1. BANACH ALGEBRAS

1.1. **Spectrum.** Let A be a unital Banach algebra. The spectrum of $a \in A$ is

$$\operatorname{sp}(a) = \left\{ \lambda \in \mathbb{C} \middle| a - \lambda 1 \notin A^{\times} \right\},\$$

which is a non-empty compact subset of $B_{r(a)}(0)$. Here, r(a) is the spectral radius:

$$r(a) = \lim \|a^n\|^{1/n}.$$

Fact 1.1.1. Suppose $\phi : A \to B$ is a unital algebra map between Banach algebras. If $a \in A^{\times}$, then $\phi(a) \in B^{\times}$, so $\operatorname{sp}_B(\phi(a)) \subseteq \operatorname{sp}_A(a)$.

Corollary 1.1.2. Suppose $1 \in A \subset B$ is a unital inclusion of Banach algebras. For all $a \in A$, $\operatorname{sp}_B(a) \subseteq \operatorname{sp}_A(a)$ and $\partial \operatorname{sp}_A(a) \subseteq \partial \operatorname{sp}_B(a)$.

Proof. By Fact 1.1.1, $\operatorname{sp}_B(\phi(a)) \subseteq \operatorname{sp}_A(a)$, so it suffices to prove $\partial \operatorname{sp}_A(a) \cap \operatorname{sp}_B(a)^c = \emptyset$. Suppose for contradiction that $\lambda \in \partial \operatorname{sp}_A(a) \cap \operatorname{sp}_B(a)^c$. Pick a sequence $(\lambda_n) \subset \operatorname{sp}_A(a)^c$ such that $\lambda_n \to \lambda$, so $a - \lambda_n \to a - \lambda$. Then $a - \lambda_n \in A^{\times}$, so $a - \lambda_n \in B^{\times}$, and thus $\lambda_n \notin \operatorname{sp}_B(a)$ for all n. Since we assumed $\lambda \notin \operatorname{sp}_B(a)$ and inversion is continuous on B^{\times} , we have $(a - \lambda_n)^{-1} \to (a - \lambda)^{-1} \in B$. But A is complete, so $(a - \lambda)^{-1} \in A$, a contradiction.

1.2. Holomorphic functional calculus. For each $a \in A$, the holomorphic functional calculus (HFC) gives a unital algebra homomorphism $\mathcal{O}(\operatorname{sp}(a)) \to A$ given by

$$f \mapsto f(a) \coloneqq \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{a-z} dz$$

where γ is a simple closed contour in $U \setminus \operatorname{sp}(a)$ such that

$$\operatorname{ind}_{\gamma}(z) = \begin{cases} 1 & \text{if } z \in \operatorname{sp}(a) \\ 0 & \text{if } z \notin U. \end{cases}$$

The HFC satisfies the following two properties, which characterize this ring homomorphism:

- If $\operatorname{sp}(a) \subset U$, and $f_n \to f$ locally uniformly on U, then $f_n(a) \to f(a)$ in A, and
- If $f(z) = \sum \alpha_k z^k$ is a power series with radius of convergence greater than r(a), then $f(a) = \sum \alpha_k a^k$.

The HFC also satisfies:

- (1) If $f(z) = \prod (z z_j)^{m_j}$ is rational, then $f(a) = \prod (a z_j)^{m_j}$.
- (2) (spectral mapping) sp(f(a)) = f(sp(a)), and
- (3) if $g \in \mathcal{O}(\operatorname{sp}(a))$, then $g(f(a)) = (g \circ f)(a)$.

Corollary 1.2.1. If $\phi : A \to B$ and $f \in \mathcal{O}(\operatorname{sp}_A(a))$, then $f(\phi(a)) = \phi(f(a))$.

Proof. By Fact 1.1.1, $\operatorname{sp}_B(\phi(a)) \subseteq \operatorname{sp}_A(a)$, so $\mathcal{O}(\operatorname{sp}_A(a)) \subseteq \mathcal{O}(\operatorname{sp}_B(\phi(a)))$. Observe that $f(\phi(a)) = \phi(f(a))$ whenever f is a polynomial, and whenever f is a rational function with poles outside of $\operatorname{sp}_A(a)$. The result now follows by Runge's Theorem, since every $f \in \mathcal{O}(\operatorname{sp}_A(a))$ can be approximated by such rational functions. \Box

1.3. Gelfand transform. If A is unital and commutative, the Gelfand transform gives a norm-contractive unital algebra homomorphism $A \to C(\widehat{A})$ given by

 $a \mapsto [\operatorname{ev}_a \colon \varphi \mapsto \varphi(a)]_{\mathfrak{s}}$

where \widehat{A} is the set of algebra homomorphisms from $A \to \mathbb{C}$, also called characters or multiplicative linear functionals. The image of the Gelfand transform is a subalgebra of $C(\widehat{A})$ which separates points of \widehat{A} .

Lemma 1.3.1. If A is unital and $a \in A$, then for all $\varphi \in \widehat{A}$, $\varphi(a) \in \operatorname{sp}(a)$.

Proof. Observe $\varphi(a - \varphi(a)) = 0$, so $a - \varphi(a) \notin A^{\times}$ and thus $\varphi(a) \in \operatorname{sp}(a)$.

2. C^{*}- Algebras

Let A be a unital C*-algebra, i.e., a unital Banach algebra with an involution satisfying $||a^*a|| = ||a||^2$ for all $a \in A$.

2.1. **Operators.** We call $a \in A$:

- self-adjoint if $a = a^*$,
- positive if $a = b^*b$ for some $b \in A$,
- normal if $aa^* = a^*a$,
- a projection if $a = a^* = a^2$,
- an isometry if $a^*a = 1$,
- a unitary if $a^*a = 1 = aa^*$ (equivalently, an invertible isometry),
- a partial isometry if a^*a is a projection.

Here are some elementary properties:

- (C*1) Each a can be written as $a = \operatorname{Re}(a) + i \operatorname{Im}(a)$ where $\operatorname{Re}(a) = \frac{a+a^*}{2}$ and $\operatorname{Im}(a) = \frac{a-a^*}{2i}$ are self-adjoint.
- (C*2) If $\lambda \in \operatorname{sp}(a)$, then $\overline{\lambda} \in \operatorname{sp}(a^*)$.
- (C*3) If a is normal, then ||a|| = r(a).

Proof. Observe $||a^2||^2 = ||(a^2)^*a^2|| = ||(a^*a)^2|| = ||a^*a||^2 = ||a||^4$. Thus $r(a) = \lim ||a^{2^n}||^{2^{-n}} = ||a||$.

(C*4) If u is unitary, then $\operatorname{sp}(u) \subset \partial \mathbb{D} = \mathbb{T} = S^1$.

Proof. Since $u^* = u^{-1}$, by (C*2), $\lambda \in \operatorname{sp}(u)$ if and only if $\overline{\lambda}^{-1} \in \operatorname{sp}(u)$. Since ||u|| = 1, both $|\lambda|, |\lambda^{-1}| \le 1$, so $\lambda \in \mathbb{T}$.

(C*5) If $a = a^*$, then e^{ia} is unitary (defined by the HFC).

Proof. Observe
$$(e^{ia})^* = \left(\sum \frac{(ia)^n}{n!}\right)^* = \sum \frac{(-ia)^n}{n!} = e^{-ia} = (e^{ia})^{-1}.$$

(C*6) If $a = a^*$, then $\operatorname{sp}(a) \subset \mathbb{R}$.

Proof. By (C*4), sp $(e^{ia}) \subset \mathbb{T}$, and by the Spectral Mapping Theorem, sp $(e^{ia}) = e^{i \operatorname{sp}(a)}$. Hence sp $(a) \subset \mathbb{R}$.

2.2. Continuous functional calculus.

Lemma 2.2.1. If A is commutative, then every $\varphi \in \widehat{A}$ is a *-homomorphism.

Proof. Let $a \in A$ and $\varphi \in \widehat{A}$. Recall from (C*1) that $a = \operatorname{Re}(a) + i \operatorname{Im}(a)$ where $\operatorname{Re}(a), \operatorname{Im}(a)$ are self-adjoint. From Lemma 1.3.1 and (C*6) we see that $\varphi(\operatorname{Re}(a)) \in \operatorname{sp}(\operatorname{Re}(a)) \subset \mathbb{R}$ and $\varphi(\operatorname{Im}(a)) \in \operatorname{sp}(\operatorname{Im}(a)) \subset \mathbb{R}$. Thus

 $\varphi(a^*) = \varphi\big(\operatorname{Re}(a)\big) - i\varphi\big(\operatorname{Im}(a)\big) = \overline{\varphi\big(\operatorname{Re}(a)\big) + i\varphi\big(\operatorname{Im}(a)\big)} = \overline{\varphi(a)}.$

Theorem 2.2.2. The Gelfand transform affords an equivalence of categories

{Unital commutative C*-algebras} \cong {Compact Hausdorff spaces}^{op}.

Question 2.2.3. What happens for non-unital C*-algebras?

Lemma 2.2.4 (Spectral permanence). Suppose $1 \in A \subset B$ is a unital inclusion of C^{*}algebras. Then $\operatorname{sp}_A(a) = \operatorname{sp}_B(a)$ for all $a \in A$.

Proof. By Corllary 1.1.2, $\operatorname{sp}_B(a) \subseteq \operatorname{sp}_A(a)$, so it suffices to prove $b \in A \cap B^{\times}$ implies $b \in A^{\times}$. Suppose $b \in A \cap B^{\times}$. Then $b^* \in A \cap B^{\times}$ and $b^*b \in A \cap B^{\times}$. By (C*6), $\operatorname{sp}_A(b^*b), \operatorname{sp}_B(b^*b) \subset \mathbb{R}$. By Corollary 1.1.2,

 $\operatorname{sp}_A(b^*b) = \partial \operatorname{sp}_A(b^*b) \subseteq \partial \operatorname{sp}_B(b^*b) = \operatorname{sp}_B(b^*b) \subseteq \operatorname{sp}_A(b^*b),$

so equality holds. Notice that this shows that b admits a left inverse in A, since

 $(b^*b)^{-1}b^*b = 1.$

A similar argument for bb^* shows b has a right inverse, and the result follows.

Given $a \in A$ normal, the continuous functional calculus (CFC) is a unital *-isomorphism from $\Phi_a: C(\operatorname{sp}(a)) \to C^*(a)$, the smallest unital C*-subalgebra of A containing a, which extends the HFC. It is characterized by the properties:

- $\Phi_a(1) = 1$ and $\Phi_a(\operatorname{id} : z \mapsto z) = a$, and
- for all $f \in \mathcal{O}(\operatorname{sp}(a)), \Phi_a(f) = f(a)$ from the HFC.

Thus it makes sense to denote $\Phi_a(f) = f(a)$.

Exercise 2.2.5. Show that every a in a unital C^{*}-algebra A is a linear combination of 4 unitaries.

Hint: Show every self-adjoint a with $||a|| \leq 1$ is a linear combination of 2 unitaries by considering $f(t) := t + i\sqrt{1-t^2}$ on $\operatorname{sp}(a)$.

Exercise 2.2.6. Suppose V is an inner product space (not necessarily complete) and π : $A \to \text{End}(V)$ is a unital *-homomorphism such that $\langle \pi(a)u, v \rangle = \langle u, \pi(a)^*v \rangle$ for all $u, v \in V$. Prove that π induces a unital *-homomorphism $\overline{\pi} : A \to B(\overline{V})$. *Hint: First show for every unitary* $u \in A$, $||\pi(u)|| = 1$.

Lemma 2.2.7. If $\phi : A \to B$, $a \in A$ is normal, and $f \in C(\operatorname{sp}_A(a))$, then $f(\phi(a)) = \phi(f(a))$.

Proof. By Fact 1.1.1, $\operatorname{sp}_B(\phi(a)) \subseteq \operatorname{sp}_A(a)$, so there is a canonical surjection $C(\operatorname{sp}_A(a)) \twoheadrightarrow C(\operatorname{sp}_B(\phi(a)))$. Observe that $f(\phi(a)) = \phi(f(a))$ whenever f is a polynomial in z and \overline{z} . The result now follows by the Stone-Weierstrass Theorem. \Box

Proposition 2.2.8. Every *-homomorphism $\phi: A \to B$ of unital C*-algebras is normcontractive. If ϕ is injective, then

- (1) $\operatorname{sp}_B(\phi(a)) = \operatorname{sp}_A(a)$ for all normal $a \in A$, and
- (2) $\|\phi(a)\| = \|a\|$ for all $a \in A$.

Proof. Since $a \in A^{\times}$ implies $\phi(a) \in B^{\times}$, we have $\operatorname{sp}_B(\phi(a)) \subseteq \operatorname{sp}_A(a)$, and thus $r(\phi(a)) \leq r(a)$ for all $a \in A$. Then

$$\|\phi(a)\|^{2} = \|\phi(a)^{*}\phi(a)\| = \|\phi(a^{*}a)\| \underset{(\mathbf{C}^{*}3)}{=} r(\phi(a^{*}a)) \le r(a^{*}a) \underset{(\mathbf{C}^{*}3)}{=} \|a^{*}a\| = \|a\|^{2}.$$

- (1) Suppose λ ∈ sp_A(a) \ sp_B(φ(a)) for some normal a ∈ A. We will show φ is not injective. Since sp_A(a) is compact Hausdorff, it is normal. By Urysohn's Lemma, there is a continuous f: sp_A(a) → [0,1] such that f|_{sp_B(φ(a))} = 0 and f(λ) = 1. Then f(a) ≠ 0, but by Lemma 2.2.7, φ(f(a)) = f(φ(a)) = 0, so φ is not injective.
- (2) This follows by (1), (C^*3) , and the C^{*}-identity.

2.3. **Positivity.** Let A be a unital C*-algebra. Recall that $a \in A$ is called positive, denoted $a \ge 0$, if $a = b^*b$ for some $b \in A$. We write $a \ge b$ if $a - b \ge 0$. You will show some of the following facts in the homework.

Facts 2.3.1.

 (≥ 1) If $a = a^*$, there are positive a_+ and a_- in $C^*(a)$ such that $a = a_+ - a_-$ and $a_+a_- = 0$.

 (≥ 2) If $a = a^*$, then $a \leq ||a||$.

Proof. Observe that the absolute value function dominates the identity function on \mathbb{R} , and apply the CFC.

 (≥ 3) If $a \leq b$, then for all $c \in A$, $c^*ac \leq c^*bc$.

Proof. Write $b - a = d^*d$, and observe $c^*bc - c^*ac = c^*(b - a)c = c^*d^*dc$.

$$(\geq 4)$$
 $a \geq 0$ if and only if $a = a^*$ and $\operatorname{sp}(a) \subset [0, \infty)$.

Proof. Homework.

 (≥ 5) The set A_+ of positive elements is a closed cone.

Proof. Homework.

 $(\geq 6) \leq \text{is a partial order on } A.$

Proof. Clearly $a \leq a$. If $a \leq b$ and $b \leq a$, then $b - a \geq 0$ and $a - b = -(b - a) \geq 0$. Thus b - a is self-adjoint and $\operatorname{sp}(b - a) = \{0\}$. By the CFC, b - a = 0, so a = b. Finally, if $a \leq b$ and $b \leq c$, then $b - a \geq 0$ and $c - b \geq 0$, so $c - a = (c - b) + (b - a) \geq 0$ by (≥ 5) .

 (≥ 7) If $0 \leq a \leq b$, then $||a|| \leq ||b||$.

Proof. By (≥ 2) , $0 \leq a \leq b \leq ||b||$, so by (≥ 6) , $a \leq ||b||$. Using the CFC for a, $sp(a) \subseteq [0, ||b||]$, so $||a|| \leq ||b||$ by (\mathbb{C}^*3) .

Definition 2.3.2. A linear functional φ on A is called positive if $\varphi(a) \ge 0$ whenever $a \ge 0$. A state is a positive linear functional such that $\varphi(1) = 1$.

Example 2.3.3. If $\|\xi\| = 1$, $\omega_{\xi}(a) \coloneqq \langle a\xi, \xi \rangle$ is a state on B(H).

Example 2.3.4. The unital *-algebra $\mathbb{C} \oplus \mathbb{C}$ with $(\alpha, \beta)^* = (\overline{\beta}, \overline{\alpha})$ has no states; its only positive linear functional is zero.

Proof. The positive elements of $A := \mathbb{C} \oplus \mathbb{C}$ are of the form $(\overline{\beta}\alpha, \overline{\alpha}\beta)$ for $\alpha, \beta \in \mathbb{C}$. Choosing $\alpha = i$ and $\beta = -i$, we see (-1, -1) is positive. But choosing $\alpha = \beta = 1$, we see (1, 1) is positive. This means for any positive linear functional φ , we have $\pm \varphi(1, 1) \ge 0$, so $\varphi(1, 1) = 0$.

Lemma 2.3.5. If φ is positive, then $\varphi(a) \in \mathbb{R}$ whenever $a = a^*$. Moreover, for all $a \in A$, $\varphi(a^*) = \overline{\varphi(a)}$.

Proof. If $a = a^*$, then writing $a = a_+ - a_-$ as in (≥ 1) , we see $\varphi(a) = \varphi(a_+) - \varphi(a_-) \in \mathbb{R}$. For arbitrary $a \in A$, we have

$$\varphi(a^*) = \varphi(\operatorname{Re}(a)) - i\varphi(\operatorname{Im}(a)) = \varphi(\operatorname{Re}(a)) - i\varphi(\operatorname{Im}(a)) = \varphi(a). \qquad \Box$$

2.4. Representations of complex *-algebras and the GNS construction. A representation of a (unital) complex *-algebra is a pair (H, π) where H is a Hilbert space and $\pi: A \to B(H)$ is a (unital) *-homomorphism. We call (H, π) :

- nondegenerate if $\{\pi(a)\xi | a \in A \text{ and } \xi \in H\}$ is dense in H. Observe that unital representations are nondegenerate.
- cyclic if there is a vector $\Omega \in H$ such that $\pi(A)\Omega$ is dense in H. We call Ω a cyclic vector and (H, π, Ω) a cyclic representation.

Example 2.4.1. The complex *-algebra C(X) acts on $L^2(X, \mu)$, where μ is any regular finite Borel measure.

Example 2.4.2. Let Γ be a discrete group. Then Γ acts on $\ell^2 \Gamma$ by $(\lambda_g \xi)(h) \coloneqq \xi(g^{-1}h)$. Since λ_g is isometric and has inverse $\lambda_{g^{-1}}$, it is unitary. We thus get a group homomorphism $\lambda \colon \Gamma \to U(H)$, the unitary group of H. Extending by linearity, we get a unital *-homomorphism $\mathbb{C}[\Gamma] \to B(\ell^2 \Gamma)$, where $\mathbb{C}[\Gamma]$ is the group algebra of Γ . The reduced group C*-algebra of Γ is the C*-algebra $C_r^*(\Gamma)$ generated by $\{\lambda_g | g \in \Gamma\}$.

Given a positive linear functional φ on A, define $\langle a, b \rangle_{\varphi} \coloneqq \varphi(b^*a)$, which is a positive sesquilinear form on A. Observe that all positive sesquilinear forms satisfy the Cauchy-Schwarz inequality, which is a powerful tool.

Proposition 2.4.3. Suppose A is a unital Banach *-algebra (* is an isometric involution) and φ is a positive linear functional.

- (1) If $a = a^*$ and ||a|| < 1, there is $a \ b \in A$ with $b = b^*$ such that $b^2 = 1 a$,
- (2) $\varphi(a^*a) \leq ||a^*a||\varphi(1)$ for all $a \in A$, and
- $(3) \|\varphi\| = \varphi(1).$

Proof.

- (1) The function $\sqrt{1-z}$ is analytic on $B_1(0) \supset \operatorname{sp}(a)$. setting $b \coloneqq \sqrt{1-a}$, we have $b^2 = 1 a$. To see *b* is self-adjoint, observe $\sqrt{1-a}$ is a uniform limit of polynomials in *a* on sp(*a*). (Indeed, we can find an open *U* such that sp(*a*) $\subset U \subset \overline{U} \subset B_1(0)$.)
- (2) Let $\varepsilon > 0$. Applying (1) to $\frac{a^*a}{\|a^*a\|+\varepsilon}$, we have a $b = b^*$ such that $b^2 = 1 \frac{a^*a}{\|a^*a\|+\varepsilon}$. Thus

$$0 \le \varphi(b^*b) = \varphi(1) - \frac{\varphi(a^*a)}{\|a^*a\| + \varepsilon} \qquad \Longrightarrow \qquad \varphi(a^*a) \le (\|a^*a\| + \varepsilon)\varphi(1).$$

Since $\varepsilon > 0$ was arbitrary, the result follows.

(3) Take square roots in the inequality

$$|\varphi(a)|^2 = |\langle a,1\rangle_{\varphi}|^2 \underset{\text{CS}}{\leq} \langle 1,1\rangle_{\varphi} \langle a,a\rangle_{\varphi} = \varphi(1)\varphi(a^*a) \underset{(2)}{\leq} \varphi(1)^2 ||a^*a|| \le \varphi(1)^2 ||a||^2,$$

and observe the bound $\varphi(1)$ is achieved at $1 \in A$.

Proposition 2.4.4. Suppose A is a unital C*-algebra and φ is a linear functional. Then φ is positive if and only if φ is bounded and $\|\varphi\| = \varphi(1)$.

 $\begin{array}{l} \textit{Proof. Positivity implies } \|\varphi\| = \varphi(1) \text{ by Proposition 2.4.3. Conversely, suppose } \varphi \text{ is bounded with } \|\varphi\| = \varphi(1). \text{ By normalizing } \varphi, we may assume } \|\varphi\| = \varphi(1) = 1. \text{ It remains to show that } \varphi(a) \geq 0 \text{ whenever } a \geq 0. \text{ By the CFC, it suffices to prove this for a positive linear functional on } C(X) \text{ where } X \text{ is compact Hausdorff. Suppose } \varphi(f) = \alpha + i\beta \text{ for } f = \overline{f}. \text{ Then for all } t \in \mathbb{R}, \text{ we have } \\ |\varphi(f + it)|^2 = |\alpha + i(\beta + t)|^2 = \alpha^2 + \beta^2 + 2\beta t + t^2, \text{ but } \\ |\varphi(f + it)|^2 \leq \|f + it\|^2 = (\|f\|^2 + t^2). \end{array}$ This implies $\begin{array}{l} \alpha^2 + \beta^2 + 2\beta t \leq \|f\|^2 & \forall t \in \mathbb{R}, \\ \text{which is only possible if } \beta = 0. \text{ Now, if } f \geq 0, \\ |\varphi(f) - \|f\|| = |\varphi(f - \|f\| \cdot 1)| \leq \|f - \|f\| \cdot 1\| \leq \|f\| & \|f\| - \int_{\|f\|}^{\|f\| - 1} \\ \|f\| = \int_{\|f\|}^{\|f\| - 1} \\ \|f\| = \int_{\|f\|}^{\|f\| - 1} \|f\| \leq \|f\| & \|f\| = \int_{\|f\|}^{\|f\| - 1} \\ \|f\| = \int_{\|f\|}^{\|f\| - 1} \|f\| \leq \|f\| & \|f\| = \int_{\|f\| - 1}^{\|f\| - 1} \\ \|f\| = \int_{\|f\| - 1}^{\|f\| - 1} \|f\| & \|f\| = \int_{\|f\| - 1}^{\|f\| - 1} \|f\| \\ \|f\| = \int_{\|f\| - 1}^{\|f\| - 1} \|f\| & \|f\| = \|f\| \\ \|f\| = \int_{\|f\| - 1}^{\|f\| - 1} \|f\| & \|f\| & \|f\| + \int_{\|f\| - 1}^{\|f\| - 1} \|f\| \\ \|f\| & \|f\| = \int_{\|f\| - 1}^{\|f\| - 1} \|f\| \\ \|f\| & \|f\| & \|f\| & \|f\| \\ \|f\| & \|f\| & \|f\| & \|f\| \\ \|f\| \\ \|f\| & \|f\| \\ \|f\| & \|f\| \\ \|f\| \\ \|f\| \\ \|f\| & \|f\| \\ \|f\| \\$

Definition 2.4.5. A state on a normed unital *-algebra is a continuous positive linear functional such that $\varphi(1) = 1$.

Corollary 2.4.6. If A is a normed unital *-algebra and φ is positive and continuous, then $\|\varphi\| = \varphi(1)$.

Proof. Let \overline{A} be the completion of A, which is a normed unital Banach *-algebra. Since φ is bounded, it extends to \overline{A} by Hahn-Banach. If $a \in \overline{A}$, choose a sequence (a_n) such that $a_n \to a$. Then (a_n) is norm-bounded, and $a_n^* a_n \to a^* a$. Thus the extension of φ to \overline{A} is positive. Now apply Proposition 2.4.3.

The left kernel of the form is given by

$$N_{\varphi} \coloneqq \{a \in A | \varphi(a^*a) = \langle a, a \rangle_{\varphi} = 0\} \underset{(\mathrm{CS})}{=} \{a \in A | \langle a, b \rangle_{\varphi} = 0 \ \forall \, b \in A\},\$$

which is a left ideal of A. Thus the left regular action $L_a: A/N_{\varphi} \to A/N_{\varphi}$ given by $L_a(b + N_{\varphi}) \coloneqq ab + N_{\varphi}$ is well-defined.

Exercise 2.4.7. Prove the assertion that N_{φ} is a left ideal of A.

Question 2.4.8. When is the left regular action of A on A/N_{φ} bounded?

Proposition 2.4.9. If A is a unital normed *-algebra and φ is a continuous positive linear functional, then the left regular action of A on A/N_{φ} is bounded with $||L_a|| \leq ||a||$.

Proof. Since the left regular action preserves N_{φ} , it suffices to prove that the left regular action of A on itself is bounded with $||L_a|| \leq ||a||$. For $b \in A$, define $\varphi_b(a) \coloneqq \varphi(b^*ab)$, which is a continuous positive linear functional on A. By extending φ_b to A as in the proof of Corollary 2.4.6, we see that $\varphi_b(a^*a) \leq ||a^*a||\varphi_b(1)$ for all $a \in A$ by Proposition 2.4.3 applied to A. Thus $\|ab\|_{\varphi}^{2} = \varphi(b^{*}a^{*}ab) = \varphi_{b}(a^{*}a) \leq \|a^{*}a\|\varphi_{b}(1) = \|a^{*}a\|\varphi(b^{*}b) = \|a^{*}a\|\|b\|_{\varphi}^{2} \leq \|a\|^{2}\|b\|_{\varphi}^{2}.$

The result follows.

Define $H_{\varphi} \coloneqq \overline{A/N_{\varphi}}$, which is called the GNS Hilbert space with respect to φ . Observe that the image of $1 \in A$ in H_{φ} , denoted Ω_{φ} , is a cyclic vector for the representation $(H_{\varphi}, \pi_{\varphi})$, i.e., $\pi_{\varphi}(A)\Omega_{\varphi}$ is dense in H_{φ} . Observe that $\varphi(a) = \langle a\Omega_{\varphi}, \Omega_{\varphi} \rangle$ for all $a \in A$, so φ is a vector state in the GNS representation.

Question 2.4.10. When does A act on the right of H_{ω} by bounded operators? That is, consider the map R_a on A given by $b \mapsto ba$. When does this pass to A/N_{φ} ? And when is it bounded?

Exercise 2.4.11. Consider the linear functional tr on $\mathbb{C}[\Gamma]$ given by $\operatorname{tr}(\sum c_q g) \coloneqq c_e$.

(1) Show that tr is positive and continuous. Here, the norm on $\mathbb{C}[\Gamma]$ is the operator norm coming from its left regular action on $\ell^2\Gamma$.

Hint: Show that $\operatorname{tr} = \langle \cdot \delta_e, \delta_e \rangle$, where $\delta_e \in \ell^2 \Gamma$ is given by $\delta_e(g) = \delta_{a=e}$.

- (2) Prove that $\operatorname{tr}(xy) = \operatorname{tr}(yx)$ for all $x, y \in \mathbb{C}[\Gamma]$.
- (3) Find a unitary isomorphism $H_{\rm tr} \to \ell^2 \Gamma$ which intertwines the left regular action of $\mathbb{C}[\Gamma]$ on H_{tr} with the left action $\lambda \colon \mathbb{C}[\Gamma] \to B(\ell^2 \Gamma)$ from Example 2.4.2.

If (H_i) is a family of Hilbert spaces, the direct sum $\bigoplus H_i$ is the completion of the algebraic direct sum under the inner product $\langle \eta, \xi \rangle := \sum_i \langle \eta_i, \xi_i \rangle$. One can show that elements of $\bigoplus H_i$ are square-summable sequences of vectors.

Definition 2.4.12. If (H_i, π_i) is a family of representations of a unital C^{*}-algebra A, then $\bigoplus H_i$ carries an action of A via $\bigoplus \pi_i$ defined by $(\bigoplus \pi_i)(a)_i \coloneqq \pi_i(a)$. Observe $\bigoplus \pi_i(a)$ is bounded if and only if $(||\pi_i(a)||)$ is uniformly bounded.

Definition 2.4.13. The universal representation of a unital C*-algebra A is $\bigoplus_{\text{states }\varphi} L^2(A, \varphi)$,

which is a direct sum of cyclic representations.

Lemma 2.4.14. Suppose $1 \in A \subset B$ is a unital inclusion of C^{*}-algebras. Then any state on A extends to a state on B.

Proof. Use Hahn-Banach to extend the state φ on A to $\tilde{\varphi}$ on B, and note $\widetilde{\varphi}(1) = \varphi(1) \underset{\text{(Prop. 2.4.3)}}{=} \|\varphi\| \underset{\text{(HB)}}{=} \|\widetilde{\varphi}\|.$

So $\tilde{\varphi}$ is positive by Proposition 2.4.3.

Proposition 2.4.15. Suppose A is a unital C*-algebra and $a \in A$ is self-adjoint (or normal). For every $\lambda \in \operatorname{sp}(a)$, there is a state φ on A such that $\varphi(a) = \lambda$.

Proof. Recall $C^*(a) \cong C(sp(a))$ where *a* corresponds to the identity function. Use Lemma 2.4.14 to extend $ev_{\lambda}: C(sp(a)) \to \mathbb{C}$ (which is manifestly positive) to a state φ on *A*. Since $ev_{\lambda}(id) = \lambda$, $\varphi(a) = \lambda$.

Theorem 2.4.16 (Gelfand-Naimark). The universal representation of a unital C^{*}-algebra is isometric. Thus every C^{*}-algebra is *-isomorphic to a closed *-subalgebra of bounded operators on a Hilbert space.

Proof. Let $a \in A$. Then $||a||^2 \ge ||\psi(a)||^2 = ||\psi(a^*a)|| \ge ||\pi_{\psi}(a^*a)||$ for all states ψ . By Proposition 2.4.15, there is a state $\varphi \in A^*$ such that $||a^*a|| = \varphi(a^*a)$, as $||a^*a|| \in \operatorname{sp}(a^*a)$. We then have that

$$\|a\|^2 = \|a^*a\| = \varphi(a^*a) = \langle \pi_{\varphi}(a^*a)\Omega_{\varphi}, \Omega_{\varphi}\rangle_{\varphi}$$

Since the norm is equal to the numerical radius for normal operators, we have $\|\pi_{\varphi}(a^*a)\| \geq \|a\|^2$. We thus have that

$$||a||^{2} \le ||\pi_{\varphi}(a^{*}a)|| \le ||\pi(a)||^{2} \le ||a||^{2}.$$

We conclude that π is isometric.