3.7. Here are some exercises on minimal projections.

- (1) $p \in P(M)$ is minimal if and only if $pMp = \mathbb{C}p$.
- (2) If M is a factor and p is abelian, then p is minimal.
- (3) If M is a factor, then M is type I if and only if M has a minimal projection.

Theorem 4.3.8 (Classification of type I factors). If M is a type I factor acting on a Hilbert space H, there are Hilbert spaces K, L and a unitary $u \in B(K \otimes L \to H)$ such that $uMu^* =$ $B(K) \otimes 1.$

To prove this theorem, we will construct a system of matrix units for M, i.e., a family $\{e_{ij}|i,j\in I\}$ such that

- $e_{ij}^* = e_{ji}$,
- $e_{ij}e_{k\ell} = \delta_{j=k}e_{i\ell}$, and $\sum e_{ii} = 1$ converging in SOT.

Lemma 4.3.9. If $\{e_{ij}\}_{i,j\in I}$ is a system of matrix units in B(H), then setting $K \coloneqq e_{11}H$ which should be viewed as a 'multiplicity space,' there is a unitary $u: \ell^2 I \otimes K \to H$ such that $u^* e_{ij}u = |\delta_i\rangle\langle\delta_j| \otimes 1 \text{ for all } i, j. \text{ Thus } u^*(\{e_{ij}\}'')u = B(\ell^2 I) \otimes 1, \text{ and } \dim(H) = |I|\dim(K).$

Proof. Let $\{\xi_j\}_{j\in J}$ be an ONB of $K = e_{11}H$. Since e_{1i} may be viewed as a unitary from $e_{ii}H$ onto $e_{11}H$, we see that $\{e_{i1}\xi_j|j\in J\}$ is an ONB for $e_{ii}H$. Since $H = \bigoplus e_{ii}H$, we see that $\{e_{i1}\xi_j|i\in I, j\in J\}$ is an ONB of H. Thus the map $u: \ell^2I \otimes K \to H$ by $\delta_i \otimes \xi_j \mapsto e_{i1}\xi_j$ is a unitary isomorphism. Finally, we calculate $u^*e_{ij}u(\delta_k \otimes \xi_\ell) = u^*e_{ij}e_{k1}\xi_\ell = \delta_{j=k}u^*e_{i1}\xi_\ell = \delta_{j=k}(\delta_i \otimes \xi_\ell),$ so $u^*e_{ij}u = |\delta_i\rangle\langle\delta_j| \otimes 1$ as claimed. \Box

Remark 4.3.10. Observe that if $\{p_i\}$ is a family of mutually orthogonal projections such that $\sum p_i = 1$ SOT, and $\{e_{1j}\}_{j\neq 1}$ is a family of partial isometries such that $e_{1j}e_{1j}^* = p_1$, and $e_{1j}^*e_{1j} = p_j$, then setting $e_{11} \coloneqq p_1$ and $e_{ij} \coloneqq e_{1i}^*e_{1j}$ for all i, j with $i \neq 1$ completes $\{e_{1j}\}$ to a system of matrix units.

Proof of Theorem 4.3.8. Since M is a type I factor, it has a minimal projection p_1 . Let $\{p_i\}$ be a maximal family of mutually orthogonal minimal projections.

Claim. $\sum p_i = 1$ SOT.

Proof. Otherwise, by Corollary 4.2.9, there is a non-zero partial isometry $u \in M$ such that $uu^* \leq p_1$ and $u^*u \leq 1 - \sum p_i$, so $u^*u \perp p_i$ for all *i*. By minimality, $uu^* = p_1$, so u^*u is also minimal. Then $\{p_i\} \subsetneq \{p_i\} \cup \{u^*u\}$, contradicting maximality. \Box

Now by Corollary 4.2.8, for each *i*, there is a non-zero partial isometry e_{1i} such that $e_{1i}e_{1i}^* \leq p_1$ and $e_{1i}^*e_{1i} \leq p_i$. My minimality, we must have $e_{1i}e_{1i}^* = p_1$ and $e_{1i}^*e_{1i} = p_i$ Setting $e_{ii} \coloneqq p_i$ for all *i*, we can construct a system of matrix units $\{e_{ij}\}$ as in Remark 4.3.10.

Claim. $M = \{e_{ij}\}''$.

Proof. If $x \in M$, then $x = (\sum p_i) x (\sum p_j) = \sum_{ij} p_i x p_j$ SOT. But by minimality, each

$$p_i x p_j = e_{1i}^* e_{1i} x e_{1j}^* e_{1j} = e_{i1} \underbrace{p_1 e_{1i} x e_{j1} p_1}_{=:\lambda_{ij} p_1 \in \mathbb{C} p_1} e_{1j} = \lambda_{ij} e_{i1} p_1 e_{1j} = \lambda_{ij} e_{ij}.$$

Hence $x = \sum_{ij} \lambda_{ij} e_{ij}$, and $M = \{e_{ij}\}''$. The final claim follows now from Lemma 4.3.9

Definition 4.3.11. We say a type I factor M is type I_n if $M \cong B(H)$ with dim(H) = n. **Fact 4.3.12.** If u, v are two partial isometries with $uu^* \perp vv^*$ and $u^*u \perp v^*v$, then $u^*v =$

 $0 = uv^*$ and u + v is a partial isometry.

Corollary 4.3.13. Suppose M, N are two type I subfactors of B(H). Let $p \in M$ and $q \in N$ be minimal projections. The following are equivalent.

- (1) There is a unitary $u \in U(H)$ such that $u^*Mu = N$.
- (2) There are minimal $p \in P(M)$ and $q \in P(N)$ and a $u \in U(H)$ such that $u^*pu = q$.
- (3) There are minimal $p \in P(M)$ and $q \in P(N)$ and a partial isometry $v \in B(H)$ such that $vv^* = p$ and $v^*v = q$. (Note that this v is a unitary isomorphism between the multiplicity spaces pH and qH for M and N respectively.)

 $\begin{array}{l} Proof.\\ (\underline{1}) \Rightarrow (\underline{2}):\\ (\underline{3}) \Rightarrow (\underline{3}):\\ (\underline{3}) \Rightarrow (\underline{1}):\\ (\underline{3}) \Rightarrow (\underline{3}):\\ (\underline{3}) = (\underline{3}):\\ (\underline{3}):\\ (\underline{3}) = (\underline{3}):\\ (\underline{3}):\\ (\underline{3}) = (\underline{3}):\\ (\underline{3})$

4.4. Comparison of projections.

Definition 4.4.1. For $p, q \in P(M)$, we say $p \preccurlyeq q$ if there is a partial isometry $u \in M$ such that $uu^* = p$ and $u^*u \le q$. We say $p \approx q$ if there is a partial isometry $u \in M$ such that $uu^* = p$ and $u^*u = q$.

Example 4.4.2. For $x \in M$ and x = u|x| the polar decomposition, $u \in M$ with $u^*u = \operatorname{supp}(x)$ and $uu^* = \operatorname{range}(x)$. Hence $\operatorname{supp}(x) \approx \operatorname{range}(x)$.

Example 4.4.3. Suppose u is a partial isometry such that $uu^* = p$. Then for all $q \leq p$, qu is a partial isometry such that $quu^*q = qpq = q$, so $u^*qu \approx q$.

Exercise 4.4.4. Show that \approx is an equivalence relation on P(M) up to \approx .

Theorem 4.4.5. \preccurlyeq is a partial order on P(M).

Proof. <u>reflexive:</u> $p \preccurlyeq p$ via partial isometry p. <u>transitive:</u> Suppose $uu^* = p$, $u^*u \le q = vv^*$, and $v^*v \le r$. Then $uvv^*u^* = uqu^* = uu^*uqu^* = uu^*uu^* = uu^* = p$ and $v^*u^*uv \le v^*qv = v^*vv^*v = v^*v \le r$.

anti-symmetric: Suppose $p \preccurlyeq q$ and $q \preccurlyeq p$. Let $u, v \in M$ by partial isometries such that $uu^* = p, u^*u \le q, vv^* = q$, and $v^*v \le p$. Then for each $p' \le p$,

$$u^* p' u \le u^* p u = u^* u u^* u = u^* u \le q,$$

and similarly, for each $q' \leq q$, $v^*q'v \leq p$. That is, we have order preserving maps

$$\{\text{projections } \leq p\} \xrightarrow[Ad(u)]{Ad(v)} \{\text{projections } \leq q\} .$$

It immediately follows that inductively defining

$$p_{n+1} := v^* q_n v$$
 $p_0 := p$
 $q_{n+1} := u^* p_n u$ $q_0 := q$

yields two decreasing sequences of projections in M. Define $p_{\infty} := \lim^{SOT} p_n = \bigwedge p_n$ and $q_{\infty} := \lim^{SOT} q_n = \bigwedge q_n$, the orthogonal projections onto $\bigcap p_n H$ and $\bigcap q_n H$ respectively. The clever trick here is to write $p = p_0$ and $q = q_0$ as telescoping sums of mutually orthogonal projections, which converge SOT:

$$p = (p_0 - p_1) + (p_1 - p_2) + (p_2 - p_3) + (p_3 - p_4) + \dots + p_{\infty}$$

$$q = (q_0 - q_1) + (q_1 - q_2) + (q_2 - q_3) + (q_3 - q_4) + \dots + q_{\infty}$$

We then pair up projections and sum up the partial isometries with orthogonal domains and ranges.

First, since multiplication is separately SOT-continuous,

$$v^* q_{\infty} v = v^* (\lim {}^{SOT} q_n) v = \lim {}^{SOT} v^* q_n v = \lim {}^{SOT} p_n = p_{\infty}.$$

Moreover, since $q_{\infty} \leq q$, $q_{\infty} = q_{\infty}qq_{\infty} = q_{\infty}vv^*q_{\infty}$. Hence $p_{\infty} \approx q_{\infty}$ via the partial isometry $q_{\infty}v$. Finally, observe that

$$Ad(u)(p_n - p_{n+1}) = u^*(p_n - p_{n+1})u = u^*p_nu - u^*p_{n+1}u = q_{n+1} - q_{n+2}$$

$$Ad(v)(q_n - q_{n+1}) = p_{n+1} - p_{n+2}.$$

Thus $(p_n - p_{n+1})u$ is a partial isometry witnessing $p_n - p_{n+1} \approx q_{n+1} - q_{n+2}$, and $(q_n - q_{n+1})v$ is a partial isometry witnessing $q_n - q_{n+1} \approx p_{n+1} - p_{n+2}$.

Corollary 4.4.6. If M is a factor, then \preccurlyeq is a total order up to \approx .

Proof. This is a restatement of Corollary 4.2.9.

Definition 4.4.7. A projection $p \in P(M)$ is called:

- finite if for all projections $q \leq p, q \approx p$ implies q = p.
- infinite if there is a $q \leq p$ with $q \neq p$ such that $q \approx p$ (not infinite). An infinite projection is called:
 - purely infinite if there is no non-zero finite $q \leq p$, and
 - properly infinite if for all $z \in P(Z(M))$ such that $zp \neq 0$, zp is infinite.

A von Neumann algebra M is called finite or (purely/properly) infinite if 1_M is respectively.

Exercise 4.4.8. Prove that abelian von Neumann algebras are finite. Deduce that p abelian implies p is finite.

Definition 4.4.9. A von Neumann algebra M is called:

- type III if M is purely infinite.
- type II if M has no abelian projections and any non-zero central projection majorizes a non-zero finite projection. In this case, we call M:
 - type II₁ if M is finite, and
 - type II_{∞} if there is no non-zero finite central projection.

Remark 4.4.10. The above definition is rather hard to parse, so here is another way to say it. We will informally say that a von Neumann algebra M has *sufficiently many* projections with property (P) if every non-zero central projection of M majorizes a non-zero projection with property (P). Then M is:

- type I if M has sufficiently many abelian projections,
- type II if M has no abelian projections, but has sufficiently many finite projections. In this case, M is:
 - (1) type II_1 if M is finite and
 - (2) type II_{∞} if has no non-zero finite central projections.
- type III if M has no abelian projections and no non-zero finite projections.
- 4.5. $L\Gamma$ is a II₁ factor when Γ is icc. Let Γ be a countable discrete group. Recall

 $L\Gamma \coloneqq \{\lambda_g | g \in \Gamma\}'' \subset B(\ell^2 \Gamma) \qquad \text{where} \qquad (\lambda_g \xi)(h) \coloneqq \xi(g^{-1}h).$

The functions $\delta_g(h) \coloneqq \delta_{g=h}$ give a distinguished orthonormal basis of $\ell^2 \Gamma$. Observe $\lambda_g \delta_h = \delta_{gh}$. We also have a right Γ action on $\ell^2 \Gamma$ by $(\rho_g \xi)(h) \coloneqq \xi(hg)$. Notice that $\rho_g \in U(\ell^2 \Gamma) \cap L\Gamma'$.

Facts 4.5.1. We compute some basic properties about $L\Gamma$.

 $(L\Gamma 1)$ For all $x \in L\Gamma$, there a sequence $(x_g) \in \ell^2 \Gamma$ such that $x\delta_e = \sum x_g \delta_g$. $(L\Gamma 2)$ For all $x \in L\Gamma$ and $h \in \Gamma$,

$$x\delta_h = x\rho_h\delta_e = \rho_h x\delta_e = \rho_h \sum x_g\delta_g = \sum_g x_g\delta_{gh} = \sum_g x_{gh^{-1}}\delta_g.$$

(LT3) $x^* \delta_e = \sum \overline{x_{g^{-1}}} \delta_g$ since for all $h \in \Gamma$,

$$\langle x^* \delta_e, \delta_h \rangle = \langle \delta_e, x \delta_h \rangle \underset{(L\Gamma 2)}{=} \sum \overline{x_{gh^{-1}}} \langle \delta_e, \delta_g \rangle = \overline{x_{h^{-1}}}.$$

 $(L\Gamma 4)$ If $x\delta_e = \sum x_g\delta_g$ and $y\delta_e = \sum y_g\delta_g$, then $xy\delta_e = \sum_g (\sum_h x_h y_{h^{-1}g})\delta_g$. Thus the convolution product $(x_g) * (y_h) \in \ell^2 \Gamma$.

Proof. For all
$$g \in \Gamma$$
,
 $\langle xy\delta_e, \delta_g \rangle = \langle y\delta_e, x^*\delta_g \rangle \underset{(L\Gamma3)}{=} \sum_{h,k} x_{h^{-1}}y_k \langle \delta_k, \rho_{g^{-1}}\delta_h \rangle = \sum_{h,k} x_{h^{-1}}y_k \delta_{k=hg},$

which simplifies to $\sum_{h=1}^{n} x_{h-1} y_{hg}$. This is the claimed formula swapping h with h^{-1} as the index of summation.

 $(L\Gamma 5)$ δ_e is a cylic and separating vector for $L\Gamma$.

Proof. Clearly $\mathbb{C}[\Gamma]\delta_e \subset L\Gamma\delta_e$ is dense in $\ell^2\Gamma$, so δ_e is cyclic. If $x \in L\Gamma$ such that $x\delta_e = 0$, then $x\delta_g = \rho_{g^{-1}}x\delta_e = 0$ for all g, and x = 0. Thus δ_e is separating. \Box

 $(L\Gamma 6)$ tr $\coloneqq \langle \cdot \delta_e, \delta_e \rangle$ is a faithful σ -WOT continuous tracial state on $L\Gamma$ with tr $(x) = x_e$.

Proof. First, we have the tracial property as $\langle xy\delta_e, \delta_e \rangle = \sum_h x_h y_{h^{-1}} = \sum_h y_h x_{h^{-1}} = \langle yx\delta_e, \delta_e \rangle.$ Next, $\operatorname{tr}(x^*x) = \sum_g |x_g|^2 = 0$ if and only if $x_g = 0$ for all g if and only if x = 0, so tr is faithful. $(L\Gamma7)$ All projections in $L\Gamma$ are finite.

Proof. Suppose $uu^* = p$ and $u^*u = q \le p$. Then $\operatorname{tr}(p-q) = \operatorname{tr}(uu^*) - \operatorname{tr}(u^*u) = q \le p$. 0 which implies p - q = 0 as tr is faithful by (LT6).

Example 4.5.2. If H is infinite dimensional, then B(H) does not admit a trace.

Proposition 4.5.3. If Γ is icc (infinite and all nontrivial conjugacy classes infinite), then $L\Gamma$ is a II₁ factor.

Proof. If $z \in Z(L\Gamma)$, then

$$\sum z_g \delta_g = z \delta_e = \lambda_{h^{-1}} z \lambda_h \delta_e = \sum z_{h^{-1}gh} \delta_g,$$

so $(z_g) \in \ell^2 \Gamma$ is constant on conjugacy classes. Since Γ is icc, $z_g = 0$ for $g \neq e$, so $z \in \mathbb{C}1$ by $(L\Gamma 6)$, and $L\Gamma$ is a factor. Since $L\Gamma$ is infinite dimensional and admits a trace, it cannot be type I by Exercise

4.5.2. Since $L\Gamma$ is finite by $(L\Gamma7)$ $L\Gamma$ is type II₁.

4.6. II₁ factor basics. This subsection follows Jones' von Neumann algebra notes quite closely.

Above, we exploited the trace on $L\Gamma$ to prove Proposition 4.5.3. For this subsection, we assume a II₁ factor comes equipped with a σ -WOT continuous tracial state. We will construct such a trace in Corollary 4.8.5 below.

Facts 4.6.1. Here are some elementary facts about a factor M equipped with a tracial state tr, which is sometimes assumed to be faithful or σ -WOT continuous.

(tr1) A σ -WOT continuous tracial state on a factor M is faithful.

Proof. Let $J = \{x \in M | tr(x^*x) = 0\}$. Since $x^*y^*yx \leq ||y^*y||x^*x$, J is a left ideal. But since tr is a trace, J is a 2-sided ideal. By Cauchy-Schwarz, $tr(x^*x) =$ 0 if and only if tr(xy) = 0 for all y, so

$$U = \bigcap_{y \in M} \ker(\underbrace{\operatorname{tr}(\cdot y)}_{\sigma \operatorname{-WOT cts}})$$

is σ -WOT closed. By Corollary 4.1.5, M has no non-trivial σ -WOT closed 2-sided ideals, so ker(tr) = 0.

(tr2) If M is a factor with a faithful tracial state, then M is finite.

Proof. The proof of $(L\Gamma7)$ applies verbatim.

(tr3) An infinite dimensional factor M with a σ -WOT continuous tracial state is type II₁.

Proof. The second part of the proof of Proposition 4.5.3 applies verbatim.

(tr4) Suppose M is a factor and tr is faithful.

(a) $p \preccurlyeq q$ if and only if $\operatorname{tr}(p) \leq \operatorname{tr}(q)$. (b) $p \approx q$ if and only if $\operatorname{tr}(p) = \operatorname{tr}(q)$.

Proof. For the forward direction, suppose $p = uu^*$ and $u^*u \leq q$. Then $\operatorname{tr}(p) = \operatorname{tr}(uu^*) = \operatorname{tr}(u^*u) \leq \operatorname{tr}(q)$ with equality if and only if $q = u^*u$ as tr is faithful. Conversely, suppose $\operatorname{tr}(p) \leq \operatorname{tr}(q)$. Since M is a factor, then $p \preccurlyeq q$ or $q \preccurlyeq p$. If $q \preccurlyeq p$, then by the forward step, $\operatorname{tr}(q) \leq \operatorname{tr}(p)$, in which case $\operatorname{tr}(p) = \operatorname{tr}(q)$ and

 $p = uu^*$ by faithfulness of tr. Thus $p \approx q$.

Lemma 4.6.2. Suppose M is a II₁ factor with a faithful trace. For every non-zero $p \in P(M)$ and $0 < \varepsilon < \operatorname{tr}(p)$, there is a $q \in P(M)$ with $0 \le q \le p$ and $0 < \operatorname{tr}(q) < \varepsilon$.

Proof. Let

 $\delta := \inf \left\{ \operatorname{tr}(q) | q \in P(M) \setminus \{0\} \text{ such that } q \leq p \right\}.$

If $0 < \delta \leq \operatorname{tr}(p)$, there is a non-zero $q \in P(M)$ such that $q \leq p$ and $\operatorname{tr}(q) < 2\delta$ by the definition of the inf. Since M is not type I, q is not minimal, so there is a non-zero projection $r \leq q$ with $0 \neq r \neq q$. Then $\delta \leq \operatorname{tr}(r)$, but

$$\operatorname{tr}(q-r) = \operatorname{tr}(q) - \operatorname{tr}(r) \le \operatorname{tr}(q) - \delta < 2\delta - \delta = \delta,$$

a contradiction.

Proposition 4.6.3. Suppose M is a II_1 factor with a faithful trace. Then tr(P(M)) = [0, 1].

Proof. Fix $r \in (0, 1)$, and consider $\{p \in P(M) | 0 < \operatorname{tr}(p) \leq r\}$ which is non-empty by Lemma 4.6.2. Ordering this set by \leq , every ascending chain has an upper bound, so by Zorn's Lemma, there is a maximal element p. Suppose for contradiction that $\operatorname{tr}(p) < r$. Again by Lemma 4.6.2, there is a projection $q \leq 1 - p$ with $0 < \operatorname{tr}(q) < r - \operatorname{tr}(p)$. But then p + q is a projection such that $\operatorname{tr}(p) < \operatorname{tr}(p) + \operatorname{tr}(q) < r$, a contradiction. \Box

Exercise 4.6.4. Give a better description of a projection of arbitrary trace in [0, 1] in $L\mathbb{F}_2$ and LS_{∞} .

Exercise 4.6.5. Let M be a II₁ factor with σ -WOT continuous tracial state tr.

- (1) Show that if $p \in M$ is a non-zero projection, then for every 0 < r < tr(p), there is a projection $q \in M$ with $q \leq p$ and tr(q) = r.
- (2) For every $n \in \mathbb{N}$, there is a unital subfactor $N \subseteq M$ with $N \cong M_n(\mathbb{C})$.
- (3) M is algebraically simple, i.e., M has no 2-sided ideals.

Proposition 4.6.6. A finite von Neumann algebra M with a faithful σ -WOT continuous tracial state tr is a II₁ factor if and only if for any other σ -WOT continuous tracial state φ , $\varphi = \text{tr}$.

Proof. Suppose M is a II₁ factor. It suffices to prove both traces agree on projections. By Exercise 4.6.5(2), the traces must agree on every subfactor $N \cong M_n(\mathbb{C})$ for all $n \in \mathbb{N}$. For an arbitrary projection $p \in M$, we can build a sequence (p_i) of mutually orthogonal projections such that $p = \sum p_i$ SOT (and thus also σ -WOT) and $\operatorname{tr}(p_i) = \frac{1}{n_i}$ for some $n_i \in \mathbb{N}$ for every *i* using Exercise 4.6.5(1). Suppose now *M* is not a factor, and choose projection $z \in Z(M)$ such that $0 \neq z \neq 1$. Then $\varphi(x) := \frac{1}{\operatorname{tr}(z)} \operatorname{tr}(xz)$ is a σ -WOT continuous tracial state distinct from tr as $\varphi(1-z) = 0 \neq \operatorname{tr}(1-z)$.

4.6.1. The hyperfinite II₁ factor. We now use Proposition 4.6.6 to construct a II₁ factor R which can be well approximated by finite dimensional subalgebras.

For $n \in \mathbb{N}$, let $A_n := \bigotimes^n M_2(\mathbb{C})$. Include $A_n \hookrightarrow A_{n+1}$ by $x \mapsto x \otimes 1$, and let $A_{\infty} := \lim_{n \to \infty} A_n = \bigotimes^{\infty} M_2(\mathbb{C})$. Since $A_n \cong M_{2^n}(\mathbb{C})$ has a unique normalized faithful tracial state tr_n , $\operatorname{tr}_\infty := \lim_{n \to \infty} \operatorname{tr}_n$ is the unique faithful trace on A_∞ , and it is positive definite in that $\operatorname{tr}_\infty(x^*x) \ge 0$ for all $x \in A_\infty$ with equality if and only if x = 0. We can thus attempt to apply the GNS construction, where there are several things we must check along the way. We define H to be the completion of A_∞ in $\|\cdot\|_2$ under the sesquinear form $\langle x, y \rangle := \operatorname{tr}_\infty(y^*x)$. We write $\Omega \in H$ for the image of $1 \in A_\infty$ and $a\Omega \in H$ for the image of $a = a1 \in A_\infty$.

(R1) A_{∞} acts faithfully on the left of H by bounded operators by $x(a\Omega) = xa\Omega$. We can thus define $R := (A_{\infty})'' \subset B(H)$.

Proof. Since $x^*x \leq ||x^*x||_{A_n}$ for all $x \in A_n$, and since the inclusions $A_n \hookrightarrow A_{n+k}$ are all injective and thus norm-preserving, we have

 $||xa\Omega||^{2} = \operatorname{tr}_{\infty}(a^{*}x^{*}xa) \le ||x^{*}x||_{A_{n}} \cdot \operatorname{tr}_{\infty}(a^{*}a) = ||x||_{A_{n}}^{2} \cdot ||a\Omega||^{2}.$

Faithfulness of the action follows as Ω is separating for A_{∞} by faithfulness of $\operatorname{tr}_{\infty}$ on A_{∞} .

(R2) $\operatorname{tr}_R(x) := \langle x\Omega, \Omega \rangle$ is a σ -WOT continuous tracial state on R such that $\operatorname{tr}_R|_{A_\infty} = \operatorname{tr}_\infty$.

Proof. For $x \in A_{\infty}$, $\operatorname{tr}_{R}(x) = \langle x\Omega, \Omega \rangle = \operatorname{tr}_{\infty}(x)$. Since tr_{R} is a vector state, it is both SOT-continuous and σ -WOT continuous. For $x, y \in R$, by the Kaplansky Density Theorem, we may pick bounded nets $(x_i), (y_i) \subset A_{\infty}$ with $x_i \to x$ and $y_i \to y$ SOT. Since multiplication is jointly SOT-continuous on bounded sets, $x_iy_i \to xy$ and $y_ix_i \to yx$ SOT. We thus have

$$\operatorname{tr}_R(xy) = \lim \operatorname{SOT} \operatorname{tr}_{\infty}(x_i y_i) = \lim \operatorname{SOT} \operatorname{tr}_{\infty}(y_i x_i) = \operatorname{tr}_R(yx).$$

(R3) A_{∞} acts on the *right* of H by bounded operators by $x(a\Omega) = ax\Omega$.

Proof. This is the step that uses that tr is a trace: $\|ax\Omega\|^{2} = \operatorname{tr}_{\infty}(x^{*}a^{*}ax) = \operatorname{tr}_{\infty}(axx^{*}a^{*}) \leq \|xx^{*}\|_{A_{n}} \cdot \operatorname{tr}_{\infty}(aa^{*})$ $= \|x^{*}x\|_{A_{n}} \cdot \operatorname{tr}_{\infty}(a^{*}a) = \|x\|_{A_{n}}^{2} \cdot \|a\Omega\|^{2}.$

(R4) tr_R is faithful on R so that R is a II₁ factor by Proposition 4.6.6.

Proof. Suppose $\operatorname{tr}_R(x^*x) = 0$. Since the right A_∞ -action is bounded and commutes with the left A_∞ -action on H and thus also commutes with R, for all $a \in A_\infty$, $\|xa\Omega\|^2 = \|xR_a\Omega\|^2 = \|R_ax\Omega\|^2 \le \|R_a\|^2 \cdot \|x\Omega\|^2 = \|R_a\|^2 \cdot \operatorname{tr}_R(x^*x) = 0.$ Since $A_\infty\Omega$ is dense in H, x = 0.

Exercise 4.6.7. Build a projection of arbitrary trace in [0, 1] in R.

4.7. Useful results on comparison of projections. Our next task is to prove every finite von Neumann algebra admits a tracial state. We begin with some general results on projections in a von Neumann algebra. For this section, unless stated otherwise, M is a von Neumann algebra and $p, q \in P(M)$.

Facts 4.7.1. Here are some basic facts about comparison of projections.

 $(\preccurlyeq 1)$ (Kaplansky's formula) $p \lor q - p \approx q - p \land q$.

Proof. Consider x = (1 - p)q. Then $\ker(x) = \ker(q) \oplus (p \land q)H$, so $p_{\ker(x)} = (1 - q) + p \lor q$ and $\operatorname{range}(x^*) = 1 - p_{\ker(x)} = q - p \land q$. Since $x = [(1 - (1 - q))(1 - p)]^*$, the above argument also tells us that $\operatorname{range}(x) = (1 - p) - (1 - p) \land (1 - q) = (1 - p - (1 - p \lor q)) = p \lor q - p$. Since $\operatorname{range}(x^*) = \operatorname{supp}(x)$, these projections are equivalent by Example 4.4.2.

 $(\preccurlyeq 2)$ If $p_1 \preccurlyeq q_1, p_2 \preccurlyeq q_2$, and $q_1q_2 = 0$, then $p_1 \lor p_1 \preccurlyeq q_1 + q_2$.

Proof. By $(\preccurlyeq 1)$, $p_1 \lor p_2 - p_2 \approx p_1 - p_1 \land p_2 \preccurlyeq q_1$ so $p_1 \lor p_2 = (p_1 \lor p_2 - p_2) + p_2 \preccurlyeq q_1 + q_2$.

(≼3) (Comparison Theorem) There is a $z \in P(Z(M))$ such that $pz \preccurlyeq qz$ and $q(1-z) \preccurlyeq p(1-z)$.

Proof. By Zorn's Lemma, there are maximal families of mutually orthogonal projections $\{p_i\}, \{q_i\}$ such that $\sum p_i \leq p, \sum q_i \leq q$, and $p_i \approx q_i$ for all i. Set $z_1 := z (p - \sum p_i)$ and $z_2 := z (q - \sum q_i)$. By maximality, $z_1 z_2 = 0$, so $\left(p - \sum p_i\right) \leq z_1 \leq 1 - z_2 \implies z_2 \left(p - \sum p_i\right) = 0$ $\left(q - \sum q_i\right) \leq z_2 \implies (1 - z_2) \left(q - \sum q_i\right) = 0.$ Since $\sum p_i \approx \sum q_i$, we see $z_2 p = z_2 \sum p_i \approx z_2 \sum q_i \leq z_2 q$ $(1 - z_2)q = (1 - z_2) \sum q_i \approx (1 - z_2) \sum p_i \leq (1 - z_2)p.$ $(\preccurlyeq 4)$ If p, q are finite, so is $p \lor q$.

We omit the proof, which is quite technical. There is a much simpler proof when p, q are central in addition, which you will do on homework.

(\preccurlyeq 5) If p, q are finite and $p \approx q$, then $1 - p \approx 1 - q$. Hence there is a $u \in U(M)$ such that $u^*pu = q$.

Remark 4.7.2. The proof below only uses $(\preccurlyeq 4)$ to reduce to the case that M is finite. Since we will only use $(\preccurlyeq 5)$ for finite von Neumann algebras, the rest of these notes is still self-contained without a proof of $(\preccurlyeq 4)$ above.

Proof. By $(\preccurlyeq 4)$, $p \lor q$ is finite, so replacing M by $(p \lor q)M(p \lor q)$, we may assume M is finite. By $(\preccurlyeq 3)$, there is a central projection $z \in P(Z(M))$ such that $(1-p)z \preccurlyeq (1-q)z$ and $(1-q)(1-z) \preccurlyeq (1-p)(1-z)$. Since we can consider Mz and M(1-z) separately, we may assume $1-p \approx r \le 1-q$. Since $1 = (1-p) + p \approx r + q$, and M is finite, r + q = 1, so $1-p \approx r = 1-q$. Now if $vv^* = p$, $v^*v = q$ and $ww^* = 1-p$, $w^*w = 1-q$, then u = v + w is a unitary satisfing $u^*pu = q$.

(≼6) Suppose $p, q \in P(M)$ finite with $p, q \leq r$. (≼6a) If $p \approx q$, then $r - p \approx r - q$. (≼6b) If $p \preccurlyeq q$, then $r - q \preccurlyeq r - p$.

Remark 4.7.3. Again, in the proof below, we will only use $(\preccurlyeq 4)$ to pass to the case M is finite and r = 1.

Proof. Since $p, q \leq r$ implies $p \lor q \leq r$, passing to $(p \lor q)M(p \lor q)$, we may assume M is finite and r = 1 by $(\preccurlyeq 4)$. Now $(\preccurlyeq 6a)$ follows immediately from $(\preccurlyeq 5)$. For $(\preccurlyeq 6b)$, let $s \in P(M)$ with $p \approx s \leq q$. By $(\preccurlyeq 5) \ 1 - p \approx 1 - s \geq 1 - q$. \Box

(≼7) If (q_n) is an increasing sequence of finite projections and $p \in P(M)$ such that $q_n \preccurlyeq p$ for all n, then $\bigvee q_n \preccurlyeq p$.

Proof. We inductively define a sequence of mutually orthogonal projections $p_n \leq p$ such that $p_0 = q_1$ and for all $n \in \mathbb{N}$, $p_n \approx q_{n+1} - q_n$. Then

$$\bigvee_{n=1}^{\infty} q_n = q_1 + \sum_{n=1}^{\infty} (q_{n+1} - q_n) \approx \sum_{0}^{\infty} p_n \le p$$

By assumption, $q_1 \preccurlyeq p$, so there is a $p_0 \le p$ such that $q_1 \approx p_0$. Suppose we have p_0, p_1, \ldots, p_n .

Claim. $q_{n+2} - q_{n+1} \preccurlyeq p - \sum_{i=0}^{n} p_i$.

Proof of Claim. Observe $q_{n+2} \preccurlyeq p$, so there is a partial isometry v such that $vv^* = q_{n+2}$ and $e_{n+2} := v^*v \le p$. Since $q_{n+2} \ge q_{n+1}$,

 $e_{n+1} := v^* q_{n+1} v \le v^* q_{n+2} v = v^* v v^* v = v^* v \le p$

and $e_{n+1} \approx q_{n+1}$. Then $v^*(q_{n+2}-q_{n+1})v = e_{n+2}-e_{n+1}$ and $(q_{n+2}-q_{n+1})vv^*(q_{n+2}-q_{n+1}) = q_{n+2}-q_{n+1}$, so $q_{n+2} - q_{n+1} \approx e_{n+2} - e_{n+1}$. By the induction hypothesis, $e_{n+1} \approx q_{n+1} = (q_{n+1} - q_n) + (q_n - q_{n-1}) + \dots + (q_2 - q_1) + q_1 \approx \sum_{i=0}^n p_i \leq p$. Since q_{n+2}, q_{n+1} are finite, so are $e_{n+2}, e_{n+1} \approx \sum_{i=0}^n p_i$. We calculate $q_{n+2} - q_{n+1} \approx e_{n+2} - e_{n+1} = (p - e_{n+1}) - (p - e_{n+1}) \leq p - e_{n+1} \approx p - \sum_{i=0}^n p_i$, proving the claim. \Box By the claim, we can find a projection $q_{n+2} - q_{n+1} \approx p_{n+1} \leq p - \sum_{i=0}^n p_i$, so we can inductively build the sequence as claimed. \Box

(≼8) Suppose *M* is a finite von Nuemann algebra and (p_n) is an infinite sequence of mutually orthogonal projections. Suppose (q_n) is another sequence of projections with $p_n \approx q_n$ for each *n*. Then $q_n \to 0$ SOT.

Proof. By induction using $(\preccurlyeq 2)$, for all $m \le n$, $\bigvee_{i=m}^{n} q_i \preccurlyeq \sum_{i=m}^{n} p_i \le \sum_{i\ge m} p_i.$ Since $\bigvee_{i=m}^{n} q_i$ is increasing in n, $\bigvee_{i\ge m} q_i \preccurlyeq \sum_{i\ge m} p_i$ b

Since $\bigvee_{i=m}^{n} q_i$ is increasing in n, $\bigvee_{i\geq m} q_i \preccurlyeq \sum_{i\geq m} p_i$ by $(\preccurlyeq 7)$. Let $p_0 = 1 - \sum_{i=0}^{\infty} p_i$. By $(\preccurlyeq 6b)$,

$$p_0 + \sum_{i=1}^{m-1} p_i = 1 - \sum_{i \ge m} p_i \preccurlyeq 1 - \bigvee_{i \ge m} q_i \le 1 - \bigwedge_{m=1}^{\infty} \bigvee_{i \ge m} q_i.$$

Again by $(\preccurlyeq 7)$, we can conclude that

$$1 = p_0 + \sum_{i=1}^{\infty} p_i \preccurlyeq 1 - \bigwedge_{m=1}^{\infty} \bigvee_{i \ge m} q_i.$$

Since M is finite, we must have

$$0 = \bigwedge_{m=1}^{\infty} \bigvee_{\substack{i \ge m \\ \text{decreasing}}} q_i = \text{SOT} - \lim \bigvee_{\substack{i \ge m \\ \ge q_m}} q_i.$$

Hence for all $\xi \in H$,

$$\|q_m\|^2 = \langle q_m\xi, \xi \rangle \le \left\langle \bigvee_{i \ge m} q_i\xi, \xi \right\rangle = \left\| \bigvee_{i \ge m} q_i\xi \right\|^2 \xrightarrow{m \to \infty} 0$$

and thus $q_m \to 0$ SOT.

15

4.8. Existence of a trace on a finite von Neumann algebra. For this section, M is a finite von Neumann algebra. Recall that the σ -WOT on M is the weak* topology induced by M_* . Thus we may identify M_* with the σ -WOT continuous linear functionals on M.

Definition 4.8.1. Let $S(M) \subset M_*$ be the set of σ -WOT continuous states of M. Note that U(M) acts on S(M) by $u \cdot \varphi := \varphi(u^* \cdot u)$.

Lemma 4.8.2. Let M be a von Neumann algebra and $\varphi \in M^*$ a state. The following are equivalent.

(1) φ is tracial, i.e., $\varphi(xy) = \varphi(yx)$ for all $x, y \in M$.

(2) For all $x \in M$, $\varphi(xx^*) = \varphi(x^*x)$.

(3) For all $u \in U(M)$, $\varphi(u^*xu) = \varphi(x)$.

 $\begin{array}{l} Proof.\\ (1) \Rightarrow (2): \text{Obvious.}\\ \hline (2) \Rightarrow (3): \text{ For } x \geq 0, \ \varphi(u^*xu) = \varphi(u^*x^{1/2}x^{1/2}u) = \varphi(x^{1/2}uu^*x^{1/2}) = \varphi(x). \text{ Now use}\\ \hline \text{that every } x \in M \text{ is a linear combination of 4 positive operators.}\\ \hline (3) \Rightarrow (1): \text{Replacing } x \text{ with } ux, \text{ we have } \varphi(xu) = \varphi(ux) \text{ for all } x \in M \text{ and } u \in U(M).\\ \hline \text{Now use that every } y \in M \text{ is a linear combination of 4 unitaries.} \\ \end{array}$

So to construct a trace in S(M) for M finite, we will find a fixed point in S(M) under the U(M)-action. To do this, we will use the Ryll-Nardzewski Fixed Point Theorem. Our approach here follows the proof of Jacob Lurie.

Theorem 4.8.3 (Ryll-Nardzewski). Let X be a Banach space and $K \subset X$ a weakly compact convex subset. Suppose $G \subset B(X)$ is a group of isometries with $GK \subseteq K$. Then there is an $x \in K$ such that gx = x for all $g \in G$.

For $u \in U(M)$, we define $\pi_u \in B(M_*)$ by $\pi_u \varphi := \varphi(u^* \cdot u)$. Hence for our purposes, $G = \pi(U(M)) \subset B(M_*)$.

The following theorem is the main result of this section.

Theorem 4.8.4. Suppose M is a finite von Neumann algebra and fix $\varphi \in S(M)$. Define

$$K_0 := \pi(U(M))\varphi = \{\varphi(u^* \cdot u) | u \in U(M)\} \subset S(M),$$

and let K be the weakly closed convex hull of K_0 in M_* . Then K is weakly compact.

Before proving this theorem, observe that combining it with the Ryll-Nardzewski Fixed Point Theorem 4.8.3 yields the desired result.

Corollary 4.8.5. There exists a σ -WOT continuous tracial state on a finite von Neumann algebra.

Proof. Let $\varphi \in S(M)$. By Theorem 4.8.4, the weakly closed convex hull $K \subset S(M)$ of $\pi(U(M))\varphi$ is weakly compact. As K is clearly $\pi(U(M))$ -invariant, by the Ryll-Nardzewski Fixed Point Theorem 4.8.3, there is a $\pi(U(M))$ -fixed point tr $\in K \subset S(M)$, which is a tracial state by Lemma 4.8.2.

Lemma 4.8.6. For a positive linear functional $\varphi \in M^*$, the following are equivalent.

- (1) φ is σ -WOT continuous.
- (2) φ is normal: for all increasing nets of positive operators $x_i \nearrow x$ in M, $\varphi(x_i) \nearrow \varphi(x)$.
- (3) φ is completely additive: for every family (p_i) of mutually orthogonal projections in $M, \varphi(\sum p_i) = \sum \varphi(p_i).$

Proof. Homework.

Remark 4.8.7. Suppose (p_i) is a family of mutually orthogonal projections in M. For all positive $\varphi \in M^*$, and for all finite subsets $F \subset I$, $\sum_{i \in F} \varphi(p_i) = \varphi\left(\sum_{i \in F} p_i\right) \leq \varphi\left(\sum p_i\right)$, so $\sum \varphi(p_i) \leq \varphi\left(\sum p_i\right)$. Hence φ is completely additive if and only if for every family of mutually orthogonal projections (p_i) in M, for all $\varepsilon > 0$, there is a finite $F \subset I$ such that $\varphi\left(\sum_{i \notin F} p_i\right) \leq \varepsilon$. Indeed,

$$\sum \varphi(p_i) = \sup_{F \subset I} \sum_{i \in F} \varphi(p_i) = \sup_{F \subset I} \varphi\left(\sum_{i \in F} p_i\right) = \sup_{F \subset I} \varphi\left(\sum p_i\right) - \varphi\left(\sum_{i \notin F} p_i\right)$$
$$= \varphi\left(\sum p_i\right) - \inf_{F \subset I} \varphi\left(\sum_{i \notin F} p_i\right).$$

Proof of Theorem 4.8.4. Recall that the relative weak* topology on $X \subseteq X^{**}$ is the weak topology. To show $K \subset M_*$ is weakly compact, by the Banach-Alaoglu Theorem, it suffices to prove $K \subseteq M_*^{**} = M^*$ is weak* closed, as $K \subseteq (M^*)_1$ which is weak* compact.

Let $\psi \in \overline{K}$, the weak^{*} closure of K in M^* . We show ψ is completely additive, and thus $\psi \in M_*$, so $\psi \in K$. Suppose for contradiction that ψ is not completely additive. Then there is a family $(p_i)_{i \in I}$ of mutually orthogonal projections and an $\varepsilon > 0$ such that for all finite $F \subset I$, $\psi \left(\sum_{i \notin F} p_i\right) > \varepsilon$.

Claim. If $F \subset I$ is any finite set, there is a $\phi \in K_0$ and a finite set $G \subset I \setminus F$ such that $\phi(\sum_{i \in G} p_i) > \varepsilon$.

Proof. The convex hull $\operatorname{conv}(K_0)$ is weakly dense in K, which is weak^{*} dense in \overline{K} , so $\operatorname{conv}(K_0)$ is weak^{*} dense in \overline{K} . Thus for all $\delta > 0$, the weak^{*} open neighborhood

$$\left\{ \phi \in M^* \middle| \left| (\psi - \phi) \left(\sum_{i \notin F} p_i \right) \right| < \delta \right\}$$

of ψ has non-empty intersection with $\operatorname{conv}(K_0)$, so pick ϕ in this intersection. Since $\psi(\sum_{i\notin F} p_i) > \varepsilon$, choosing δ small, we have $\phi(\sum_{i\notin F} p_i) > \varepsilon$. Now if $\phi = \sum_{k=1}^n \lambda_k \phi_k$ is a convex combination of $\phi_k \in K_0$, there must be a particular k so that $\phi_k(\sum_{i\notin F} p_i) > \varepsilon$. Now since ϕ_k is completely additive, there is a finite $G \subset I \setminus F$ such that $\phi_k(\sum_{i\in G} p_i) > \varepsilon$. **Claim.** There is a sequence (F_n) of disjoint finite subsets of I and a sequence of states $(\phi_n) \subset K_0$ such that for all $n \in \mathbb{N}$,

$$\phi_n\left(\sum_{i\in F_n} p_i\right) > \varepsilon.$$

Proof. We induct on *n*. Since $\psi(\sum p_i) > \varepsilon$, by the first claim, there is a $\phi_1 \in K_0$ and a finite set $F_1 \subset I$ such that $\phi_1(\sum_{i \in F_1} p_i) > \varepsilon$. Now suppose we have disjoint sets $F_1, \ldots, F_n \subset I$ and states $\phi_1, \ldots, \phi_n \in K_0$ such that $\phi_k(\sum_{i \in F_k} p_i) > \varepsilon$ for all $k = 1, \ldots, n$. Since ψ is not completely additive,

$$\psi\left(\sum_{i\notin\coprod_{j=1}^nF_j}p_i\right)>\varepsilon,$$

so again by the first claim, there is a $\phi_{n+1} \in K_0$ and a set $F_{n+1} \subset I \setminus \prod_{j=1}^n F_j$ such that $\phi_{n+1}(\sum_{i \in F_{n+1}} p_i) > \varepsilon$.

Now by the above claim, for each $\phi_n \in K_0$, there is a unitary $u_n \in U(M)$ such that $\phi_n = \varphi(u_n^* \cdot u_n)$. Moreover, setting $q_n := \sum_{i \in F_n} p_i$, we have a sequence (q_n) of mutually orthogonal projections such that $\varphi(u_n^*q_nu_n) > \varepsilon$ for all n. We now have our desired contradiction. Since the F_n are disjoint, the q_n are mutually orthogonal. Since $u_n^*q_nu_n \approx q_n$ for all n, $u_n^*q_nu_n \to 0$ SOT (and thus also σ -WOT) by (≤ 8). But $\varphi \in S(M)$ is σ -WOT continuous and $\varphi(u_n^*q_nu_n) > \varepsilon$ for all n, a contradiction.

4.9. The proof of Ryll-Nardzewski. In this section, we prove the Ryll-Nardzewski Fixed Point Theorem 4.8.3 following Lurie's proof.

https://www.math.ias.edu/~lurie/261ynotes/lecture26.pdf.

We begin by restating (a version of) the Ryll-Nardzewski Fix Point Theorem.

Theorem (Ryll-Nardzewski, Theorem 4.8.3). Let X be a Banach space and $K \subset X$ a weakly compact convex subset. Suppose $G \subset B(X)$ is a group of isometries with $GK \subseteq K$. Then there is an $x \in K$ such that gx = x for all $g \in G$.

Remark 4.9.1. Without loss of generality, we may assume G is finitely generated. Indeed, write $G = \bigcup G_i$ where each G_i is finitely generated. Then $K^G = \bigcap K^{G_i}$. By compactness of K and the finite intersection property, $\bigcap K^{G_i} \neq \emptyset$ for all *i* implies $K^G \neq \emptyset$.

Fix a Banach space X and a weakly compact convex subset $K \subset X$. We begin with the following warmup.

Lemma 4.9.2. Suppose $T \in B(X)$ such that $TK \subseteq K$. There is an $x \in K$ such that Tx = x.

Proof. For $n \in \mathbb{N}$, let $T_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$ and $K_n = T_n K \subseteq K$ as K is convex. We claim that $\{K_n\}$ has the finite intersection property. Indeed,

$$K_{n_1} \cap \dots \cap K_{n_k} \supseteq T_{n_1} \cdots T_{n_k} K$$

as $T_m T_n = T_n T_m$ for all m, n.

Now let $x \in \bigcap K_n \neq \emptyset$. For each $n \in \mathbb{N}$, there is a $y \in K$ such that $x = T_n y$, so

$$Tx - x = (T - 1)T_n y = \frac{1}{n}(T - 1)\sum_{k=0}^{n-1} T^k y = \frac{1}{n}(T^n y - y) \in \frac{1}{n}(K - K).$$

Since K is weakly compact, so is K - K, and in particular, K - K is bounded.^{*a*} Thus for every open neighborhood U of K - K, there is an $n \in \mathbb{N}$ such that $\frac{1}{n}(K - K) \subset U$. But this means $Tx - x \in U$ for every open neighborhood U of 0, so Tx = x.

^aIf $S \subset X \subseteq X^{**}$ is weakly compact, then each $s \in S$ is pointwise bounded as a map on X^* by compactness. Now apply the Uniform Boundedness Principle.

The strategy of the proof will be to take our finitely generated group $G = \langle g_1, \ldots, g_n \rangle \subseteq B(X)$ of isometries and find a candidate fixed point $x \in K$ for G using Lemma 4.9.2. We will prove by contradiction that this candidate $x \in K$ satisfies $g_i x = x$ for each generator. The next lemma is the second main ingredient to achieve our contradiction.

Lemma 4.9.3. Suppose $g_1, \ldots, g_k \in B(X)$ are isometries and $x \in X$ such that $g_i(x) \neq x$ for all $i = 1, \ldots, k$. Let C be the weak closed convex hull of $\langle g_1, \ldots, g_k \rangle x$, which is weakly compact. Let $\varepsilon > 0$ such that $||g_i(x) - x|| > \varepsilon$ for all $i = 1, \ldots, n$. Then there is a weakly compact subset $C \subsetneq C$ such that diam $(C \setminus C') \leq \varepsilon$.

Assuming this lemma, we can now prove Theorem 4.8.3.

Proof of Theorem 4.8.3. Set $T = \frac{1}{n} \sum g_i \in B(X)$. By the warmup Lemma 4.9.2, there is an $x \in K$ such that Tx = x. If $g_i(x) = x$ for all i, we have our fixed point proving Theorem 4.8.3. Otherwise, relabelling the g_i , there is a $1 \leq k \leq n$ such that $g_i(x) \neq x$ for all $i = 1, \ldots, k$ and $g_i(x) = x$ for all $i = k + 1, \ldots, n$. Then

$$x = Tx = \frac{1}{n} \sum_{i=1}^{n} g_i(x) = \frac{1}{n} \sum_{i=1}^{k} g_i(x) + \frac{n-k}{n} x,$$

which immediately implies that

$$x = \frac{1}{k} \sum_{k=1}^{k} g_i(x).$$

By Lemma 4.9.3, there is a weakly compact convex subset $C' \subsetneq C = \langle g_1, \ldots, g_k \rangle x \subseteq K$ such that diam $(C - C') \leq \varepsilon$. Since $C' \neq C$, there is an $h \in G$ such that $hx \notin C'$, so

$$hx = hTx = \frac{1}{k} \sum_{i=1}^{k} hg_i(x) \notin C'$$

Since C' is convex, there must be some $1 \leq i \leq k$ such that $hg_i(x) \notin C'$, so both $hx, hg_i(x) \notin C'$. But since h is an isometry, we have

$$|x - g_i(x)|| = ||hx - hg_i(x)|| \le \operatorname{diam}(C - C') \le \varepsilon_i$$

a contradiction.

We now prove the lemma.

Proof of Lemma 4.9.3. To prove the lemma, it suffices to work in the closure of

span { $g_{i_1} \cdots g_{i_m} x | m \in \mathbb{N}$ and $1 \leq i_1, \ldots, i_m \leq k$ },

which is a *separable* Banach space.

Let $E = \partial_{\text{ext}} C \subseteq C$ be the set of extreme points. By the Krein-Milman Theorem, C is the weak closed convex hull of E. Let $\overline{E} \subseteq C$ be the weak closure of E, and let $B = \overline{B_{\varepsilon/3}(0)}$ be the closed ball of radius $\varepsilon/3$. Since B is convex and norm closed, B is also weakly closed as the norm and weak topology have the same closed convex sets. Since X is separable, there is a sequence $(y_j) \subset X$ such that $(y_j + B)$ covers X. Thus $((y_j + B) \cap \overline{E})$ is a cover of the weakly compact set \overline{E} . By the Baire Category Theorem, there is a j such that $(y_j + B) \cap \overline{E}$ has non-empty interior U in \overline{E} with respect to the relative weak topology on \overline{E} .

Now define

 $C_1 :=$ weak closed convex hull of $\overline{E} \setminus U$

 $C_2 :=$ weak closed convex hull of $(y_i + B) \cap \overline{E}$,

which are both weakly closed convex subsets of C. Since C is the closed convex hull of

$$E \subseteq (\overline{E} \setminus U) \cup ((y_j + B) \cap \overline{E}),$$

E is the convex join of C_1 and C_2 , i.e., $C = im(\theta)$ for

 $\theta: C_1 \times C_2 \times [0,1] \to X$ given by $(a,b,t) \mapsto ta + (1-t)b.$

We now consider the sets $C(\delta) := \operatorname{im}(\theta|_{C_1 \times C_2 \times [\delta,1]}).$

Step 1: Each $C(\delta)$ is a weakly closed convex subset of C.

<u>Closed:</u> Since θ is continuous from the (weak,weak,standard) product topology to the weak topology as X with the weak topology is a topological vector space, $K(\delta)$ is weakly compact, and thus closed.

<u>Convex</u>: First, note that for all $0 < \delta \leq 1$, $\delta C_1 + (1 - \delta)C_2$ is convex. We claim that

$$\theta(C_1 \times C_2 \times [\delta, 1]) = \theta(C_1 \times (\delta C_1 + (1 - \delta)C_2) \times [0, 1]),$$

which is manifestly convex.

 $\underline{\subseteq}: \text{ If } t \in [\delta, 1], ta + (1-t)b = sa + (1-s)(\delta a + (1-\delta b)) \text{ for } s \in [0, 1]$ such that $(1-s)(1-\delta) = (1-t)$. This condition is equivalent to $t = \delta + s(1-\delta).$

 $\underline{\supseteq}: \text{ If } s \in [0,1], \text{ then } sa_1 + (1-s)[\delta a_2 + (1-\delta)b] = ta + (1-t)b \text{ for } t = s + (1-s)\delta = \delta + s(1-\delta) \in [\delta,1] \text{ as before and}$

$$a = \frac{sa_1 + (1 - s)\delta a_2}{s + (1 - s)\delta} \in C_1.$$

Step 2: For $\delta > 0$ sufficiently small, diam $(C \setminus C(\delta)) \leq \varepsilon$.

Since C is weakly compact, it is bounded, so $C \subset B_R(0)$ for some R > 0. If $y, y' \in C \setminus C(\delta)$, then there are $0 \leq t, t' < \delta$, $a, a' \in C_1$, and $b, b' \in C_2$ such that y = ta + (1-t)b and y' = t'a' + (1-t')b'. Then $\|y - y'\| = \|t(a - b) + b - t'(a' - b') - b'\|$ $\leq t(\|a\| + \|b\|) + t'(\|a'\| + \|b'\|) + \|\underbrace{b - b'}_{b,b' \in C_2}\|$ $\leq 4\delta R + \frac{2}{3}\varepsilon$ as $b, b' \in C_2 \subset y_j + B$ which has diameter $2/3 \cdot \varepsilon$. Now choose $\delta < \frac{\varepsilon}{12R}$.

Step 3: For δ as in Step 2 above, $C(\delta) \neq C$.

hull of

Since $U \subseteq \overline{E}$ is a non-empty open subset, there is a $y \in E \cap U$. We claim that $y \notin C(\delta)$. Since $y \in E$ is an extreme point of C, it suffices to prove $y \notin C_1$. (Indeed, if $y \notin C_1$ and y = ta + (1-t)b for $a \in C_1$ and $b \in C_2$, since y is extreme, y = a = b. But since $a \in C_1$ and $y \notin C_1$, we must have t = 0. Thus y cannot be written as ta + (1-t)b for $a \in C_1$, $b \in C_2$, and $t \in [\delta, 1]$.) Since X with the weak topology is locally convex, there is a weakly open convex neighborhood V of 0 such that the weak closure \overline{V} satisfies $(y - \overline{V}) \cap \overline{E} \subseteq U$. (Indeed, we can use here that \overline{E} is weakly compact and thus weakly normal.) Now since $\overline{E} \setminus U$ is weakly compact, it admits a weakly open cover $\{z_i + V\}_{i=1}^k$ where each $z_i \in \overline{E} \setminus U$. Thus C_1 is contained in the closed convex

 $\bigcup_{i=1}^{k} (z_i + V) \cap \overline{E} \supseteq \overline{E} \setminus U.$

In turn, $\bigcup_{i=1}^{k} (z_i+V) \cap \overline{E}$ is contained in the convex join of the $(z_i+\overline{V}) \cap C$. If $y \in C_1$, then $y \in (z_i+\overline{V}) \cap C$ for some *i*. But then $z_i \in (y-\overline{V}) \cap \overline{E} \subseteq U$, a contradiction to $z_i \in \overline{E} \setminus U$.

Thus if $\delta > 0$ is sufficiently small, we can take $C' = C(\delta) \subsetneq C$.