Penneys Math 7212, von Neumann algebra basics Spring 2024

3. VON NEUMANN ALGEBRA BASICS

For this section, H is a Hilbert space.
3.1. Operator topologies.

Definition 3.1.1. The weak operator topology (WOT) is the locally convex TVS structure
on B(H) induced by the separating family of seminorms

{z = [(zn,§)lIn.¢ € H}.

Thus z; — « WOT if and only if (x;n,&) — (zn,&) for all n,£ € H.
The strong operator topology (SOT) is the locally convex TVS structure on B(H) induced
by the separating family of seminorms

{z—lz¢l|¢ € H} .
Thus x; — x SOT if and only if z;§6 — =€ for all £ € H.
More operator topologies will be introduced later.

Facts 3.1.2. Here are some basic facts about these operator topologies.

(OT1) WOT C SOT C norm, with equality if and only if H is finite dimensional.
(OT2) x is WOT-continuous, but not SOT-continuous (unless H is finite dimensional).

Proof. 1f x; — x WOT, then |((z* — 2)n, &)| = [(n, (x — x;)§)| — 0 for all 7, &,
so zf = z* WOT.

Now suppose (e,,) is an orthonormal sequence, and consider the unilateral shift
se, = enyq for all n. Then s*e,, = e, 1 for n > 2 and s*e; = 0. Then (s*)” — 0
SOT, but ||s"¢]| = ||| for all n. O

. J

(OT3) * is SOT-continuous on the subset of normal elements.

s ~

Proof. Observe that x normal is equivalent to ||z£|| = ||z*¢]| for all £ € H. If
x; — x SOT, then for all £ € H,

I(z" = 2})Ell* = {(z — ) (= — 2:)"¢, &)
= [lz%¢|1* — (@2i€, &) — (miz™€, &) + [l=i€l
= [lz7¢|1* — {&i€, 27¢) — {wix"€, &) + |zt
—_———— —— ——
(@ éars) (il ol
= [|lz"¢]|* = [lz€])* = 0.

In the third equality above, we used normality of x;. To get to the next line,
we used that SOT-convergence implies WOT-convergence and that x is WOT-
continuous. The final equality follows from normality of x. 0

(OT4) Multiplication is separately WOT /SOT-continuous in each variable, but not jointly.
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Example 3.1.3. N := {z € B(H)|z* =0} is SOT dense in B(H). Indeed, the
sets
{z € B(H)||(x —z0)&] <&, Vi=1,...,n}

indexed over fixed g € B(H) and &, ...,&, € H linearly independent form
a base for the SOT. Each such set contains an element of N. To see this,
choose 7y, ...,n, such that S = {&,..., &, M1, ..., ma} is linearly independent
and ||zo& — ni]| < € for all 4. Defining & = n; and a7, = 0 and # = 0 on S+
gives such an element of N.

(OT5) Multiplication is jointly SOT-continuous on B, (0) x B(H) for all » > 0. In particular,
multiplication is jointly SOT-continuous on bounded sets.

Proof. 1f x; — x and y; — y SOT with ||z;|| < r for all 4, then
Iy — x|l < l(zy — za)éll + | (ziy — zaa)é]|

< (@ — )€l + [l - 1y — wa)éll - O
—_—— ~ — —
—0 <r —0

For Proposition 3.1.4 below, we will use the following trick.

Trick (Amplification). Given a Hilbert space H, H™ is also a Hilbert space with

n

((m:), (&) an =) (ni, &) mr-

=1

Given x € B(H), x acts on H" by a,(n;) = (xn;), and ||| sy = ||| Ba)-

Proposition 3.1.4. For a functional ¢: B(H) — C, the following are equivalent.

(1) There are &1, ..., &,y - -+ € H such that o(x) = > (xn;, &),
(2) ¢ is WOT-continuous, and
(8) ¢ is SOT-continuous.

Proof. That (1) = (2) = (3) is straightforward.
For (3) = (1), the strategy of the proof is as follows:
(a) use SOT-continuity to find ny, ..., 7,
(b) amplify the action and look at n = (n;)I, € H",
(c) ¢ gives a bounded functional on the cyclic subspace generated by n € H™, and
(d) use Hahn-Banach and Riesz Representation to find &, ..., &,.
Suppose ¢ is SOT-continuous. Since ¢ ~1(BF(0)) is SOT-open, there are 1y, ..., n, € H
such that

lzn|| <1 = lo(z)| <1 Vi=1,...,n, Vx € B(H).




This implication gives the following inequalities:®

7 ) .
=1

n 1/2
p(2)] < max [lzni]| < (Z ||a:m\|2) Vo e B(H). (3.1.5)

Consider the cyclic subspace generated by n = (n;)", € H™
K ={a,n = (en;)i,|z € B(H)} C H".
We claim ¢ (a,n) = ¢(z) is a well-defined bounded linear functional on K. Indeed,

" 1/2
plawn)| = le@) < (Z ||me2> — Jlawn

so agn = 0 implies ¥ (a,n) = 0, and ¢» € K*. By Hahn-Banach, we can extend v to
H", and by Riesz Representation, there is a £ = ()7, € H" such that

() = p(0an) = (aan, E)x = p(z) = > _(zn;, &) Va € B(H)
as desired. U
*WLOG, if ||Jzm]| < |e(z)| for some z, then for some A > 0, [[(Ax)n1|| < 1 < |p(Az)|. The other
inequality is a standard fact about || - ||2 and || - ||cc on R™.

. J

Corollary 3.1.6. Both the WOT and the SOT have the same closed convex sets.

Proof. Apply the Separating Hyperplane Theorem to see that each closed convex set is
an intersection of one side of the separating hyperplanes associated to the continuous
linear functionals. Since the sets of continuous linear functionals agree, so does this
intersection. U

. J

Exercise 3.1.7. Suppose H is a Hilbert space, and (z;) is a norm bounded, increasing net
of self-adjoint operators in B(H), i.e., x; = xf and |lx;|| < K for all 4, and ¢ < j implies
x; < xj. Prove that the following are equivalent.

(1) z; » « SOT.

(2) z; —» x WOT.

(3) For every € € H, we(x;) = (2:£,&) (2, &) = we(x).

(4) There exists a dense subspace D C H such that for every £ € D, we(x;) = (x:£,€) 7

(x€,§) = we().

We say an increasing net of positive operators (z;) increases to x € B(H)., denoted z; / x,
if any of the above equivalent conditions hold.
Hint: It suffices to prove (3) = (1) and (4) = (3). For (3) = (1), note that \/x —x; > 0,
and use (OT5) and (SOT4) to show x; — x SOT if and only if \/xr —x; — 0 SOT.

3.2. Bicommutant Theorem and first examples.
Definition 3.2.1. For S C B(H), define the commutant
S":={x € B(H)|zs = sz for all s € S}.

Exercise 3.2.2. Prove the following.



(1) S C T implies T" C 5.
(2) SC9”
(3) S =5".

Lemma 3.2.3. Suppose S C B(H) is x-closed and K C H is a closed subspace. Then K is
S-invariant (sK C K for all s € S) if and only if px € S'.

Proof. Immediate from the earlier exercise that K is s and s*-invariant if and only if
[87 pK] = 0. J

Exercise 3.2.4. In this exercise, we work through the compatibility between commutant
and amplification. Let H be a Hilbert space.
(1) Find a unital *-isomorphism B(H") = M, (B(H)).
Hint: use orthogonal projections.
(2) Suppose S C B(H), and let a: B(H) — M, (B(H)) be the amplification
x
T —

Prove that:

(a) a(S) = M,(5"), and

(b) If 0,1 € S, then M, (S) = a(5").

(c¢) Deduce that when 0,1 € S, a(S)"” = «(S").

Lemma 3.2.5. If M C M, (C) is a unital x-closed subalgebra, then M = M".

Proof. 1t suffices to prove y € M” implies y € M. Fix y € M”, and consider the
amplified action a : M" — M, (M,(C)) = B(;_, C") and the vector { = (e;)I, €
B, C". Set K = a(M)¢ C @), C*, and observe that a(M)K C K. Since M = M*,
pk € a(M) = M,(M') by Exercise 3.2.4. So if y € M”, then a(y) € M,(M')
commutes with pg, and thus a(y)K C K. Since 1 € M, ¢ € K, and thus a(y)§ €
K = a(M)E. So there is an x € M such that a(y)§ = a(z)€. Then foralli =1,...,n,
ye; = xe;, soy =x € M. 0]

\. .

Theorem 3.2.6 (von Neumann bicommutant). If M C B(H) is a unital x-closed subalgebra,
the following are equivalent:

(1) M = M",

(2) M is WOT-closed, and

(3) M is SOT-closed.

Such a unital x-closed subalgebra of B(H) is called a von Neumann algebra.

Proof.
(1) = (2): Commutants are WOT-closed, since if ; — = WOT in M, then for all

y € M and n,§ € H,
(zyn, &) «— (wayn, &) = {yzin, §) — (yzn, &),
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SO TY = yx.

(2) < (3): Since M is convex, M is WOT-closed if and only if it is SOT-closed by
Corollary 3.1.6.

(3) = (1): Suppose y € M”, and consider a basic SOT-open neighborhood

{r e BH)||(x—y)&l|| <e, Yi=1,...,n}

of y where &,...,&, are linearly independent. To see that M intersects this neighbor-
hood non-trivially, set £ = (&), € @;_, H, and consider the amplified representation
of B(H)on @}, H. Define K := a(M)& C @), H, and observe K is o(M)-invariant.
Hence px € a(M)" = M,(M') which visibly commutes with «a(y). Since 1 € M,
a(y)¢ € K, and thus for every e > 0, there is an x € M with ||a(z)§ — a(y)¢]| < e.
But then ||z§; — y&;|| < e for all i. O

Examples 3.2.7. Here are some examples of von Neumann algebras.
(1) M,(C) = B(H) for dim(H) = n.
(2) Any finite dimensional unital x-closed subalgebra of M,,(C).
(3) B(H) itself.
(4) L*°(X, u) for a o-finite meansure space (X, u).
(5) If S = S* C B(H), then S’ is a von Neumann algebra.
(6) If S C B(H), then (S) = (S US*)" is the von Neumann algebra generated by 5.

Example 3.2.8 (Group von Neumann algebra). Let I' be a discrete group. Define

> kP <OO}

with inner product (n, &) = > n(g9)§ &(g). An ONB for (2T is given by {0, : b+ Gg—p }ger-

For all g € ', we define a unitary operator A\, € B((*T') by (M\&)(h) := &(h~'g). Then
AgAn = Agn and Aj = Ag-1, s0 we get a group homomorphism A:T — U(L?T) called the left
reqular representation. The group algebra is CI' := span AI'. Its norm closure is the reduced

ﬁQF::{fzr—HC

group C*-algebra C'T" := TH'”. The group von Neumann algebra is LT := (AT")".

Open problem: Is LF, = LIF3?

Proposition 3.2.9. Suppose M C B(H) is a von Neumann algebra and x = ul|x| is the
polar decomposition of x € M. Then u € M.

Proof. Since |x| € M, for all v € U(M'), x = v*zv = v*ulz|v = v*uv|z|. Moreover,
ker(v*uv) = v* ker(u) = v* ker(z). But since v* commutes with z, v* ker(x) = ker(x).
So by the uniqueness statement of the polar decomposition, v*uv = u for allv € U(M’).
Since the unitaries of M’ linearly span M', u € M"” = M. O

3.3. Strongly continuous functions and Kaplansky density.

Facts 3.3.1. Here are some basic facts about SOT-continuous functions.
5



(SOT1) If p € Clz, z], then x — p(x) is SOT-continuous on bounded sets of normal operators.

Proof. Multiplication is jointly SOT-continuous on bounded subsets, and * is
SOT-continuous on the subset of normal operators. O

Remark 3.3.2. (SOT1) above holds on bounded sets of B(H) for non-commutative poly-
nomials p € C(z,Z).

(SOT2) If f € C(C), then x — f(x) is SOT-continuous on bounded sets of normal operators.

Proof. Suppose (z;) is a bounded net of normal operators and x is normal with

x; — x SOT. There is an R > 0 such that sp(z),sp(z;) € B5(0). Then f|z,(0)
can be uniformly approximated by polynomials in z,Z. The result now follows
from (SOT1) by a standard €/3 argument. O

(SOT3) The Cayley transform z + (x —i)(z +4)~" is SOT-countinuous B(H)s, — U(H).

Proof. First, observe that the map z — z~! on C maps

: |
- ¥

Hence by the Spectral Mapping Theorem, for z self-adjoint, sp((z + )~!) C
BE(0). Since (x + 1)~ is normal, we know that ||(z+4) 7| = r((x +i)7!) < 1.
Now suppose z; — x is an SOT-convergent net of self-adjoint operators (so
is self-adjoint). Then for all £ € H,

Iz = )@ +4)7'¢ = (25 — )@ +9) ¢
= ll(z; +9)7" (& +9) (& — i) = (z; — )@ +19))(z + 1) ¢

- v
~

2i(x—x;)
<2|(z — =) (z +i)7¢|| — 0. O
N———

€H

Remark 3.3.3. The Cayley transform is a Mobius transformation which sends R — T = S,
since

t—i t—i  (t—1)? -1 2

. = = —1
t+i t—1 241 t2+1 t2+1’

and (12 — 1)% + (2t)? = (t* + 1)2.



Alternatively, a Mobius transformation must map R onto a line or circle in C, and we
calculate

i
1»—>1_Z,—<1_i)2:_212—z
1+1 2 2
—1—4 (=1-4)* 2

1+ 2 2 !

For x € B(H)s,, by the Spectral Mapping Theorem, sp((z — i)(z +¢)™') C T = S! and is
normal, and is thus a unitary.
Since the inverse of the Mobius transformation z +— “Z’Lb (ad — be # 0) is given by

Z L

2=t the inverse of the Cayley transform is given by u »—> i(1+u)(l—wu)”

(SOT4) If f € Cy(R), then = — f(z) is SOT-continuous on B(H )s,.

Proof. Let f € Cy(R). Define g: T — C by
B

_ i

0 =1 0 9=70c
where ¢! is the inverse of the Cayley Transform. By (SOT2), g is SOT-
continuous on U(H). Now f = g o c where ¢ is the Cayley Transform. So
by (SOT3), we have f is SOT-continuous as a composite of SOT-continuous
maps. 0]

For S C B(H), we write (S); := .5 N B1(0).
Theorem 3.3.4 (Kaplansky Density). Suppose M C B(H) is a x-subalgebra.

(1) (Mga)1 is SOT-dense in (Mjg;)l.

(2) (M), is SOT-dense in (M~ ).

(3) (M), is SOT-dense in (MSOT)l.
Proof. We proceed in several steps.

Step 0: We may assume M is a C*-algebra.

This reduction follows by noting:

(3") (M), is norm dense in (M”AH)I. Indeed, for = € (M”'”)l, pick (z,,) C M with
z, — zin ||-||. Then ||z,| — ||z|| < 1, so passing to a subsequence if necessary,

we may assume [|z,[ <14 . Then L5z, — z and ||-25z,[| < 1 for all n.
(1) (Mg,), is norm dense in (M”'H)l. Indeed, for z € (MISLH)l, pick (z,) C (M),
and 2, — z in || - ||. Then 2t — 4 as desired.

2

(2") (M.); is norm dense in (M!L”)l. Indeed, for z € (M!r'l‘)l. we can write © = y*y
where y € (MH'”)L We can pick (y,) C (M), with y, — v, so ¥y, = y'y ==
as desired.




Finally, we note that since SOT-closed sets are norm-closed, Ik C HSOT, and if
Zp, — x in || - ||, then z,, — 2 SOT. Hence if R is norm-dense in S and S is SOT-dense
in T, then R is SOT-dense in T

We now proceed with the rest of the proof assuming M is a C*-algebra.
——=50T

(1) (Mga); is SOT-dense in (M, ).

Suppose x € MfaOT. Let z; — = SOT where (x;) € M. Then z; — « WOT, and

since * is continuous WOT, z} — 2* = x WOT. Thus me, — o WOT. Hence Mg, is

. ==SOT . . ~———S0T —WOT ——SOT
WOT-dense in M, . But since Mg, is convex, we have M, = M, =M,

Now in addition, assume ||z|| < 1. There is some net (x;) C M, such that z; — =

SOT. Consider f € Cy(R) such that f(t) =t for all |t| < 1, e.g.,

By (SOT4), f(z;) = f(z) = x SOT. By the Spectral Mapping Theorem, sp(f(z;)) C
[—1,1], and thus || f(z;)|| = r(f(z;)) < 1 for all 3.

(2) (M, )y is SOT-dense in (MiOT)l.

Suppose = € (MiOT)l. By (1), there is a net (z;) C (Mg); with z; — = SOT.

Let f € Cy(R) be any function which is zero on the negative reals and f(t) = ¢ for
0<t<1, eg.,
!

‘ 1
By (SOT4), f(x;) — f(x) = x SOT. Again by Spectral Mapping, sp(f(z;)) C [0, 1]
and f(x;) is self-adjoint, and thus f(x;) is positive for all i.

(3) (M); is SOT-dense in (MSOT)l.

First, we prove Msy(M) is SOT-dense in MQ(MSOT) on H? Suppose (z;) €
MQ(MSOT), and let (z};,) C M such that z}; — z; SOT. One then checks that
(xfj) — (x;;) SOT in B(H?).

Now suppose x € (MSOT)l. Then

oT

xi= | o] € Oa@ N,

0
so by (1), there is an SOT-convergent net

(Xz' = lg izD C (Mz(M))y




with X; — X in SOT in B(H?). Then ||b;|] < 1 for all 4, and b; — = SOT in B(H). O

Remark 3.3.5. It is also true that the unitary group U(M) is SOT-dense in U (MSOT) when

M is a unital C*-algebra. As this uses the Borel functional calculus, we will postpone this
until later.

3.4. Predual. In the homework, you proved that B(H) = £L'(H)*, implemented by Tr.

Definition 3.4.1. The o-weak operator topology (o0-WOT) is the weak™ topology induced
by the predual £'(H).

Corollary 3.4.2. The unit ball of B(H) is o-WOT compact.

Proof. Immediate from the Banach-Alaoglu Theorem. O

Proposition 3.4.3. For a functional ¢: B(H) — C, the following are equivalent.

(1) There are (n,), (&) C H such that 3 ||l |*, 32 [1€al* < 00 and ¢(x) = 32 (wnn, &)
for all z € B(H),

(2) There are (n,), (£,) C H, pairwise orthogonal, such that > ||[n.|1%, > |€al|? < oo and
o) = Sam, &) for all z € B(H),

(3) There is a t € L'(H) such that p(x) = Tr(tx) for all v € B(H), and

(4) ¢ is o-WOT continuous.

Proof.
(1) = (3): Let Hy C H be the closed subspace generated by (1,), (§,), and let (e,,) be

an ONB for Hy. If dim(H,) < oo, we may express each of ,,, £, as a linear combination
of the e, to obtain scalars A;; such that

x) = Z Aij(ze;, ej) = Tr(xt) where t:= Z Aijles) {e;]

is finite rank. If dim(Hy) = oo, define #1,t5 € B(H) by t;|51 = 0 and

ty = Z 1) (€nl and ty = Z |&n) (enl
which are both bounded (by Cauchy-Schwarz). We calculate
Te(tit) = > (tstrien, €n) = Y _ Imall®> < o0

and similarly Tr(t3tz) = > ||€.]|* < 00, s0 t1,ty € L2(H). Thus t = t1t5 € L1(H), and

Tr(zt) = Tr(ztity) = Tr(tixty) = Z(ﬂlen,tgen) = Z(mnn,gn) = ().
(3) = (2): Let t = ut| be the polar decomposition so that [t| = u*t € L'(H),. Let
[t = > Anlen){en| be a Schmidt decomposition, and note > A, = ||t||; < co. Define

Np 1= Ay 2uen and &, ;= )\711/ 2€n Then the (7,) are pairwise orthogonal as u is a partial
isometry with u*ue, = e, for all n. Clearly the (&,) are pairwise orthogonal, and we
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calculate

o(x) = Tr(xt) = Z(:cten, en) = Z An(Tue,, e,) = Z(wnn,§n>.
(2) = (1): Obvious.
(3) & (4): By a homework exercise, Tr implements the duality £'(H)* = B(H), so a
linear functional is o-WOT continuous if and only if it is of the form = — Tr(tx) for
some t € L1 (H). O

Corollary 3.4.4. If ¢ is a o-WOT continuous linear functional on B(H) and ¢ > 0, then
() = Y (&, &) for some orthogonal sequence (£,) C H with Y ||€.]]? < oo.

Proof. By the proposition, ¢ = Tr(-t) for some t € L'(H). Now for all £ € H,

(t€, &) = Tr(|€){€lt) = w(€)(€]) = 0,
1/2

sot > 0. Letting t = > \u|en)(en] be a Schmidt decomposition, &, := A/ “e,, works.
U

Proposition 3.4.5. On bounded subsets of B(H), the o-WOT and the WOT agree. In
particular, the unit ball of B(H) is WOT-compact.

Proof. The identity map (B(H),0c — WOT) — (B(H),WOT) is continuous and bi-
jective. Restricting to the unit ball of B(H), we get a continuous bijection from a
compact space to a Hausdorff space, which is necessarily a homeomorphism. 0

Lemma 3.4.6. Suppose M is a von Neumann algebra. For any norm bounded increasing
net (x;) C M of self-adjoint operators, there is a unique self-adjoint operator x = lubx; € M
such that x; < x for all i, x is minimal with respect to this property, and x; /' x.

Proof. Since the norm-closed ball of radius R is WOT-compact, there is a WOT-limit
point x of (x;). For every & € H, we see (x;£,&) 7 (x€,€) as (x;) is increasing, so
x; — x WOT. Since each z; is self-adjoint and * is WOT-continuous, x = z*. Finally,
if y € B(H) such that x; <y for all 7, then (z;&,&) < (y&, ), and thus (x€, &) < (y&,§)
forall £ € H, so x <y. O

Corollary 3.4.7. If (pi)icr is a family of mutually orthogonal projections, then > p; con-
verges as the increasing limit of finite sums to the orthogonal projection onto € p;H .

Proof. Consider the index set of finite subsets /' C [ ordered by inclusion. Then
pr = Y _.cp i defines an increasing net which is bounded above. Apply Lemma 3.4.6
to get pr ' p for p :==lubpr € B(H). Use (OT5) to see p*> = p and Exercise 3.1.7(2)
to see p* = p. Since p; < p, we have p,H C pH for all i, and thus @ p;H C pH.
Since @ p; H is the smallest closed subspace containing each p; H, the claim follows by
minimality from Lemma 3.4.6. U
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Remark 3.4.8. The 0-WOT is the WOT on «(B(H)) where a: B(H) — B(H ® ¢?) is the
countably infinite amplification.

Definition 3.4.9. The 0-SOT is the SOT on a(B(H)). That is, z; = = 0-SOT if and only
if for all (§,) C H with Y ||, ]]* < 00, Y, [[(z — z)&,]* — 0.

The SOT* is generated by the seminorms = — ||z&|| + [|z*¢|| for £ € H. The o-SOT*
is generated by the seminorms x — > [|2&,[]? + ||2*&,|)* for (€,) € H with > ||&.1* < oo.
These locally convex topologies are like the SOT/o-SOT, but they ensure x is continuous.

o-WOT C 0-SOT C o-SOT* C norm
Remark 3.4.10. We have: U U U

WOT < SOT < SOT*

Exercise 3.4.11. Show that a functional ¢: B(H) — C is 0-WOT continuous if and only
if it is 0-SOT continuous.

Exercise 3.4.12. Show that for a unital x-subalgebra M C B(H), the following are equiv-
alent.
(1) M =M"
(2) M is 0-WOT closed
(3) M is 0-SOT closed
(4) M is SOT*-closed
(5) M is 0-SOT* closed

Exercise 3.4.13. Prove that on bounded subsets of B(H), the 0-SOT and SOT agree.

Theorem 3.4.14. Let M C B(H) be a von Neumann algebra. There is a Banach space M,
such that M is isometrically isomorphic to (M.,)*. Moreover, the o-WOT on M is the weak*
topology induced by M,. We call M, a predual of M. Any other predual of M inducing the
a-WOT topology on M is canonically isometrically isomorphic to M,.

Proof. We identify B(H) = L'(H)*. Consider the pre-annihilator
M, = {t e L'(H)|Tr(mt) =0 for all m € M} .

Then M, C LY(H) is a || - ||1-closed subspace, so M, := L'(H)/M, is a Banach space
with the quotient norm. Since M C B(H) is 0-WOT (weak*) closed,

M = (M) ={x € B(H)|Tr(st) =0 for all t € M,}.

We recall that for a closed subspace Y of a normed space X, there is a canonical
isometric isomorphism (X/Y)* & Y1, Taking X = L}(H) and Y = M, so that
X/Y = M, yields (M,)* = (M,)* = M. Tt follows that the o-WOT on M, which
is the relative weak* topology on M C B(H) = L'(H)* is the the weak* topology
induced by M,.

Suppose now we have another predual X of M which also induces the o-WOT on M.
The images of the canonical isometric embeddings X < M* and M, — M* agree,
which gives an isometric isomorphism X = M,. Indeed, the image of X (respectively
M,) is precisely the bounded linear functionals M — C which are continuous with
respect to the X-weak™ (respectively M,-weak*) topology, which is the o-WOT. O

11



Definition 3.4.15. A unital C*-algebra M is called a W*-algebra if it has a predual, i.e.,

*

there exists a Banach space M, and an isometric isomorphism M = (M,)*.

By Theorem 3.4.14, every von Neumann algebra is a W*-algebra. The converse is also
true by a result of Sakai, but it goes beyond this class.

3.5. Borel functional calculus.

Definition 3.5.1. Let (X, M) be a measurable set (M is a o-algebra on X), let H be a
Hilbert space, and let P(H) denote the set of orthogonal projections. A spectral measure is
a function E: M — P(H) satisfying

(0) E(0) =0 and

(1) For all disjoint sequences (S,,) C M, > E(S,) = E(J S,), where the sum converges

SOT.

Observe that for all n,& € H, p,¢(S) = (E(S)n,§) is a finite C-valued measure. If X is
LCH, M is the Borel o-algebra, and every p, ¢ is regular, we call E a regular Borel spectral
measure.

Example 3.5.2. Suppose X is a compact Hausdorff space and u is a finite regular Borel
measure (a.k.a. a Radon measure) on X. Then S — yg € L>®(X, u) C B(L*(X, 1)) defines
a regular Borel spectral measure.

Facts 3.5.3. Here are some facts about spectral measures. All sets below are assumed
measurable.

(E1) If SNT = 0, then E(S) L E(T).

Proof. Since E(SUT) = E(S) + E(T) is a projection, the result follows from
the following exercise.

Exercise 3.5.4. Suppose p,q € P(H) are projections. Then p L ¢ if and only
if p+ ¢ is a projection. 0

(E2) E(SNT) = E(S)E(T).

Proof. By (E1),
E(S)E(T)= (E(S\T)+ E(SNT))(E(T\S)+E(SNT))=E(SNT). O

(E3) If S C T, then E(S) < E(T) (which is equivalent to E(S)E(T) = E(95)).

Proof. Tmmediate from (E2). O

\. J

Definition 3.5.5. Let E: (X, M) — P(H) be a spectral measure. We say a mesurable
function f on X is essentially bounded with respect to E if there is a ¢ > 0 such that
E({|f] > ¢}) =0. For such f, we define

Ifllz := inf {¢ > O|E({| | > ¢}) = 0}
We denote by L*°(E) the collection of (equivalence classes of) functions essentially bounded

with respect to F.
12



Exercise 3.5.6. Show that L>°(FE) is a unital commutative C*-algebra.

Remark 3.5.7. Suppose E: (X, M) — P(H) is a spectral measure. Consider B*(X),
the bounded measurable functions on X. Observe there is a unital *-homomorphism from
B*(X) — L>®(F) such that f; 7 f in B>®(X) implies [f;] ' [f] in L>(E). (Here, increasing
pointwise, as neither algebra is a priori a von Neumann algebra acting on a Hilbert

means

space.)

While the kernel is generally difficult to describe and is highly dependent on E, we claim
this map is surjective. Indeed, suppose [f] € L*(E), so that E({|f| > ¢}) = 0 for some
Then consider the function fxyjf<sp € B¥(X). Observe that [fxyf<e] = [f] since

c > 0.

| fX1if1>ep /e = 0. Indeed, for all € > 0 (with ¢ > ¢), we have

Construction 3.5.8. Given a spectral measure E: (X, M) — P(H), we construct an iso-

metric

Step 1:

Step 2:

Step 3:

Facts 3.5.9. The unital *-homomorphism [ - dE satisfies the following properties. All

E({|fxupsal > €}) = E{|f| > ¢}) =0.

unital *-homomorphism [ - dE: L*(E) — B(H).
We first define it for simple functions [ " | ¢;xs, dE =Y 1 ¢;E(S;).

Well-defined. Suppose Y. ¢;xs, = 0. For F C {1,...,n}, let

Sp = (ﬂ Si> V(Us

i€F j¢F
Then the sets {Sp|F C {1,...,n}} are mutually disjoint and S; = (J,cp Sr-
We calculate

0= ZCiXSi = ZCiXUieFSF = ZCiZXSF = Z (Z Ci) XSp>s
=1

i=1 i=1 el F \ieF
50 Y ;cpCi = 0 for all . Thus

ZciE(Si) = ZcE <U SF> => Y GESp)=> D e | E(Sk) =0.

el i=1 ieF 1€l
0

O

For all simple functions f, || [ fdE| su) = || f]l&-

Proof. As in the proof of Step 1, 7" | cixs, = 2op (Yiep i) Xsp and [ fdE =
> r (Xicr ) E(Sp) where the Sp are disjoint. Both norms are equal to the
largest | >, ¢;| such that E(Sg) # 0. O

Since [ - dE is a linear isometry from simple functions in L>(E) to B(H), and the
simple functions are dense in L*°(E), it extends uniquely to an isometry L>*(E) —

B(H).

functions below are assumed to be in L>(E).
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= ([ fdE)".

Proof. The condition is clearly L>(FE)-norm closed and holds for simple func-
tions, which are norm-dense in L*(E). O

2) ([ fdE) ([ gdE) = ([ fgdE)

Proof. Again, this holds when f, g are simple functions, and we can approxi-
mate separately. 0

(J3) ((J fAE) n.€) = [ f dpne

Proof. Again, use simple functions. O

(J4) If (f;) C L>=(E) with f; S f € L®(F) pointwise, then [ fidE / [ fdE SOT.

Proof. For £ € H, pe¢(S) = (E(S)E, €), which is a non-negative finite measure
n (X, M). Slnce fi /N f in L®(E) and e is finite, f € L'(pee). By the
Monotone Convergence Theorem,

((J108)e ) rome (] 55)cc)

Since £ was arbitrary, [ f;dE /' [ fdE. O

(/5) (Spectral Mapping) spp ([ f dE) = ess. range(f) in L=(E).

Proof. Suppose A € C and ¢ > 0 such that E(S := {|f — A\| < €}) = 0. Define
g € L¥(E) by

(2) = {(f(z)—)\)l if |[f(z) =Alze & 2¢5
A= 0 if|[f(z) =N <e & z€8,

and note that ||g||z < & '. Then

(foe) (f 62

[otr-xae

_ /Sg<f—A>dE +/X\Sg<f—A>dE

= V—/\ dE . v_ g
Ixsg(f ) = xsg(f — A) dE

=0 e

_ B(X\S) =1,
soX&sp ([ fdE).
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Conversely, suppose E(S. := {|f — A| < €}) # 0. Since |f — A xs. < €xs., for

all unit vectors & € E(S. )H,
—||(fir-nae) s

(fro 3
= || (fxstr - naE) s
<||(fxstr-naz))|

Thus A is an approximate eigenvalue for [ f dE and lies in its spectrum. O

Theorem 3.5.10 (Spectral). Let A C B(H) be a unital commutative C*-algebra. There is

a unique regular Borel spectral measure E, on A such that [ fdE, = f(x) forall f € C(A\)
Moreover, [ - dE, is an isometric unital x-homomorphism L*(E,) — A" C B(H).

The proof proceeds in a series of steps.

Step 1: Construction of the candidate operator E,(S) for S C A Borel.

Proof. For n,& € H, f — (f(x)n,§) is a continuous linear functional on C’(;l)
By the Riesz Representation Theorem, there is a unique finite regular Borel
measure fi, ¢ on A such that (f(x)n, &) = [ fdpye for all f e C(ﬁ) Now e ¢
is non-negative, and since Ais compact Hausdorff and thus normal, for every
open U C ﬁ,

pee(U) = sup {/fdu&g’f € C(A), 0< f<1, supp(f) C U}. (3.5.11)

We now observe that (1,&) — i, ¢ is linear in 7, conjugate linear in £, and so
by polarization,

1 ‘k:
Hng = 1 Zz ik g mtikg-
k=0

By (3.5.11) and regularity, it follows that p,¢(S) = pe,(S) for every Borel set
S and n,¢ € H. Fixing S Borel, the map (1, ) — 1, ¢(S) is sesquilinear and
bounded. Hence there is a unique operator E(S) € B(H) such that p,¢(S) =
(E(S)n,€&) for all n, & € H. O

Step 2: E,

. (A, Borel) — B(H) is a regular spectral measure which takes values in P(A”).

Proof. This step of the proof proceeds in a series of sub-steps. In the proofs
below, n,&¢ € H are arbitrary.

15



(a) E,(0) =0 and E,(A) = 1:
(Bx(0)0,€) = tme(®) =0 and (E,(A)n,€) = pme(A) = (1,€).
(b) E,(S)* = E(S) for all Borel S C A:

(Ez(S)n, &) = (n, Ex(9)€) = uen(S) = tne(S) = (Ex(S)n, ).
(C) If Sl N Sg = @, E(Sl U 52) = E(Sl) -+ E(Sg)

(Ex(S1U 82)n,8) = pne(S1US2)
= Ung(S1) + pyg(S2)
= (Ex(S1)n, &) + (Ex(S2)n, §)
= ((Ex(S1) + E2(S52))n, )
(d) For all g € C’(/Al) dltg(zyne = gAfine:
[ #usans = S@g@m&) = [ fodue  ¥f e

) For all g € C’(A) and S C A Borel, dig, (syne = Xshine:
/ f disysme = (@) Ea(S)1,€) = (Eu(S), F()€)

- / xsFduen = [ Fxsdine v/ € C(A)
(f) E.(S1NSy) = E,(S1)E.(S2). In particular E,(S)? = E,(S):

(Ee(S1)Ep(S2)n, &) = pE,(S)ne(S1) = /X&XSQ diine = (Ez(S1 N S2)n, §).
=XS1NSqy

(g) If (S,) is a sequence of disjoint Borel sets, then E, (S :=5,) =
> E,(S,) where the sum converges SOT:
Indeed, for all N € N,

=) E.(S.) = Ex(S) - E, (U Sn> = F, (S\ U Sn> .
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Then for all £ € H,

2

o)
AR

—u55<5\U5n)

=il

n—00
— 0.

(h) For all Borel S C A, E,(S) € A”:
Indeed, for all a € A', figy e = finqave since for all f € C(A),

/ f dbtane = (F@)an, &) = (f (@), aE) = / f dptgaee.

Thus for all Borel S C A\,
(E(S)an, §) = pane(S) = pinare(S) = (E(S)n,a’§) = (aE(S)n,&). O

Step 3: For all f € C(A\), f(z) = [ fdE,. Thus C(X) sits injectively inside L*(E,), and

thus for all non-empty open U C 121\, E.(U) # 0 by Urysohn’s Lemma.

e ~

Proof. Let f € C(A). Then f also defines an element of L>®(E,). We simply
check for all n,¢& € H,

F@n&) = [ £dne = <( / dex> n,5>. .

Step 4: E, is the unique regular Borel spectral measure such that f(z) = [ fdE, for all

feC(A).

Proof. Suppose F' is another such regular Borel spectral measure so that for
n,& € H, v,¢(S) := (F(S)n,&) is a regular Borel measure on A. Then for all

feC(A),

Jro= ()= )

SO Upe = iy e. We conclude that E(S) = F(S) for all Borel S C A

Construction 3.5.12 (Borel/ L™ functional calculus (BFC)). Let © € B(H) be normal and
consider the von Neumann algebra W*(z) = {z,2*}" generated by x. There is a unique
regular Borel spectral measure E, on sp(x) such that [id dE, = x where id(z) = z for all

17



z € sp(x). Moreover, [ fdE, = f(z) for all f € C(sp(x)). We may thus unambiguously
denote [ fdE, = f(x) for f € L®(E,).

Proposition 3.5.13. Suppose © € B(H) is normal and f € L*(E,). Then for all g €
L¥(Ey(w)), go f € L*(E;), and (g0 f)(x) = g(f(z)).

Proof. First, since sp(f(x)) = ess.range(f) in L>*(FE,) and g is Borel measurable on
sp(f(z)), g o f is Borel measurable on sp(z), and defines an element of L*(E,).
It suffices to prove that

G(5) = (xs o f)(z) € P(W*(z)) S Csp(f(x)) Borel
is a regular Borel spectral measure on sp(f(z)) such that [id dG = f(z). Note that
xs © f = Xxf-1(s), 80 G(S) E(f71(9)), and for all n,& € H, ,uff’g on ess.range(f) is
the pushforward of pl’c via f :sp(z) — sp(f(z)). Hence pﬁg is regular Borel. (Recall
that any finite Borel measure on a second countable locally compact space is regular,
and ess. range(f) C C is compact.)

Now if we approximate id € B> (sp(f(z))) by simple functions g, — id in || - ||, then
gnof— fin] |l in B®(sp(x)), so g, o f — fin L>®°(FE). Finally,

/id dG:lim/gndG:hm(gnof)(x) :hm/gnode:/de:f(:z:). O

. J

Facts 3.5.14. Here are some elementary applications of the BFC. Let M C B(H) be a von
Neumann algebra.

(1) M is the norm-closure of the span of its projections.

Proof. 1t suffices to approximate any positive operator in the unit ball of M by
a linear combination of projections. Just uniformly approximate the identity
function on [0, 1] by a simple function.

© L L L« o

(2) If L C M is a non-zero left-ideal, then L contains a projection.

Proof. 1t x € L\{0}, then z*z € L\{0}. Without loss of generality, ||z*z| = 1.
Let 0 < e < 1 and consider f(t) = t~'x1(¢). Then f(z*x)z*z = x1(x) € L
is a non-zero projection. U

(3) If x € M is normal, then x{0}(%) = Prer(a)-

Proof. Clearly xx{0}(z) = 0, 50 X10} (%) < Prer(a)-

For n > 0, let E, := sp(z) \ Bi/(n+1)(0); then set Fy = Ey and for n € N
inductively define F,, := E, \ E,_1. Then the projections p, := xp, () are
mutually orthogonal, and > pn = Xsp(a)\{0} () converges SOT. For n > 0,

18



define f,, : sp(z) — C by

fn(z) =

27! ifz€F,
0 else,

and observe that p, = fu.(z)x. If £ € ker(z), then for all n > 0, p,& =

fa(@)zé = 0. Thus Xspno}(2)E = D omeopné = 0, and thus £ = xqo(2)E.
Hence prer(z) < X103(2), and so they are equal. O

(4) For all z € M, supp(z) and range(x) lie in M.

Proof. Since prer(z*z) = X{o}(z*x) € M and ker(z) = ker(z*z), supp(z) =
1 — Prer(z) € M. Formally, range(x) = supp(z*) € M. O

. J

(5) The unitary group U(M) is path connected in the norm topology.

Proof. Let uw € U(M) and let log be any branch of the logarithm. Then u =
exp(log(u)) = exp(i(—ilog(u))) where —ilog(u) is self-adjoint by the Spectral
Mapping Theorem ([5). Then ¢ — exp(it(—ilog(u))) is a norm-continuous
path of unitaries from u to 1 in U(M). O

Corollary 3.5.15. (Kaplansky) If A C B(H) is a unital C*-algebra, then U(A) is SOT-

dense in U(ASOT).

Proof. Suppose u € U (ZSOT). Let x € XfaOT such that u = exp(iz). By the Kaplansky
Density Theorem 3.3.4, there is a net (z;) C Ag, with ||z;|| < ||z| and x; — = SOT.
Let f € Cp(R) such that f = exp(it) on [—||z|, ||z|]]. Then f(z;) € U(A) for all i, and
since f is SOT-continuous by (SOT4), f(z;) — f(x) SOT. O

Definition 3.5.16. Suppose M C B(H) is a von Neumann algebra. A unital *-homomorphism
¢ : M — B(K) is called normal if 0 < z; / z in M implies ®(z;)  ®(z). Observe that
o-WOT continuous unital x-homomorphisms are normal by

Example 3.5.17. Every 0-WOT continuous unital *-homomorphism is normal by Exercise
3.1.7 and Proposition 3.4.5.

Proposition 3.5.18. Suppose ® : M — B(K) is a normal x-homomorphism and v € M 1is
normal. For all f € B®(sp(x)), ®(f(z)) = f(P(x)).

Proof. Since @ is contractive, spp(x)(®(z)) C spy,(z), and thus f(®(x)) is well-defined.
Since @ is normal, F(S) := ®(E,(5)) is a well-defined regular Borel spectral measure
on sp(z). Moreover, as simple functions are dense in L (F'), for all f € C(sp(x)),

/ f dF = ®(f(z)).
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Note that ®(f(z))
Weierstrass, ®(f(x)
7,8 € K,

[ranse={(([ 14 ) £) = (@t
~ @@ = ([ 14Bu ) ) = [ 152,

Hence p), = /Li?(” for all n,§ € K, and thus F(S) = Eg(;(S) for all Borel sets
S C sp(x). The result follows. O

) whenever f is a polynomial in z and Z, so by Stone-

f(@(x
= f(®(x)) for any f € C(sp(z)). Thus for all f € C(sp(z)) and

Corollary 3.5.19. The partial isometry u in the polar decomposition x = u|x| is independent
of the choice of faithful o-WOT continuous representation of M.

Proof. Suppose K is another Hilbert space and 7: M — B(K) is a faithful c-WOT
continuous unital *-homomorphism, which is automatically normal. Let 7w(z) =
vm(|x|) be the polar decompostion on K, where we have used that 7(|z|) = |7 ()]
as w(x*z) = w(z)*m(x) has a unique positive square root. By the uniqueness state-
ment of the polar decomposition, it suffices to prove ker(7(u)) = ker(v), which follows
by the calculation

v*v = supp(m(z)) = Xsp(r(@)\ {0} (7(2)) = Xsp)\{0} (7(2))
= T(Xsp(x)\{0} (z)) = m(supp(z)) = m(u*u) = 7(uw) 7 (u). [

3.6. Abelian von Neumann algebras and multiplicity theory.

Exercise 3.6.1. Suppose M C B(H) is a unital *-subalgebra. A vector £ € H is called:

e cyclic for M if M¢ is dense in H.
e separating for M if for every x,y € M, x€ = y& implies © = y.

(1) Prove that ¢ is cyclic for M if and only if £ is separating for M’.

(2) Prove that H can be orthogonally decomposed into M-invariant subspaces H =
P,c; Ki, such that each Kj; is cyclic for M (has a cyclic vector). Prove that if H is
separable, this decomposition is countable.

(3) Prove that if M is abelian and H is separable, then there is a separating vector in H
for M.

Exercise 3.6.2. Let H be a separable Hilbert space and A C B(H) an abelian von Neumann
algebra. Prove that the following are equivalent.

(1) A is maximal abelian, i.e., A = A’

(2) A has a cyclic vector £ € H.

(3) For every norm separable SOT-dense C*-subalgebra Ay C A, Ay has a cyclic vector.
(4) There is a norm separable SOT-dense C*-subalgebra A; C A such that Ay has a

cyclic vector.
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(5) There is a finite regular Borel measure p on a compact Hausdorff second countable
space X and a unitary u € B(L*(X,p), H) such that f — uMu* is an isometric
x-isomorphism L (X, u) — A.

Hints:

For (1) = (2), use Ezercise 3.6.1.

For (3) = (4) it suffices to construct a norm separable SOT-dense C*-algebra. First show
that A, = LY(H)/A, is a separable Banach space. Then show that A is o-WOT separable,
which implies SOT-separable. Take Aq to be the unital C*-algebra generated by an SOT-
dense sequence. R

For (4) = (5) show that Ay separable implies X = Ay is second countable. Define p = pg
on X, and show that the map C(X) — H by f—T"Y ) isall |2 — |- |lg isometry with
dense range.

Exercise 3.6.3. Suppose E: (X, M) — P(H) is a spectral measure with H separable, and
let A C B(H) be the unital C*-algebra which is the image of L>(E) under [ -dE. Suppose
there is a cyclic unit vector £ € H for A.

(1) Show that we(f) = ([ fdE)E, ) is a faithful state on L®(E) (we(|f*) =0 = f =
0).
(2) Consider the finite non-negative measure p = e ¢ on (X, M). Show that a measur-
able function f on (X, M) is essentially bounded with respect to F if and only if f
is essentially bounded with respect to pu.
(3) Deduce that for essentially bounded measurable f on (X, M), || fllz = || fllzec(x, M)
(4) Construct a unitary u € B(L*(X, M, ), H) such that for all f € L>(F) = L>(X, M, u),
(5) Deduce that A C B(H) is a maximal abelian von Neumann algebra.

Definition 3.6.4. A normal operator € B(H) is called multiplicity free if one of the
following equivalent conditions holds:
e C*(z) has a cyclic vector or
o Wi(z) = W(z)'(= C*(x))
Corollary 3.6.5. Suppose His separable and x € B(H) is normal and multiplicity free.
There exist a reqular Borel measure p on sp(x) and a unitary u € B(L*(sp(z),p) — H)
such that
(1) LOO(Xv :u) = Loo(Ea:>a
(2) for all f € L>(X, p), uMsu* = [ fdE, = f(z), and
(3) the map L>(X, p) > f— f(x) € W*(x) is an isometric x-isomorphism.

Theorem 3.6.6. Suppose H is separable and x € B(H) is normal.

(1) There exists a sequence (p,) C C*(x)" of mutually orthogonal projections such that
YD =18SOT and p,H is a cyclic subspace for C*(x) for all n.
(2) For all n, there is a finite reqular Borel measure j, on sp(x) and a unitary u, €
B(L*(sp(2), tn) — H) such that
e for all f € B*(sp(x)), upMyuy, = f(@)pn = f(xpn), and
o the map L™ (sp(x), ptn) > f +— f(x)pn € W*(x)p,, s an isometric x-isomorphism.
(3) Setting pn:="> 27" i,
o forall f € L®(sp(z), ), D u,Msul = f(x)p, = f(x) SOT, and
21



e the map L>®(sp(z), ) 3 f +— f(x) € W*(x) is an isometric x-isomorphism.
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