
Penneys Math 7212, Spectral Theory Spring 2024

1. Banach algebras

1.1. Spectrum. Let A be a unital Banach algebra. The spectrum of a ∈ A is

sp(a) =
{
λ ∈ C

∣∣a− λ1 /∈ A×} ,
which is a non-empty compact subset of Br(a)(0). Here, r(a) is the spectral radius:

r(a) = lim ∥an∥1/n.

Fact 1.1.1. Suppose ϕ : A→ B is a unital algebra map between Banach algebras. If a ∈ A×,
then ϕ(a) ∈ B×, so spB(ϕ(a)) ⊆ spA(a).

Corollary 1.1.2. Suppose 1 ∈ A ⊂ B is a unital inclusion of Banach algebras. For all
a ∈ A, spB(a) ⊆ spA(a) and ∂ spA(a) ⊆ ∂ spB(a).

Proof. By Fact 1.1.1, spB(ϕ(a)) ⊆ spA(a), so it suffices to prove ∂ spA(a)∩spB(a)c = ∅.
Suppose for contradiction that λ ∈ ∂ spA(a)∩ spB(a)

c. Pick a sequence (λn) ⊂ spA(a)
c

such that λn → λ, so a− λn → a− λ. Then a− λn ∈ A×, so a− λn ∈ B×, and thus
λn /∈ spB(a) for all n. Since we assumed λ /∈ spB(a) and inversion is continuous on
B×, we have (a − λn)

−1 → (a − λ)−1 ∈ B. But A is complete, so (a − λ)−1 ∈ A, a
contradiction. □

1.2. Holomorphic functional calculus. For each a ∈ A, the holomorphic functional cal-
culus (HFC) gives a unital algebra homomorphism O(sp(a)) → A given by

f 7−→ f(a) :=
1

2πi

∫
γ

f(z)

a− z
dz U

where γ is a simple closed contour in U \ sp(a) such that

indγ(z) =

{
1 if z ∈ sp(a)

0 if z /∈ U.

The HFC satisfies the following two properties, which characterize this ring homomorphism:

• If sp(a) ⊂ U , and fn → f locally uniformly on U , then fn(a) → f(a) in A, and
• If f(z) =

∑
αkz

k is a power series with radius of convergence greater than r(a), then
f(a) =

∑
αka

k.

The HFC also satisfies:

(1) If f(z) =
∏
(z − zj)

mj is rational, then f(a) =
∏
(a− zj)

mj .
(2) (spectral mapping) sp(f(a)) = f(sp(a)), and
(3) if g ∈ O(sp(a)), then g(f(a)) = (g ◦ f)(a).

Corollary 1.2.1. If ϕ : A→ B and f ∈ O(spA(a)), then f(ϕ(a)) = ϕ(f(a)).
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Proof. By Fact 1.1.1, spB(ϕ(a)) ⊆ spA(a), so O(spA(a)) ⊆ O(spB(ϕ(a))). Observe that
f(ϕ(a)) = ϕ(f(a)) whenever f is a polynomial, and whenever f is a rational function with
poles outside of spA(a). The result now follows by Runge’s Theorem, since every f ∈
O(spA(a)) can be approximated by such rational functions. □

1.3. Gelfand transform. If A is unital and commutative, the Gelfand transform gives a

norm-contractive unital algebra homomorphism A→ C(Â) given by

a 7→ [eva : φ 7→ φ(a)],

where Â is the set of algebra homomorphisms from A → C, also called characters or mul-

tiplicative linear functionals. The image of the Gelfand transform is a subalgebra of C(Â)

which separates points of Â.

Lemma 1.3.1. If A is unital and a ∈ A, then for all φ ∈ Â, φ(a) ∈ sp(a).

Proof. Observe φ
(
a− φ(a)

)
= 0, so a− φ(a) ̸∈ A× and thus φ(a) ∈ sp(a). □

2. C∗- algebras

Let A be a unital C∗-algebra, i.e., a unital Banach algebra with an involution satisfying
∥a∗a∥ = ∥a∥2 for all a ∈ A.

2.1. Operators. We call a ∈ A:

• self-adjoint if a = a∗,
• positive if a = b∗b for some b ∈ A,
• normal if aa∗ = a∗a,
• a projection if a = a∗ = a2,
• an isometry if a∗a = 1,
• a unitary if a∗a = 1 = aa∗ (equivalently, an invertible isometry),
• a partial isometry if a∗a is a projection.

Here are some elementary properties:

(C∗1) Each a can be written as a = Re(a) + i Im(a) where Re(a) = a+a∗

2
and Im(a) = a−a∗

2i
are self-adjoint.

(C∗2) If λ ∈ sp(a), then λ ∈ sp(a∗).
(C∗3) If a is normal, then ∥a∥ = r(a).

Proof. Observe ∥a2∥2 = ∥(a2)∗a2∥ = ∥(a∗a)2∥ = ∥a∗a∥2 = ∥a∥4. Thus r(a) =
lim ∥a2n∥2−n

= ∥a∥. □

(C∗4) If u is unitary, then sp(u) ⊂ ∂D = T = S1.

Proof. Since u∗ = u−1, by (C∗2), λ ∈ sp(u) if and only if λ
−1 ∈ sp(u). Since

∥u∥ = 1, both |λ|, |λ−1| ≤ 1, so λ ∈ T. □
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(C∗5) If a = a∗, then eia is unitary (defined by the HFC).

Proof. Observe (eia)∗ =
(∑ (ia)n

n!

)∗
=

∑ (−ia)n
n!

= e−ia = (eia)−1. □

(C∗6) If a = a∗, then sp(a) ⊂ R.

Proof. By (C∗4), sp(eia) ⊂ T, and by the Spectral Mapping Theorem, sp(eia) =
ei sp(a). Hence sp(a) ⊂ R. □

2.2. Continuous functional calculus.

Lemma 2.2.1. If A is commutative, then every φ ∈ Â is a ∗-homomorphism.

Proof. Let a ∈ A and φ ∈ Â. Recall from (C∗1) that a = Re(a) + i Im(a) where
Re(a), Im(a) are self-adjoint. From Lemma 1.3.1 and (C∗6) we see that φ(Re(a)) ∈
sp(Re(a)) ⊂ R and φ(Im(a)) ∈ sp(Im(a)) ⊂ R. Thus

φ(a∗) = φ
(
Re(a)

)
− iφ

(
Im(a)

)
= φ

(
Re(a)

)
+ iφ

(
Im(a)

)
= φ(a). □

Theorem 2.2.2. The Gelfand transform affords an equivalence of categories

{Unital commutative C∗-algebras} ∼= {Compact Hausdorff spaces}op .

Question 2.2.3. What happens for non-unital C∗-algebras?

Lemma 2.2.4 (Spectral permanence). Suppose 1 ∈ A ⊂ B is a unital inclusion of C∗-
algebras. Then spA(a) = spB(a) for all a ∈ A.

Proof. By Corllary 1.1.2, spB(a) ⊆ spA(a), so it suffices to prove b ∈ A ∩ B× implies
b ∈ A×. Suppose b ∈ A ∩ B×. Then b∗ ∈ A ∩ B× and b∗b ∈ A ∩ B×. By (C∗6),
spA(b

∗b), spB(b
∗b) ⊂ R. By Corollary 1.1.2,

spA(b
∗b) = ∂ spA(b

∗b) ⊆ ∂ spB(b
∗b) = spB(b

∗b) ⊆ spA(b
∗b),

so equality holds. Notice that this shows that b admits a left inverse in A, since

(b∗b)−1b∗b = 1.

A similar argument for bb∗ shows b has a right inverse, and the result follows. □

Given a ∈ A normal, the continuous functional calculus (CFC) is a unital ∗-isomorphism
from Φa : C(sp(a)) → C∗(a), the smallest unital C∗-subalgebra of A containing a, which
extends the HFC. It is characterized by the properties:

• Φa(1) = 1 and Φa(id : z 7→ z) = a, and
• for all f ∈ O(sp(a)), Φa(f) = f(a) from the HFC.

Thus it makes sense to denote Φa(f) = f(a).
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Exercise 2.2.5. Show that every a in a unital C∗-algebra A is a linear combination of 4
unitaries.
Hint: Show every self-adjoint a with ∥a∥ ≤ 1 is a linear combination of 2 unitaries by
considering f(t) := t+ i

√
1− t2 on sp(a).

Exercise 2.2.6. Suppose V is an inner product space (not necessarily complete) and π :
A→ End(V ) is a unital ∗-homomorphism such that ⟨π(a)u, v⟩ = ⟨u, π(a)∗v⟩ for all u, v ∈ V .
Prove that π induces a unital ∗-homomorphism π : A→ B(V ).
Hint: First show for every unitary u ∈ A, ∥π(u)∥ = 1.

Lemma 2.2.7. If ϕ : A→ B, a ∈ A is normal, and f ∈ C(spA(a)), then f(ϕ(a)) = ϕ(f(a)).

Proof. By Fact 1.1.1, spB(ϕ(a)) ⊆ spA(a), so there is a canonical surjection
C(spA(a)) ↠ C(spB(ϕ(a))). Observe that f(ϕ(a)) = ϕ(f(a)) whenever f is a polyno-
mial in z and z. The result now follows by the Stone-Weierstrass Theorem. □

Proposition 2.2.8. Every ∗-homomorphism ϕ : A → B of unital C∗-algebras is norm-
contractive. If ϕ is injective, then

(1) spB(ϕ(a)) = spA(a) for all normal a ∈ A, and
(2) ∥ϕ(a)∥ = ∥a∥ for all a ∈ A.

Proof. Since a ∈ A× implies ϕ(a) ∈ B×, we have spB(ϕ(a)) ⊆ spA(a), and thus
r(ϕ(a)) ≤ r(a) for all a ∈ A. Then

∥ϕ(a)∥2 = ∥ϕ(a)∗ϕ(a)∥ = ∥ϕ(a∗a)∥ =
(C∗3)

r(ϕ(a∗a)) ≤ r(a∗a) =
(C∗3)

∥a∗a∥ = ∥a∥2.

(1) Suppose λ ∈ spA(a) \ spB(ϕ(a)) for some normal a ∈ A. We will show ϕ is
not injective. Since spA(a) is compact Hausdorff, it is normal. By Urysohn’s
Lemma, there is a continuous f : spA(a) → [0, 1] such that f |spB(ϕ(a)) = 0 and
f(λ) = 1. Then f(a) ̸= 0, but by Lemma 2.2.7, ϕ(f(a)) = f(ϕ(a)) = 0, so ϕ is
not injective.

(2) This follows by (1), (C∗3), and the C∗-identity. □

2.3. Positivity. Let A be a unital C∗-algebra. Recall that a ∈ A is called positive, denoted
a ≥ 0, if a = b∗b for some b ∈ A. We write a ≥ b if a − b ≥ 0. You will show some of the
following facts in the homework.

Facts 2.3.1.

(≥1) If a = a∗, there are positive a+ and a− in C∗(a) such that a = a+−a− and a+a− = 0.

Proof. Use the CFC to set a+ := max{id, 0}(a) and a− := max{− id, 0}(a). □

−∥a∥ ∥a∥

max{id,0}

max{− id,0}
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(≥2) If a = a∗, then a ≤ ∥a∥.

Proof. Observe that the absolute value function dominates the identity function
on R, and apply the CFC. □

(≥3) If a ≤ b, then for all c ∈ A, c∗ac ≤ c∗bc.

Proof. Write b− a = d∗d, and observe c∗bc− c∗ac = c∗(b− a)c = c∗d∗dc. □

(≥4) a ≥ 0 if and only if a = a∗ and sp(a) ⊂ [0,∞).

Proof. Homework. □

(≥5) The set A+ of positive elements is a closed cone.

Proof. Homework. □

(≥6) ≤ is a partial order on A.

Proof. Clearly a ≤ a.
If a ≤ b and b ≤ a, then b − a ≥ 0 and a − b = −(b − a) ≥ 0. Thus b − a is
self-adjoint and sp(b− a) = {0}. By the CFC, b− a = 0, so a = b.
Finally, if a ≤ b and b ≤ c, then b − a ≥ 0 and c − b ≥ 0, so c − a =
(c− b) + (b− a) ≥ 0 by (≥5). □

(≥7) If 0 ≤ a ≤ b, then ∥a∥ ≤ ∥b∥.

Proof. By (≥2), 0 ≤ a ≤ b ≤ ∥b∥, so by (≥6), a ≤ ∥b∥. Using the CFC for a,
sp(a) ⊆ [0, ∥b∥], so ∥a∥ ≤ ∥b∥ by (C∗3). □

Definition 2.3.2. A linear functional φ on A is called positive if φ(a) ≥ 0 whenever a ≥ 0.
A state is a positive linear functional such that φ(1) = 1.

Example 2.3.3. If ∥ξ∥ = 1, ωξ(a) := ⟨aξ, ξ⟩ is a state on B(H).

Example 2.3.4. The unital ∗-algebra C ⊕ C with (α, β)∗ = (β, α) has no states; its only
positive linear functional is zero.

Proof. The positive elements of A := C ⊕ C are of the form (βα, αβ) for α, β ∈ C.
Choosing α = i and β = −i, we see (−1,−1) is positive. But choosing α = β = 1,
we see (1, 1) is positive. This means for any positive linear functional φ, we have
±φ(1, 1) ≥ 0, so φ(1, 1) = 0. □

Lemma 2.3.5. If φ is positive, then φ(a) ∈ R whenever a = a∗. Moreover, for all a ∈ A,

φ(a∗) = φ(a).
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Proof. If a = a∗, then writing a = a+−a− as in (≥1), we see φ(a) = φ(a+)−φ(a−) ∈ R.
For arbitrary a ∈ A, we have

φ(a∗) = φ(Re(a))− iφ(Im(a)) = φ(Re(a))− iφ(Im(a)) = φ(a). □

2.4. Representations of complex ∗-algebras and the GNS construction. A repre-
sentation of a (unital) complex ∗-algebra is a pair (H, π) where H is a Hilbert space and
π : A→ B(H) is a (unital) ∗-homomorphism. We call (H, π):

• nondegenerate if {π(a)ξ|a ∈ A and ξ ∈ H} is dense in H. Observe that unital repre-
sentations are nondegenerate.

• cyclic if there is a vector Ω ∈ H such that π(A)Ω is dense in H. We call Ω a cyclic
vector and (H, π,Ω) a cyclic representation.

Example 2.4.1. The complex ∗-algebra C(X) acts on L2(X,µ), where µ is any regular
finite Borel measure.

Example 2.4.2. Let Γ be a discrete group. Then Γ acts on ℓ2Γ by (λgξ)(h) := ξ(g−1h). Since
λg is isometric and has inverse λg−1 , it is unitary. We thus get a group homomorphism λ : Γ →
U(H), the unitary group of H. Extending by linearity, we get a unital ∗-homomorphism
C[Γ] → B(ℓ2Γ), where C[Γ] is the group algebra of Γ. The reduced group C∗-algebra of Γ is
the C∗-algebra C∗

r(Γ) generated by {λg|g ∈ Γ}.

Given a positive linear functional φ on A, define ⟨a, b⟩φ := φ(b∗a), which is a positive
sesquilinear form on A. Observe that all positive sesquilinear forms satisfy the Cauchy-
Schwarz inequality, which is a powerful tool.

Proposition 2.4.3. Suppose A is a unital Banach ∗-algebra (∗ is an isometric involution)
and φ is a positive linear functional.

(1) If a = a∗ and ∥a∥ < 1, there is a b ∈ A with b = b∗ such that b2 = 1− a,
(2) φ(a∗a) ≤ ∥a∗a∥φ(1) for all a ∈ A, and
(3) ∥φ∥ = φ(1).

Proof.

(1) The function
√
1− z is analytic on B1(0) ⊃ sp(a). setting b :=

√
1− a, we

have b2 = 1 − a. To see b is self-adjoint, observe
√
1− a is a uniform limit of

polynomials in a on sp(a). (Indeed, we can find an open U such that sp(a) ⊂
U ⊂ U ⊂ B1(0).)

(2) Let ε > 0. Applying (1) to a∗a
∥a∗a∥+ε , we have a b = b∗ such that b2 = 1− a∗a

∥a∗a∥+ε .

Thus

0 ≤ φ(b∗b) = φ(1)− φ(a∗a)

∥a∗a∥+ ε
=⇒ φ(a∗a) ≤ (∥a∗a∥+ ε)φ(1).

Since ε > 0 was arbitrary, the result follows.
(3) Take square roots in the inequality

|φ(a)|2 = |⟨a, 1⟩φ|2 ≤
CS

⟨1, 1⟩φ⟨a, a⟩φ = φ(1)φ(a∗a) ≤
(2)
φ(1)2∥a∗a∥ ≤ φ(1)2∥a∥2,
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and observe the bound φ(1) is achieved at 1 ∈ A. □

Proposition 2.4.4. Suppose A is a unital C∗-algebra and φ is a linear functional. Then φ
is positive if and only if φ is bounded and ∥φ∥ = φ(1).

Proof. Positivity implies ∥φ∥ = φ(1) by Proposition 2.4.3. Conversely, suppose φ is
bounded with ∥φ∥ = φ(1). By normalizing φ, we may assume ∥φ∥ = φ(1) = 1. It
remains to show that φ(a) ≥ 0 whenever a ≥ 0. By the CFC, it suffices to prove
this for a positive linear functional on C(X) where X is compact Hausdorff. Suppose
φ(f) = α + iβ for f = f . Then for all t ∈ R, we have

|φ(f + it)|2 = |α + i(β + t)|2 = α2 + β2 + 2βt+ t2, but

|φ(f + it)|2 ≤ ∥f + it∥2 = (∥f∥2 + t2).

This implies
α2 + β2 + 2βt ≤ ∥f∥2 ∀t ∈ R,

which is only possible if β = 0. Now, if f ≥ 0,

|φ(f)− ∥f∥| = |φ(f − ∥f∥ · 1)| ≤ ∥f − ∥f∥ · 1∥ ≤ ∥f∥ ∥f∥−f
f

∥f∥

∥f∥·1

which implies φ(f) ≥ 0. □

Definition 2.4.5. A state on a normed unital ∗-algebra is a continuous positive linear
functional such that φ(1) = 1.

Corollary 2.4.6. If A is a normed unital ∗-algebra and φ is positive and continuous, then
∥φ∥ = φ(1).

Proof. Let A be the completion of A, which is a normed unital Banach ∗-algebra. Since
φ is bounded, it extends to A by Hahn-Banach. If a ∈ A, choose a sequence (an) such
that an → a. Then (an) is norm-bounded, and a∗nan → a∗a. Thus the extension of φ
to A is positive. Now apply Proposition 2.4.3. □

The left kernel of the form is given by

Nφ := {a ∈ A|φ(a∗a) = ⟨a, a⟩φ = 0} =
(CS)

{a ∈ A|⟨a, b⟩φ = 0 ∀ b ∈ A} ,

which is a left ideal of A. Thus the left regular action La : A/Nφ → A/Nφ given by La(b +
Nφ) := ab+Nφ is well-defined.

Exercise 2.4.7. Prove the assertion that Nφ is a left ideal of A.

Question 2.4.8. When is the left regular action of A on A/Nφ bounded?
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Proposition 2.4.9. If A is a unital normed ∗-algebra and φ is a continuous positive linear
functional, then the left regular action of A on A/Nφ is bounded with ∥La∥ ≤ ∥a∥.

Proof. Since the left regular action preservesNφ, it suffices to prove that the left regular
action of A on itself is bounded with ∥La∥ ≤ ∥a∥. For b ∈ A, define φb(a) := φ(b∗ab),
which is a continuous positive linear functional on A. By extending φb to A as in the
proof of Corollary 2.4.6, we see that φb(a

∗a) ≤ ∥a∗a∥φb(1) for all a ∈ A by Proposition
2.4.3 applied to A. Thus

∥ab∥2φ = φ(b∗a∗ab) = φb(a
∗a) ≤ ∥a∗a∥φb(1) = ∥a∗a∥φ(b∗b) = ∥a∗a∥∥b∥2φ ≤ ∥a∥2∥b∥2φ.

The result follows. □

Define Hφ := A/Nφ, which is called the GNS Hilbert space with respect to φ. Observe
that the image of 1 ∈ A in Hφ, denoted Ωφ, is a cyclic vector for the representation (Hφ, πφ),
i.e., πφ(A)Ωφ is dense in Hφ. Observe that φ(a) = ⟨aΩφ,Ωφ⟩ for all a ∈ A, so φ is a vector
state in the GNS representation.

Question 2.4.10. When does A act on the right of Hφ by bounded operators? That is,
consider the map Ra on A given by b 7→ ba. When does this pass to A/Nφ? And when is it
bounded?

Exercise 2.4.11. Consider the linear functional tr on C[Γ] given by tr(
∑
cgg) := ce.

(1) Show that tr is positive and continuous. Here, the norm on C[Γ] is the operator norm
coming from its left regular action on ℓ2Γ.
Hint: Show that tr = ⟨ · δe, δe⟩, where δe ∈ ℓ2Γ is given by δe(g) = δg=e.

(2) Prove that tr(xy) = tr(yx) for all x, y ∈ C[Γ].
(3) Find a unitary isomorphism Htr → ℓ2Γ which intertwines the left regular action of

C[Γ] on Htr with the left action λ : C[Γ] → B(ℓ2Γ) from Example 2.4.2.

If (Hi) is a family of Hilbert spaces, the direct sum
⊕

Hi is the completion of the algebraic
direct sum under the inner product ⟨η, ξ⟩ :=

∑
i⟨ηi, ξi⟩. One can show that elements of

⊕
Hi

are square-summable sequences of vectors.

Definition 2.4.12. If (Hi, πi) is a family of representations of a unital C∗-algebra A, then⊕
Hi carries an action of A via

⊕
πi defined by (

⊕
πi)(a)j := πj(a). Observe

⊕
πi(a) is

bounded if and only if (∥πi(a)∥) is uniformly bounded.

Definition 2.4.13. The universal representation of a unital C∗-algebra A is
⊕

states φ

L2(A,φ),

which is a direct sum of cyclic representations.

Lemma 2.4.14. Suppose 1 ∈ A ⊂ B is a unital inclusion of C∗-algebras. Then any state
on A extends to a state on B.

Proof. Use Hahn-Banach to extend the state φ on A to φ̃ on B, and note

φ̃(1) = φ(1) =
(Prop. 2.4.3)

∥φ∥ =
(HB)

∥φ̃∥.

So φ̃ is positive by Proposition 2.4.3. □
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Proposition 2.4.15. Suppose A is a unital C∗-algebra and a ∈ A is self-adjoint (or normal).
For every λ ∈ sp(a), there is a state φ on A such that φ(a) = λ.

Proof. Recall C∗(a) ∼= C(sp(a)) where a corresponds to the identity function. Use
Lemma 2.4.14 to extend evλ : C(sp(a)) → C (which is manifestly positive) to a state
φ on A. Since evλ(id) = λ, φ(a) = λ. □

Theorem 2.4.16 (Gelfand-Naimark). The universal representation of a unital C∗-algebra
is isometric. Thus every C∗-algebra is ∗-isomorphic to a closed ∗-subalgebra of bounded
operators on a Hilbert space.

Proof. Let a ∈ A. Then ∥a∥2 ≥ ∥ψ(a)∥2 = ∥ψ(a∗a)∥ ≥ ∥πψ(a∗a)∥ for all states
ψ. By Proposition 2.4.15, there is a state φ ∈ A∗ such that ∥a∗a∥ = φ(a∗a), as
∥a∗a∥ ∈ sp(a∗a). We then have that

∥a∥2 = ∥a∗a∥ = φ(a∗a) = ⟨πφ(a∗a)Ωφ,Ωφ⟩φ
Since the norm is equal to the numerical radius for normal operators, we have
∥πφ(a∗a)∥ ≥ ∥a∥2. We thus have that

∥a∥2 ≤ ∥πφ(a∗a)∥ ≤ ∥π(a)∥2 ≤ ∥a∥2.
We conclude that π is isometric. □
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