5. Tracial von Neumann algebras and the crossed product construction

These notes follow Chapters 9 and 11 of Jones' notes on von Neumann algebras quite closely.

5.1. Tracial von Neumann algebras.

Definition 5.1.1. A tracial von Neumann algebra is a von Neumann algebra M equipped with a faithful normal tracial state tr.

Facts 5.1.2. We rapidly recall some basic facts about a tracial von Neumann algebra (M, tr) that we have already proven, or which follow easily from facts we have already proven.
($\operatorname{tr} 1$) Tracial von Neumann algebras are finite.
$(\operatorname{tr} 2)$ Every isometry in a tracial von Neumann algebra is a unitary.
TODO: more?
Definition 5.1.3. Given a tracial von Neumann algebra (M, tr), the Gelfand-Naimark-Segal (GNS) Hilbert space $L^{2}(M, \operatorname{tr})$ is the completion of M under $\|\cdot\|_{2}$ coming from the inner product

$$
\langle x, y\rangle:=\operatorname{tr}\left(y^{*} x\right) .
$$

We typically write $\Omega \in L^{2}$ (M, tr) for the image of $1 \in M$. When M is a tracial factor, the trace is unique, and we simply write $L^{2} M$.

We have the following facts, building on how we constructed the hyperfinite II_{1} factor R.
(J1) The left action $\lambda_{a} x \Omega:=a x \Omega$ of M on $L^{2}(M, \operatorname{tr})$ is by bounded operators and $\lambda_{a}^{*}=\lambda_{a^{*}}$.
(J2) The right action $\rho_{b} x \Omega:=x b \Omega$ of M on $L^{2}(M, \operatorname{tr})$ is also by bounded operators and $\rho_{b}^{*}=\rho_{b^{*}}$.
(J3) The map $J: M \Omega \rightarrow M \Omega$ given by $x \Omega \mapsto x^{*} \Omega$ is a conjugate-linear unitary such that $J^{2}=1$.
(J4) The map J satisfies $\langle J x \Omega, J y \Omega\rangle=\left\langle x^{*} \Omega, y^{*} \Omega\right\rangle=\operatorname{tr}\left(y x^{*}\right)=\operatorname{tr}\left(x^{*} y\right)=\langle y \Omega, x \Omega\rangle$ for all $x, y \in M$. Hence $\langle J \eta, J \xi\rangle=\langle\xi, \eta\rangle$ for all $\eta, \xi \in L^{2}(M, \operatorname{tr})$.
(J5) For all $x \in B\left(L^{2}(M, \operatorname{tr})\right),(J x J)^{*}=J x^{*} J$.

Proof. For all $a, b \in M$,

$$
\begin{aligned}
&\langle a \Omega, J x J b \Omega\rangle \underset{(\mathrm{J} 3)}{=}\left\langle J^{2} a \Omega, J x J b \Omega\right\rangle \underset{(\mathrm{J} 4)}{=}\langle x J b \Omega, J a \Omega\rangle=\left\langle J b \Omega, x^{*} J a \Omega\right\rangle \\
& \underset{(\mathrm{J} 3)}{=}\left\langle J b \Omega, J^{2} x^{*} J a \Omega\right\rangle \underset{(\mathrm{J} 4)}{=}\left\langle J x^{*} J a \Omega, b \Omega\right\rangle
\end{aligned}
$$

By density of $M \Omega$ in $L^{2}(M, \operatorname{tr}),(J x J)^{*}=J x^{*} J$.
(J6) The map J satisfies $J \lambda_{a} J=\rho_{a^{*}}$ and $J \rho_{b} J=\lambda_{b^{*}}$ for all $a, b \in M$. Typically, we abbreviate $J a J:=J \lambda_{a} J$. In particular, $(J a J)^{*}=J a^{*} J$ and $J M J \subseteq M^{\prime}$.
(J7) For all $x \in M^{\prime}, J x \Omega=x^{*} \Omega$.

Proof. For all $a \in M$, we have

$$
\begin{aligned}
\langle J x \Omega, a \Omega\rangle & \underset{(\mathrm{J} 3)}{=}\left\langle J x \Omega, J^{2} a \Omega\right\rangle \underset{(\mathrm{J} 4)}{=}\langle J a \Omega, x \Omega\rangle=\left\langle a^{*} \Omega, x \Omega\right\rangle \\
& =\langle\Omega, a x \Omega\rangle=\langle\Omega, x a \Omega\rangle=\left\langle x^{*} \Omega, a \Omega\right\rangle .
\end{aligned}
$$

By density of $M \Omega$ in $L^{2}(M, \operatorname{tr}), J x \Omega=x^{*} \Omega$.
(J8) For all $x, y \in M^{\prime}, J x J y=y J x J$. Hence $J M^{\prime} J \subseteq M^{\prime \prime}=M$.

$$
\begin{aligned}
& \text { Proof. For all } a, b \in M, \\
& \qquad \begin{aligned}
\langle J x J y a \Omega, b \Omega\rangle & \underset{(\mathrm{J} 5)}{=}\left\langle y a \Omega, J x^{*} J b \Omega\right\rangle=\left\langle y a \Omega, J x^{*} b^{*} \Omega\right\rangle=\left\langle a y \Omega, J b^{*} x^{*} \Omega\right\rangle \\
& =\left\langle a y \Omega, J b^{*} J x \Omega\right\rangle \underset{(\mathrm{J} 7)}{=}\langle J b J a y \Omega, x \Omega\rangle \underset{(\mathrm{J} 6)}{=}\langle a J b J y \Omega, x \Omega\rangle \\
& =\left\langle J b J y \Omega, a^{*} x \Omega\right\rangle=\left\langle J b J y \Omega, x a^{*} \Omega\right\rangle=\langle J b J y \Omega, x J a \Omega\rangle \\
& =\left\langle J b J y \Omega, J^{2} x J a \Omega\right\rangle \underset{(\mathrm{J} 3)}{=}\left\langle J x J a \Omega, b y^{*} \Omega\right\rangle=\left\langle J x J a \Omega, y^{*} b \Omega\right\rangle \\
& =\langle y J x J a \Omega, b \Omega\rangle .
\end{aligned}
\end{aligned}
$$

By density of $M \Omega$ in $L^{2}(M, \operatorname{tr}), J x J y=y J x J$.
We may summarize the above results as follows.
Theorem 5.1.4. Given a tracial von Neumann algebra (M, tr), the commutant of the left action of M in the GNS representation is given by the right action: $M^{\prime}=J M J$.

Corollary 5.1.5. The commutant of $L \Gamma$ acting on $\ell^{2} \Gamma$ is $R \Gamma$, the right regular group von Neumann algebra.

Exercise 5.1.6. Show that the map between elements $x \in L \Gamma$ and their corresponding ℓ^{2}-vectors $\left(x_{g}\right)$ such that $x \delta_{e}=\sum x_{g} \delta_{g}$ has image

$$
\left\{\left(y_{g}\right) \in \ell^{2} \Gamma \mid y * z \in \ell^{2} \Gamma \text { for all } z \in \ell^{2} \Gamma\right\}
$$

where $(y * z)_{g}=\sum_{h} y_{h} z_{h-1}$. That is, $L \Gamma$ corresponds to all the ℓ^{2}-sequences whose convolutions with all other ℓ^{2}-sequences are again ℓ^{2}.
5.2. Conditional expectation. In probability theory, there is a notion of a conditional expectation of a random variable (measurable function $f:(X, \mathcal{M}) \rightarrow \mathbb{C}$) with respect to a σ subalgebra $\mathcal{N} \subset \mathcal{M}$. In more detail, given a probability measure $\mu: \mathcal{M} \rightarrow[0, \infty]$, it restricts to a probability measure $\left.\mu\right|_{\mathcal{N}}: \mathcal{N} \rightarrow[0, \infty]$, and we have a natural inclusion of von Neumann algebras $L^{\infty}\left(X, \mathcal{N},\left.\mu\right|_{\mathcal{N}}\right) \subset L^{\infty}(X, \mathcal{M}, \mu)$. The conditional expectation of $f \in L^{\infty}(X, \mathcal{M}, \mu) C$ with respect to \mathcal{N}, denoted $\mathbb{E}_{\mathcal{N}}(f)$ is the unique element of $L^{\infty}\left(X, \mathcal{N},\left.\mu\right|_{\mathcal{N}}\right)$ such that for all $A \in \mathcal{N}$,

$$
\int_{A} f d \mu=\int f \chi_{A} d \mu=\int \mathbb{E}_{\mathcal{N}}(f) \chi_{A} d \mu=\int_{A} \mathbb{E}_{\mathcal{N}}(f) \chi_{A} d \mu
$$

We will show the existence and uniqueness of $\mathbb{E}_{\mathcal{N}}(f)$ in more general setting, namely a tracial von Neumann algebra $\left(M, \operatorname{tr}_{M}\right)$ and a von Neumann subalgebra $N \subseteq M$.

Facts 5.2.1. Suppose $\left(M, \operatorname{tr}_{M}\right)$ is a tracial von Neumann algebra and $N \subseteq M$ is a von Neumann subalgebra.
(E1) The inclusion $N \Omega \hookrightarrow M \Omega \subset L^{2} M$ is isometric with respect to $\|\cdot\|_{2}$. We thus get a canonical isometry $i_{N}: L^{2} N \rightarrow L^{2} M$ such that $n \Omega_{N} \mapsto n \Omega_{M}$.
(E2) The isometry i_{N} is $N-N$ bilinear, i.e., for all $x, n \in N$,
$i_{N}\left(x \cdot n \Omega_{N}\right)=i_{N}\left(x n \Omega_{N}\right)=x n \Omega_{M}=x \cdot n \Omega_{M} \quad$ and
$i_{N}\left(n \Omega_{N}\right) \cdot x=J_{M} x^{*} J_{M} \iota_{N} n \Omega_{N}=n x \Omega_{M}=i_{N}\left(n x \Omega_{N}\right)=i_{N} J_{N} x^{*} J_{N} n \Omega_{N}=i_{N}\left(n \Omega_{N} \cdot x\right)$.
(E3) The adjoint $i_{N}^{*}: L^{2} M \rightarrow L^{2} N$ is also $N-N$ bilinear. ${ }^{1}$

Proof. Since $n i_{N}=i_{N} n$ for all $n \in N$, taking adjoints, $i_{N}^{*} n^{*}=n^{*} i_{N}^{*}$ for all $n \in N$. Since $J_{M} n^{*} J_{M} i_{N}=i_{N} J_{N} n^{*} J_{N}$ for all $n \in N$, taking adjoints,

$$
i_{N}^{*} J_{M} n J_{M}=i_{N}^{*}\left(J_{M} n^{*} J_{M}\right)^{*}=\left(J_{N} n^{*} J_{N}\right)^{*} i_{N}^{*}=J_{N} n J_{N} i_{N}^{*}
$$

for all $n \in N$. The result follows.
(E4) For $m \in M$, the operator $E_{N}(m):=i_{N}^{*} m i_{N} \in B\left(L^{2} N\right)$ commutes with the right N-action and thus lies in $\left(J_{N} N J_{N}\right)^{\prime}=N$.
(E5) $E_{N}(m)$ is the unique element of N such that $\operatorname{tr}_{N}\left(E_{N}(m) n\right)=\operatorname{tr}_{M}(m n)$ for all $n \in N$.

Proof. If $x \in N$ such that $\operatorname{tr}_{N}(x n)=\operatorname{tr}_{M}(m n)$ for all $n \in N$, then

$$
\begin{aligned}
\left\langle x \Omega_{N}, n \Omega_{N}\right\rangle_{L^{2} N} & =\operatorname{tr}_{N}\left(x n^{*}\right)=\operatorname{tr}_{M}\left(m n^{*}\right)=\left\langle m \Omega_{M}, n \Omega_{M}\right\rangle_{L^{2} M} \\
& =\left\langle m \iota_{N} \Omega_{N}, \iota_{N} n \Omega_{N}\right\rangle_{L^{2} M}=\left\langle\iota_{N}^{*} m \iota_{N} \Omega_{N}, n \Omega_{N}\right\rangle_{L^{2} N}
\end{aligned}
$$

for all $n \in N$, and thus $x=\iota_{N}^{*} m \iota_{N}=E_{N}(m)$.
(E6) $E_{N}(a m b)=a E_{N}(m) b$ for all $a, b \in N$ and $m \in M$. In particular, $\left.E_{N}\right|_{N}=\mathrm{id}_{N}$.

Proof. Immediate from i_{N}, i_{N}^{*} being $N-N$ bilinear.
(E7) $E_{N}: M \rightarrow N$ is a normal unital completely positive (ucp) map. In particular, $E_{N}\left(m^{*}\right)=E_{N}(m)^{*}$ for all $m \in M$.

Proof. The formula $E_{N}(m)=i_{N}^{*} m i_{N}$ is manifestly ucp (recall the Stinepring Theorem). In particular, since E_{N} sends positive elements to positive elements, writing a self-adjoint $x \in M$ as $x_{+}-x_{-}$, we see that $E_{N}(x)$ is also self adjoint. The final statement now follows by taking real and imaginary parts:

$$
E_{N}(m)=E_{N}(\operatorname{Re}(m)+i \operatorname{Im}(m))=E_{N}(\operatorname{Re}(m))+i E_{N}(\operatorname{Im}(m))
$$

which implies

$$
E_{N}\left(m^{*}\right)=E_{N}(\operatorname{Re}(m)-i \operatorname{Im}(m))=E_{N}(\operatorname{Re}(m))-i E_{N}(\operatorname{Im}(m))=E_{N}(m)^{*} .
$$

[^0](E8) For all $m \in M,\left\|E_{N}(m)\right\| \leq\|m\|$,
Proof. Since i_{N} is an isometry, $\left\|E_{N}(m)\right\|=\left\|i_{N}^{*} m i_{N}\right\| \leq\|m\|$.
(E9) For all $m \in M, E_{N}(m)^{*} E_{N}(m) \leq E_{N}\left(m^{*} m\right)$ and $E_{N}\left(m^{*} m\right)=0$ implies $m=0$.
Proof. Since i_{N} is an isometry, $i_{N} i_{N}^{*} \leq 1_{L^{2} M}$. In particular,
$$
E_{N}(m)^{*} E_{N}(m)=i_{N}^{*} m^{*} i_{N} i_{N}^{*} m i_{N} \leq i_{N}^{*} m^{*} m i_{N}=E_{N}\left(m^{*} m\right) .
$$

Finally, if $E_{N}\left(m^{*} m\right)=0$, then $\operatorname{tr}_{M}\left(m^{*} m\right)=\operatorname{tr}_{N}\left(E_{N}\left(m^{*} m\right)\right)=0$, so $m=0$.
5.3. Outer, ergodic, and free actions. In this section, G denotes a group and M denotes a von Neumann algebra.

Definition 5.3.1. An action of G on M is a group homomorphism $\alpha: G \rightarrow \operatorname{Aut}(M)$, where $\operatorname{Aut}(M)$ is the group of $*$-algebra isomorphisms of M.
Exercise 5.3.2. Prove that every $*$-algebra isomorphism of M is σ-WOT continuous.
Example 5.3.3. Suppose $u: G \rightarrow U(H)$ such that for all $g \in G, u_{g} M u_{g}^{*}=M$. Then $\alpha: G \rightarrow \operatorname{Aut}(M)$ by $\alpha_{g}=\operatorname{Ad}\left(u_{g}\right)$ is an action.
Definition 5.3.4. An automorphism Φ of $M \subseteq B(H)$ is said to be implemented by a unitary $u \in U(H)$ if $\Phi(x)=u x u^{*}$ for all $x \in M$.

We call $\Phi \in \operatorname{Aut}(M)$ inner if it is implemented by a unitary $u \in U(M)$. If Φ is not inner, it is called outer.

An action $\alpha: G \rightarrow \operatorname{Aut}(M)$ is called outer if α_{g} is only inner when $g=e$.
Exercise 5.3.5. Show that every trace-preserving *-automorphism of a tracial von Neumann algebra $\left(M, \operatorname{tr}_{M}\right)$ can be implemented on $L^{2}(M, \operatorname{tr})$. Deduce that every $*$-automorphism of a II_{1} factor can be implemented on $L^{2} M$.
Exercise 5.3.6. Prove that every $*$-automorphism of $B(H)$ is inner.
Exercise 5.3.7. Consider $\mathbb{F}_{2}=\langle a, b\rangle$. Show that the swap $a \leftrightarrow b$ extends to a $*$-automorphism of $L \mathbb{F}_{2}$. Prove it is outer.
Example 5.3.8. Let (X, μ) be a measure space and $T: X \rightarrow X$ a bijection preserving the measure class of μ, i.e., $\mu(A)=0$ iff $\mu\left(T^{-1} A\right)=0$ for all measurable A. Then T gives an automorphism α_{T} of $L^{\infty}(X, \mu)$ by $\left(\alpha_{T} f\right)(x):=f\left(T^{-1} x\right)$.

Moreover, if T preserves μ, i.e., $\mu(A)=\mu\left(T^{-1} A\right)$ for all measurable A, then α_{T} is implemented by the unitary $\left(u_{T} \xi\right)(x):=\xi\left(T^{-1} x\right)$ for $\xi \in L^{2}(X, \mu)$. Indeed, one computes $\left(u_{T}^{*} \xi\right)(x)=\xi(T x)$ and we observe

$$
\left(u_{T} M_{f} u_{T}^{*} \xi\right)(x)=\left(M_{f} u_{T}^{*} \xi\right)\left(T^{-1} x\right)=f\left(T^{-1} x\right)\left(u_{T}^{*} \xi\right)\left(T^{-1} x\right)=f\left(T^{-1} x\right) \xi(x)=\left(M_{\alpha_{T}(f)} \xi\right)(x)
$$

Exercise 5.3.9. Suppose (X, μ) is a measure space and ν is a measure equivalent to μ, i.e., $\mu(A)=0$ if and only if $\nu(A)=0$ for all measurable A. Explain why we may identify $L^{\infty}(X, \mu)=L^{\infty}(X, \nu)$ as von Neumann algebras.
Definition 5.3.10. A measurable bijection T of X is called ergodic if A measurable with $T A=A$ implies $\mu(A)=0$ or $\mu(X \backslash A)=0$.

Proposition 5.3.11. T is ergodic if and only if $L^{\infty}(X, \mu)^{\alpha_{T}}=\mathbb{C} 1$.
Proof. Note that $T A=A$ if and only if $\alpha_{T}\left(\chi_{A}\right)=\chi_{A}$. Hence T is ergodic iff $P\left(L^{\infty}(X, \mu)^{\alpha_{T}}\right)=\{0,1\}$ iff $L^{\infty}(X, \mu)^{\alpha_{T}}=\mathbb{C} 1$.

Definition 5.3.12. We say an action $\alpha: G \rightarrow \operatorname{Aut}(M)$ is ergodic if $M^{G}=\mathbb{C} 1$.
Lemma 5.3.13. Suppose α is an action of a countable group Γ on (X, μ) preserving the measure class of μ. Consider the following statements.
(Г1) α is essentially transitive, i.e., there is an $x \in X$ such that $\mu(X \backslash \Gamma x)=0$.
(Г2) α is essentially countable, i.e., there is a countable set $Y \subseteq X$ such that $\mu(X \backslash Y)=0$ and $\mu(\{y\})>0$ for all $y \in Y$.
(Г3) There is an atom $x \in X$, i.e., there is an $x \in X$ with $\mu(\{x\})>0$.
Then (Г1) implies (Г2) implies (Г3). If α is ergodic, then (Г3) implies ($\Gamma 1$).
Proof. The only interesting part is proving ($\Gamma 3$) implies ($\Gamma 1$) when α is ergodic. If $x \in X$ is an atom, then $\Gamma x \subseteq X$ is a Γ-invariant subset with $\mu(\Gamma x)>0$. By ergodicity, $\mu(X \backslash \Gamma x)=0$.

Remark 5.3.14. Really, an atom of (X, μ) is a measurable set $A \subseteq X$ such that $\mu(A)>0$ and for all measurable $B \subseteq A, \mu(B)=0$ or $\mu(A \backslash B)=0$. Thus atoms of (X, μ) exactly correspond to minimal projections of $L^{\infty}(X, \mu)$. By Lemma 5.3.13 (applied to an equivalent measure space where all atoms have been collapsed to points), if an ergodic action of a countable Γ on (X, μ) preserving the measure class of μ is not essentially transitive, then $L^{\infty}(X, \mu)$ has no minimal projections.
Definition 5.3.15. An automorphism Φ of M is called free or properly outer if

$$
m \in M \text { and } m \alpha(x)=x m \quad \forall x \in M \quad \Longrightarrow \quad m=0
$$

An action $\alpha: G \rightarrow \operatorname{Aut}(M)$ is called free if α_{g} not free implies $g=e$.
Exercise 5.3.16. Show that if $M=L^{\infty}(X, \nu)$ where X is countable and ν is a weighted counting measure (without loss of generality, we may assume there are no points with mass zero), and $\alpha=\alpha_{T} \in \operatorname{Aut}\left(L^{\infty}(X, \mu)\right)$ for some bijection $T: X \rightarrow X$, then α is free if and only if T has no fixed points.
Exercise 5.3.17. Suppose X is compact Hausdorff and μ is a Radon (finite non-negative regular Borel) measure on X. Let $T: X \rightarrow X$ be a homeomorphism preserving the measure class of μ. Then α_{T} is free iff $\mu(\{x \in X \mid T x=x\})=0$.

Proposition 5.3.18. If M is a factor, then every outer automorphism is free.
Proof. We prove the contrapositive. Suppose $\Phi \in \operatorname{Aut}(M)$ and there is an $m \in M \backslash\{0\}$ such that $m \Phi(x)=x m$ for all $x \in M$. If $m \in U(M)$, then $\Phi=\operatorname{Ad}(m)$ and we are finished. Otherwise, taking adjoints, we have $m^{*} x=\Phi(x) m^{*}$ for all $x \in M$, and thus

$$
m m^{*} x=m \Phi(x) m^{*}=x m m^{*} \quad \forall x \in M \quad \Longrightarrow \quad m m^{*} \in Z(M)
$$

Similarly, $m^{*} m \in Z(M)$. Since $Z(M)=\mathbb{C} 1$ and $m \neq 0, m m^{*}=r$ and $m^{*} m=s$ for some non-zero $r, s \in \mathbb{R}_{>0}$. Since $r m=m m^{*} m=s m$ and $m \neq 0, r=s$. Thus $u:=r^{-1 / 2} m \in U(M)$ and $\Phi=\operatorname{Ad}(u)$ is inner.
5.4. The crossed product. The crossed product can be defined for a locally compact group, but we will present a simplified version for discrete groups acting on tracial von Neumann algebras. In this section, Γ is a discrete group.

The crossed product of a group action $\alpha: \Gamma \rightarrow \operatorname{Aut}(M)$ is a von Neumann algebra containing M in which the group action is implemented by unitaries.

Definition 5.4.1. Suppose $\alpha: \Gamma \rightarrow \operatorname{Aut}(M)$ is a group action where $M \subseteq B(H)$. Form the Hilbert space

$$
\ell^{2}(\Gamma, H):=\left\{\xi: \Gamma \rightarrow H \mid \sum_{g}\|\xi(g)\|^{2}<\infty\right\}
$$

We define actions of Γ and M on $\ell^{2}(\Gamma, H)$ by

$$
\left(u_{g} \xi\right)(h):=\xi\left(g^{-1} h\right) \quad \text { and } \quad\left(\pi_{m} \xi\right)(h):=\alpha_{h^{-1}}(m) \xi(h)
$$

The crossed product $M \rtimes_{\alpha} \Gamma$ is the von Neumann algebra generated by the π_{m} and the u_{g} acting on $\ell^{2}(\Gamma, H)$.

Example 5.4.2. When $M=L^{\infty}(X, \mu)$ and $\alpha: \Gamma \rightarrow \operatorname{Aut}(M)$ comes from an action of Γ on (X, μ) preserving the measure class of μ, we call $L^{\infty}(X, \mu) \rtimes \Gamma$ the group measure space construction

Exercise 5.4.3. Prove the following facts about the crossed product $M \rtimes_{\alpha} \Gamma$.
(1) $\pi: M \rightarrow B\left(\ell^{2}(\Gamma, H)\right)$ is an injective normal σ-WOT continuous $*$-homomorphism. Thus $\pi(M)=\pi(M)^{\prime \prime} \cong M$ as von Neumann algebras.
(2) $u_{g} \pi_{m} u_{g}^{*}=\pi_{\alpha_{g}(m)}$, i.e., the α_{g}-action on M is implemented by the u_{g}.
(3) Finite linear combinations $\sum x_{g} u_{g}$ where $x_{g} \in M$ form a σ-WOT dense unital $*$ subalgebra.

Exercise 5.4.4. Find a unitary isomorphism $v: \ell^{2}(\Gamma, H) \rightarrow \ell^{2} \Gamma \otimes H$ such that $v u_{g} v^{*}=\lambda_{g} \otimes 1$ and $\left(v \pi_{m} v^{*}\right)\left(\delta_{h} \otimes \xi\right)=\delta_{h} \otimes \alpha_{h^{-1}}(m) \xi$.

We now provide sufficient conditions for the crossed product to be a factor.
Lemma 5.4.5. If $\alpha: \Gamma \rightarrow \operatorname{Aut}(M)$ is free, then $M^{\prime} \cap\left(M \rtimes_{\alpha} \Gamma\right) \subseteq Z(M)$.
Proof. TODO: give general proof Suppose $y \in M^{\prime} \cap\left(M \rtimes_{\alpha} \Gamma\right)$ and let $\left(y_{g}\right) \subset M$ such that $y\left(\Omega \otimes \delta_{e}\right)=\sum y_{g} \Omega \otimes \delta_{g}$. For $x \in M$, we calculate $y\left(x \Omega \otimes \delta_{e}\right)$ in two ways:

$$
\sum x y_{g} \otimes \delta_{g}=x y\left(\Omega \otimes \delta_{e}\right)=y x\left(\Omega \otimes \delta_{e}\right)=y\left(x \Omega \otimes \delta_{e}\right) \underset{(\times 3)}{=} \sum y_{g} \alpha_{g}(x) \otimes \delta_{g}
$$

Hence $x y_{g}=y_{g} \alpha_{g}(x)$ for all $x \in M$. By freeness, $y_{g}=0$ unless $g=e$, so $y=y_{e}$ as $\Omega \otimes \delta_{e}$ is separating by $(\rtimes 5)$. Hence $y \in M^{\prime} \cap M=Z(M)$.

Remark 5.4.6. Lemma 5.4.5 immediately implies that

$$
Z(M)=M^{\prime} \cap M \subseteq M^{\prime} \cap\left(M \rtimes_{\alpha} \Gamma\right) \subseteq Z(M)
$$

so all inclusions are equalities, and

$$
Z\left(M \rtimes_{\alpha} \Gamma\right) \subseteq M^{\prime} \cap\left(M \rtimes_{\alpha} \Gamma\right) \subseteq Z(M)
$$

Thus if M is a factor and α is free, then $M \rtimes_{\alpha} \Gamma$ is a factor.
Corollary 5.4.7. If $\alpha: \Gamma \rightarrow \operatorname{Aut}(M)$ is free and ergodic, then $M \rtimes_{\alpha} \Gamma$ is a factor.
Proof. Suppose $x \in Z\left(M \rtimes_{\alpha} \Gamma\right)$. Since α is free, by Remark 5.4.6, $x \in Z(M)$. Since x commutes with every $u_{g}, \alpha_{g}(x)=u_{g} x u_{g}^{*}=x$ for all $g \in \Gamma$, and $x \in M^{\Gamma}$. Since α is ergodic, $M^{\Gamma}=\mathbb{C} 1$, and thus $Z\left(M \rtimes_{\alpha} \Gamma\right)=\mathbb{C} 1$.

Corollary 5.4.8. Consider a group measure space construction $L^{\infty}(X, \mu) \rtimes \Gamma$. If the action α is free, then $L^{\infty}(X, \mu) \subset L^{\infty}(X, \mu) \rtimes \Gamma$ is maximal abelian.

Proof. Since α is free,

$$
L^{\infty}(X, \mu)^{\prime} \cap\left(L^{\infty}(X, \mu) \rtimes \Gamma\right) \subseteq Z\left(L^{\infty}(X, \mu)\right)=L^{\infty}(X, \mu)
$$

by Lemma 5.4.5. Hence if $L^{\infty}(X, \mu) \subseteq A \subseteq L^{\infty}(X, \mu) \rtimes \Gamma$ with A abelian, then $A \subseteq L^{\infty}(X, \mu)^{\prime} \cap\left(L^{\infty}(X, \mu) \rtimes \Gamma\right) \subseteq L^{\infty}(X, \mu)$.

We now give examples of free and ergodic actions.
Example 5.4.9. $\Gamma=\mathbb{Z}$ acts by translation on (\mathbb{Z}, ν) where ν is counting measure. We have $L^{\infty}(\mathbb{Z}, \nu) \rtimes \mathbb{Z} \cong B\left(\ell^{2} \mathbb{Z}\right)$.
Example 5.4.10. An irrational rotation of the torus is free and ergodic. That is, consider $(X, \mu)=(\mathbb{T}, d \theta)$ and $\Gamma=\mathbb{Z}$ generated by $t z=e^{i \alpha} z$ where $\frac{\alpha}{2 \pi} \notin \mathbb{Q}$.

Example 5.4.11 (Bernoulli shift). Let Γ be infinite and countable, and let (X, μ) be a standard probability space. Consider $(X, \mu)^{\Gamma}$ with product measure. Then Γ acts on $(X, \mu)^{\Gamma}$ by $(g \cdot A)(h)=A\left(g^{-1} h\right)$, where $A: \Gamma \rightarrow(X, \mu)$ is a measurable function.

One can also do the action of Γ on $\otimes^{\Gamma}(M, \operatorname{tr})$ by $h \cdot\left(x_{g_{1}} \otimes x_{g_{2}} \otimes \cdots\right)=x_{h g_{1}} \otimes x_{h g_{2}} \otimes \cdots$.
Example 5.4.12. $S L(2, \mathbb{Z})$ acts on \mathbb{R}^{2} by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}$.
Example 5.4.13. The " $a x+b$ " group $\mathbb{Q} \rtimes \mathbb{Q}^{\times}$acts on \mathbb{R} by $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)\binom{x}{1}=\binom{a x+b}{1}$.
5.5. The crossed product when the action preserves a trace. We now give a second equivalent definition of $M \rtimes_{\alpha} \Gamma$ in the setting where (M, tr) is a tracial von Neumann algebra and $\operatorname{tr} \circ \alpha_{g}=\operatorname{tr}$ for all $g \in \Gamma$.

First, form the Hilbert space $L^{2} M \otimes \ell^{2} \Gamma$. We have an amplified left M-action $x(m \Omega \otimes \xi)=$ $x m \Omega \otimes \xi$ and a left Γ-action given by $u_{g}\left(m \Omega \otimes \delta_{h}\right):=\alpha_{g}(m) \Omega \otimes \delta_{g h}$. In other words, if $v_{g} \in U\left(L^{2} M\right)$ is the unitary $v_{g} m \Omega:=\alpha_{g}(m) \Omega$ implementing α_{g}, then $u_{g}=v_{g} \otimes \lambda_{g}$. We define $M \rtimes_{\alpha} \Gamma$ as the von Neumann algebra generated by the operators $x \otimes 1$ for $x \in M$ and the u_{g} for $g \in \Gamma$ acting on $L^{2} M \otimes \ell^{2} \Gamma$.

Exercise 5.5.1. Find a unitary isomorphism $w: L^{2} M \otimes \ell^{2} \Gamma \rightarrow \ell^{2} \Gamma \otimes L^{2} M$ which intertwines the two above definitions of $M \rtimes_{\alpha} \Gamma$. [[is there an op issue here?]]

There is also a commuting right action of M and Γ on $L^{2} M \otimes \ell^{2} \Gamma$ by defining

$$
\left(m \Omega \otimes \delta_{h}\right) x:=m \alpha_{h}(x) \Omega \otimes \delta_{h} \quad \text { and } \quad\left(m \Omega \otimes \delta_{h}\right) g:=m \Omega \otimes \delta_{h g}
$$

Note that these right actions commute with the left action of $M \rtimes_{\alpha} \Gamma$. We will eventually show that $M \rtimes_{\alpha} \Gamma$ carries a canonical normal faithful tracial state under which $L^{2}\left(M \rtimes_{\alpha} \Gamma\right) \cong$ $L^{2} M \otimes \ell^{2} \Gamma$, allowing us to identify the left and right actions as the canonical ones.

Facts 5.5.2. Here are some basic facts about $M \rtimes_{\alpha} \Gamma$.
$(\rtimes 1)$ For finite linear combinations $\sum x_{g} u_{g} \in M \rtimes_{\alpha} \Gamma,\left(\sum x_{g} u_{g}\right)\left(\Omega \otimes \delta_{e}\right)=\sum_{g} x_{g} \Omega \otimes \delta_{g}$. $(\rtimes 2)$ For every $x \in M \rtimes_{\alpha} \Gamma$, there is a unique sequence $\left(x_{g}\right)$ in

$$
\ell^{2}(\Gamma, M):=\left\{m: \Gamma \rightarrow M \mid \sum\left\|m_{g} \Omega\right\|_{L^{2} M}^{2}<\infty\right\}
$$

such that $x\left(\Omega \otimes \delta_{e}\right)=\sum x_{g} \Omega \otimes \delta_{g}$.

Proof. For $g \in \Gamma$, define $p_{g}: L^{2} M \otimes \ell^{2} \Gamma \rightarrow L^{2} M$ by $m \Omega \otimes \eta \mapsto\left\langle\eta, \delta_{g}\right\rangle \alpha_{g^{-1}}(m) \Omega$. Then $p_{g}^{*} m \Omega=\alpha_{g}(m) \Omega \otimes \delta_{g}$. Observe that p_{g}^{*} is right M-linear, so p_{g} is as well by Footnote 1. Hence for all $x \in M \rtimes_{\alpha} \Gamma, p_{g} x p_{e}^{*} \in(J M J)^{\prime} \cap B\left(L^{2} M\right)=M$. Define $x_{g}:=\alpha_{g}\left(p_{g} x p_{e}^{*}\right) \in M$. We then compute that for all $m \in M$ and $g \in \Gamma$,

$$
\begin{aligned}
\left\langle x\left(\Omega \otimes \delta_{e}\right), m \Omega \otimes \delta_{g}\right\rangle & =\left\langle x p_{e}^{*} \Omega, p_{g}^{*} \alpha_{g^{-1}}(m) \Omega\right\rangle=\left\langle p_{g} x p_{e}^{*} \Omega, \alpha_{g^{-1}}(m) \Omega\right\rangle_{L^{2} M} \\
& =\operatorname{tr}_{M}\left(\alpha_{g^{-1}}(m)^{*} p_{g} x p_{e}^{*}\right)=\left(\operatorname{tr}_{M} \circ \alpha_{g}\right)\left(\alpha_{g^{-1}}(m)^{*} p_{g} x p_{e}^{*}\right) \\
& =\operatorname{tr}_{M}\left(m^{*} \alpha_{g}\left(p_{g} x p_{e}^{*}\right)\right)=\operatorname{tr}_{M}\left(m^{*} x_{g}\right) \\
& =\sum_{h}\left\langle x_{h} \Omega \otimes \delta_{h}, m \Omega \otimes \delta_{g}\right\rangle .
\end{aligned}
$$

We conclude $x\left(\Omega \otimes \delta_{e}\right)=\sum_{h} x_{h} \Omega \otimes \delta_{h}$ and $x: \Gamma \rightarrow M$ lies in $\ell^{2}(\Gamma, M)$.
$(\rtimes 3)$ For all $g \in \Gamma$ and $m \in M$ and $x \in M \rtimes_{\alpha} \Gamma, x\left(m \Omega \otimes \delta_{g}\right)=\sum_{h} x_{h} \alpha_{h}(m) \Omega \otimes \delta_{h g}$.

Proof. Note that $m \Omega \otimes \delta_{g}=\left(\Omega \otimes \delta_{e}\right) \cdot m \cdot g$. Since the left and right actions commute,
$x\left(m \Omega \otimes \delta_{g}\right)=\left(x\left(\Omega \otimes \delta_{e}\right)\right) \cdot m \cdot g=\left(\sum_{h} x_{h} \Omega \otimes \delta_{h}\right) \cdot m \cdot g=\sum_{h} x_{h} \alpha_{h}(m) \Omega \otimes \delta_{h g}$
as claimed.
$(\rtimes 4)$ For $x \in M \rtimes_{\alpha} \Gamma, x^{*}\left(\Omega \otimes \delta_{e}\right)=\sum_{h} \alpha_{h}\left(x_{h^{-1}}^{*}\right) \Omega \otimes \delta_{h}$.

Proof. We compute

$$
\begin{aligned}
\left\langle x^{*}\left(\Omega \otimes \delta_{e}\right), m \Omega \otimes \delta_{g}\right\rangle & =\left\langle\Omega \otimes \delta_{e}, x\left(m \Omega \otimes \delta_{g}\right)\right\rangle=\sum_{h}\left\langle\Omega \otimes \delta_{e}, x_{h} \alpha_{h}(m) \Omega \otimes \delta_{h g}\right\rangle \\
& =\delta_{h=g^{-1}}\left\langle\Omega, x_{g^{-1}} \alpha_{g^{-1}}(m) \Omega\right\rangle=\operatorname{tr}\left(x_{g^{-1}}^{*} \alpha_{g^{-1}}(m)^{*}\right) \\
& =\left(\operatorname{tr} \circ \alpha_{g}\right)\left(x_{g^{-1}}^{*} \alpha_{g^{-1}}(m)^{*}\right)=\operatorname{tr}\left(\alpha_{g}\left(x_{g^{-1}}^{*}\right) m^{*}\right) \\
& =\left\langle\alpha_{g}\left(x_{g^{-1}}^{*}\right) \Omega, m \Omega\right\rangle_{L^{2} M}=\sum_{h}\left\langle\alpha_{h}\left(x_{h^{-1}}^{*}\right) \Omega \otimes \delta_{e}, m \otimes \delta_{g} \Omega\right\rangle
\end{aligned}
$$

The result follows.
$(\rtimes 5) \Omega \otimes \delta_{e}$ is cyclic and separating for $M \rtimes_{\alpha} \Gamma$.

Proof. First, $x=0$ iff $x_{g}=0$ for all $g \in \Gamma$, which implies $\Omega \otimes \delta_{e}$ is separating. Now for any finite linear combination $\sum_{g} m_{g} \Omega \otimes \delta_{g} \in L^{2} M \otimes \ell^{2} \Gamma$,

$$
\sum_{g} m_{g} \Omega \otimes \delta_{g}=\left(\sum_{g} m_{g} u_{g}\right)\left(\Omega \otimes \delta_{e}\right)
$$

so $\Omega \otimes \delta_{e}$ is cyclic.
$(\rtimes 6)$ The normal state $\omega_{\Omega \otimes \delta_{e}}=\left\langle\cdot \Omega \otimes \delta_{e}, \Omega \otimes \delta_{e}\right\rangle$ on $M \rtimes_{\alpha} \Gamma$ is faithful and tracial.

Proof. For $x, y \in M \rtimes_{\alpha} \Gamma$,

$$
\begin{aligned}
\left\langle x y\left(\Omega \otimes \delta_{e}\right), \Omega \otimes \delta_{e}\right\rangle & =\left\langle y\left(\Omega \otimes \delta_{e}\right), x^{*}\left(\Omega \otimes \delta_{e}\right)\right\rangle \\
& =\sum_{g, h}\left\langle y_{g} \Omega \otimes \delta_{g}, \alpha_{h}\left(x_{h^{-1}}^{*}\right) \Omega \otimes \delta_{h}\right\rangle \\
& =\sum_{g}\left\langle y_{g} \Omega, \alpha_{g}\left(x_{g^{-1}}^{*}\right) \Omega\right\rangle_{L^{2} M} \\
& =\sum_{g} \operatorname{tr}\left(\alpha_{g}\left(x_{g^{-1}}\right) y_{g}\right) \\
& =\sum_{g}\left(\operatorname{tr} \circ \alpha_{g^{-1}}\right)\left(\alpha_{g}\left(x_{g^{-1}}\right) y_{g}\right) \\
& =\sum_{g} \operatorname{tr}\left(x_{g^{-1}} \alpha_{g^{-1}}\left(y_{g}\right)\right) \\
& =\sum_{h} \operatorname{tr}\left(\alpha_{h}\left(y_{h^{-1}}\right) x_{h}\right) \\
& =\cdots=\left\langle y x\left(\Omega \otimes \delta_{e}\right), \Omega \otimes \delta_{e}\right\rangle .
\end{aligned}
$$

Faithfulness follows from the computation

$$
\begin{aligned}
\left\langle x^{*} x\left(\Omega \otimes \delta_{e}\right), \Omega \otimes \delta_{e}\right\rangle & =\left\langle x\left(\Omega \otimes \delta_{e}\right), x\left(\Omega \otimes \delta_{e}\right)\right\rangle=\sum_{g, h}\left\langle x_{g} \Omega \otimes \delta_{g}, x_{h} \Omega \otimes \delta_{h}\right\rangle \\
& =\sum_{g}\left\langle x_{g} \Omega, x_{g} \Omega\right\rangle_{L^{2} M}=\sum_{g} \operatorname{tr}\left(x_{g}^{*} x_{g}\right) .
\end{aligned}
$$

$(\rtimes 7)$ The map $m \Omega \otimes \delta_{g} \mapsto m u_{g} \Omega$ is an $M \rtimes_{\alpha} \Gamma-M \rtimes_{\alpha} \Gamma$ bilinear unitary $L^{2} M \otimes \ell^{2} \Gamma \cong$ $L^{2}\left(M \rtimes_{\alpha} \Gamma\right)$.

Proof. For finite linear combinations $\sum x_{g} u_{g} \in M \rtimes_{\alpha} \Gamma$,

$$
\begin{aligned}
\left\|\left(\sum x_{g} u_{g}\right) \Omega\right\|_{L^{2}(M \rtimes \Gamma)}^{2} & =\left\langle\left(\sum x_{h} u_{h}\right)^{*}\left(\sum x_{g} u_{g}\right)\left(\Omega \otimes \delta_{e}\right), \Omega \otimes \delta_{e}\right\rangle \\
& =\left\langle\left(\sum x_{g} u_{g}\right)\left(\Omega \otimes \delta_{e}\right),\left(\sum x_{h} u_{h}\right)\left(\Omega \otimes \delta_{e}\right)\right\rangle \\
& =\sum_{g, h}\left\langle x_{g} \Omega \otimes \delta_{g}, x_{h} \Omega \otimes \delta_{h}\right\rangle \\
& =\left\|\sum x_{g} \Omega \otimes \delta_{g} \Omega\right\|_{L^{2} M \otimes \ell^{2} \Gamma}^{2},
\end{aligned}
$$

and thus the map is isometric. We leave $M \rtimes_{\alpha} \Gamma$ bilinearity to the reader.
5.6. The type of the crossed product. Suppose $\alpha: \Gamma \rightarrow \operatorname{Aut}(M)$ is free and ergodic so that $M \rtimes_{\alpha} \Gamma$ is a factor. We further consider the special case of $M=L^{\infty}(X, \mu)$ coming from an action of Γ on (X, μ) preserving the measure class of μ. There are 4 types of free and ergodic actions of a countable discrete group Γ acting on (X, μ).

- (type I) Γ acts freely transitively so that X is a Γ-torsor.
- (type $\left.\mathrm{II}_{1}\right) \Gamma$ preserves a finite measure on X.
- (type $\left.\mathrm{II}_{\infty}\right) \Gamma$ preserves an infinite measure on X.
- (type III) no measure on X equivalent to μ is preserved by Γ.

Theorem 5.6.1. If α is a free ergodic, essentially transitive action, then $L^{\infty}(X, \mu) \rtimes \Gamma$ is type I.

Proof. Since α is essentially transitive, by Lemma 5.3.13, $X=\Gamma x$ for some $x \in X$ up to null sets (where we have replaced atoms in (X, μ) by points). Thus we may identify μ with a weighted counting measure. Then $\chi_{\{x\}} \in L^{\infty}(X, \mu)$ is a minimal projection for every $x \in X$. We claim $\chi_{\{x\}}$ is also minimal in $L^{\infty}(X, \mu) \rtimes \Gamma$, showing it is type I. Since finite linear combinations $\sum y_{g} u_{g}$ form a σ-WWOT dense unital $*$-subalgebra, it suffices to prove that for every $h \neq e$ and $y \in L^{\infty}(X, \mu)$,

$$
\chi_{\{x\}} y u_{h} \chi_{\{x\}}=0 .
$$

Indeed, for all $\xi \in L^{2}\left(\Gamma, L^{2}(X, \mu)\right)$ and $g \in \Gamma$,

$$
\left(\chi_{\{x\}} y u_{h} \chi_{\{x\}} \xi\right)(g)=\alpha_{g^{-1}}\left(\chi_{\{x\}}\right) \alpha_{g^{-1}}(y)\left(u_{h} \chi_{\{x\}} \xi\right)(g)
$$

$$
\begin{aligned}
& =\alpha_{g^{-1}}\left(\chi_{\{x\}}\right) \alpha_{g^{-1}}(y)\left(\chi_{\{x\}} \xi\right)\left(h^{-1} g\right) \\
& =\alpha_{g^{-1}}\left(\chi_{\{x\}}\right) \alpha_{g^{-1}}(y) \alpha_{g^{-1} h}\left(\chi_{\{x\}}\right) \xi\left(h^{-1} g\right)
\end{aligned}
$$

Now as $L^{\infty}(X, \mu)$ is abelian, we see

$$
\alpha_{g^{-1}}\left(\chi_{\{x\}}\right) \alpha_{g^{-1} h}\left(\chi_{\{x\}}\right)=\chi_{g^{-1} x} \chi_{g^{-1} h x}=0
$$

as $h \neq e$ and α is free.
Fact 5.6.2. Suppose (M, tr) is a tracial von Neumann algebra and $\alpha: \Gamma \rightarrow \operatorname{Aut}(M)$ is an action such that $\operatorname{tr} \circ \alpha_{g}=\operatorname{tr}$ for all $g \in \Gamma$. If α is free and ergodic, then $M \rtimes_{\alpha} \Gamma$ has a faithful normal tracial state by $(\rtimes 6)$, so it must be either type I_{n} for $n<\infty$ or type II_{1}.

Theorem 5.6.3. If the action of Γ on (X, μ) is free, ergodic, non-transitive, and μ is a finite measure such that $\mu(g A)=\mu(A)$ for all measurable A, then $L^{\infty}(X, \mu) \rtimes \Gamma$ is type I_{1}.

Proof. Since the action of Γ preserves the faithful normal tracial state $\int \cdot d \mu$, $L^{\infty}(X, \mu) \rtimes \Gamma$ is either finite dimensional or type II_{1}. So it suffices to prove that if $L^{\infty}(X, \mu) \rtimes \Gamma$ is finite dimensional and α is free and ergodic, then α is essentially transitive. If $L^{\infty}(X, \mu) \rtimes \Gamma$ is finite dimensional, then $L^{\infty}(X, \mu)$ is finite dimensional, and thus has minimal projections. Thus $(X, \mu) \cong(Y, \nu)$ for some finite measure space Y with ν a weighted counting measure. Indeed, by a maximality argument, we can write $1=\sum_{i=1}^{n} \chi_{A_{i}}$ where each $\chi_{A_{i}}$ is minimal in $L^{\infty}(X, \mu)$ and the A_{i} are disjoint measurable subsets. We then define $\nu(\{i\}):=\mu\left(A_{i}\right)$. Finally, the action of Γ on the finite measure space (Y, ν) is free and ergodic, which implies it is transitive by Exercise 5.3.13.

Exercise 5.6.4. A factor M is type I_{∞} iff 1_{M} is infinite and there is a nonzero finite projection $p \in M$ such that $p M p$ is type II_{1}.

Exercise 5.6.5. If $\left\{e_{i j}\right\} \subset M \subseteq B(H)$ is a system of matrix units, then there is a unitary $u: H \rightarrow e_{11} H \otimes \ell^{2}(I)$ such that $u M u^{*}=e_{11} M e_{11} \otimes B\left(\ell^{2}(I)\right)$.
Lemma 5.6.6. If M is a I_{∞} factor, there is a I_{1} factor N and a unital *-isomorphism $M \cong N \otimes B\left(\ell^{2}(I)\right)$.

Proof. By Exercise 5.6.4, there is a non-zero finite projection $p \in M$. Let $\left\{p_{i}\right\}_{i \in I}$ be a maximal family of mutually orthogonal projections such that $p_{i} \approx p$ for all $i \in I$.
Claim. $\sum p_{i} \approx 1$.
Proof of claim. Set $q=1-\sum p_{i}$. Since M is a factor, by maximality, $q \preccurlyeq p$. Since 1_{M} is infinite, there is an $i_{0} \in I$ and a bijection $I \cong I \backslash\left\{i_{0}\right\}$. Then

$$
1=q+\sum p_{i} \approx q+\sum_{i \neq i_{0}} p_{i} \preccurlyeq p_{i_{0}}+\sum_{i \neq i_{0}} p_{i}=\sum p_{i} \preccurlyeq 1
$$

By the claim, we may assume that $\sum p_{i}=1$; ortherwise, replace p_{i} with $u^{*} p_{i} u$ where $u u^{*}=\sum p_{i}$ and $u^{*} u=1$. Now since $\sum p_{i}=1$ and each $p_{i} \approx p$, for each j, we can
choose a partial isometry $e_{1 j}$ such that $e_{1 j} e_{1 j}^{*}=p_{1}$ and $e_{1 j}^{*} e_{1 j}=p_{j}$. We then extend the $e_{1 j}$ to a system of matrix units in the usual way. Finally, the result follows from Exercise 5.6.5.

Theorem 5.6.7. If the action of Γ on (X, μ) is free, ergodic, non-transitive, and μ is an infinite σ-finite measure such that $\mu(g A)=\mu(A)$ for all measurable A, then $L^{\infty}(X, \mu) \rtimes \Gamma$ is type II_{∞}.

Proof. By Remark 5.3.14, there are no minimal projections in $L^{\infty}(X, \mu)$. As (X, μ) is σ-finite, there is a set $Y \subset X$ with $0<\mu(Y)<\infty$. Consider the unit vector $\xi:=\mu(Y)^{-1 / 2} \chi_{Y} \otimes \delta_{e}$ and the projection $p:=\chi_{Y}$.
Claim. The normal state ω_{ξ} on the factor $p\left(L^{\infty}(X, \mu) \rtimes \Gamma\right) p$ is tracial.
Proof of claim. By a calculation similar to $(\rtimes 6)$, for all $x, y \in L^{\infty}(X, \mu) \rtimes \Gamma$,

$$
\begin{aligned}
\omega_{\xi}(\text { pxppyp }) & =\frac{1}{\mu(Y)} \sum_{g} \operatorname{tr}_{M}\left(\alpha_{g}(p) \alpha_{g}\left(x_{g^{-1}}\right) p y_{g}\right) \\
& =\frac{1}{\mu(Y)} \sum_{g} \operatorname{tr}_{M}\left(p x_{g^{-1}} \alpha_{g^{-1}}(p) \alpha_{g^{-1}}\left(y_{g}\right)\right)=\omega_{\xi}(\text { pyppxp }) .
\end{aligned}
$$

By the claim, $p\left(L^{\infty}(X, \mu) \rtimes \Gamma\right) p$ is a factor with no minimal projections and a tracial state, and thus is type II_{1}. But $L^{\infty}(X, \mu) \rtimes \Gamma$ is not type II_{1} as it has an infinite family of non-zero mutually orthogonal projections (why?). Hence 1 is infinite and $L^{\infty}(X, \mu) \rtimes \Gamma$ is type II $)_{\infty}$ by Exercise 5.6.4.

We omit the proof that if Γ preserves no measure equivalent to μ, then $L^{\infty}(X, \mu) \rtimes \Gamma$ is type III.

[^0]: ${ }^{1}$ In more generality, if $\pi_{H}: A \rightarrow B(H)$ and $\pi_{K}: A \rightarrow B(K)$ are two $*$-representations of a $*$-algebra A and $x \in B(H \rightarrow K)$ such that $x \pi_{H}(a)=\pi_{K}(a) x$ for all $a \in A$, then $\pi_{H}(a) x^{*}=x^{*} \pi_{K}(a)$ for all $a \in A$.

