5. TRACIAL VON NEUMANN ALGEBRAS AND THE CROSSED PRODUCT CONSTRUCTION

These notes follow Chapters 9 and 11 of Jones' notes on von Neumann algebras quite closely.

5.1. Tracial von Neumann algebras.

Definition 5.1.1. A *tracial von Neumann algebra* is a von Neumann algebra M equipped with a faithful normal tracial state tr.

Facts 5.1.2. We rapidly recall some basic facts about a tracial von Neumann algebra (M, tr) that we have already proven, or which follow easily from facts we have already proven.

- (tr1) Tracial von Neumann algebras are finite.
- (tr2) Every isometry in a tracial von Neumann algebra is a unitary. **TODO: more?**

Definition 5.1.3. Given a tracial von Neumann algebra (M, tr), the Gelfand-Naimark-Segal (GNS) Hilbert space $L^2(M, \text{tr})$ is the completion of M under $\|\cdot\|_2$ coming from the inner product

$$\langle x, y \rangle := \operatorname{tr}(y^* x).$$

We typically write $\Omega \in L^2(M, \operatorname{tr})$ for the image of $1 \in M$. When M is a tracial factor, the trace is unique, and we simply write L^2M .

We have the following facts, building on how we constructed the hyperfinite II_1 factor R.

- (J1) The left action $\lambda_a x \Omega := a x \Omega$ of M on $L^2(M, \operatorname{tr})$ is by bounded operators and $\lambda_a^* = \lambda_{a^*}$.
- (J2) The right action $\rho_b x \Omega := xb\Omega$ of M on $L^2(M, \text{tr})$ is also by bounded operators and $\rho_b^* = \rho_{b^*}$.
- (J3) The map $J: M\Omega \to M\Omega$ given by $x\Omega \mapsto x^*\Omega$ is a *conjugate-linear* unitary such that $J^2 = 1$.
- (J4) The map J satisfies $\langle Jx\Omega, Jy\Omega \rangle = \langle x^*\Omega, y^*\Omega \rangle = \operatorname{tr}(yx^*) = \operatorname{tr}(x^*y) = \langle y\Omega, x\Omega \rangle$ for all $x, y \in M$. Hence $\langle J\eta, J\xi \rangle = \langle \xi, \eta \rangle$ for all $\eta, \xi \in L^2(M, \operatorname{tr})$.
- (J5) For all $x \in B(L^2(M, \operatorname{tr})), (JxJ)^* = Jx^*J$.

Proof. For all
$$a, b \in M$$
,
 $\langle a\Omega, JxJb\Omega \rangle \stackrel{=}{=} \langle J^2 a\Omega, JxJb\Omega \rangle \stackrel{=}{=} \langle xJb\Omega, Ja\Omega \rangle = \langle Jb\Omega, x^*Ja\Omega \rangle$
 $\stackrel{=}{=} \langle Jb\Omega, J^2x^*Ja\Omega \rangle \stackrel{=}{=} \langle Jx^*Ja\Omega, b\Omega \rangle$
By density of $M\Omega$ in $L^2(M, \text{tr})$, $(JxJ)^* = Jx^*J$.

- (J6) The map J satisfies $J\lambda_a J = \rho_{a^*}$ and $J\rho_b J = \lambda_{b^*}$ for all $a, b \in M$. Typically, we abbreviate $JaJ := J\lambda_a J$. In particular, $(JaJ)^* = Ja^*J$ and $JMJ \subseteq M'$.
- (J7) For all $x \in M'$, $Jx\Omega = x^*\Omega$.

Proof. For all $a \in M$, we have $\langle Jx\Omega, a\Omega \rangle = \langle Jx\Omega, J^2a\Omega \rangle = \langle Ja\Omega, x\Omega \rangle = \langle a^*\Omega, x\Omega \rangle$ $= \langle \Omega, ax\Omega \rangle = \langle \Omega, xa\Omega \rangle = \langle x^*\Omega, a\Omega \rangle.$ By density of $M\Omega$ in $L^2(M, \operatorname{tr}), Jx\Omega = x^*\Omega.$

(J8) For all $x, y \in M'$, JxJy = yJxJ. Hence $JM'J \subseteq M'' = M$.

$$\begin{array}{l} \textit{Proof. For all } a, b \in M, \\ \langle JxJya\Omega, b\Omega \rangle \underset{(J5)}{=} \langle ya\Omega, Jx^*Jb\Omega \rangle = \langle ya\Omega, Jx^*b^*\Omega \rangle = \langle ay\Omega, Jb^*x^*\Omega \rangle \\ \underset{(J7)}{=} \langle ay\Omega, Jb^*Jx\Omega \rangle \underset{(J6)}{=} \langle JbJay\Omega, x\Omega \rangle \underset{(J6)}{=} \langle aJbJy\Omega, x\Omega \rangle \\ = \langle JbJy\Omega, a^*x\Omega \rangle = \langle JbJy\Omega, xa^*\Omega \rangle = \langle JbJy\Omega, xJa\Omega \rangle \\ \underset{(J3)}{=} \langle JbJy\Omega, J^2xJa\Omega \rangle \underset{(J4)}{=} \langle JxJa\Omega, by^*\Omega \rangle = \langle JxJa\Omega, y^*b\Omega \rangle \\ = \langle yJxJa\Omega, b\Omega \rangle. \end{array}$$
By density of $M\Omega$ in $L^2(M, \text{tr}), JxJy = yJxJ.$

We may summarize the above results as follows.

Theorem 5.1.4. Given a tracial von Neumann algebra (M, tr), the commutant of the left action of M in the GNS representation is given by the right action: M' = JMJ.

Corollary 5.1.5. The commutant of $L\Gamma$ acting on $\ell^2\Gamma$ is $R\Gamma$, the right regular group von Neumann algebra.

Exercise 5.1.6. Show that the map between elements $x \in L\Gamma$ and their corresponding ℓ^2 -vectors (x_g) such that $x\delta_e = \sum x_g \delta_g$ has image

$$\left\{ (y_g) \in \ell^2 \Gamma \middle| y \ast z \in \ell^2 \Gamma \text{ for all } z \in \ell^2 \Gamma \right\}$$

where $(y * z)_g = \sum_h y_h z_{h^{-1}g}$. That is, $L\Gamma$ corresponds to all the ℓ^2 -sequences whose convolutions with all other ℓ^2 -sequences are again ℓ^2 .

5.2. Conditional expectation. In probability theory, there is a notion of a conditional expectation of a random variable (measurable function $f : (X, \mathcal{M}) \to \mathbb{C}$) with respect to a σ -subalgebra $\mathcal{N} \subset \mathcal{M}$. In more detail, given a probability measure $\mu : \mathcal{M} \to [0, \infty]$, it restricts to a probability measure $\mu|_{\mathcal{N}} : \mathcal{N} \to [0, \infty]$, and we have a natural inclusion of von Neumann algebras $L^{\infty}(X, \mathcal{N}, \mu|_{\mathcal{N}}) \subset L^{\infty}(X, \mathcal{M}, \mu)$. The conditional expectation of $f \in L^{\infty}(X, \mathcal{M}, \mu)C$ with respect to \mathcal{N} , denoted $\mathbb{E}_{\mathcal{N}}(f)$ is the unique element of $L^{\infty}(X, \mathcal{N}, \mu|_{\mathcal{N}})$ such that for all $A \in \mathcal{N}$,

$$\int_{A} f \, d\mu = \int f \chi_A \, d\mu = \int \mathbb{E}_{\mathcal{N}}(f) \chi_A \, d\mu = \int_{A} \mathbb{E}_{\mathcal{N}}(f) \chi_A \, d\mu.$$

We will show the existence and uniqueness of $\mathbb{E}_{\mathcal{N}}(f)$ in more general setting, namely a tracial von Neumann algebra (M, tr_M) and a von Neumann subalgebra $N \subseteq M$.

Facts 5.2.1. Suppose (M, tr_M) is a tracial von Neumann algebra and $N \subseteq M$ is a von Neumann subalgebra.

- (E1) The inclusion $N\Omega \hookrightarrow M\Omega \subset L^2M$ is isometric with respect to $\|\cdot\|_2$. We thus get a canonical isometry $i_N : L^2N \to L^2M$ such that $n\Omega_N \mapsto n\Omega_M$.
- (E2) The isometry i_N is N-N bilinear, i.e., for all $x, n \in N$,
- $i_N(x \cdot n\Omega_N) = i_N(xn\Omega_N) = xn\Omega_M = x \cdot n\Omega_M \quad \text{and} \\ i_N(n\Omega_N) \cdot x = J_M x^* J_M \iota_N n\Omega_N = nx\Omega_M = i_N(nx\Omega_N) = i_N J_N x^* J_N n\Omega_N = i_N(n\Omega_N \cdot x).$

(E3) The adjoint $i_N^*:L^2M\to L^2N$ is also N-N bilinear.^1

Proof. Since $ni_N = i_N n$ for all $n \in N$, taking adjoints, $i_N^* n^* = n^* i_N^*$ for all $n \in N$. Since $J_M n^* J_M i_N = i_N J_N n^* J_N$ for all $n \in N$, taking adjoints, $i_N^* J_M n J_M = i_N^* (J_M n^* J_M)^* = (J_N n^* J_N)^* i_N^* = J_N n J_N i_N^*$ for all $n \in N$. The result follows.

- (E4) For $m \in M$, the operator $E_N(m) := i_N^* m i_N \in B(L^2N)$ commutes with the right N-action and thus lies in $(J_N N J_N)' = N$.
- (E5) $E_N(m)$ is the unique element of N such that $\operatorname{tr}_N(E_N(m)n) = \operatorname{tr}_M(mn)$ for all $n \in N$.

Proof. If $x \in N$ such that $\operatorname{tr}_N(xn) = \operatorname{tr}_M(mn)$ for all $n \in N$, then $\langle x\Omega_N, n\Omega_N \rangle_{L^2N} = \operatorname{tr}_N(xn^*) = \operatorname{tr}_M(mn^*) = \langle m\Omega_M, n\Omega_M \rangle_{L^2M}$ $= \langle m\iota_N\Omega_N, \iota_N n\Omega_N \rangle_{L^2M} = \langle \iota_N^* m\iota_N\Omega_N, n\Omega_N \rangle_{L^2N}$ for all $n \in N$, and thus $x = \iota_N^* m\iota_N = E_N(m)$.

(E6) $E_N(amb) = aE_N(m)b$ for all $a, b \in N$ and $m \in M$. In particular, $E_N|_N = \mathrm{id}_N$.

Proof. Immediate from i_N, i_N^* being N - N bilinear.

(E7) $E_N : M \to N$ is a normal unital completely positive (ucp) map. In particular, $E_N(m^*) = E_N(m)^*$ for all $m \in M$.

Proof. The formula $E_N(m) = i_N^* m i_N$ is manifestly ucp (recall the Stinepring Theorem). In particular, since E_N sends positive elements to positive elements, writing a self-adjoint $x \in M$ as $x_+ - x_-$, we see that $E_N(x)$ is also self adjoint. The final statement now follows by taking real and imaginary parts:

$$E_N(m) = E_N(\operatorname{Re}(m) + i\operatorname{Im}(m)) = E_N(\operatorname{Re}(m)) + iE_N(\operatorname{Im}(m))$$

which implies

$$E_N(m^*) = E_N(\operatorname{Re}(m) - i\operatorname{Im}(m)) = E_N(\operatorname{Re}(m)) - iE_N(\operatorname{Im}(m)) = E_N(m)^*.$$

¹ In more generality, if $\pi_H : A \to B(H)$ and $\pi_K : A \to B(K)$ are two *-representations of a *-algebra A and $x \in B(H \to K)$ such that $x\pi_H(a) = \pi_K(a)x$ for all $a \in A$, then $\pi_H(a)x^* = x^*\pi_K(a)$ for all $a \in A$.

(E8) For all $m \in M$, $||E_N(m)|| \le ||m||$,

Proof. Since i_N is an isometry, $||E_N(m)|| = ||i_N^*mi_N|| \le ||m||$.

(E9) For all
$$m \in M$$
, $E_N(m)^* E_N(m) \leq E_N(m^*m)$ and $E_N(m^*m) = 0$ implies $m = 0$.

Proof. Since
$$i_N$$
 is an isometry, $i_N i_N^* \leq 1_{L^2 M}$. In particular,
 $E_N(m)^* E_N(m) = i_N^* m^* i_N i_N^* m i_N \leq i_N^* m i_N = E_N(m^*m)$.
Finally, if $E_N(m^*m) = 0$, then $\operatorname{tr}_M(m^*m) = \operatorname{tr}_N(E_N(m^*m)) = 0$, so $m = 0$. \Box

5.3. Outer, ergodic, and free actions. In this section, G denotes a group and M denotes a von Neumann algebra.

Definition 5.3.1. An *action* of G on M is a group homomorphism $\alpha : G \to \operatorname{Aut}(M)$, where $\operatorname{Aut}(M)$ is the group of *-algebra isomorphisms of M.

Exercise 5.3.2. Prove that every *-algebra isomorphism of M is σ -WOT continuous.

Example 5.3.3. Suppose $u : G \to U(H)$ such that for all $g \in G$, $u_g M u_g^* = M$. Then $\alpha : G \to \operatorname{Aut}(M)$ by $\alpha_g = \operatorname{Ad}(u_g)$ is an action.

Definition 5.3.4. An automorphism Φ of $M \subseteq B(H)$ is said to be *implemented* by a unitary $u \in U(H)$ if $\Phi(x) = uxu^*$ for all $x \in M$.

We call $\Phi \in Aut(M)$ inner if it is implemented by a unitary $u \in U(M)$. If Φ is not inner, it is called *outer*.

An action $\alpha: G \to \operatorname{Aut}(M)$ is called *outer* if α_q is only inner when g = e.

Exercise 5.3.5. Show that every trace-preserving *-automorphism of a tracial von Neumann algebra (M, tr_M) can be implemented on $L^2(M, \operatorname{tr})$. Deduce that every *-automorphism of a II₁ factor can be implemented on L^2M .

Exercise 5.3.6. Prove that every *-automorphism of B(H) is inner.

Exercise 5.3.7. Consider $\mathbb{F}_2 = \langle a, b \rangle$. Show that the swap $a \leftrightarrow b$ extends to a *-automorphism of $L\mathbb{F}_2$. Prove it is outer.

Example 5.3.8. Let (X, μ) be a measure space and $T: X \to X$ a bijection preserving the measure class of μ , i.e., $\mu(A) = 0$ iff $\mu(T^{-1}A) = 0$ for all measurable A. Then T gives an automorphism α_T of $L^{\infty}(X, \mu)$ by $(\alpha_T f)(x) := f(T^{-1}x)$.

Moreover, if T preserves μ , i.e., $\mu(A) = \mu(T^{-1}A)$ for all measurable A, then α_T is implemented by the unitary $(u_T\xi)(x) := \xi(T^{-1}x)$ for $\xi \in L^2(X,\mu)$. Indeed, one computes $(u_T^*\xi)(x) = \xi(Tx)$ and we observe

$$(u_T M_f u_T^* \xi)(x) = (M_f u_T^* \xi)(T^{-1} x) = f(T^{-1} x)(u_T^* \xi)(T^{-1} x) = f(T^{-1} x)\xi(x) = (M_{\alpha_T(f)}\xi)(x).$$

Exercise 5.3.9. Suppose (X, μ) is a measure space and ν is a measure equivalent to μ , i.e., $\mu(A) = 0$ if and only if $\nu(A) = 0$ for all measurable A. Explain why we may identify $L^{\infty}(X, \mu) = L^{\infty}(X, \nu)$ as von Neumann algebras.

Definition 5.3.10. A measurable bijection T of X is called *ergodic* if A measurable with TA = A implies $\mu(A) = 0$ or $\mu(X \setminus A) = 0$.

Proposition 5.3.11. *T* is ergodic if and only if $L^{\infty}(X, \mu)^{\alpha_T} = \mathbb{C}1$.

Proof. Note that TA = A if and only if $\alpha_T(\chi_A) = \chi_A$. Hence T is ergodic iff $P(L^{\infty}(X,\mu)^{\alpha_T}) = \{0,1\}$ iff $L^{\infty}(X,\mu)^{\alpha_T} = \mathbb{C}1$.

Definition 5.3.12. We say an action $\alpha : G \to \operatorname{Aut}(M)$ is *ergodic* if $M^G = \mathbb{C}1$.

Lemma 5.3.13. Suppose α is an action of a countable group Γ on (X, μ) preserving the measure class of μ . Consider the following statements.

- ($\Gamma 1$) α is essentially transitive, *i.e.*, there is an $x \in X$ such that $\mu(X \setminus \Gamma x) = 0$.
- (Γ 2) α is essentially countable, *i.e.*, there is a countable set $Y \subseteq X$ such that $\mu(X \setminus Y) = 0$ and $\mu(\{y\}) > 0$ for all $y \in Y$.
- (Г3) There is an atom $x \in X$, i.e., there is an $x \in X$ with $\mu(\{x\}) > 0$.

Then $(\Gamma 1)$ implies $(\Gamma 2)$ implies $(\Gamma 3)$. If α is ergodic, then $(\Gamma 3)$ implies $(\Gamma 1)$.

Proof. The only interesting part is proving (Γ 3) implies (Γ 1) when α is ergodic. If $x \in X$ is an atom, then $\Gamma x \subseteq X$ is a Γ -invariant subset with $\mu(\Gamma x) > 0$. By ergodicity, $\mu(X \setminus \Gamma x) = 0$.

Remark 5.3.14. Really, an atom of (X, μ) is a measurable set $A \subseteq X$ such that $\mu(A) > 0$ and for all measurable $B \subseteq A$, $\mu(B) = 0$ or $\mu(A \setminus B) = 0$. Thus atoms of (X, μ) exactly correspond to minimal projections of $L^{\infty}(X, \mu)$. By Lemma 5.3.13 (applied to an equivalent measure space where all atoms have been collapsed to points), if an ergodic action of a countable Γ on (X, μ) preserving the measure class of μ is not essentially transitive, then $L^{\infty}(X, \mu)$ has no minimal projections.

Definition 5.3.15. An automorphism Φ of M is called *free* or *properly outer* if

 $m \in M$ and $m\alpha(x) = xm$ $\forall x \in M \implies m = 0.$

An action $\alpha: G \to \operatorname{Aut}(M)$ is called *free* if α_q not free implies g = e.

Exercise 5.3.16. Show that if $M = L^{\infty}(X, \nu)$ where X is countable and ν is a weighted counting measure (without loss of generality, we may assume there are no points with mass zero), and $\alpha = \alpha_T \in \text{Aut}(L^{\infty}(X, \mu))$ for some bijection $T : X \to X$, then α is free if and only if T has no fixed points.

Exercise 5.3.17. Suppose X is compact Hausdorff and μ is a Radon (finite non-negative regular Borel) measure on X. Let $T: X \to X$ be a homeomorphism preserving the measure class of μ . Then α_T is free iff $\mu(\{x \in X | Tx = x\}) = 0$.

Proposition 5.3.18. If M is a factor, then every outer automorphism is free.

Proof. We prove the contrapositive. Suppose $\Phi \in \operatorname{Aut}(M)$ and there is an $m \in M \setminus \{0\}$ such that $m\Phi(x) = xm$ for all $x \in M$. If $m \in U(M)$, then $\Phi = \operatorname{Ad}(m)$ and we are finished. Otherwise, taking adjoints, we have $m^*x = \Phi(x)m^*$ for all $x \in M$, and thus

$$mm^*x = m\Phi(x)m^* = xmm^* \quad \forall x \in M \implies mm^* \in Z(M).$$

Similarly, $m^*m \in Z(M)$. Since $Z(M) = \mathbb{C}1$ and $m \neq 0$, $mm^* = r$ and $m^*m = s$ for some non-zero $r, s \in \mathbb{R}_{>0}$. Since $rm = mm^*m = sm$ and $m \neq 0, r = s$. Thus $u := r^{-1/2}m \in U(M)$ and $\Phi = \operatorname{Ad}(u)$ is inner.

5.4. The crossed product. The crossed product can be defined for a locally compact group, but we will present a simplified version for discrete groups acting on tracial von Neumann algebras. In this section, Γ is a discrete group.

The crossed product of a group action $\alpha : \Gamma \to \operatorname{Aut}(M)$ is a von Neumann algebra containing M in which the group action is implemented by unitaries.

Definition 5.4.1. Suppose $\alpha : \Gamma \to \operatorname{Aut}(M)$ is a group action where $M \subseteq B(H)$. Form the Hilbert space

$$\ell^{2}(\Gamma, H) := \left\{ \xi: \Gamma \to H \middle| \sum_{g} \|\xi(g)\|^{2} < \infty \right\}.$$

We define actions of Γ and M on $\ell^2(\Gamma, H)$ by

$$(u_g\xi)(h) := \xi(g^{-1}h)$$
 and $(\pi_m\xi)(h) := \alpha_{h^{-1}}(m)\xi(h).$

The crossed product $M \rtimes_{\alpha} \Gamma$ is the von Neumann algebra generated by the π_m and the u_g acting on $\ell^2(\Gamma, H)$.

Example 5.4.2. When $M = L^{\infty}(X, \mu)$ and $\alpha : \Gamma \to \operatorname{Aut}(M)$ comes from an action of Γ on (X,μ) preserving the measure class of μ , we call $L^{\infty}(X,\mu) \rtimes \Gamma$ the group measure space construction

Exercise 5.4.3. Prove the following facts about the crossed product $M \rtimes_{\alpha} \Gamma$.

- (1) $\pi: M \to B(\ell^2(\Gamma, H))$ is an injective normal σ -WOT continuous *-homomorphism. Thus $\pi(M) = \pi(M)'' \cong M$ as von Neumann algebras.
- (2) $u_g \pi_m u_g^* = \pi_{\alpha_g(m)}$, i.e., the α_g -action on M is implemented by the u_g . (3) Finite linear combinations $\sum x_g u_g$ where $x_g \in M$ form a σ -WOT dense unital *subalgebra.

Exercise 5.4.4. Find a unitary isomorphism $v: \ell^2(\Gamma, H) \to \ell^2 \Gamma \otimes H$ such that $vu_q v^* = \lambda_q \otimes 1$ and $(v\pi_m v^*)(\delta_h \otimes \xi) = \delta_h \otimes \alpha_{h^{-1}}(m)\xi.$

We now provide sufficient conditions for the crossed product to be a factor.

Lemma 5.4.5. If $\alpha : \Gamma \to \operatorname{Aut}(M)$ is free, then $M' \cap (M \rtimes_{\alpha} \Gamma) \subseteq Z(M)$.

Proof. **TODO: give general proof** Suppose $y \in M' \cap (M \rtimes_{\alpha} \Gamma)$ and let $(y_g) \subset M$ such that $y(\Omega \otimes \delta_e) = \sum y_q \Omega \otimes \delta_q$. For $x \in M$, we calculate $y(x\Omega \otimes \delta_e)$ in two ways:

$$\sum xy_g \otimes \delta_g = xy(\Omega \otimes \delta_e) = yx(\Omega \otimes \delta_e) = y(x\Omega \otimes \delta_e) = \sum y_g \alpha_g(x) \otimes \delta_g.$$

Hence $xy_g = y_g \alpha_g(x)$ for all $x \in M$. By freeness, $y_g = 0$ unless g = e, so $y = y_e$ as $\Omega \otimes \delta_e$ is separating by ($\rtimes 5$). Hence $y \in M' \cap M = Z(M)$. Remark 5.4.6. Lemma 5.4.5 immediately implies that

 $Z(M) = M' \cap M \subseteq M' \cap (M \rtimes_{\alpha} \Gamma) \subseteq Z(M)$

so all inclusions are equalities, and

 $Z(M \rtimes_{\alpha} \Gamma) \subseteq M' \cap (M \rtimes_{\alpha} \Gamma) \subseteq Z(M).$

Thus if M is a factor and α is free, then $M \rtimes_{\alpha} \Gamma$ is a factor.

Corollary 5.4.7. If $\alpha : \Gamma \to \operatorname{Aut}(M)$ is free and ergodic, then $M \rtimes_{\alpha} \Gamma$ is a factor.

Proof. Suppose $x \in Z(M \rtimes_{\alpha} \Gamma)$. Since α is free, by Remark 5.4.6, $x \in Z(M)$. Since x commutes with every u_g , $\alpha_g(x) = u_g x u_g^* = x$ for all $g \in \Gamma$, and $x \in M^{\Gamma}$. Since α is ergodic, $M^{\Gamma} = \mathbb{C}1$, and thus $Z(M \rtimes_{\alpha} \Gamma) = \mathbb{C}1$.

Corollary 5.4.8. Consider a group measure space construction $L^{\infty}(X, \mu) \rtimes \Gamma$. If the action α is free, then $L^{\infty}(X, \mu) \subset L^{\infty}(X, \mu) \rtimes \Gamma$ is maximal abelian.

Proof. Since α is free,

 $L^{\infty}(X,\mu)' \cap (L^{\infty}(X,\mu) \rtimes \Gamma) \subseteq Z(L^{\infty}(X,\mu)) = L^{\infty}(X,\mu)$

by Lemma 5.4.5. Hence if $L^{\infty}(X,\mu) \subseteq A \subseteq L^{\infty}(X,\mu) \rtimes \Gamma$ with A abelian, then $A \subseteq L^{\infty}(X,\mu)' \cap (L^{\infty}(X,\mu) \rtimes \Gamma) \subseteq L^{\infty}(X,\mu)$.

We now give examples of free and ergodic actions.

Example 5.4.9. $\Gamma = \mathbb{Z}$ acts by translation on (\mathbb{Z}, ν) where ν is counting measure. We have $L^{\infty}(\mathbb{Z}, \nu) \rtimes \mathbb{Z} \cong B(\ell^2 \mathbb{Z})$.

Example 5.4.10. An irrational rotation of the torus is free and ergodic. That is, consider $(X, \mu) = (\mathbb{T}, d\theta)$ and $\Gamma = \mathbb{Z}$ generated by $tz = e^{i\alpha}z$ where $\frac{\alpha}{2\pi} \notin \mathbb{Q}$.

Example 5.4.11 (Bernoulli shift). Let Γ be infinite and countable, and let (X, μ) be a standard probability space. Consider $(X, \mu)^{\Gamma}$ with product measure. Then Γ acts on $(X, \mu)^{\Gamma}$ by $(g \cdot A)(h) = A(g^{-1}h)$, where $A : \Gamma \to (X, \mu)$ is a measurable function.

One can also do the action of Γ on $\bigotimes^{\Gamma}(M, \operatorname{tr})$ by $h \cdot (x_{g_1} \otimes x_{g_2} \otimes \cdots) = x_{hg_1} \otimes x_{hg_2} \otimes \cdots$.

Example 5.4.12. $SL(2, \mathbb{Z})$ acts on \mathbb{R}^2 by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$. **Example 5.4.13.** The "ax + b" group $\mathbb{Q} \rtimes \mathbb{Q}^{\times}$ acts on \mathbb{R} by $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} ax + b \\ 1 \end{pmatrix}$.

5.5. The crossed product when the action preserves a trace. We now give a second equivalent definition of $M \rtimes_{\alpha} \Gamma$ in the setting where (M, tr) is a tracial von Neumann algebra and $\text{tr} \circ \alpha_g = \text{tr}$ for all $g \in \Gamma$.

First, form the Hilbert space $L^2 M \otimes \ell^2 \Gamma$. We have an amplified left *M*-action $x(m\Omega \otimes \xi) = xm\Omega \otimes \xi$ and a left Γ -action given by $u_g(m\Omega \otimes \delta_h) := \alpha_g(m)\Omega \otimes \delta_{gh}$. In other words, if $v_g \in U(L^2 M)$ is the unitary $v_g m\Omega := \alpha_g(m)\Omega$ implementing α_g , then $u_g = v_g \otimes \lambda_g$. We define $M \rtimes_{\alpha} \Gamma$ as the von Neumann algebra generated by the operators $x \otimes 1$ for $x \in M$ and the u_g for $g \in \Gamma$ acting on $L^2 M \otimes \ell^2 \Gamma$.

Exercise 5.5.1. Find a unitary isomorphism $w: L^2 M \otimes \ell^2 \Gamma \to \ell^2 \Gamma \otimes L^2 M$ which intertwines the two above definitions of $M \rtimes_{\alpha} \Gamma$. [[is there an op issue here?]]

There is also a commuting right action of M and Γ on $L^2 M \otimes \ell^2 \Gamma$ by defining

$$(m\Omega \otimes \delta_h)x := m\alpha_h(x)\Omega \otimes \delta_h$$
 and $(m\Omega \otimes \delta_h)g := m\Omega \otimes \delta_{hg}$.

Note that these right actions commute with the left action of $M \rtimes_{\alpha} \Gamma$. We will eventually show that $M \rtimes_{\alpha} \Gamma$ carries a canonical normal faithful tracial state under which $L^2(M \rtimes_{\alpha} \Gamma) \cong$ $L^2 M \otimes \ell^2 \Gamma$, allowing us to identify the left and right actions as the canonical ones.

Facts 5.5.2. Here are some basic facts about $M \rtimes_{\alpha} \Gamma$.

($\rtimes 1$) For finite linear combinations $\sum x_g u_g \in M \rtimes_{\alpha} \Gamma$, $(\sum x_g u_g)(\Omega \otimes \delta_e) = \sum_g x_g \Omega \otimes \delta_g$. ($\rtimes 2$) For every $x \in M \rtimes_{\alpha} \Gamma$, there is a unique sequence (x_g) in

$$\ell^{2}(\Gamma, M) := \left\{ m : \Gamma \to M \left| \sum \| m_{g} \Omega \|_{L^{2}M}^{2} < \infty \right. \right\}$$

such that $x(\Omega \otimes \delta_e) = \sum x_g \Omega \otimes \delta_g$.

Proof. For $g \in \Gamma$, define $p_g : L^2 M \otimes \ell^2 \Gamma \to L^2 M$ by $m\Omega \otimes \eta \mapsto \langle \eta, \delta_g \rangle \alpha_{g^{-1}}(m)\Omega$. Then $p_g^* m\Omega = \alpha_g(m)\Omega \otimes \delta_g$. Observe that p_g^* is right M-linear, so p_g is as well by Footnote 1. Hence for all $x \in M \rtimes_{\alpha} \Gamma$, $p_g x p_e^* \in (JMJ)' \cap B(L^2 M) = M$. Define $x_g := \alpha_g(p_g x p_e^*) \in M$. We then compute that for all $m \in M$ and $g \in \Gamma$, $\langle x(\Omega \otimes \delta_e), m\Omega \otimes \delta_g \rangle = \langle x p_e^*\Omega, p_g^* \alpha_{g^{-1}}(m)\Omega \rangle = \langle p_g x p_e^*\Omega, \alpha_{g^{-1}}(m)\Omega \rangle_{L^2 M}$ $= \operatorname{tr}_M(\alpha_{g^{-1}}(m)^* p_g x p_e^*) = (\operatorname{tr}_M \circ \alpha_g)(\alpha_{g^{-1}}(m)^* p_g x p_e^*)$ $= \operatorname{tr}_M(m^* \alpha_g(p_g x p_e^*)) = \operatorname{tr}_M(m^* x_g)$ $= \sum_h \langle x_h \Omega \otimes \delta_h, m\Omega \otimes \delta_g \rangle.$ We conclude $x(\Omega \otimes \delta_e) = \sum_h x_h \Omega \otimes \delta_h$ and $x : \Gamma \to M$ lies in $\ell^2(\Gamma, M)$.

($\rtimes 3$) For all $g \in \Gamma$ and $m \in M$ and $x \in M \rtimes_{\alpha} \Gamma$, $x(m\Omega \otimes \delta_g) = \sum_h x_h \alpha_h(m) \Omega \otimes \delta_{hg}$.

Proof. Note that $m\Omega \otimes \delta_g = (\Omega \otimes \delta_e) \cdot m \cdot g$. Since the left and right actions commute, $x(m\Omega \otimes \delta_g) = (x(\Omega \otimes \delta_e)) \cdot m \cdot g = \left(\sum_h x_h \Omega \otimes \delta_h\right) \cdot m \cdot g = \sum_h x_h \alpha_h(m) \Omega \otimes \delta_{hg}$ as claimed.

($\rtimes 4$) For $x \in M \rtimes_{\alpha} \Gamma$, $x^*(\Omega \otimes \delta_e) = \sum_h \alpha_h(x_{h^{-1}}^*)\Omega \otimes \delta_h$.

Proof. We compute $\langle x^*(\Omega \otimes \delta_e), m\Omega \otimes \delta_g \rangle = \langle \Omega \otimes \delta_e, x(m\Omega \otimes \delta_g) \rangle = \sum_h \langle \Omega \otimes \delta_e, x_h \alpha_h(m) \Omega \otimes \delta_{hg} \rangle$ $= \delta_{h=g^{-1}} \langle \Omega, x_{g^{-1}} \alpha_{g^{-1}}(m) \Omega \rangle = \operatorname{tr}(x_{g^{-1}}^* \alpha_{g^{-1}}(m)^*)$ $= (\operatorname{tr} \circ \alpha_g)(x_{g^{-1}}^* \alpha_{g^{-1}}(m)^*) = \operatorname{tr}(\alpha_g(x_{g^{-1}}^*)m^*)$ $= \langle \alpha_g(x_{g^{-1}}^*)\Omega, m\Omega \rangle_{L^2M} = \sum_h \langle \alpha_h(x_{h^{-1}}^*)\Omega \otimes \delta_e, m \otimes \delta_g\Omega \rangle.$ The result follows. \Box

($\rtimes 5$) $\Omega \otimes \delta_e$ is cyclic and separating for $M \rtimes_{\alpha} \Gamma$.

Proof. First, x = 0 iff $x_g = 0$ for all $g \in \Gamma$, which implies $\Omega \otimes \delta_e$ is separating. Now for any finite linear combination $\sum_g m_g \Omega \otimes \delta_g \in L^2 M \otimes \ell^2 \Gamma$, $\sum_g m_g \Omega \otimes \delta_g = \left(\sum_g m_g u_g\right) (\Omega \otimes \delta_e),$ so $\Omega \otimes \delta_e$ is cyclic.

($\rtimes 6$) The normal state $\omega_{\Omega \otimes \delta_e} = \langle \cdot \Omega \otimes \delta_e, \Omega \otimes \delta_e \rangle$ on $M \rtimes_{\alpha} \Gamma$ is faithful and tracial.

Proof. For
$$x, y \in M \rtimes_{\alpha} \Gamma$$
,
 $\langle xy(\Omega \otimes \delta_e), \Omega \otimes \delta_e \rangle = \langle y(\Omega \otimes \delta_e), x^*(\Omega \otimes \delta_e) \rangle$
 $= \sum_{g,h} \langle y_g \Omega \otimes \delta_g, \alpha_h(x_{h^{-1}}^*)\Omega \otimes \delta_h \rangle$
 $= \sum_g \langle y_g \Omega, \alpha_g(x_{g^{-1}}^*)\Omega \rangle_{L^2M}$
 $= \sum_g \operatorname{tr}(\alpha_g(x_{g^{-1}})y_g)$
 $= \sum_g (\operatorname{tr} \circ \alpha_{g^{-1}})(\alpha_g(x_{g^{-1}})y_g)$
 $= \sum_g \operatorname{tr}(x_{g^{-1}}\alpha_{g^{-1}}(y_g))$
 $= \sum_h \operatorname{tr}(\alpha_h(y_{h^{-1}})x_h)$
 $= \cdots = \langle yx(\Omega \otimes \delta_e), \Omega \otimes \delta_e \rangle.$

Faithfulness follows from the computation

$$\langle x^* x(\Omega \otimes \delta_e), \Omega \otimes \delta_e \rangle = \langle x(\Omega \otimes \delta_e), x(\Omega \otimes \delta_e) \rangle = \sum_{g,h} \langle x_g \Omega \otimes \delta_g, x_h \Omega \otimes \delta_h \rangle$$
$$= \sum_g \langle x_g \Omega, x_g \Omega \rangle_{L^2 M} = \sum_g \operatorname{tr}(x_g^* x_g).$$

 $(\rtimes 7) \text{ The map } m\Omega \otimes \delta_g \mapsto mu_g\Omega \text{ is an } M \rtimes_{\alpha} \Gamma - M \rtimes_{\alpha} \Gamma \text{ bilinear unitary } L^2M \otimes \ell^2 \Gamma \cong L^2(M \rtimes_{\alpha} \Gamma).$

Proof. For finite linear combinations
$$\sum x_g u_g \in M \rtimes_{\alpha} \Gamma$$
,

$$\left\| \left(\sum x_g u_g \right) \Omega \right\|_{L^2(M \rtimes \Gamma)}^2 = \left\langle \left(\sum x_h u_h \right)^* \left(\sum x_g u_g \right) (\Omega \otimes \delta_e), \Omega \otimes \delta_e \right\rangle$$

$$= \left\langle \left(\sum x_g u_g \right) (\Omega \otimes \delta_e), \left(\sum x_h u_h \right) (\Omega \otimes \delta_e) \right\rangle$$

$$= \sum_{g,h} \langle x_g \Omega \otimes \delta_g, x_h \Omega \otimes \delta_h \rangle$$

$$= \left\| \sum x_g \Omega \otimes \delta_g \Omega \right\|_{L^2M \otimes \ell^2 \Gamma}^2,$$
and thus the map is isometric. We leave $M \rtimes_{\alpha} \Gamma$ bilinearity to the reader. \Box

5.6. The type of the crossed product. Suppose $\alpha : \Gamma \to \operatorname{Aut}(M)$ is free and ergodic so that $M \rtimes_{\alpha} \Gamma$ is a factor. We further consider the special case of $M = L^{\infty}(X, \mu)$ coming from an action of Γ on (X, μ) preserving the measure class of μ . There are 4 types of free and ergodic actions of a countable discrete group Γ acting on (X, μ) .

- (type I) Γ acts freely transitively so that X is a Γ -torsor.
- (type II₁) Γ preserves a finite measure on X.
- (type II_{∞}) Γ preserves an infinite measure on X.
- (type III) no measure on X equivalent to μ is preserved by Γ .

Theorem 5.6.1. If α is a free ergodic, essentially transitive action, then $L^{\infty}(X, \mu) \rtimes \Gamma$ is type I.

Proof. Since α is essentially transitive, by Lemma 5.3.13, $X = \Gamma x$ for some $x \in X$ up to null sets (where we have replaced atoms in (X, μ) by points). Thus we may identify μ with a weighted counting measure. Then $\chi_{\{x\}} \in L^{\infty}(X, \mu)$ is a minimal projection for every $x \in X$. We claim $\chi_{\{x\}}$ is also minimal in $L^{\infty}(X, \mu) \rtimes \Gamma$, showing it is type I. Since finite linear combinations $\sum y_g u_g$ form a σ -WWOT dense unital *-subalgebra, it suffices to prove that for every $h \neq e$ and $y \in L^{\infty}(X, \mu)$,

$$\chi_{\{x\}} y u_h \chi_{\{x\}} = 0.$$

Indeed, for all $\xi \in L^2(\Gamma, L^2(X, \mu))$ and $g \in \Gamma$,

$$(\chi_{\{x\}}yu_h\chi_{\{x\}}\xi)(g) = \alpha_{g^{-1}}(\chi_{\{x\}})\alpha_{g^{-1}}(y)(u_h\chi_{\{x\}}\xi)(g)$$

$$= \alpha_{g^{-1}}(\chi_{\{x\}})\alpha_{g^{-1}}(y)(\chi_{\{x\}}\xi)(h^{-1}g)$$

= $\alpha_{g^{-1}}(\chi_{\{x\}})\alpha_{g^{-1}}(y)\alpha_{g^{-1}h}(\chi_{\{x\}})\xi(h^{-1}g).$

Now as $L^{\infty}(X,\mu)$ is abelian, we see

$$\alpha_{g^{-1}}(\chi_{\{x\}})\alpha_{g^{-1}h}(\chi_{\{x\}}) = \chi_{g^{-1}x}\chi_{g^{-1}hx} = 0$$

as $h \neq e$ and α is free.

Fact 5.6.2. Suppose (M, tr) is a tracial von Neumann algebra and $\alpha : \Gamma \to \text{Aut}(M)$ is an action such that $\text{tr} \circ \alpha_g = \text{tr}$ for all $g \in \Gamma$. If α is free and ergodic, then $M \rtimes_{\alpha} \Gamma$ has a faithful normal tracial state by $(\rtimes 6)$, so it must be either type I_n for $n < \infty$ or type II_1 .

Theorem 5.6.3. If the action of Γ on (X, μ) is free, ergodic, non-transitive, and μ is a finite measure such that $\mu(gA) = \mu(A)$ for all measurable A, then $L^{\infty}(X, \mu) \rtimes \Gamma$ is type II₁.

Proof. Since the action of Γ preserves the faithful normal tracial state $\int \cdot d\mu$, $L^{\infty}(X,\mu) \rtimes \Gamma$ is either finite dimensional or type II₁. So it suffices to prove that if $L^{\infty}(X,\mu) \rtimes \Gamma$ is finite dimensional and α is free and ergodic, then α is essentially transitive. If $L^{\infty}(X,\mu) \rtimes \Gamma$ is finite dimensional, then $L^{\infty}(X,\mu)$ is finite dimensional, and thus has minimal projections. Thus $(X,\mu) \cong (Y,\nu)$ for some finite measure space Y with ν a weighted counting measure. Indeed, by a maximality argument, we can write $1 = \sum_{i=1}^{n} \chi_{A_i}$ where each χ_{A_i} is minimal in $L^{\infty}(X,\mu)$ and the A_i are disjoint measurable subsets. We then define $\nu(\{i\}) := \mu(A_i)$. Finally, the action of Γ on the finite measure space (Y,ν) is free and ergodic, which implies it is transitive by Exercise 5.3.13.

Exercise 5.6.4. A factor M is type II_{∞} iff 1_M is infinite and there is a nonzero finite projection $p \in M$ such that pMp is type II_1 .

Exercise 5.6.5. If $\{e_{ij}\} \subset M \subseteq B(H)$ is a system of matrix units, then there is a unitary $u: H \to e_{11}H \otimes \ell^2(I)$ such that $uMu^* = e_{11}Me_{11} \otimes B(\ell^2(I))$.

Lemma 5.6.6. If M is a II_{∞} factor, there is a II_1 factor N and a unital *-isomorphism $M \cong N \otimes B(\ell^2(I)).$

Proof. By Exercise 5.6.4, there is a non-zero finite projection $p \in M$. Let $\{p_i\}_{i \in I}$ be a maximal family of mutually orthogonal projections such that $p_i \approx p$ for all $i \in I$.

Claim. $\sum p_i \approx 1$.

Proof of claim. Set $q = 1 - \sum p_i$. Since M is a factor, by maximality, $q \preccurlyeq p$. Since 1_M is infinite, there is an $i_0 \in I$ and a bijection $I \cong I \setminus \{i_0\}$. Then

$$1 = q + \sum p_i \approx q + \sum_{i \neq i_0} p_i \preccurlyeq p_{i_0} + \sum_{i \neq i_0} p_i = \sum p_i \preccurlyeq 1.$$

By the claim, we may assume that $\sum p_i = 1$; ortherwise, replace p_i with $u^*p_i u$ where $uu^* = \sum p_i$ and $u^*u = 1$. Now since $\sum p_i = 1$ and each $p_i \approx p$, for each j, we can

choose a partial isometry e_{1j} such that $e_{1j}e_{1j}^* = p_1$ and $e_{1j}^*e_{1j} = p_j$. We then extend the e_{1j} to a system of matrix units in the usual way. Finally, the result follows from Exercise 5.6.5.

Theorem 5.6.7. If the action of Γ on (X, μ) is free, ergodic, non-transitive, and μ is an infinite σ -finite measure such that $\mu(gA) = \mu(A)$ for all measurable A, then $L^{\infty}(X, \mu) \rtimes \Gamma$ is type Π_{∞} .

Proof. By Remark 5.3.14, there are no minimal projections in $L^{\infty}(X,\mu)$. As (X,μ) is σ -finite, there is a set $Y \subset X$ with $0 < \mu(Y) < \infty$. Consider the unit vector $\xi := \mu(Y)^{-1/2}\chi_Y \otimes \delta_e$ and the projection $p := \chi_Y$.

Claim. The normal state ω_{ξ} on the factor $p(L^{\infty}(X, \mu) \rtimes \Gamma)p$ is tracial.

Proof of claim. By a calculation similar to $(\rtimes 6)$, for all $x, y \in L^{\infty}(X, \mu) \rtimes \Gamma$,

$$\begin{split} \omega_{\xi}(pxppyp) &= \frac{1}{\mu(Y)} \sum_{g} \operatorname{tr}_{M}(\alpha_{g}(p)\alpha_{g}(x_{g^{-1}})py_{g}) \\ &= \frac{1}{\mu(Y)} \sum_{g} \operatorname{tr}_{M}(px_{g^{-1}}\alpha_{g^{-1}}(p)\alpha_{g^{-1}}(y_{g})) = \omega_{\xi}(pyppxp). \end{split}$$

By the claim, $p(L^{\infty}(X,\mu) \rtimes \Gamma)p$ is a factor with no minimal projections and a tracial state, and thus is type II₁. But $L^{\infty}(X,\mu) \rtimes \Gamma$ is not type II₁ as it has an infinite family of non-zero mutually orthogonal projections (why?). Hence 1 is infinite and $L^{\infty}(X,\mu) \rtimes \Gamma$ is type II)_{∞} by Exercise 5.6.4.

We omit the proof that if Γ preserves no measure equivalent to μ , then $L^{\infty}(X,\mu) \rtimes \Gamma$ is type III.