Penneys Math 7212, Spectral Theory Spring 2024

1. BANACH ALGEBRAS
1.1. Spectrum. Let A be a unital Banach algebra. The spectrum of a € A is
sp(a) = {A € Cla— Al ¢ A*},
which is a non-empty compact subset of B,(4)(0). Here, r(a) is the spectral radius:
r(a) = lim ||a™||*/™.

Fact 1.1.1. Suppose ¢ : A — B is a unital algebra map between Banach algebras. If a € A%,
then ¢(a) € B*, so spg(¢p(a)) C spyla).

Corollary 1.1.2. Suppose 1 € A C B is a unital inclusion of Banach algebras. For all
a € A, spp(a) C spyla) and Ispy(a) € dspp(a).

Proof. By Fact 1.1.1, spg(é(a)) C spy(a), so it suffices to prove dsp 4(a)Nspg(a)® = (.
Suppose for contradiction that A € dsp4(a) Nspg(a)°. Pick a sequence (A,) C spy(a)®
such that \,, =+ X\, soa— )\, > a—A. Thena— A\, € A%, so a — \, € B*, and thus
An & spg(a) for all n. Since we assumed A ¢ spg(a) and inversion is continuous on
B*, we have (a — \,)”™' = (a — A)7! € B. But A is complete, so (a — \)™! € A, a
contradiction. O

1.2. Holomorphic functional calculus. For each a € A, the holomorphic functional cal-
culus (HFC) gives a unital algebra homomorphism O(sp(a)) — A given by
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where 7y is a simple closed contour in U \ sp(a) such that

, 1 if z € sp(a)
1m“@:{0ﬁz¢u

The HFC satisfies the following two properties, which characterize this ring homomorphism:

e If sp(a) C U, and f,, — f locally uniformly on U, then f,(a) — f(a) in A, and
o If f(2) = > ap2® is a power series with radius of convergence greater than r(a), then
fla) =3 axa”.
The HFC also satisfies:
(1) If f(2) =]](z — #;)™ is rational, then f(a) = [[(a — z;)™.
(2) (spectral mapping) sp(f(a)) = f(sp(a)), and
(3) if g € O(sp(a)), then g(f(a)) = (g o f)(a).

Corollary 1.2.1. If ¢ : A — B and f € O(spy(a)), then f(p(a)) = ¢(f(a)).
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Proof. By Fact 1.1.1, spg(¢(a)) C spa(a), so O(spy(a)) € O(spg(é(a))). Observe that
f(é(a)) = ¢(f(a)) whenever f is a polynomial, and whenever f is a rational function with
poles outside of sp,(a). The result now follows by Runge’s Theorem, since every f €
O(spy(a)) can be approximated by such rational functions. O

1.3. Gelfand transform. If A is unital and commutative, the Gelfand transform gives a

-~

norm-contractive unital algebra homomorphism A — C'(A) given by
a— [evy: ¢ — p(a)],

where A is the set of algebra homomorphisms from A — C, also called characters or mul-

tiplicative linear functionals. The image of the Gelfand transform is a subalgebra of C'(A)
which separates points of A.

Lemma 1.3.1. If A is unital and a € A, then for all p € A, ¢(a) € sp(a).

Proof. Observe ¢(a — ¢(a)) =0, so a — ¢(a) € A* and thus ¢(a) € sp(a). O

2. C*- ALGEBRAS

Let A be a unital C*-algebra, i.e., a unital Banach algebra with an involution satisfying
|la*al| = ||al|? for all a € A.

2.1. Operators. We call a € A:

self-adjoint if a = a*,

positive if a = b*b for some b € A,

normal if aa® = a*a,

a projection if a = a* = a?,

an isometry if a*a = 1,

a unitary if a*a = 1 = aa* (equivalently, an invertible isometry),
a partial isometry if a*a is a projection.

Here are some elementary properties:

(C*1) Each a can be written as a = Re(a) + i Im(a) where Re(a) = “t= and Im(a) = 5%
are self-adjoint.

(C*2) If A € sp(a), then X € sp(a*).

(C*3) If @ is normal, then ||a|| = r(a).

Proof. Observe |la*||* = [[(a®)*a®|| = [[(a*a)?|| = [laa]* = |la||*. Thus r(a) =
lim [|a*" | = [|a]. D

(C*4) If w is unitary, then sp(u) C 9D =T = S'.

Proof. Since u* = u~!, by (C*2), X € sp(u) if and only if X ' € sp(u). Since
|ul| = 1, both [A, A7 < 1,50 A € T. O
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(C*5) If @ = a*, then € is unitary (defined by the HFC).

n! n!

Proof. Observe (e'*)* = (Z My =St _ ia — (gia)-1, O

(C*6) If @ = a*, then sp(a) C R.

Proof. By (C*4), sp(e'®) C T, and by the Spectral Mapping Theorem, sp(e*)
¢’**(@ . Hence sp(a) C R.

ool

2.2. Continuous functional calculus.

Lemma 2.2.1. If A is commutative, then every ¢ € Aisa x-homomorphism.

Proof. Let a € A and ¢ € A. Recall from (C*1) that a = Re(a) + iIm(a) where
Re(a),Im(a) are self-adjoint. From Lemma 1.3.1 and (C*6) we see that ¢(Re(a)) €
sp(Re(a)) C R and ¢(Im(a)) € sp(Im(a)) C R. Thus

¢(a*) = ¢(Re(a)) — ip(Im(a)) = ¢(Re(a)) + ip(Im(a)) = o(a). O

Theorem 2.2.2. The Gelfand transform affords an equivalence of categories

Y

{Unital commutative C*-algebras} = {Compact Hausdorff spaces}° .
Question 2.2.3. What happens for non-unital C*-algebras?

Lemma 2.2.4 (Spectral permanence). Suppose 1 € A C B is a unital inclusion of C*-
algebras. Then sp 4(a) = spg(a) for all a € A.

s ~

Proof. By Corllary 1.1.2, spg(a) C spy(a), so it suffices to prove b € AN B* implies
b € A*. Suppose b € AN B*. Then b* € AN B* and b*b € AN B*. By (C*6),
sp4(b*b),spg(b*b) C R. By Corollary 1.1.2,

sp4(bb) = Osp,(b7b) C Ospp(b*d) = spp(b™b) C spa(b7D),
so equality holds. Notice that this shows that b admits a left inverse in A, since
(b*b)'b*b = 1.

A similar argument for bb* shows b has a right inverse, and the result follows. O

Given a € A normal, the continuous functional calculus (CFC) is a unital *-isomorphism
from ®,: C(sp(a)) — C*(a), the smallest unital C*-subalgebra of A containing a, which
extends the HFC. It is characterized by the properties:

e ,(1)=1and ¢,(id: 2z + 2z) = a, and
e for all f € O(sp(a)), Pu(f) = f(a) from the HFC.

Thus it makes sense to denote ®,(f) = f(a).
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Exercise 2.2.5. Show that every a in a unital C*-algebra A is a linear combination of 4
unitaries.
Hint: Show every self-adjoint a with ||a|]| < 1 is a linear combination of 2 unitaries by

considering f(t) :=t+ iv/1 —t2 on sp(a).

Exercise 2.2.6. Suppose V is an inner product space (not necessarily complete) and 7 :
A — End(V) is a unital x*-homomorphism such that (7(a)u,v) = (u,w(a)*v) for all u,v € V.

Prove that 7 induces a unital *-homomorphism 7 : A — B(V).
Hint: First show for every unitary u € A, ||7(u)|| = 1.

Lemma 2.2.7. If¢: A — B, a € A is normal, and f € C(spy(a)), then f(p(a)) = ¢(f(a)).

Proof. By Fact 1.1.1, spp(¢(a)) C spy(a), so there is a canonical surjection

C(spy(a)) = C(spg(¢(a))). Observe that f(¢(a)) = ¢(f(a)) whenever f is a polyno-
mial in z and Z. The result now follows by the Stone-Weierstrass Theorem. 0

Proposition 2.2.8. Every x-homomorphism ¢: A — B of unital C*-algebras is norm-
contractive. If ¢ is injective, then

(1) spg(¢p(a)) =spy(a) for all normal a € A, and
(2) o)l = llall for all a € A.

Proof. Since a € A* implies ¢(a) € B*, we have spg(¢d(a)) C spy(a), and thus
r(¢(a)) < r(a) for all @ € A. Then

l¢(@)|I* = llg(a)*d(a)]l = llp(a"a)ll oyl d) =il = = la*.

(1) Suppose A € spy(a) \ spg(¢p(a)) for some normal a € A. We will show ¢ is
not injective. Since sp,4(a) is compact Hausdorff, it is normal. By Urysohn’s
Lemma, there is a continuous f: sp,(a) — [0,1] such that f|s,(s@) = 0 and
f(A) =1. Then f(a) # 0, but by Lemma 2.2.7, ¢(f(a)) = f(¢(a)) =0, so ¢ is
not injective.

(2) This follows by (1), (C*3), and the C*-identity. O

2.3. Positivity. Let A be a unital C*-algebra. Recall that a € A is called positive, denoted
a>0,if a = b*b for some b € A. We write a > b if a — b > 0. You will show some of the
following facts in the homework.
Facts 2.3.1.

(>1) If @ = a*, there are positive ay and a_ in C*(a) such that a = ay —a_ and aya_ = 0.

Proof. Use the CFC to set a; = max{id,0}(a) and a_ := max{—id,0}(a). O

— max{id,0}
— max{—id,0}




(>2) If a = a*, then a < ||al|.

Proof. Observe that the absolute value function dominates the identity function
on R, and apply the CFC. 0

.

(>3) If a < b, then for all c € A, c*ac < c*be.

Proof. Write b — a = d*d, and observe c¢*bc — c*ac = ¢*(b — a)c = ¢*d*de. O

(>4) a > 0 if and only if a = a* and sp(a) C [0, c0).

' )

Proof. Homework. O

.

(>5) The set A, of positive elements is a closed cone.

Proof. Homework. 0

(>6) < is a partial order on A.

Proof. Clearly a < a.
Ifa<bandb<a,thenb—a>0anda—b=—(b—a) > 0. Thus b—a is
self-adjoint and sp(b — a) = {0}. By the CFC, b —a =0, so a = b.

Finally, if « < b and b < ¢, then b —a > 0O and ¢ —b > 0, so c —a =
(c—b)+(b—a)>0by (>5). O

(>7) If 0 < a < b, then |Ja]| < ||b]].

Proof. By (>2),0 < a <b < ||b||, so by (>6), a < ||b||. Using the CFC for a,
sp(a) € [0, [[o]]], so [[a] < [[b]] by (C*3). [

Definition 2.3.2. A linear functional ¢ on A is called positive if ¢(a) > 0 whenever a > 0.
A state is a positive linear functional such that ¢(1) = 1.

Example 2.3.3. If |[{]| = 1, we(a) = (a&, &) is a state on B(H).

Example 2.3.4. The unital *-algebra C & C with (a, 3)* = (5, @) has no states; its only
positive linear functional is zero.

Proof. The positive elements of A :== C @ C are of the form (Ba,apB) for a, € C.

Choosing o« = ¢ and = —i, we see (—1, —1) is positive. But choosing a = = 1,
we see (1,1) is positive. This means for any positive linear functional ¢, we have
+p(1,1) >0, so ¢(1,1) = 0. O

Lemma 2.3.5. If ¢ is positive, then p(a) € R whenever a = a*. Moreover, for all a € A,
p(a”) = p(a).

5



Proof. 1f a = a*, then writing a = a; —a_ asin (>1), we see p(a) = p(ay)—p(a_) € R.
For arbitrary a € A, we have

p(a’) = p(Re(a)) —ip(Im(a)) = ¢(Re(a)) —ip(Im(a)) = ¢(a). O

2.4. Representations of complex x-algebras and the GNS construction. A repre-
sentation of a (unital) complex x-algebra is a pair (H,7) where H is a Hilbert space and
m: A — B(H) is a (unital) *-homomorphism. We call (H,7):
e nondegenerate if {7(a)é|la € A and £ € H} is dense in H. Observe that unital repre-
sentations are nondegenerate.
e cyclic if there is a vector Q € H such that 7(A)SQ is dense in H. We call Q a cyclic
vector and (H,m, ) a cyclic representation.

Example 2.4.1. The complex x*-algebra C(X) acts on L*(X, ), where u is any regular
finite Borel measure.

Example 2.4.2. Let I' be a discrete group. Then I" acts on ¢TI by (A\,&)(h) == (g~ 'h). Since
Ag 1s isometric and has inverse A -1, it is unitary. We thus get a group homomorphism A: I' —
U(H), the unitary group of H. Extending by linearity, we get a unital *-homomorphism
C[T'] — B(£?T"), where C[I'] is the group algebra of T'. The reduced group C*-algebra of T is
the C*-algebra C!(I") generated by {\;|g € I'}.

Given a positive linear functional ¢ on A, define (a,b), = ¢(b*a), which is a positive
sesquilinear form on A. Observe that all positive sesquilinear forms satisfy the Cauchy-
Schwarz inequality, which is a powerful tool.

Proposition 2.4.3. Suppose A is a unital Banach *-algebra (x is an isometric involution)
and @ is a positive linear functional.

(1) If a = a* and ||a| < 1, there is a b € A with b = b* such that b* =1 — a,

(2) p(a*a) < |la*al|lp(1) for all a € A, and

(3) llell = #(1).

Proof.

(1) The function /1 — z is analytic on B;(0) D sp(a). setting b = /1 —a, we
have b? = 1 — a. To see b is self-adjoint, observe v/1 — a is a uniform limit of
polynomials in a on sp(a). (Indeed, we can find an open U such that sp(a) C
U cCU C B(0).)

(2) Let € > 0. Applying (1) to %’ we have a b = b* such that v> = 1 — W
Thus

pla*a)

0 < p(b"d) = (1) — Taal + 2

Since € > (0 was arbitrary, the result follows.
(3) Take square roots in the inequality

[p(a)* = I{a, ol® < (L 1)y (a;a)p = p(L)p(a’a) s p(1)*lla*all < (1) |lal®,

= p(a*a) < (lla”all + €)e(1).
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[ and observe the bound ¢(1) is achieved at 1 € A. O

Proposition 2.4.4. Suppose A is a unital C*-algebra and ¢ is a linear functional. Then ¢
is positive if and only if ¢ is bounded and ||¢| = ¢(1).

Proof. Positivity implies ||¢|| = ¢(1) by Proposition 2.4.3. Conversely, suppose ¢ is
bounded with [|¢|| = ¢(1). By normalizing ¢, we may assume ||¢| = ¢(1) = 1. It
remains to show that ¢(a) > 0 whenever @ > 0. By the CFC, it suffices to prove
this for a positive linear functional on C'(X) where X is compact Hausdorff. Suppose
©o(f) = a+ip for f = f. Then for all ¢ € R, we have

lo(f +it)|> = la +i(B+t)|>=a® + 5>+ 28t +t,  but
lo(f + i) < |If +it]® = (JIf]I> + ).
This implies

o® + 8% + 26t < | fII? vt € R,
which is only possible if 5 = 0. Now, if f >0,
||fH-1‘
o) = I£ll = lolf = 50 -DI < I1F = A0 - 2 < il =4\T
T
which implies ¢(f) > 0. O

. J

Definition 2.4.5. A state on a normed unital %-algebra is a continuous positive linear
functional such that p(1) = 1.

Corollary 2.4.6. If A is a normed unital x-algebra and ¢ is positive and continuous, then
lell = & (1).

Proof. Let A be the completion of A, which is a normed unital Banach *-algebra. Since
¢ is bounded, it extends to A by Hahn-Banach. If a € A, choose a sequence (a,,) such
that a,, — a. Then (a,) is norm-bounded, and a*a,, — a*a. Thus the extension of ¢
to A is positive. Now apply Proposition 2.4.3. O

The left kernel of the form is given by
N, = {a € Alp(a*a) = (a,a), = 0} &) {a € Al{a,b), =0Vbe A},
which is a left ideal of A. Thus the left regular action L,: A/N, — A/N, given by L,(b+
N,) = ab+ N, is well-defined.
Exercise 2.4.7. Prove the assertion that N, is a left ideal of A.

Question 2.4.8. When is the left regular action of A on A/N, bounded?
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Proposition 2.4.9. If A is a unital normed x-algebra and ¢ is a continuous positive linear
functional, then the left regular action of A on A/N, is bounded with ||L,|| < ||a]|.

Proof. Since the left regular action preserves N, it suffices to prove that the left regular
action of A on itself is bounded with || L,|| < |la||. For b € A, define ¢,(a) = p(b*ab),
which is a continuous positive linear functional on A. By extending ¢, to A as in the
proof of Corollary 2.4.6, we see that ¢,(a*a) < ||a*al|¢s(1) for all @ € A by Proposition
2.4.3 applied to A. Thus

lab||?, = @(b*a*ab) = py(a*a) < |la*alls(1) = [la*alle(b*b) = la*alllb]Z < llall?||5]3.
The result follows. O

Define H, = A/N,, which is called the GNS Hilbert space with respect to ¢. Observe
that the image of 1 € A in H,, denoted €, is a cyclic vector for the representation (H,, m,),
i.e., my(A)S2, is dense in H,. Observe that ¢(a) = (af,, ) for all a € A, so ¢ is a vector
state in the GNS representation.

Question 2.4.10. When does A act on the right of H, by bounded operators? That is,
consider the map R, on A given by b+ ba. When does this pass to A/N,? And when is it
bounded?

Exercise 2.4.11. Consider the linear functional tr on C[I'] given by tr(} ¢,g) = c..

(1) Show that tr is positive and continuous. Here, the norm on C[I'] is the operator norm
coming from its left regular action on ¢*T.
Hint: Show that tr = (-0, 0.), where 8. € (*T is given by 0.(g) = Jy—.

(2) Prove that tr(zy) = tr(yx) for all z,y € C[I].

(3) Find a unitary isomorphism H;, — *T" which intertwines the left regular action of
C[['] on Hy, with the left action A\: C[T'] — B(¢*T") from Example 2.4.2.

If (H;) is a family of Hilbert spaces, the direct sum @ H; is the completion of the algebraic
direct sum under the inner product (n,&) = >, (7;,&;). One can show that elements of & H;
are square-summable sequences of vectors.

Definition 2.4.12. If (H;, ;) is a family of representations of a unital C*-algebra A, then
@ H, carries an action of A via @ m; defined by (@ m;)(a); = m;(a). Observe @ m;(a) is
bounded if and only if (||m;(a)]|) is uniformly bounded.

Definition 2.4.13. The universal representation of a unital C*-algebra Ais @ L*(A, ),

states
which is a direct sum of cyclic representations.

Lemma 2.4.14. Suppose 1 € A C B is a unital inclusion of C*-algebras. Then any state
on A extends to a state on B.

Proof. Use Hahn-Banach to extend the state ¢ on A to ¢ on B, and note

B =) , = el = 1]

So @ is positive by Proposition 2.4.3. U




Proposition 2.4.15. Suppose A is a unital C*-algebra and a € A is self-adjoint (or normal).
For every X\ € sp(a), there is a state o on A such that p(a) = .

Proof. Recall C*(a) = C(sp(a)) where a corresponds to the identity function. Use
Lemma 2.4.14 to extend evy: C(sp(a)) — C (which is manifestly positive) to a state
@ on A. Since evy(id) = A, p(a) = A. O

Theorem 2.4.16 (Gelfand-Naimark). The universal representation of a unital C*-algebra
is 1sometric. Thus every C*-algebra is x-isomorphic to a closed x-subalgebra of bounded
operators on a Hilbert space.

Proof. Let a € A. Then |la|®* > |[v(a)]|? = |[¢¥(a*a)|| > ||my(a*a)| for all states
¥. By Proposition 2.4.15, there is a state ¢ € A* such that |[a*a| = ¢(a*a), as
lla*al| € sp(a*a). We then have that

lall* = lla*all = ¢(a*a) = (r,(a"a)Qy, Q)
Since the norm is equal to the numerical radius for normal operators, we have
| To(a*a)|] > |lal|*. We thus have that

lall* < [Imy(a”a)ll < llm(a)]* < lla]l*.

We conclude that 7 is isometric. O
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