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5. Tracial von Neumann algebras and the crossed product construction

These notes follow Chapters 9 and 11 of Jones’ notes on von Neumann algebras quite
closely.

5.1. Tracial von Neumann algebras.

Definition 5.1.1. A tracial von Neumann algebra is a von Neumann algebra M equipped
with a faithful normal tracial state tr.

Facts 5.1.2. We rapidly recall some basic facts about a tracial von Neumann algebra (M, tr)
that we have already proven, or which follow easily from facts we have already proven.

(tr1) Tracial von Neumann algebras are finite.
(tr2) Every isometry in a tracial von Neumann algebra is a unitary.

TODO: more?

Definition 5.1.3. Given a tracial von Neumann algebra (M, tr), the Gelfand-Naimark-Segal
(GNS) Hilbert space L2(M, tr) is the completion of M under ‖ · ‖2 coming from the inner
product

〈x, y〉 := tr(y∗x).

We typically write Ω ∈ L2(M, tr) for the image of 1 ∈ M . When M is a tracial factor, the
trace is unique, and we simply write L2M .

We have the following facts, building on how we constructed the hyperfinite II1 factor R.

(J1) The left action λaxΩ := axΩ ofM on L2(M, tr) is by bounded operators and λ∗a = λa∗ .
(J2) The right action ρbxΩ := xbΩ of M on L2(M, tr) is also by bounded operators and

ρ∗b = ρb∗ .
(J3) The map J : MΩ→MΩ given by xΩ 7→ x∗Ω is a conjugate-linear unitary such that

J2 = 1.
(J4) The map J satisfies 〈JxΩ, JyΩ〉 = 〈x∗Ω, y∗Ω〉 = tr(yx∗) = tr(x∗y) = 〈yΩ, xΩ〉 for all

x, y ∈M . Hence 〈Jη, Jξ〉 = 〈ξ, η〉 for all η, ξ ∈ L2(M, tr).
(J5) For all x ∈ B(L2(M, tr)), (JxJ)∗ = Jx∗J .

Proof. For all a, b ∈M ,

〈aΩ, JxJbΩ〉 =
(J3)
〈J2aΩ, JxJbΩ〉 =

(J4)
〈xJbΩ, JaΩ〉 = 〈JbΩ, x∗JaΩ〉

=
(J3)
〈JbΩ, J2x∗JaΩ〉 =

(J4)
〈Jx∗JaΩ, bΩ〉

By density of MΩ in L2(M, tr), (JxJ)∗ = Jx∗J . �

(J6) The map J satisfies JλaJ = ρa∗ and JρbJ = λb∗ for all a, b ∈ M . Typically, we
abbreviate JaJ := JλaJ . In particular, (JaJ)∗ = Ja∗J and JMJ ⊆M ′.

(J7) For all x ∈M ′, JxΩ = x∗Ω.
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Proof. For all a ∈M , we have

〈JxΩ, aΩ〉 =
(J3)
〈JxΩ, J2aΩ〉 =

(J4)
〈JaΩ, xΩ〉 = 〈a∗Ω, xΩ〉

= 〈Ω, axΩ〉 = 〈Ω, xaΩ〉 = 〈x∗Ω, aΩ〉.
By density of MΩ in L2(M, tr), JxΩ = x∗Ω. �

(J8) For all x, y ∈M ′, JxJy = yJxJ . Hence JM ′J ⊆M ′′ = M .

Proof. For all a, b ∈M ,

〈JxJyaΩ, bΩ〉 =
(J5)
〈yaΩ, Jx∗JbΩ〉 = 〈yaΩ, Jx∗b∗Ω〉 = 〈ayΩ, Jb∗x∗Ω〉

=
(J7)
〈ayΩ, Jb∗JxΩ〉 =

(J6)
〈JbJayΩ, xΩ〉 =

(J6)
〈aJbJyΩ, xΩ〉

= 〈JbJyΩ, a∗xΩ〉 = 〈JbJyΩ, xa∗Ω〉 = 〈JbJyΩ, xJaΩ〉
=

(J3)
〈JbJyΩ, J2xJaΩ〉 =

(J4)
〈JxJaΩ, by∗Ω〉 = 〈JxJaΩ, y∗bΩ〉

= 〈yJxJaΩ, bΩ〉.
By density of MΩ in L2(M, tr), JxJy = yJxJ . �

We may summarize the above results as follows.

Theorem 5.1.4. Given a tracial von Neumann algebra (M, tr), the commutant of the left
action of M in the GNS representation is given by the right action: M ′ = JMJ .

Corollary 5.1.5. The commutant of LΓ acting on `2Γ is RΓ, the right regular group von
Neumann algebra.

Exercise 5.1.6. Show that the map between elements x ∈ LΓ and their corresponding
`2-vectors (xg) such that xδe =

∑
xgδg has image{

(yg) ∈ `2Γ
∣∣y ∗ z ∈ `2Γ for all z ∈ `2Γ

}
where (y ∗ z)g =

∑
h yhzh−1g. That is, LΓ corresponds to all the `2-sequences whose convo-

lutions with all other `2-sequences are again `2.

5.2. Conditional expectation. In probability theory, there is a notion of a conditional
expectation of a random variable (measurable function f : (X,M)→ C) with respect to a σ-
subalgebra N ⊂M. In more detail, given a probability measure µ :M→ [0,∞], it restricts
to a probability measure µ|N : N → [0,∞], and we have a natural inclusion of von Neumann
algebras L∞(X,N , µ|N ) ⊂ L∞(X,M, µ). The conditional expectation of f ∈ L∞(X,M, µ)C
with respect to N , denoted EN (f) is the unique element of L∞(X,N , µ|N ) such that for all
A ∈ N , ∫

A

f dµ =

∫
fχA dµ =

∫
EN (f)χA dµ =

∫
A

EN (f)χA dµ.

We will show the existence and uniqueness of EN (f) in more general setting, namely a tracial
von Neumann algebra (M, trM) and a von Neumann subalgebra N ⊆M .
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Facts 5.2.1. Suppose (M, trM) is a tracial von Neumann algebra and N ⊆ M is a von
Neumann subalgebra.

(E1) The inclusion NΩ ↪→ MΩ ⊂ L2M is isometric with respect to ‖ · ‖2. We thus get a
canonical isometry iN : L2N → L2M such that nΩN 7→ nΩM .

(E2) The isometry iN is N -N bilinear, i.e., for all x, n ∈ N ,

iN(x · nΩN) = iN(xnΩN) = xnΩM = x · nΩM and

iN(nΩN) · x = JMx
∗JM ιNnΩN = nxΩM = iN(nxΩN) = iNJNx

∗JNnΩN = iN(nΩN · x).

(E3) The adjoint i∗N : L2M → L2N is also N -N bilinear.1

Proof. Since niN = iNn for all n ∈ N , taking adjoints, i∗Nn
∗ = n∗i∗N for all

n ∈ N . Since JMn
∗JM iN = iNJNn

∗JN for all n ∈ N , taking adjoints,

i∗NJMnJM = i∗N(JMn
∗JM)∗ = (JNn

∗JN)∗i∗N = JNnJN i
∗
N

for all n ∈ N . The result follows. �

(E4) For m ∈ M , the operator EN(m) := i∗NmiN ∈ B(L2N) commutes with the right
N -action and thus lies in (JNNJN)′ = N .

(E5) EN(m) is the unique element of N such that trN(EN(m)n) = trM(mn) for all n ∈ N .

Proof. If x ∈ N such that trN(xn) = trM(mn) for all n ∈ N , then

〈xΩN , nΩN〉L2N = trN(xn∗) = trM(mn∗) = 〈mΩM , nΩM〉L2M

= 〈mιNΩN , ιNnΩN〉L2M = 〈ι∗NmιNΩN , nΩN〉L2N

for all n ∈ N , and thus x = ι∗NmιN = EN(m). �

(E6) EN(amb) = aEN(m)b for all a, b ∈ N and m ∈M . In particular, EN |N = idN .

Proof. Immediate from iN , i
∗
N being N −N bilinear. �

(E7) EN : M → N is a normal unital completely positive (ucp) map. In particular,
EN(m∗) = EN(m)∗ for all m ∈M .

Proof. The formula EN(m) = i∗NmiN is manifestly ucp (recall the Stinepring
Theorem). In particular, since EN sends positive elements to positive elements,
writing a self-adjoint x ∈M as x+− x−, we see that EN(x) is also self adjoint.
The final statement now follows by taking real and imaginary parts:

EN(m) = EN(Re(m) + i Im(m)) = EN(Re(m)) + iEN(Im(m))

which implies

EN(m∗) = EN(Re(m)− i Im(m)) = EN(Re(m))− iEN(Im(m)) = EN(m)∗. �

1 In more generality, if πH : A → B(H) and πK : A → B(K) are two ∗-representations of a ∗-algebra A
and x ∈ B(H → K) such that xπH(a) = πK(a)x for all a ∈ A, then πH(a)x∗ = x∗πK(a) for all a ∈ A.
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(E8) For all m ∈M , ‖EN(m)‖ ≤ ‖m‖,

Proof. Since iN is an isometry, ‖EN(m)‖ = ‖i∗NmiN‖ ≤ ‖m‖. �

(E9) For all m ∈M , EN(m)∗EN(m) ≤ EN(m∗m) and EN(m∗m) = 0 implies m = 0.

Proof. Since iN is an isometry, iN i
∗
N ≤ 1L2M . In particular,

EN(m)∗EN(m) = i∗Nm
∗iN i

∗
NmiN ≤ i∗Nm

∗miN = EN(m∗m).

Finally, if EN(m∗m) = 0, then trM(m∗m) = trN(EN(m∗m)) = 0, so m = 0. �

5.3. Outer, ergodic, and free actions. In this section, G denotes a group and M denotes
a von Neumann algebra.

Definition 5.3.1. An action of G on M is a group homomorphism α : G→ Aut(M), where
Aut(M) is the group of ∗-algebra isomorphisms of M .

Exercise 5.3.2. Prove that every ∗-algebra isomorphism of M is σ-WOT continuous.

Example 5.3.3. Suppose u : G → U(H) such that for all g ∈ G, ugMu∗g = M . Then
α : G→ Aut(M) by αg = Ad(ug) is an action.

Definition 5.3.4. An automorphism Φ of M ⊆ B(H) is said to be implemented by a unitary
u ∈ U(H) if Φ(x) = uxu∗ for all x ∈M .

We call Φ ∈ Aut(M) inner if it is implemented by a unitary u ∈ U(M). If Φ is not inner,
it is called outer.

An action α : G→ Aut(M) is called outer if αg is only inner when g = e.

Exercise 5.3.5. Show that every trace-preserving ∗-automorphism of a tracial von Neumann
algebra (M, trM) can be implemented on L2(M, tr). Deduce that every ∗-automorphism of
a II1 factor can be implemented on L2M .

Exercise 5.3.6. Prove that every ∗-automorphism of B(H) is inner.

Exercise 5.3.7. Consider F2 = 〈a, b〉. Show that the swap a↔ b extends to a ∗-automorphism
of LF2. Prove it is outer.

Example 5.3.8. Let (X,µ) be a measure space and T : X → X a bijection preserving the
measure class of µ, i.e., µ(A) = 0 iff µ(T−1A) = 0 for all measurable A. Then T gives an
automorphism αT of L∞(X,µ) by (αTf)(x) := f(T−1x).

Moreover, if T preserves µ, i.e., µ(A) = µ(T−1A) for all measurable A, then αT is im-
plemented by the unitary (uT ξ)(x) := ξ(T−1x) for ξ ∈ L2(X,µ). Indeed, one computes
(u∗T ξ)(x) = ξ(Tx) and we observe

(uTMfu
∗
T ξ)(x) = (Mfu

∗
T ξ)(T

−1x) = f(T−1x)(u∗T ξ)(T
−1x) = f(T−1x)ξ(x) = (MαT (f)ξ)(x).

Exercise 5.3.9. Suppose (X,µ) is a measure space and ν is a measure equivalent to µ,
i.e., µ(A) = 0 if and only if ν(A) = 0 for all measurable A. Explain why we may identify
L∞(X,µ) = L∞(X, ν) as von Neumann algebras.

Definition 5.3.10. A measurable bijection T of X is called ergodic if A measurable with
TA = A implies µ(A) = 0 or µ(X \ A) = 0.
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Proposition 5.3.11. T is ergodic if and only if L∞(X,µ)αT = C1.

Proof. Note that TA = A if and only if αT (χA) = χA. Hence T is ergodic iff
P (L∞(X,µ)αT ) = {0, 1} iff L∞(X,µ)αT = C1. �

Definition 5.3.12. We say an action α : G→ Aut(M) is ergodic if MG = C1.

Lemma 5.3.13. Suppose α is an action of a countable group Γ on (X,µ) preserving the
measure class of µ. Consider the following statements.

(Γ1) α is essentially transitive, i.e., there is an x ∈ X such that µ(X \ Γx) = 0.
(Γ2) α is essentially countable, i.e., there is a countable set Y ⊆ X such that µ(X \Y ) = 0

and µ({y}) > 0 for all y ∈ Y .
(Γ3) There is an atom x ∈ X, i.e., there is an x ∈ X with µ({x}) > 0.

Then (Γ1) implies (Γ2) implies (Γ3). If α is ergodic, then (Γ3) implies (Γ1).

Proof. The only interesting part is proving (Γ3) implies (Γ1) when α is ergodic. If
x ∈ X is an atom, then Γx ⊆ X is a Γ-invariant subset with µ(Γx) > 0. By ergodicity,
µ(X \ Γx) = 0. �

Remark 5.3.14. Really, an atom of (X,µ) is a measurable set A ⊆ X such that µ(A) > 0
and for all measurable B ⊆ A, µ(B) = 0 or µ(A \ B) = 0. Thus atoms of (X,µ) exactly
correspond to minimal projections of L∞(X,µ). By Lemma 5.3.13 (applied to an equivalent
measure space where all atoms have been collapsed to points), if an ergodic action of a
countable Γ on (X,µ) preserving the measure class of µ is not essentially transitive, then
L∞(X,µ) has no minimal projections.

Definition 5.3.15. An automorphism Φ of M is called free or properly outer if

m ∈M and mα(x) = xm ∀x ∈M =⇒ m = 0.

An action α : G→ Aut(M) is called free if αg not free implies g = e.

Exercise 5.3.16. Show that if M = L∞(X, ν) where X is countable and ν is a weighted
counting measure (without loss of generality, we may assume there are no points with mass
zero), and α = αT ∈ Aut(L∞(X,µ)) for some bijection T : X → X, then α is free if and
only if T has no fixed points.

Exercise 5.3.17. Suppose X is compact Hausdorff and µ is a Radon (finite non-negative
regular Borel) measure on X. Let T : X → X be a homeomorphism preserving the measure
class of µ. Then αT is free iff µ({x ∈ X|Tx = x}) = 0.

Proposition 5.3.18. If M is a factor, then every outer automorphism is free.

Proof. We prove the contrapositive. Suppose Φ ∈ Aut(M) and there is an m ∈M \{0}
such that mΦ(x) = xm for all x ∈ M . If m ∈ U(M), then Φ = Ad(m) and we are
finished. Otherwise, taking adjoints, we have m∗x = Φ(x)m∗ for all x ∈M , and thus

mm∗x = mΦ(x)m∗ = xmm∗ ∀x ∈M =⇒ mm∗ ∈ Z(M).
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Similarly, m∗m ∈ Z(M). Since Z(M) = C1 and m 6= 0, mm∗ = r and m∗m = s
for some non-zero r, s ∈ R>0. Since rm = mm∗m = sm and m 6= 0, r = s. Thus
u := r−1/2m ∈ U(M) and Φ = Ad(u) is inner. �

5.4. The crossed product. The crossed product can be defined for a locally compact
group, but we will present a simplified version for discrete groups acting on tracial von
Neumann algebras. In this section, Γ is a discrete group.

The crossed product of a group action α : Γ → Aut(M) is a von Neumann algebra
containing M in which the group action is implemented by unitaries.

Definition 5.4.1. Suppose α : Γ→ Aut(M) is a group action where M ⊆ B(H). Form the
Hilbert space

`2(Γ, H) :=

{
ξ : Γ→ H

∣∣∣∣∣∑
g

‖ξ(g)‖2 <∞

}
.

We define actions of Γ and M on `2(Γ, H) by

(ugξ)(h) := ξ(g−1h) and (πmξ)(h) := αh−1(m)ξ(h).

The crossed product M oα Γ is the von Neumann algebra generated by the πm and the ug
acting on `2(Γ, H).

Example 5.4.2. When M = L∞(X,µ) and α : Γ → Aut(M) comes from an action of Γ
on (X,µ) preserving the measure class of µ, we call L∞(X,µ) o Γ the group measure space
construction

Exercise 5.4.3. Prove the following facts about the crossed product M oα Γ.

(1) π : M → B(`2(Γ, H)) is an injective normal σ-WOT continuous ∗-homomorphism.
Thus π(M) = π(M)′′ ∼= M as von Neumann algebras.

(2) ugπmu
∗
g = παg(m), i.e., the αg-action on M is implemented by the ug.

(3) Finite linear combinations
∑
xgug where xg ∈ M form a σ-WOT dense unital ∗-

subalgebra.

Exercise 5.4.4. Find a unitary isomorphism v : `2(Γ, H)→ `2Γ⊗H such that vugv
∗ = λg⊗1

and (vπmv
∗)(δh ⊗ ξ) = δh ⊗ αh−1(m)ξ.

We now provide sufficient conditions for the crossed product to be a factor.

Lemma 5.4.5. If α : Γ→ Aut(M) is free, then M ′ ∩ (M oα Γ) ⊆ Z(M).

Proof. TODO: give general proof Suppose y ∈ M ′ ∩ (M oα Γ) and let (yg) ⊂ M
such that y(Ω⊗ δe) =

∑
ygΩ⊗ δg. For x ∈M , we calculate y(xΩ⊗ δe) in two ways:∑

xyg ⊗ δg = xy(Ω⊗ δe) = yx(Ω⊗ δe) = y(xΩ⊗ δe) =
(o3)

∑
ygαg(x)⊗ δg.

Hence xyg = ygαg(x) for all x ∈ M . By freeness, yg = 0 unless g = e, so y = ye as
Ω⊗ δe is separating by (o5). Hence y ∈M ′ ∩M = Z(M). �

6



Remark 5.4.6. Lemma 5.4.5 immediately implies that

Z(M) = M ′ ∩M ⊆M ′ ∩ (M oα Γ) ⊆ Z(M)

so all inclusions are equalities, and

Z(M oα Γ) ⊆M ′ ∩ (M oα Γ) ⊆ Z(M).

Thus if M is a factor and α is free, then M oα Γ is a factor.

Corollary 5.4.7. If α : Γ→ Aut(M) is free and ergodic, then M oα Γ is a factor.

Proof. Suppose x ∈ Z(M oα Γ). Since α is free, by Remark 5.4.6, x ∈ Z(M). Since
x commutes with every ug, αg(x) = ugxu

∗
g = x for all g ∈ Γ, and x ∈ MΓ. Since α is

ergodic, MΓ = C1, and thus Z(M oα Γ) = C1. �

Corollary 5.4.8. Consider a group measure space construction L∞(X,µ)oΓ. If the action
α is free, then L∞(X,µ) ⊂ L∞(X,µ) o Γ is maximal abelian.

Proof. Since α is free,

L∞(X,µ)′ ∩ (L∞(X,µ) o Γ) ⊆ Z(L∞(X,µ)) = L∞(X,µ)

by Lemma 5.4.5. Hence if L∞(X,µ) ⊆ A ⊆ L∞(X,µ) o Γ with A abelian, then
A ⊆ L∞(X,µ)′ ∩ (L∞(X,µ) o Γ) ⊆ L∞(X,µ). �

We now give examples of free and ergodic actions.

Example 5.4.9. Γ = Z acts by translation on (Z, ν) where ν is counting measure. We have
L∞(Z, ν) o Z ∼= B(`2Z).

Example 5.4.10. An irrational rotation of the torus is free and ergodic. That is, consider
(X,µ) = (T, dθ) and Γ = Z generated by tz = eiαz where α

2π
/∈ Q.

Example 5.4.11 (Bernoulli shift). Let Γ be infinite and countable, and let (X,µ) be a
standard probability space. Consider (X,µ)Γ with product measure. Then Γ acts on (X,µ)Γ

by (g · A)(h) = A(g−1h), where A : Γ→ (X,µ) is a measurable function.

One can also do the action of Γ on
⊗Γ(M, tr) by h · (xg1 ⊗ xg2 ⊗ · · · ) = xhg1 ⊗ xhg2 ⊗ · · · .

Example 5.4.12. SL(2,Z) acts on R2 by

(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
.

Example 5.4.13. The “ax+ b” group QoQ× acts on R by

(
a b
0 1

)(
x
1

)
=

(
ax+ b

1

)
.

5.5. The crossed product when the action preserves a trace. We now give a second
equivalent definition of MoαΓ in the setting where (M, tr) is a tracial von Neumann algebra
and tr ◦αg = tr for all g ∈ Γ.

First, form the Hilbert space L2M⊗`2Γ. We have an amplified left M -action x(mΩ⊗ξ) =
xmΩ ⊗ ξ and a left Γ-action given by ug(mΩ ⊗ δh) := αg(m)Ω ⊗ δgh. In other words, if
vg ∈ U(L2M) is the unitary vgmΩ := αg(m)Ω implementing αg, then ug = vg ⊗ λg. We
define M oα Γ as the von Neumann algebra generated by the operators x⊗ 1 for x ∈M and
the ug for g ∈ Γ acting on L2M ⊗ `2Γ.
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Exercise 5.5.1. Find a unitary isomorphism w : L2M⊗`2Γ→ `2Γ⊗L2M which intertwines
the two above definitions of M oα Γ. [[is there an op issue here?]]

There is also a commuting right action of M and Γ on L2M ⊗ `2Γ by defining

(mΩ⊗ δh)x := mαh(x)Ω⊗ δh and (mΩ⊗ δh)g := mΩ⊗ δhg.

Note that these right actions commute with the left action of M oα Γ. We will eventually
show that MoαΓ carries a canonical normal faithful tracial state under which L2(MoαΓ) ∼=
L2M ⊗ `2Γ, allowing us to identify the left and right actions as the canonical ones.

Facts 5.5.2. Here are some basic facts about M oα Γ.

(o1) For finite linear combinations
∑
xgug ∈M oα Γ, (

∑
xgug)(Ω⊗ δe) =

∑
g xgΩ⊗ δg.

(o2) For every x ∈M oα Γ, there is a unique sequence (xg) in

`2(Γ,M) :=
{
m : Γ→M

∣∣∣∑ ‖mgΩ‖2
L2M <∞

}
such that x(Ω⊗ δe) =

∑
xgΩ⊗ δg.

Proof. For g ∈ Γ, define pg : L2M⊗`2Γ→ L2M by mΩ⊗η 7→ 〈η, δg〉αg−1(m)Ω.
Then p∗gmΩ = αg(m)Ω⊗ δg. Observe that p∗g is right M -linear, so pg is as well

by Footnote 1. Hence for all x ∈ M oα Γ, pgxp
∗
e ∈ (JMJ)′ ∩ B(L2M) = M .

Define xg := αg(pgxp
∗
e) ∈M . We then compute that for all m ∈M and g ∈ Γ,

〈x(Ω⊗ δe),mΩ⊗ δg〉 = 〈xp∗eΩ, p∗gαg−1(m)Ω〉 = 〈pgxp∗eΩ, αg−1(m)Ω〉L2M

= trM(αg−1(m)∗pgxp
∗
e) = (trM ◦αg)(αg−1(m)∗pgxp

∗
e)

= trM(m∗αg(pgxp
∗
e)) = trM(m∗xg)

=
∑
h

〈xhΩ⊗ δh,mΩ⊗ δg〉.

We conclude x(Ω⊗ δe) =
∑

h xhΩ⊗ δh and x : Γ→M lies in `2(Γ,M). �

(o3) For all g ∈ Γ and m ∈M and x ∈M oα Γ, x(mΩ⊗ δg) =
∑

h xhαh(m)Ω⊗ δhg.

Proof. Note that mΩ ⊗ δg = (Ω ⊗ δe) ·m · g. Since the left and right actions
commute,

x(mΩ⊗δg) = (x(Ω⊗δe)) ·m ·g =

(∑
h

xhΩ⊗ δh

)
·m ·g =

∑
h

xhαh(m)Ω⊗δhg

as claimed. �

(o4) For x ∈M oα Γ, x∗(Ω⊗ δe) =
∑

h αh(x
∗
h−1)Ω⊗ δh.

8



Proof. We compute

〈x∗(Ω⊗ δe),mΩ⊗ δg〉 = 〈Ω⊗ δe, x(mΩ⊗ δg)〉 =
∑
h

〈Ω⊗ δe, xhαh(m)Ω⊗ δhg〉

= δh=g−1〈Ω, xg−1αg−1(m)Ω〉 = tr(x∗g−1αg−1(m)∗)

= (tr ◦αg)(x∗g−1αg−1(m)∗) = tr(αg(x
∗
g−1)m∗)

= 〈αg(x∗g−1)Ω,mΩ〉L2M =
∑
h

〈αh(x∗h−1)Ω⊗ δe,m⊗ δgΩ〉.

The result follows. �

(o5) Ω⊗ δe is cyclic and separating for M oα Γ.

Proof. First, x = 0 iff xg = 0 for all g ∈ Γ, which implies Ω⊗ δe is separating.
Now for any finite linear combination

∑
gmgΩ⊗ δg ∈ L2M ⊗ `2Γ,∑

g

mgΩ⊗ δg =

(∑
g

mgug

)
(Ω⊗ δe),

so Ω⊗ δe is cyclic. �

(o6) The normal state ωΩ⊗δe = 〈 ·Ω⊗ δe,Ω⊗ δe〉 on M oα Γ is faithful and tracial.

Proof. For x, y ∈M oα Γ,

〈xy(Ω⊗ δe),Ω⊗ δe〉 = 〈y(Ω⊗ δe), x∗(Ω⊗ δe)〉

=
∑
g,h

〈ygΩ⊗ δg, αh(x∗h−1)Ω⊗ δh〉

=
∑
g

〈ygΩ, αg(x∗g−1)Ω〉L2M

=
∑
g

tr(αg(xg−1)yg)

=
∑
g

(tr ◦αg−1)(αg(xg−1)yg)

=
∑
g

tr(xg−1αg−1(yg))

=
∑
h

tr(αh(yh−1)xh)

= · · · = 〈yx(Ω⊗ δe),Ω⊗ δe〉.
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Faithfulness follows from the computation

〈x∗x(Ω⊗ δe),Ω⊗ δe〉 = 〈x(Ω⊗ δe), x(Ω⊗ δe)〉 =
∑
g,h

〈xgΩ⊗ δg, xhΩ⊗ δh〉

=
∑
g

〈xgΩ, xgΩ〉L2M =
∑
g

tr(x∗gxg). �

(o7) The map mΩ⊗ δg 7→ mugΩ is an M oα Γ−M oα Γ bilinear unitary L2M ⊗ `2Γ ∼=
L2(M oα Γ).

Proof. For finite linear combinations
∑
xgug ∈M oα Γ,∥∥∥(∑xgug

)
Ω
∥∥∥2

L2(MoΓ)
=
〈(∑

xhuh

)∗ (∑
xgug

)
(Ω⊗ δe),Ω⊗ δe

〉
=
〈(∑

xgug

)
(Ω⊗ δe),

(∑
xhuh

)
(Ω⊗ δe)

〉
=
∑
g,h

〈xgΩ⊗ δg, xhΩ⊗ δh〉

=
∥∥∥∑xgΩ⊗ δgΩ

∥∥∥2

L2M⊗`2Γ
,

and thus the map is isometric. We leave M oα Γ bilinearity to the reader. �

5.6. The type of the crossed product. Suppose α : Γ→ Aut(M) is free and ergodic so
that M oα Γ is a factor. We further consider the special case of M = L∞(X,µ) coming from
an action of Γ on (X,µ) preserving the measure class of µ. There are 4 types of free and
ergodic actions of a countable discrete group Γ acting on (X,µ).

• (type I) Γ acts freely transitively so that X is a Γ-torsor.
• (type II1) Γ preserves a finite measure on X.
• (type II∞) Γ preserves an infinite measure on X.
• (type III) no measure on X equivalent to µ is preserved by Γ.

Theorem 5.6.1. If α is a free ergodic, essentially transitive action, then L∞(X,µ) o Γ is
type I.

Proof. Since α is essentially transitive, by Lemma 5.3.13, X = Γx for some x ∈ X up
to null sets (where we have replaced atoms in (X,µ) by points). Thus we may identify
µ with a weighted counting measure. Then χ{x} ∈ L∞(X,µ) is a minimal projection
for every x ∈ X. We claim χ{x} is also minimal in L∞(X,µ) o Γ, showing it is type I.
Since finite linear combinations

∑
ygug form a σ-WWOT dense unital ∗-subalgebra,

it suffices to prove that for every h 6= e and y ∈ L∞(X,µ),

χ{x}yuhχ{x} = 0.

Indeed, for all ξ ∈ L2(Γ, L2(X,µ)) and g ∈ Γ,

(χ{x}yuhχ{x}ξ)(g) = αg−1(χ{x})αg−1(y)(uhχ{x}ξ)(g)
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= αg−1(χ{x})αg−1(y)(χ{x}ξ)(h
−1g)

= αg−1(χ{x})αg−1(y)αg−1h(χ{x})ξ(h
−1g).

Now as L∞(X,µ) is abelian, we see

αg−1(χ{x})αg−1h(χ{x}) = χg−1xχg−1hx = 0

as h 6= e and α is free. �

Fact 5.6.2. Suppose (M, tr) is a tracial von Neumann algebra and α : Γ → Aut(M) is an
action such that tr ◦αg = tr for all g ∈ Γ. If α is free and ergodic, then M oαΓ has a faithful
normal tracial state by (o6), so it must be either type In for n <∞ or type II1.

Theorem 5.6.3. If the action of Γ on (X,µ) is free, ergodic, non-transitive, and µ is a
finite measure such that µ(gA) = µ(A) for all measurable A, then L∞(X,µ) o Γ is type II1.

Proof. Since the action of Γ preserves the faithful normal tracial state
∫
· dµ,

L∞(X,µ) o Γ is either finite dimensional or type II1. So it suffices to prove that
if L∞(X,µ) o Γ is finite dimensional and α is free and ergodic, then α is essentially
transitive. If L∞(X,µ) o Γ is finite dimensional, then L∞(X,µ) is finite dimensional,
and thus has minimal projections. Thus (X,µ) ∼= (Y, ν) for some finite measure space
Y with ν a weighted counting measure. Indeed, by a maximality argument, we can
write 1 =

∑n
i=1 χAi

where each χAi
is minimal in L∞(X,µ) and the Ai are disjoint

measurable subsets. We then define ν({i}) := µ(Ai). Finally, the action of Γ on the
finite measure space (Y, ν) is free and ergodic, which implies it is transitive by Exercise
5.3.13. �

Exercise 5.6.4. A factor M is type II∞ iff 1M is infinite and there is a nonzero finite
projection p ∈M such that pMp is type II1.

Exercise 5.6.5. If {eij} ⊂ M ⊆ B(H) is a system of matrix units, then there is a unitary
u : H → e11H ⊗ `2(I) such that uMu∗ = e11Me11 ⊗B(`2(I)).

Lemma 5.6.6. If M is a II∞ factor, there is a II1 factor N and a unital ∗-isomorphism
M ∼= N ⊗B(`2(I)).

Proof. By Exercise 5.6.4, there is a non-zero finite projection p ∈M . Let {pi}i∈I be a
maximal family of mutually orthogonal projections such that pi ≈ p for all i ∈ I.

Claim.
∑
pi ≈ 1.

Proof of claim. Set q = 1 −
∑
pi. Since M is a factor, by maximality, q 4 p. Since

1M is infinite, there is an i0 ∈ I and a bijection I ∼= I \ {i0}. Then

1 = q +
∑

pi ≈ q +
∑
i 6=i0

pi 4 pi0 +
∑
i 6=i0

pi =
∑

pi 4 1. �

By the claim, we may assume that
∑
pi = 1; ortherwise, replace pi with u∗piu where

uu∗ =
∑
pi and u∗u = 1. Now since

∑
pi = 1 and each pi ≈ p, for each j, we can
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choose a partial isometry e1j such that e1je
∗
1j = p1 and e∗1je1j = pj. We then extend

the e1j to a system of matrix units in the usual way. Finally, the result follows from
Exercise 5.6.5. �

Theorem 5.6.7. If the action of Γ on (X,µ) is free, ergodic, non-transitive, and µ is an
infinite σ-finite measure such that µ(gA) = µ(A) for all measurable A, then L∞(X,µ) o Γ
is type II∞.

Proof. By Remark 5.3.14, there are no minimal projections in L∞(X,µ). As (X,µ)
is σ-finite, there is a set Y ⊂ X with 0 < µ(Y ) < ∞. Consider the unit vector
ξ := µ(Y )−1/2χY ⊗ δe and the projection p := χY .

Claim. The normal state ωξ on the factor p(L∞(X,µ) o Γ)p is tracial.

Proof of claim. By a calculation similar to (o6), for all x, y ∈ L∞(X,µ) o Γ,

ωξ(pxppyp) =
1

µ(Y )

∑
g

trM(αg(p)αg(xg−1)pyg)

=
1

µ(Y )

∑
g

trM(pxg−1αg−1(p)αg−1(yg)) = ωξ(pyppxp). �

By the claim, p(L∞(X,µ) o Γ)p is a factor with no minimal projections and a tracial
state, and thus is type II1. But L∞(X,µ) o Γ is not type II1 as it has an infinite
family of non-zero mutually orthogonal projections (why?). Hence 1 is infinite and
L∞(X,µ) o Γ is type II)∞ by Exercise 5.6.4. �

We omit the proof that if Γ preserves no measure equivalent to µ, then L∞(X,µ) o Γ is
type III.
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