Penneys Math 7212, Tracial vINAs Spring 2024

5. TRACIAL VON NEUMANN ALGEBRAS AND THE CROSSED PRODUCT CONSTRUCTION

These notes follow Chapters 9 and 11 of Jones’ notes on von Neumann algebras quite
closely.

5.1. Tracial von Neumann algebras.

Definition 5.1.1. A tracial von Neumann algebra is a von Neumann algebra M equipped
with a faithful normal tracial state tr.

Facts 5.1.2. We rapidly recall some basic facts about a tracial von Neumann algebra (M, tr)
that we have already proven, or which follow easily from facts we have already proven.

(trl) Tracial von Neumann algebras are finite.

(tr2) Every isometry in a tracial von Neumann algebra is a unitary.
TODO: more?

Definition 5.1.3. Given a tracial von Neumann algebra (M, tr), the Gelfand-Naimark-Segal
(GNS) Hilbert space L*(M,tr) is the completion of M under || - ||o coming from the inner
product

(2, y) = tr(y"z).
We typically write € L*(M,tr) for the image of 1 € M. When M is a tracial factor, the

trace is unique, and we simply write L?M.
We have the following facts, building on how we constructed the hyperfinite II; factor R.

(J1) The left action A\,282 := az§2 of M on L?(M, tr) is by bounded operators and A} = \,-.
(J2) The right action p,zQ := zbQ) of M on L?(M, tr) is also by bounded operators and

Py = P
(J3) The map J : MQ — MQ given by zQ) — x*Q is a conjugate-linear unitary such that
Jr=1.

(J4) The map J satisfies (JxQ2, JyQ) = (x*Q, y*Q) = tr(yx*) = tr(z*y) = (yQ, 2Q) for all
x,y € M. Hence (Jn, JE) = (&,n) for all n, & € L*(M, tr).
(J5) For all x € B(L*(M, tr)), (JxJ)* = Jx*J.

Proof. For all a,b € M,

(aQ), JxJbQ) = (J*aS), JwJbY) =
(J3) (J4)

(xJbQ, JaQd) = (JbY, z* Jall)

= (JbQ, JPx*Jaf)) = (Jx*Ja, bs2)
(J3) (J4)
By density of MQ in L?(M, tr), (JzJ)* = Jx*J. O

\. J

(J6) The map J satisfies JA\,J = pg- and JppJ = A\ for all a,b € M. Typically, we
abbreviate JaJ := JA,J. In particular, (JaJ)* = Ja*J and JMJ C M'.
(J7) For all z € M’, JxQ) = z*Q.
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Proof. For all a € M, we have
Q,aQ2) = Q, J%a) = Q,2Q) = (a*Q, 20
(0 = (a0 S = (el = (@10 a0)
= (Q, ax) = (Q, zaQ)) = (z*Q, af)).
By density of MQ in L?(M,tr), JzQ = 2*Q. O

(J8) For all z,y € M', JxJy = yJzJ. Hence JM'J C M" = M.

Proof. For all a,b € M,
(JxJyal), bQY) 5 (yaf), Jx* JbQ) = (yaf), Jo*b*Q) = (ay), Jb*x*)

(J5

= {ayQ, Jb*JzQ) = (JbJayQ,zQ) = (aJbJyS, 2
o (ayQY, Jb* Jx >(.]6) (JbJaySd, x >(J6) (aJbJyQ, 242

= (JbJyQ, a*xQ) = (JbJyQ, xa* Q) = (JbJyQ, xJall)

5, by, SPaJa®t) = (JoJaQ,by") = (JoJaQ,y"b)

= (yJxJall, b2).
By density of MQ in L*(M,tr), JoJy = yJxJ. O

We may summarize the above results as follows.

Theorem 5.1.4. Given a tracial von Neumann algebra (M, tr), the commutant of the left
action of M in the GNS representation is given by the right action: M' = JMJ.

Corollary 5.1.5. The commutant of LT acting on ¢*T" is RT, the right reqular group von
Neumann algebra.

Exercise 5.1.6. Show that the map between elements z € LI' and their corresponding
(*-vectors (z,) such that zd. = > x,0, has image

{(yy) € PT|y %z € T for all z € (2T}

where (y x z)y = Y., ynzn-1,. That is, LT corresponds to all the ¢*-sequences whose convo-
lutions with all other /2-sequences are again (.

5.2. Conditional expectation. In probability theory, there is a notion of a conditional
expectation of a random variable (measurable function f : (X, M) — C) with respect to a o-
subalgebra N/ C M. In more detail, given a probability measure p : M — [0, 00], it restricts
to a probability measure p|y : N — [0, o0], and we have a natural inclusion of von Neumann
algebras L>°(X, N, u|y) C L>°(X, M, p). The conditional expectation of f € L=(X, M, u)C
with respect to NV, denoted Exr(f) is the unique element of L>°(X, N, u|x) such that for all
AeN,

/Afdu—/fXAdu—/EN(f)xAdu—/AEN(f)xAdu-

We will show the existence and uniqueness of Ex/(f) in more general setting, namely a tracial

von Neumann algebra (M, trys) and a von Neumann subalgebra N C M.
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Facts 5.2.1. Suppose (M, try,) is a tracial von Neumann algebra and N C M is a von
Neumann subalgebra.

(E1) The inclusion N < M C L2M is isometric with respect to || - [[o. We thus get a
canonical isometry iy : L2N — L2M such that nQy — nfy,.
(E2) The isometry iy is N-N bilinear, i.e., for all z,n € N,

Nz nQy) =in(znQy) = 2ny = x - nQy and

~

in(nQy) - x = Jyx* JynnQn = neQy = iy(naxQdy) = iy JInve" IynQy = iy(nQy - ).

(E3) The adjoint i% : L2M — L?N is also N-N bilinear.'

Proof. Since niy = iyn for all n € N, taking adjoints, ijyn* = n*i} for all
n € N. Since Jyn*Jyiny = inJyn*Jy for all n € N, taking adjoints,

ZTVJM’IIJM = ZE(JMH*JM)* = (JNH*JN)*l}kV = JNTLJNZ'}(V
for all n € N. The result follows. O

(E4) For m € M, the operator Ex(m) := iymiy € B(L*N) commutes with the right
N-action and thus lies in (JyNJy) = N.
(E5) En(m) is the unique element of N such that try(Ex(m)n) = try(mn) for alln € N.

Proof. If & € N such that try(zn) = try(mn) for all n € N, then
(xQn, nQN) 2y = try(zn®) = tra (mn™) = (mQar, nQar) 20
= (munQn, ennQn) r2ar = (ymenQy, nQn) 12y

for all n € N, and thus x = (ymuy = En(m). O

(E6) En(amb) = aEn(m)b for all a,b € N and m € M. In particular, Ey|y = idy.

Proof. Immediate from ¢y,i3 being N — N bilinear. 0J

(E7) Exy : M — N is a normal unital completely positive (ucp) map. In particular,
En(m*) = Ex(m)* for all m € M.

7

Proof. The formula Ex(m) = iymiy is manifestly ucp (recall the Stinepring
Theorem). In particular, since Fy sends positive elements to positive elements,
writing a self-adjoint x € M as z, —x_, we see that Ex(z) is also self adjoint.
The final statement now follows by taking real and imaginary parts:
En(m) = Exy(Re(m) +iIm(m)) = Ex(Re(m)) + iEx(Im(m))
which implies
En(m*) = Ex(Re(m)—iIlm(m)) = Ex(Re(m)) —iEx(Im(m)) = Ex(m)*. O

1 In more generality, if 7g : A — B(H) and 7g : A — B(K) are two s-representations of a x-algebra A
and € B(H — K) such that a7y (a) = mx(a)z for all a € A, then mp(a)z* = 2*7k(a) for all a € A.
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(E8) For all m € M, [[Ex(m)|| < [lm]],

Proof. Since iy is an isometry, ||[Ex(m)|| = [|iymin]|| < ||m||. O

(E9) For all m € M, Ex(m)*En(m) < Ex(m*m) and Ex(m*m) = 0 implies m = 0.

Proof. Since iy is an isometry, iniy < 172p7. In particular,
En(m)*En(m) = iymYiniymiy < iym™miy = Ex(m*m).
Finally, if Ex(m*m) = 0, then try (m*m) = try(Exy(m*m)) =0,som =0. O

5.3. Outer, ergodic, and free actions. In this section, G denotes a group and M denotes
a von Neumann algebra.

Definition 5.3.1. An action of G on M is a group homomorphism « : G — Aut(M), where
Aut(M) is the group of x-algebra isomorphisms of M.

Exercise 5.3.2. Prove that every *x-algebra isomorphism of M is c-WOT continuous.

Example 5.3.3. Suppose u : G — U(H) such that for all g € G, uyMu; = M. Then
a: G — Aut(M) by a, = Ad(uy) is an action.

Definition 5.3.4. An automorphism ® of M C B(H) is said to be implemented by a unitary
ue U(H) if &(x) = uxu* for all z € M.

We call & € Aut(M) inner if it is implemented by a unitary v € U(M). If ® is not inner,
it is called outer.

An action o : G — Aut(M) is called outer if o, is only inner when g = e.

Exercise 5.3.5. Show that every trace-preserving x-automorphism of a tracial von Neumann
algebra (M, try;) can be implemented on L?(M,tr). Deduce that every x-automorphism of
a II; factor can be implemented on L2M.

Exercise 5.3.6. Prove that every x-automorphism of B(H) is inner.

Exercise 5.3.7. Consider Fy = (a, b). Show that the swap a <> b extends to a *-automorphism
of LIF,. Prove it is outer.

Example 5.3.8. Let (X, 1) be a measure space and T : X — X a bijection preserving the
measure class of p, i.e., u(A) = 0 iff u(T~1A) = 0 for all measurable A. Then T gives an
automorphism ar of L®(X, u) by (arf)(z) := f(T 'z).

Moreover, if T preserves p, i.e., u(A) = u(T-*A) for all measurable A, then ar is im-
plemented by the unitary (urf)(z) := {(T 'x) for £ € L*(X, ). Indeed, one computes
(uhé)(x) = &(Tx) and we observe

(urMyuzé)(z) = (Myuzé) (T~ w) = f(T~ 2)(uz&) (T~ a) = (T 2)é(x) = (Mag(né)(2)-
Exercise 5.3.9. Suppose (X, u) is a measure space and v is a measure equivalent to p,

i.e., u(A) = 0 if and only if v(A) = 0 for all measurable A. Explain why we may identify
L>(X,p) = L*(X,v) as von Neumann algebras.

Definition 5.3.10. A measurable bijection T" of X is called ergodic if A measurable with
TA = A implies p1(A) =0 or pu(X \ A) = 0.
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Proposition 5.3.11. T is ergodic if and only if L>°(X, u)** = C1.

Proof. Note that TA = A if and only if ar(xa) = xa. Hence T is ergodic iff
P(L>(X, p)or) ={0,1} iff L°(X, p)*r = CI. O

Definition 5.3.12. We say an action a : G — Aut(M) is ergodic if M% = C1.

Lemma 5.3.13. Suppose « is an action of a countable group T' on (X, p) preserving the
measure class of p. Consider the following statements.
(T'1) « is essentially transitive, i.e., there is an x € X such that (X \ T'z) = 0.
(I'2) « is essentially countable, i.e., there is a countable set Y C X such that u(X\Y) =10
and p({y}) >0 for ally €Y.
(I'3) There is an atom x € X, i.e., there is an v € X with p({z}) > 0.

Then (I'1) implies (I'2) implies (I'3). If « is ergodic, then (I'3) implies (I'1).

Proof. The only interesting part is proving (I'3) implies (I'l) when « is ergodic. If
x € X is an atom, then I'z C X is a [-invariant subset with p(I'z) > 0. By ergodicity,
uw(X \T'z) = 0. O

Remark 5.3.14. Really, an atom of (X, i) is a measurable set A C X such that pu(A) >0
and for all measurable B C A, p(B) = 0 or u(A\ B) = 0. Thus atoms of (X, u) exactly
correspond to minimal projections of L>(X, ). By Lemma 5.3.13 (applied to an equivalent
measure space where all atoms have been collapsed to points), if an ergodic action of a
countable I on (X, u) preserving the measure class of p is not essentially transitive, then
L*>(X, 1) has no minimal projections.

Definition 5.3.15. An automorphism ® of M is called free or properly outer if
m € M and ma(z) =am VYze M = m = 0.

An action o : G — Aut(M) is called free if ay not free implies g = e.

Exercise 5.3.16. Show that if M = L*°(X,r) where X is countable and v is a weighted
counting measure (without loss of generality, we may assume there are no points with mass
zero), and a = ar € Aut(L>®(X,u)) for some bijection T': X — X, then « is free if and
only if T" has no fixed points.

Exercise 5.3.17. Suppose X is compact Hausdorff and p is a Radon (finite non-negative
regular Borel) measure on X. Let 7 : X — X be a homeomorphism preserving the measure
class of . Then ar is free iff u({z € X|Tz = z}) = 0.

Proposition 5.3.18. If M s a factor, then every outer automorphism is free.

Proof. We prove the contrapositive. Suppose ® € Aut(M) and there is anm € M\ {0}
such that m®(z) = zm for all x € M. It m € U(M), then & = Ad(m) and we are
finished. Otherwise, taking adjoints, we have m*z = ®(z)m* for all x € M, and thus

mm*r = m®(x)m* = xmm* Ve M — mm* € Z(M).
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Similarly, m*m € Z(M). Since Z(M) = C1 and m # 0, mm* = r and m*m = s
for some non-zero r,s € Ryg. Since rm = mm*m = sm and m # 0, r = s. Thus
u:=71""?m € U(M) and ® = Ad(u) is inner. O

5.4. The crossed product. The crossed product can be defined for a locally compact
group, but we will present a simplified version for discrete groups acting on tracial von
Neumann algebras. In this section, I' is a discrete group.

The crossed product of a group action o : I' — Aut(M) is a von Neumann algebra
containing M in which the group action is implemented by unitaries.

Definition 5.4.1. Suppose « : I' — Aut(M) is a group action where M C B(H). Form the

Hilbert space
(9II* < } :
We define actions of T' and M on ¢*(T', H) by
(ug€)(h) = &(g™"h) and (mm&)(h) := ap-1(m)&(h).

The crossed product M X, I' is the von Neumann algebra generated by the m,, and the u,
acting on (*(T, H).

Example 5.4.2. When M = L>*(X,pu) and « : I' — Aut(M) comes from an action of I'
on (X, u) preserving the measure class of u, we call L>(X, ) x I" the group measure space
construction

(T, H) = {5 I — H

Exercise 5.4.3. Prove the following facts about the crossed product M x, I'.

(1) 7 : M — B({*(T',H)) is an injective normal o-WOT continuous *-homomorphism.
Thus 7(M) = n(M)" = M as von Neumann algebras.

(2) UgTmt; = Ta,(m), 1-., the ag-action on M is implemented by the w,.

(3) Finite linear combinations ) x,u, where z, € M form a o-WOT dense unital -
subalgebra.

Exercise 5.4.4. Find a unitary isomorphism v : ¢*(T', H) — (T ® H such that vu,v* = \,®1
and (vm,v*) (0, ® &) = 0 ® ap-1(M)E.

We now provide sufficient conditions for the crossed product to be a factor.

Lemma 5.4.5. If a: ' — Aut(M) is free, then M'N (M x,T') C Z(M).

Proof. TODO: give general proof Suppose y € M' N (M x,I') and let (y,) C M
such that y(2 ® ) = >y, ® d,. For x € M, we calculate y(zQ2 ® J.) in two ways:

nyg@)é =zy(N® ) = yz(Q® de) = y(zQ ® d¢) Zygozg

Hence zy, = y,0,(z) for all x € M. By freeness, y, = 0 unless g =¢€,80 Yy = Y as
Q ® 0. is separating by (x5). Hence y € M' N M = Z(M). O
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Remark 5.4.6. Lemma 5.4.5 immediately implies that
ZIM)y=MnNMCMN(Mx,T)C Z(M)
so all inclusions are equalities, and
Z(M %, T)C M N(Mx,T)C Z(M).
Thus if M is a factor and « is free, then M x, I' is a factor.

Corollary 5.4.7. If a: T' — Aut(M) is free and ergodic, then M %, T is a factor.

Proof. Suppose x € Z(M x,I'). Since « is free, by Remark 5.4.6, z € Z(M). Since

x commutes with every uy, ay(z) = ugru) = v for all g € T, and x € M. Since a is

ergodic, M" = C1, and thus Z(M x,T') = Cl1. O

Corollary 5.4.8. Consider a group measure space construction L*°(X, ) x ', If the action
a 18 free, then L>®(X, pu) C L®(X,n) x I' is maximal abelian.

Proof. Since « is free,
LX) N (L=(X, p) x T) € Z(L2(X, p)) = L=(X, p)
C

by Lemma 5.4.5. Hence if L®(X,u) € A C L>®(X,u) x I' with A abelian, then
AC Lo(X, p) N (L2(X, p) ¥ T) € L2(X, ). O

We now give examples of free and ergodic actions.

Example 5.4.9. I' = 7Z acts by translation on (Z, ) where v is counting measure. We have
L>(Z,v) x Z = B((*Z).

Example 5.4.10. An irrational rotation of the torus is free and ergodic. That is, consider
(X, ) = (T,df) and I = Z generated by tz = €"*z where 5= ¢ Q.

Example 5.4.11 (Bernoulli shift). Let I' be infinite and countable, and let (X, u) be a
standard probability space. Consider (X, u)" with product measure. Then I' acts on (X, u)"
by (g- A)(h) = A(g~*h), where A : T' — (X, p1) is a measurable function.

One can also do the action of T on @ (M, tr) by h- (2, @ gy @ -+ ) = Tpg, @ Thgy @ - - -

Example 5.4.12. SL(2,7Z) acts on R? by (CCL Z) <§> — (Zjigi)

Example 5.4.13. The “ax + 0" group Q x Q* acts on R by <8 ll)) (T) = <ax1+ b) .

5.5. The crossed product when the action preserves a trace. We now give a second
equivalent definition of M x,I" in the setting where (M, tr) is a tracial von Neumann algebra
and troay = tr for all g € I'.

First, form the Hilbert space L?M ® (*T". We have an amplified left M-action z(mQ®¢&) =
xmQ ® & and a left I'-action given by u,(mQ ® 6,) = a,(Mm)Q ® dgp,. In other words, if
v, € U(L*M) is the unitary v,m$ := «a,(m)Q implementing «,, then u, = v, @ A\,. We
define M x,I" as the von Neumann algebra generated by the operators x ® 1 for z € M and

the u, for g € T acting on L*M ® (*T.
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Exercise 5.5.1. Find a unitary isomorphism w : L2M @ ¢*T' — (?’T'® L>M which intertwines
the two above definitions of M %, I'. [[is there an op issue here?]]

There is also a commuting right action of M and I on L?M ® ¢*T by defining
(mQ @ dp)x := may(z)Q oy, and (MQ® §p)g := M & Opg.
Note that these right actions commute with the left action of M x, I'. We will eventually
show that M x,T carries a canonical normal faithful tracial state under which L?(M x,T") &

L?>M ® (T, allowing us to identify the left and right actions as the canonical ones.

Facts 5.5.2. Here are some basic facts about M x, I
(x1) For finite linear combinations »  zyu, € M X, I, (3 24ug) (2 ® 6e) = 3, 2,02 @ 4.
(x2) For every x € M x, I, there is a unique sequence (z,) in

2T, M) = {m % M‘Z g 222y, < oo}

such that z(Q ®6.) =Y 2,2 ®6,.

Proof. For g € T', define p, : LM @ °T — L*M by mQ®n — (1, dgya,-1(m)SQ.
Then pim) = a,(m)Q ® d,. Observe that p; is right M-linear, so p, is as well
by Footnote 1. Hence for all z € M %, I, p,ap: € (JMJ)' N B(L*M) = M.
Define z, := ay(pyap;) € M. We then compute that for all m € M and g € T,

(z(Q ® 6.), mQ ® dy) = (2P, pyog-1(m)Q) = (pgxpr 2, ag-1(m)Q) L2y
= trar(ag-1(m)*pgap;) = (trar oay) (-1 (m) pyapy)
= try (m* oy (pyrp;)) = trar(m’z,)

= (232 ® 6, mQ @ J).
h

We conclude z2(Q®4.) = >, 2,2 ® 8, and  : I' — M lies in ¢*(T, M). O

(x3) Forallge'and me€ M and v € M x, ', 2(mQ ® 0g) = >, xpan(m)2 & Opg.

Proof. Note that mQ ® o, = (2 ® d) - m - g. Since the left and right actions
commute,

r(mOR6,) = (x(Q®)) -m-g = (Z Tpd ® 5h) m-g = thah(m)9®5hg

as claimed. O

(x4) Forx € M 1, I', 2*(Q® 6e) = D), an(25-1)Q2 @ 6.
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Proof. We compute
(@ (QA®6.), ML &) = (AR b, (MR ® 6,)) = > (A ® e, paun (M)Q @ bg)
h

= Oh= =g~ <Q .7:9—104g—1( ) > =tr ( 1ag—1(m)*)
= (troay)(zg-104-1(m)") = tr(ay(zy-1)m”)
= (g (zg-1)2, M) p2ps = Zoéh Ty 1) ® b, m ® 0482).

The result follows. 0

(x5) Q ® 0, is cyclic and separating for M x,, I

Proof. First, z = 0 iff z, = 0 for all g € I', which implies Q ® J, is separating.
Now for any finite linear combination Zg m,N® o, € LM ® £°T,

Z Mg ® dg = <Z mgug> (Q® de),

so 1 ® ¢, is cyclic. d

(x6) The normal state wogs, = (- Q2 ® 0., 2 ® de) on M x, I' is faithful and tracial.

Proof. For x,y € M x, T,
(xy(2®9.), 2R ) = (Y(NA® ), " (2 ® de))

= Z YoSL ® by, an(2h-1)Q @ )

—Zng ag(Ty-1)2) L2

= Z (tr oag—l (o xg_l)yg)
= Ztr(a:gfloég*l(yg))
— Ztr(ah(yhfl)xh)

h

== (yr(V®6.), 2 ® d.).




Faithfulness follows from the computation

(@ 2(Q®6.), Q@ 8) = (2(AB 0), 2(AB &) = Y (7,0 ® b5, 2,2 @ 51

g,h
= Z<$gQ, T ) 2p = Ztr(x;xg). O
9 9

(x7) The map mQ ® §, — mu,Q is an M x, ' — M x, I bilinear unitary L?*M @ ¢*T" =
L2(M x,T).

Proof. For finite linear combinations > x,u, € M x, I,

(S 50) 2y = ((Znn) () @280, 205.)
= <<Z xgug> (Q® 6), (Z a:huh> Q® 5e)>

= Z(l‘gQ X 69, $hQ X (Sh>

g;h

Z 2,02 ® 599‘ I

and thus the map is isometric. We leave M X, " bilinearity to the reader. [

2

5.6. The type of the crossed product. Suppose « : I' = Aut(M) is free and ergodic so
that M %, I"is a factor. We further consider the special case of M = L*°(X, ) coming from
an action of T on (X, i) preserving the measure class of p. There are 4 types of free and
ergodic actions of a countable discrete group I' acting on (X, u).

o (type I) I' acts freely transitively so that X is a [-torsor.

e (type II;) I preserves a finite measure on X.

e (type II.) I" preserves an infinite measure on X.

e (type III) no measure on X equivalent to yu is preserved by T

Theorem 5.6.1. If « is a free ergodic, essentially transitive action, then L>®(X,u) x T is
type 1.

Proof. Since « is essentially transitive, by Lemma 5.3.13, X = I'z for some x € X up
to null sets (where we have replaced atoms in (X, u) by points). Thus we may identify
p with a weighted counting measure. Then y(;3 € L>(X, 1) is a minimal projection
for every x € X. We claim y(,) is also minimal in L>°(X, ) x I', showing it is type L.
Since finite linear combinations ) y,u, form a c-WWOT dense unital *-subalgebra,
it suffices to prove that for every h # e and y € L>®(X, u),

X{2}YUnX{z} = 0.
Indeed, for all £ € L*(T, L*(X, u)) and g € T,

(X ey yunX(23§)(9) = ag—1(X{ay) g1 (¥) (Uunx23€)(9)
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= g1 (Xgay) g1 (1) Xy ) (R 9)
= g1 (Xgap) g1 (1) g1 (X} ) (R )
Now as L>*(X, u) is abelian, we see
ag—l(X{w})ag—lh(X{z}) = Xg—1zXg—the — 0
as h # e and « is free. OJ

Fact 5.6.2. Suppose (M, tr) is a tracial von Neumann algebra and a : I' — Aut(M) is an
action such that troay, = tr for all g € I'. If v is free and ergodic, then M %, I" has a faithful
normal tracial state by (x6), so it must be either type I, for n < oo or type II;.

Theorem 5.6.3. If the action of I' on (X, u) is free, ergodic, non-transitive, and p is a
finite measure such that u(gA) = p(A) for all measurable A, then L= (X, ) x I" is type 11;.

Proof. Since the action of I' preserves the faithful normal tracial state [ -dpu,
L>*(X,pu) x I' is either finite dimensional or type II;. So it suffices to prove that
if L°(X,u) x T is finite dimensional and « is free and ergodic, then « is essentially
transitive. If L(X, u) x I' is finite dimensional, then L*°(X, u) is finite dimensional,
and thus has minimal projections. Thus (X, u) = (Y, v) for some finite measure space
Y with v a weighted counting measure. Indeed, by a maximality argument, we can
write 1 = Y% | x4, where each x4, is minimal in L*(X, ) and the A; are disjoint
measurable subsets. We then define v({i}) := p(A;). Finally, the action of I' on the
finite measure space (Y, v) is free and ergodic, which implies it is transitive by Exercise
9.3.13. 0

Exercise 5.6.4. A factor M is type Il iff 1), is infinite and there is a nonzero finite
projection p € M such that pMp is type II;.

Exercise 5.6.5. If {e;;} C M C B(H) is a system of matrix units, then there is a unitary
w: H — ey H® (*(I) such that uMu* = e;; Mey; @ B((3(I)).

Lemma 5.6.6. If M is a Il factor, there is a Il factor N and a unital *-isomorphism
M = N ® B(*(I)).

Proof. By Exercise 5.6.4, there is a non-zero finite projection p € M. Let {p; }ics be a
maximal family of mutually orthogonal projections such that p; ~ p for all ¢ € I.

Claim. ) p; =~ 1.

Proof of claim. Set ¢ = 1 — > p;. Since M is a factor, by maximality, ¢ < p. Since
1y is infinite, there is an iy € I and a bijection I = I \ {ig}. Then

1=q+2p¢%q+2p¢%pz-oJeri:mel. U

i#i0 i#£i0
By the claim, we may assume that > p; = 1; ortherwise, replace p; with u*p;u where
wu* = Y p; and u*u = 1. Now since Y p; = 1 and each p; = p, for each j, we can
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choose a partial isometry e;; such that ejjel; = p; and ej;e;; = p;. We then extend
the e;; to a system of matrix units in the usual way. Finally, the result follows from
Exercise 5.6.5. 0

Theorem 5.6.7. If the action of I' on (X, u) is free, ergodic, non-transitive, and p is an
infinite o-finite measure such that p(gA) = u(A) for all measurable A, then L>=(X,pu) x T’
15 type 1.

Proof. By Remark 5.3.14, there are no minimal projections in L>®(X, u). As (X, u)
is o-finite, there is a set Y C X with 0 < u(Y) < oo. Consider the unit vector
¢ = u(Y)?xy ® 6, and the projection p := xy.

Claim. The normal state we on the factor p(L>(X, pu) x I')p is tracial.
Proof of claim. By a calculation similar to (x6), for all z,y € L>=(X,u) x T,

ol = ﬁ ;trmw)ag(mg-wmg)

N ﬁ Z tr (pag—1 091 (p)ag-1(yy)) = we(pyppap). O

By the claim, p(L*>°(X, u) x I')p is a factor with no minimal projections and a tracial
state, and thus is type II;. But L°(X,pu) x T' is not type II; as it has an infinite
family of non-zero mutually orthogonal projections (why?). Hence 1 is infinite and
L>(X,u) x I'is type 1) by Exercise 5.6.4. O

We omit the proof that if I" preserves no measure equivalent to p, then L>®(X, u) x I' is
type IIL
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