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3. von Neumann algebra basics

For this section, H is a Hilbert space.

3.1. Operator topologies.

Definition 3.1.1. The weak operator topology (WOT) is the locally convex TVS structure
on B(H) induced by the separating family of seminorms

{x 7→ |⟨xη, ξ⟩||η, ξ ∈ H} .
Thus xi → x WOT if and only if ⟨xiη, ξ⟩ → ⟨xη, ξ⟩ for all η, ξ ∈ H.

The strong operator topology (SOT) is the locally convex TVS structure on B(H) induced
by the separating family of seminorms

{x 7→ ∥xξ∥|ξ ∈ H} .
Thus xi → x SOT if and only if xiξ → xξ for all ξ ∈ H.

More operator topologies will be introduced later.

Facts 3.1.2. Here are some basic facts about these operator topologies.

(OT1) WOT ⊆ SOT ⊆ norm, with equality if and only if H is finite dimensional.
(OT2) ∗ is WOT-continuous, but not SOT-continuous (unless H is finite dimensional).

Proof. If xi → x WOT, then |⟨(x∗ − x∗i )η, ξ⟩| = |⟨η, (x− xi)ξ⟩| → 0 for all η, ξ,
so x∗i → x∗ WOT.
Now suppose (en) is an orthonormal sequence, and consider the unilateral shift
sen = en+1 for all n. Then s

∗en = en−1 for n ≥ 2 and s∗e1 = 0. Then (s∗)n → 0
SOT, but ∥snξ∥ = ∥ξ∥ for all n. □

(OT3) ∗ is SOT-continuous on the subset of normal elements.

Proof. Observe that x normal is equivalent to ∥xξ∥ = ∥x∗ξ∥ for all ξ ∈ H. If
xi → x SOT, then for all ξ ∈ H,

∥(x∗ − x∗i )ξ∥2 = ⟨(x− xi)(x− xi)∗ξ, ξ⟩
= ∥x∗ξ∥2 − ⟨xx∗i ξ, ξ⟩ − ⟨xix∗ξ, ξ⟩+ ∥x∗i ξ∥2.
= ∥x∗ξ∥2 − ⟨x∗i ξ, x∗ξ⟩︸ ︷︷ ︸

→⟨x∗ξ,x∗ξ⟩

−⟨xix∗ξ, ξ⟩︸ ︷︷ ︸
→⟨xx∗ξ,ξ⟩

+ ∥xiξ∥2︸ ︷︷ ︸
→∥xξ∥2

= ∥x∗ξ∥2 − ∥xξ∥2 = 0.

In the third equality above, we used normality of xi. To get to the next line,
we used that SOT-convergence implies WOT-convergence and that ∗ is WOT-
continuous. The final equality follows from normality of x. □

(OT4) Multiplication is separately WOT/SOT-continuous in each variable, but not jointly.
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Example 3.1.3. N := {x ∈ B(H)|x2 = 0} is SOT dense in B(H). Indeed, the
sets

{x ∈ B(H)|∥(x− x0)ξi∥ < ε, ∀ i = 1, . . . , n}
indexed over fixed x0 ∈ B(H) and ξ1, . . . , ξn ∈ H linearly independent form
a base for the SOT. Each such set contains an element of N . To see this,
choose η1, . . . , ηn such that S = {ξ1, . . . , ξn, η1, . . . , ηn} is linearly independent
and ∥x0ξi − ηi∥ < ε for all i. Defining xξi = ηi and xηi = 0 and x = 0 on S⊥

gives such an element of N .

(OT5) Multiplication is jointly SOT-continuous on Br(0)×B(H) for all r > 0. In particular,
multiplication is jointly SOT-continuous on bounded sets.

Proof. If xi → x and yi → y SOT with ∥xi∥ < r for all i, then

∥(xy − xiyi)ξ∥ ≤ ∥(xy − xiy)ξ∥+ ∥(xiy − xiyi)ξ∥
≤ ∥(x− xi)yξ∥︸ ︷︷ ︸

→0

+ ∥xi∥︸︷︷︸
≤r

· ∥(y − yi)ξ∥︸ ︷︷ ︸
→0

. □

For Proposition 3.1.4 below, we will use the following trick.

Trick (Amplification). Given a Hilbert space H, Hn is also a Hilbert space with

⟨(ηi), (ξi)⟩Hn :=
n∑

i=1

⟨ηi, ξi⟩H .

Given x ∈ B(H), x acts on Hn by αx(ηi) := (xηi), and ∥αx∥B(Hn) = ∥x∥B(H).

Proposition 3.1.4. For a functional φ : B(H)→ C, the following are equivalent.

(1) There are ξ1, . . . , ξn, η1, . . . , ηn ∈ H such that φ(x) =
∑
⟨xηi, ξi⟩,

(2) φ is WOT-continuous, and
(3) φ is SOT-continuous.

Proof. That (1)⇒ (2)⇒ (3) is straightforward.
For (3)⇒ (1), the strategy of the proof is as follows:

(a) use SOT-continuity to find η1, . . . , ηn,
(b) amplify the action and look at η := (ηi)

n
i=1 ∈ Hn,

(c) φ gives a bounded functional on the cyclic subspace generated by η ∈ Hn, and
(d) use Hahn-Banach and Riesz Representation to find ξ1, . . . , ξn.

Suppose φ is SOT-continuous. Since φ−1(BC
1 (0)) is SOT-open, there are η1, . . . , ηn ∈ H

such that

∥xηi∥ < 1 ⇒ |φ(x)| < 1 ∀ i = 1, . . . , n, ∀x ∈ B(H).
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This implication gives the following inequalities:a

|φ(x)| ≤ max
i=1,...,n

∥xηi∥ ≤

(
n∑

i=1

∥xηi∥2
)1/2

∀x ∈ B(H). (3.1.5)

Consider the cyclic subspace generated by η := (ηi)
n
i=1 ∈ Hn:

K := {αxη = (xηi)
n
i=1|x ∈ B(H)} ⊂ Hn.

We claim ψ(αxη) := φ(x) is a well-defined bounded linear functional on K. Indeed,

|ψ(αxη)| := |φ(x)| ≤
(3.1.5)

(
n∑

i=1

∥xηi∥2
)1/2

= ∥αxη∥K ,

so αxη = 0 implies ψ(αxη) = 0, and ψ ∈ K∗. By Hahn-Banach, we can extend ψ to
Hn, and by Riesz Representation, there is a ξ = (ξi)

n
i=1 ∈ Hn such that

φ(x) = ψ(αxη) = ⟨αxη, ξ⟩K = φ(x) =
∑
⟨xηi, ξi⟩ ∀x ∈ B(H)

as desired. □
aWLOG, if ∥xη1∥ < |φ(x)| for some x, then for some λ > 0, ∥(λx)η1∥ < 1 < |φ(λx)|. The other
inequality is a standard fact about ∥ · ∥2 and ∥ · ∥∞ on Rn.

Corollary 3.1.6. Both the WOT and the SOT have the same closed convex sets.

Proof. Apply the Separating Hyperplane Theorem to see that each closed convex set is
an intersection of one side of the separating hyperplanes associated to the continuous
linear functionals. Since the sets of continuous linear functionals agree, so does this
intersection. □

Exercise 3.1.7. Suppose H is a Hilbert space, and (xi) is a norm bounded, increasing net
of self-adjoint operators in B(H), i.e., xi = x∗i and ∥xi∥ < K for all i, and i ≤ j implies
xi ≤ xj. Prove that the following are equivalent.

(1) xi → x SOT.
(2) xi → x WOT.
(3) For every ξ ∈ H, ωξ(xi) = ⟨xiξ, ξ⟩ ↗ ⟨xξ, ξ⟩ = ωξ(x).
(4) There exists a dense subspace D ⊂ H such that for every ξ ∈ D, ωξ(xi) = ⟨xiξ, ξ⟩ ↗
⟨xξ, ξ⟩ = ωξ(x).

We say an increasing net of positive operators (xi) increases to x ∈ B(H)+, denoted xi ↗ x,
if any of the above equivalent conditions hold.
Hint: It suffices to prove (3) ⇒ (1) and (4) ⇒ (3). For (3) ⇒ (1), note that

√
x− xi ≥ 0,

and use (OT5) and (SOT4) to show xi → x SOT if and only if
√
x− xi → 0 SOT.

3.2. Bicommutant Theorem and first examples.

Definition 3.2.1. For S ⊆ B(H), define the commutant

S ′ := {x ∈ B(H)|xs = sx for all s ∈ S} .
Exercise 3.2.2. Prove the following.
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(1) S ⊆ T implies T ′ ⊆ S ′.
(2) S ⊆ S ′′

(3) S ′ = S ′′′.

Lemma 3.2.3. Suppose S ⊆ B(H) is ∗-closed and K ⊆ H is a closed subspace. Then K is
S-invariant (sK ⊂ K for all s ∈ S) if and only if pK ∈ S ′.

Proof. Immediate from the earlier exercise that K is s and s∗-invariant if and only if
[s, pK ] = 0. □

Exercise 3.2.4. In this exercise, we work through the compatibility between commutant
and amplification. Let H be a Hilbert space.

(1) Find a unital ∗-isomorphism B(Hn) ∼= Mn(B(H)).
Hint: use orthogonal projections.

(2) Suppose S ⊆ B(H), and let α : B(H)→Mn(B(H)) be the amplification

x 7−→

x . . .
x

 .

Prove that:
(a) α(S)′ =Mn(S

′), and
(b) If 0, 1 ∈ S, then Mn(S)

′ = α(S ′).
(c) Deduce that when 0, 1 ∈ S, α(S)′′ = α(S ′′).

Lemma 3.2.5. If M ⊆Mn(C) is a unital ∗-closed subalgebra, then M =M ′′.

Proof. It suffices to prove y ∈ M ′′ implies y ∈ M . Fix y ∈ M ′′, and consider the
amplified action α : M ′′ → Mn(Mn(C)) ∼= B(

⊕n
i=1Cn) and the vector ξ = (ei)

n
i=1 ∈⊕n

i=1 Cn. SetK = α(M)ξ ⊆
⊕n

i=1Cn, and observe that α(M)K ⊆ K. SinceM =M∗,
pK ∈ α(M)′ = Mn(M

′) by Exercise 3.2.4. So if y ∈ M ′′, then α(y) ∈ Mn(M
′)′

commutes with pK , and thus α(y)K ⊆ K. Since 1 ∈ M , ξ ∈ K, and thus α(y)ξ ∈
K = α(M)ξ. So there is an x ∈M such that α(y)ξ = α(x)ξ. Then for all i = 1, . . . , n,
yei = xei, so y = x ∈M . □

Theorem 3.2.6 (von Neumann bicommutant). IfM ⊂ B(H) is a unital ∗-closed subalgebra,
the following are equivalent:

(1) M =M ′′,
(2) M is WOT-closed, and
(3) M is SOT-closed.

Such a unital ∗-closed subalgebra of B(H) is called a von Neumann algebra.

Proof.
(1)⇒ (2): Commutants are WOT-closed, since if xi → x WOT in M , then for all

y ∈M ′ and η, ξ ∈ H,

⟨xyη, ξ⟩ ←− ⟨xiyη, ξ⟩ = ⟨yxiη, ξ⟩ −→ ⟨yxη, ξ⟩,
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so xy = yx.
(2)⇔ (3): Since M is convex, M is WOT-closed if and only if it is SOT-closed by
Corollary 3.1.6.
(3)⇒ (1): Suppose y ∈M ′′, and consider a basic SOT-open neighborhood

{x ∈ B(H)|∥(x− y)ξi|| < ε, ∀ i = 1, . . . , n}
of y where ξ1, . . . , ξn are linearly independent. To see that M intersects this neighbor-
hood non-trivially, set ξ = (ξi)

n
i=1 ∈

⊕n
i=1H, and consider the amplified representation

of B(H) on
⊕n

i=1H. DefineK := α(M)ξ ⊆
⊕n

i=1H, and observeK is α(M)-invariant.
Hence pK ∈ α(M)′ = Mn(M

′) which visibly commutes with α(y). Since 1 ∈ M ,
α(y)ξ ∈ K, and thus for every ε > 0, there is an x ∈ M with ∥α(x)ξ − α(y)ξ∥ < ε.
But then ∥xξi − yξi∥ < ε for all i. □

Examples 3.2.7. Here are some examples of von Neumann algebras.

(1) Mn(C) ∼= B(H) for dim(H) = n.
(2) Any finite dimensional unital ∗-closed subalgebra of Mn(C).
(3) B(H) itself.
(4) L∞(X,µ) for a σ-finite meansure space (X,µ).
(5) If S = S∗ ⊂ B(H), then S ′ is a von Neumann algebra.
(6) If S ⊂ B(H), then ⟨S⟩ := (S ∪ S∗)′′ is the von Neumann algebra generated by S.

Example 3.2.8 (Group von Neumann algebra). Let Γ be a discrete group. Define

ℓ2Γ :=

{
ξ : Γ→ C

∣∣∣∣∣∑
g

|ξ(g)|2 <∞

}
with inner product ⟨η, ξ⟩ :=

∑
g η(g)ξ(g). An ONB for ℓ2Γ is given by {δg : h 7→ δg=h}g∈Γ.

For all g ∈ Γ, we define a unitary operator λg ∈ B(ℓ2Γ) by (λgξ)(h) := ξ(h−1g). Then
λgλh = λgh and λ∗g = λg−1 , so we get a group homomorphism λ : Γ→ U(ℓ2Γ) called the left
regular representation. The group algebra is CΓ := spanλΓ. Its norm closure is the reduced

group C∗-algebra C∗
rΓ := λΓ

∥·∥
. The group von Neumann algebra is LΓ := (λΓ)′′.

Open problem: Is LF2
∼= LF3?

Proposition 3.2.9. Suppose M ⊆ B(H) is a von Neumann algebra and x = u|x| is the
polar decomposition of x ∈M . Then u ∈M .

Proof. Since |x| ∈ M , for all v ∈ U(M ′), x = v∗xv = v∗u|x|v = v∗uv|x|. Moreover,
ker(v∗uv) = v∗ ker(u) = v∗ ker(x). But since v∗ commutes with x, v∗ ker(x) = ker(x).
So by the uniqueness statement of the polar decomposition, v∗uv = u for all v ∈ U(M ′).
Since the unitaries of M ′ linearly span M ′, u ∈M ′′ =M . □

3.3. Strongly continuous functions and Kaplansky density.

Facts 3.3.1. Here are some basic facts about SOT-continuous functions.
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(SOT1) If p ∈ C[z, z], then x 7→ p(x) is SOT-continuous on bounded sets of normal operators.

Proof. Multiplication is jointly SOT-continuous on bounded subsets, and ∗ is
SOT-continuous on the subset of normal operators. □

Remark 3.3.2. (SOT1) above holds on bounded sets of B(H) for non-commutative poly-
nomials p ∈ C⟨z, z⟩.

(SOT2) If f ∈ C(C), then x 7→ f(x) is SOT-continuous on bounded sets of normal operators.

Proof. Suppose (xi) is a bounded net of normal operators and x is normal with

xi → x SOT. There is an R > 0 such that sp(x), sp(xi) ⊆ BC
R(0). Then f |BR(0)

can be uniformly approximated by polynomials in z, z. The result now follows
from (SOT1) by a standard ε/3 argument. □

(SOT3) The Cayley transform x 7→ (x− i)(x+ i)−1 is SOT-countinuous B(H)sa → U(H).

Proof. First, observe that the map z 7→ z−1 on C maps

i
7−→

−i

.

Hence by the Spectral Mapping Theorem, for x self-adjoint, sp((x + i)−1) ⊂
BC

1 (0). Since (x+ i)−1 is normal, we know that ∥(x+ i)−1∥ = r((x+ i)−1) ≤ 1.
Now suppose xj → x is an SOT-convergent net of self-adjoint operators (so x
is self-adjoint). Then for all ξ ∈ H,

∥(x− i)(x+ i)−1ξ − (xj − i)(xj + i)−1ξ∥
= ∥(xj + i)−1 ((xj + i)(x− i)− (xj − i)(x+ i))︸ ︷︷ ︸

2i(x−xj)

(x+ i)−1ξ∥

≤ 2∥(x− xj) (x+ i)−1ξ︸ ︷︷ ︸
∈H

∥ −→ 0. □

Remark 3.3.3. The Cayley transform is a Möbius transformation which sends R→ T = S1,
since

t− i
t+ i

· t− i
t− i

=
(t− i)2

t2 + 1
=
t2 − 1

t2 + 1
− i 2t

t2 + 1
,

and (t2 − 1)2 + (2t)2 = (t2 + 1)2.
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Alternatively, a Möbius transformation must map R onto a line or circle in C, and we
calculate

0 7→ −i
i

= −1

1 7→ 1− i
1 + i

=
(1− i)2

2
=
−2i
2

= −i

−1 7→ −1− i
−1 + i

=
(−1− i)2

2
=

2i

2
= i.

For x ∈ B(H)sa, by the Spectral Mapping Theorem, sp((x − i)(x + i)−1) ⊂ T = S1 and is
normal, and is thus a unitary.

Since the inverse of the Möbius transformation z 7→ az+b
cz+d

(ad − bc ̸= 0) is given by

z 7→ dz−b
−cz+a

, the inverse of the Cayley transform is given by u 7→ i(1 + u)(1− u)−1.

(SOT4) If f ∈ C0(R), then x 7→ f(x) is SOT-continuous on B(H)sa.

Proof. Let f ∈ C0(R). Define g : T→ C by

g(t) :=

{
f
(
i · 1+t

1−t

)
if t ̸= 1

0 if t = 1
so g = f ◦ c−1

where c−1 is the inverse of the Cayley Transform. By (SOT2), g is SOT-
continuous on U(H). Now f = g ◦ c where c is the Cayley Transform. So
by (SOT3), we have f is SOT-continuous as a composite of SOT-continuous
maps. □

For S ⊂ B(H), we write (S)1 := S ∩B1(0).

Theorem 3.3.4 (Kaplansky Density). Suppose M ⊆ B(H) is a ∗-subalgebra.
(1) (Msa)1 is SOT-dense in (M

SOT

sa )1.

(2) (M+)1 is SOT-dense in (M
SOT

+ )1.

(3) (M)1 is SOT-dense in (M
SOT

)1.

Proof. We proceed in several steps.
Step 0: We may assume M is a C∗-algebra.

This reduction follows by noting:

(3′) (M)1 is norm dense in (M
∥·∥
)1. Indeed, for x ∈ (M

∥·∥
)1, pick (xn) ⊂ M with

xn → x in ∥·∥. Then ∥xn∥ → ∥x∥ ≤ 1, so passing to a subsequence if necessary,
we may assume ∥xn∥ ≤ 1 + 1

n
. Then n

n+1
xn → x and ∥ n

n+1
xn∥ ≤ 1 for all n.

(1′) (Msa)1 is norm dense in (M
∥·∥
sa )1. Indeed, for x ∈ (M

∥·∥
sa )1, pick (xn) ⊂ (M)1

and xn → x in ∥ · ∥. Then xn+x∗
n

2
→ x as desired.

(2′) (M+)1 is norm dense in (M
∥·∥
+ )1. Indeed, for x ∈ (M

∥·∥
+ )1. we can write x = y∗y

where y ∈ (M
∥·∥
)1. We can pick (yn) ⊂ (M)1 with yn → y, so y∗nyn → y∗y = x

as desired.
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Finally, we note that since SOT-closed sets are norm-closed, M
∥·∥ ⊂ M

SOT
, and if

xn → x in ∥ · ∥, then xn → x SOT. Hence if R is norm-dense in S and S is SOT-dense
in T , then R is SOT-dense in T .

We now proceed with the rest of the proof assuming M is a C∗-algebra.

(1) (Msa)1 is SOT-dense in (M
SOT

sa )1.

Suppose x ∈ M
SOT

sa . Let xi → x SOT where (xi) ⊂ M . Then xi → x WOT, and

since ∗ is continuous WOT, x∗i → x∗ = x WOT. Thus
xi+x∗

i

2
→ x WOT. Hence Msa is

WOT-dense in M
SOT

sa . But since Msa is convex, we have Msa
SOT

=Msa
WOT

=M
SOT

sa .
Now in addition, assume ∥x∥ ≤ 1. There is some net (xi) ⊂ Msa such that xi → x
SOT. Consider f ∈ C0(R) such that f(t) = t for all |t| ≤ 1, e.g.,

−1

1

1

−1

By (SOT4), f(xi)→ f(x) = x SOT. By the Spectral Mapping Theorem, sp(f(xi)) ⊂
[−1, 1], and thus ∥f(xi)∥ = r(f(xi)) ≤ 1 for all i.

(2) (M+)1 is SOT-dense in (M
SOT

+ )1.

Suppose x ∈ (M
SOT

+ )1. By (1), there is a net (xi) ⊂ (Msa)1 with xi → x SOT.
Let f ∈ C0(R) be any function which is zero on the negative reals and f(t) = t for
0 ≤ t ≤ 1, e.g.,

1

1

By (SOT4), f(xi) → f(x) = x SOT. Again by Spectral Mapping, sp(f(xi)) ⊂ [0, 1]
and f(xi) is self-adjoint, and thus f(xi) is positive for all i.

(3) (M)1 is SOT-dense in (M
SOT

)1.

First, we prove M2(M) is SOT-dense in M2(M
SOT

) on H2. Suppose (xij) ∈
M2(M

SOT
), and let (xkij) ⊂ M such that xkij → xij SOT. One then checks that

(xkij)→ (xij) SOT in B(H2).

Now suppose x ∈ (M
SOT

)1. Then

X :=

[
0 x
x∗ 0

]
∈ (M2(M

SOT
)sa)1,

so by (1), there is an SOT-convergent net(
Xi :=

[
ai bi
ci di

])
⊂ (M2(M))1
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with Xi → X in SOT in B(H2). Then ∥bi∥ ≤ 1 for all i, and bi → x SOT in B(H). □

Remark 3.3.5. It is also true that the unitary group U(M) is SOT-dense in U(M
SOT

) when
M is a unital C∗-algebra. As this uses the Borel functional calculus, we will postpone this
until later.

3.4. Predual. In the homework, you proved that B(H) ∼= L1(H)∗, implemented by Tr.

Definition 3.4.1. The σ-weak operator topology (σ-WOT) is the weak* topology induced
by the predual L1(H).

Corollary 3.4.2. The unit ball of B(H) is σ-WOT compact.

Proof. Immediate from the Banach-Alaoglu Theorem. □

Proposition 3.4.3. For a functional φ : B(H)→ C, the following are equivalent.

(1) There are (ηn), (ξn) ⊂ H such that
∑
∥ηn∥2,

∑
∥ξn∥2 < ∞ and φ(x) =

∑
⟨xηn, ξn⟩

for all x ∈ B(H),
(2) There are (ηn), (ξn) ⊂ H, pairwise orthogonal, such that

∑
∥ηn∥2,

∑
∥ξn∥2 <∞ and

φ(x) =
∑
⟨xηn, ξn⟩ for all x ∈ B(H),

(3) There is a t ∈ L1(H) such that φ(x) = Tr(tx) for all x ∈ B(H), and
(4) φ is σ-WOT continuous.

Proof.
(1)⇒ (3): Let H0 ⊆ H be the closed subspace generated by (ηn), (ξn), and let (en) be

an ONB for H0. If dim(H0) <∞, we may express each of ηn, ξn as a linear combination
of the en to obtain scalars λij such that

φ(x) =
∑

λij⟨xei, ej⟩ = Tr(xt) where t :=
∑
i,j

λij|ei⟩⟨ej|

is finite rank. If dim(H0) =∞, define t1, t2 ∈ B(H) by ti|H⊥
0
= 0 and

t1 =
∑
|ηn⟩⟨en| and t1 =

∑
|ξn⟩⟨en|

which are both bounded (by Cauchy-Schwarz). We calculate

Tr(t∗1t1) =
∑
⟨t∗2t1en, en⟩ =

∑
∥ηn∥2 <∞

and similarly Tr(t∗2t2) =
∑
∥ξn∥2 <∞, so t1, t2 ∈ L2(H). Thus t = t1t

∗
2 ∈ L1(H), and

Tr(xt) = Tr(xt1t
∗
2) = Tr(t∗2xt1) =

∑
⟨xt1en, t2en⟩ =

∑
⟨xηn, ξn⟩ = φ(x).

(3)⇒ (2): Let t = u|t| be the polar decomposition so that |t| = u∗t ∈ L1(H)+. Let

|t| =
∑
λn|en⟩⟨en| be a Schmidt decomposition, and note

∑
λn = ∥t∥1 < ∞. Define

ηn := λ
1/2
n uen and ξn := λ

1/2
n en. Then the (ηn) are pairwise orthogonal as u is a partial

isometry with u∗uen = en for all n. Clearly the (ξn) are pairwise orthogonal, and we

9



calculate

φ(x) = Tr(xt) =
∑
⟨xten, en⟩ =

∑
λn⟨xuen, en⟩ =

∑
⟨xηn, ξn⟩.

(2)⇒ (1): Obvious.

(3)⇔ (4): By a homework exercise, Tr implements the duality L1(H)∗ ∼= B(H), so a

linear functional is σ-WOT continuous if and only if it is of the form x 7→ Tr(tx) for
some t ∈ L1(H). □

Corollary 3.4.4. If φ is a σ-WOT continuous linear functional on B(H) and φ ≥ 0, then
φ(x) =

∑
⟨xξn, ξn⟩ for some orthogonal sequence (ξn) ⊂ H with

∑
∥ξn∥2 <∞.

Proof. By the proposition, φ = Tr( · t) for some t ∈ L1(H). Now for all ξ ∈ H,

⟨tξ, ξ⟩ = Tr(|ξ⟩⟨ξ|t) = φ(|ξ⟩⟨ξ|) ≥ 0,

so t ≥ 0. Letting t =
∑
λn|en⟩⟨en| be a Schmidt decomposition, ξn := λ

1/2
n en works.

□

Proposition 3.4.5. On bounded subsets of B(H), the σ-WOT and the WOT agree. In
particular, the unit ball of B(H) is WOT-compact.

Proof. The identity map (B(H), σ −WOT) → (B(H),WOT) is continuous and bi-
jective. Restricting to the unit ball of B(H), we get a continuous bijection from a
compact space to a Hausdorff space, which is necessarily a homeomorphism. □

Lemma 3.4.6. Suppose M is a von Neumann algebra. For any norm bounded increasing
net (xi) ⊂M of self-adjoint operators, there is a unique self-adjoint operator x = lubxi ∈M
such that xi ≤ x for all i, x is minimal with respect to this property, and xi ↗ x.

Proof. Since the norm-closed ball of radius R is WOT-compact, there is a WOT-limit
point x of (xi). For every ξ ∈ H, we see ⟨xiξ, ξ⟩ ↗ ⟨xξ, ξ⟩ as (xi) is increasing, so
xi → x WOT. Since each xi is self-adjoint and ∗ is WOT-continuous, x = x∗. Finally,
if y ∈ B(H) such that xi ≤ y for all i, then ⟨xiξ, ξ⟩ ≤ ⟨yξ, ξ⟩, and thus ⟨xξ, ξ⟩ ≤ ⟨yξ, ξ⟩
for all ξ ∈ H, so x ≤ y. □

Corollary 3.4.7. If (pi)i∈I is a family of mutually orthogonal projections, then
∑
pi con-

verges as the increasing limit of finite sums to the orthogonal projection onto
⊕

piH.

Proof. Consider the index set of finite subsets F ⊆ I ordered by inclusion. Then
pF :=

∑
i∈F pi defines an increasing net which is bounded above. Apply Lemma 3.4.6

to get pF ↗ p for p := lub pF ∈ B(H). Use (OT5) to see p2 = p and Exercise 3.1.7(2)

to see p∗ = p. Since pi ≤ p, we have piH ⊆ pH for all i, and thus
⊕

piH ⊆ pH.

Since
⊕

piH is the smallest closed subspace containing each piH, the claim follows by
minimality from Lemma 3.4.6. □
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Remark 3.4.8. The σ-WOT is the WOT on α(B(H)) where α : B(H)→ B(H ⊗ ℓ2) is the
countably infinite amplification.

Definition 3.4.9. The σ-SOT is the SOT on α(B(H)). That is, xi → x σ-SOT if and only
if for all (ξn) ⊂ H with

∑
∥ξn∥2 <∞,

∑
n ∥(x− xi)ξn∥2 → 0.

The SOT* is generated by the seminorms x 7→ ∥xξ∥ + ∥x∗ξ∥ for ξ ∈ H. The σ-SOT*
is generated by the seminorms x 7→

∑
∥xξn∥2 + ∥x∗ξn∥2 for (ξn) ⊂ H with

∑
∥ξn∥2 < ∞.

These locally convex topologies are like the SOT/σ-SOT, but they ensure ∗ is continuous.

Remark 3.4.10. We have:
σ-WOT ⊂ σ-SOT ⊂ σ-SOT* ⊂ norm

∪ ∪ ∪
WOT ⊂ SOT ⊂ SOT*

Exercise 3.4.11. Show that a functional φ : B(H) → C is σ-WOT continuous if and only
if it is σ-SOT continuous.

Exercise 3.4.12. Show that for a unital ∗-subalgebra M ⊆ B(H), the following are equiv-
alent.

(1) M =M ′′

(2) M is σ-WOT closed
(3) M is σ-SOT closed
(4) M is SOT*-closed
(5) M is σ-SOT* closed

Exercise 3.4.13. Prove that on bounded subsets of B(H), the σ-SOT and SOT agree.

Theorem 3.4.14. Let M ⊆ B(H) be a von Neumann algebra. There is a Banach space M∗
such that M is isometrically isomorphic to (M∗)

∗. Moreover, the σ-WOT on M is the weak*
topology induced by M∗. We call M∗ a predual of M . Any other predual of M inducing the
σ-WOT topology on M is canonically isometrically isomorphic to M∗.

Proof. We identify B(H) = L1(H)∗. Consider the pre-annihilator

M⊥ =
{
t ∈ L1(H)

∣∣Tr(mt) = 0 for all m ∈M
}
.

Then M⊥ ⊆ L1(H) is a ∥ · ∥1-closed subspace, so M∗ := L1(H)/M⊥ is a Banach space
with the quotient norm. Since M ⊆ B(H) is σ-WOT (weak*) closed,

M = (M⊥)
⊥ = {x ∈ B(H)|Tr(xt) = 0 for all t ∈M⊥} .

We recall that for a closed subspace Y of a normed space X, there is a canonical
isometric isomorphism (X/Y )∗ ∼= Y ⊥. Taking X = L1(H) and Y = M⊥ so that
X/Y = M∗ yields (M∗)

∗ ∼= (M⊥)
⊥ = M . It follows that the σ-WOT on M , which

is the relative weak* topology on M ⊆ B(H) = L1(H)∗ is the the weak* topology
induced by M∗.
Suppose now we have another predual X of M which also induces the σ-WOT on M .
The images of the canonical isometric embeddings X ↪→ M∗ and M∗ ↪→ M∗ agree,
which gives an isometric isomorphism X ∼= M∗. Indeed, the image of X (respectively
M∗) is precisely the bounded linear functionals M → C which are continuous with
respect to the X-weak* (respectively M∗-weak*) topology, which is the σ-WOT. □

11



Definition 3.4.15. A unital C∗-algebra M is called a W∗-algebra if it has a predual, i.e.,
there exists a Banach space M∗ and an isometric isomorphism M ∼= (M∗)

∗.

By Theorem 3.4.14, every von Neumann algebra is a W∗-algebra. The converse is also
true by a result of Sakai, but it goes beyond this class.

3.5. Borel functional calculus.

Definition 3.5.1. Let (X,M) be a measurable set (M is a σ-algebra on X), let H be a
Hilbert space, and let P (H) denote the set of orthogonal projections. A spectral measure is
a function E :M→ P (H) satisfying

(0) E(∅) = 0 and
(1) For all disjoint sequences (Sn) ⊂M,

∑
E(Sn) = E(

⋃
Sn), where the sum converges

SOT.

Observe that for all η, ξ ∈ H, µη,ξ(S) := ⟨E(S)η, ξ⟩ is a finite C-valued measure. If X is
LCH,M is the Borel σ-algebra, and every µη,ξ is regular, we call E a regular Borel spectral
measure.

Example 3.5.2. Suppose X is a compact Hausdorff space and µ is a finite regular Borel
measure (a.k.a. a Radon measure) on X. Then S 7→ χS ∈ L∞(X,µ) ⊂ B(L2(X,µ)) defines
a regular Borel spectral measure.

Facts 3.5.3. Here are some facts about spectral measures. All sets below are assumed
measurable.

(E1) If S ∩ T = ∅, then E(S) ⊥ E(T ).

Proof. Since E(S ∪ T ) = E(S) + E(T ) is a projection, the result follows from
the following exercise.

Exercise 3.5.4. Suppose p, q ∈ P (H) are projections. Then p ⊥ q if and only
if p+ q is a projection. □

(E2) E(S ∩ T ) = E(S)E(T ).

Proof. By (E1),

E(S)E(T ) =
(
E(S \ T ) + E(S ∩ T )

)(
E(T \ S) + E(S ∩ T )

)
= E(S ∩ T ). □

(E3) If S ⊂ T , then E(S) ≤ E(T ) (which is equivalent to E(S)E(T ) = E(S)).

Proof. Immediate from (E2). □

Definition 3.5.5. Let E : (X,M) → P (H) be a spectral measure. We say a mesurable
function f on X is essentially bounded with respect to E if there is a c > 0 such that
E({|f | > c}) = 0. For such f , we define

∥f∥E := inf {c > 0|E({|f | > c}) = 0} .
We denote by L∞(E) the collection of (equivalence classes of) functions essentially bounded
with respect to E.
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Exercise 3.5.6. Show that L∞(E) is a unital commutative C∗-algebra.

Remark 3.5.7. Suppose E : (X,M) → P (H) is a spectral measure. Consider B∞(X),
the bounded measurable functions on X. Observe there is a unital ∗-homomorphism from
B∞(X)→ L∞(E) such that fi ↗ f in B∞(X) implies [fi]↗ [f ] in L∞(E). (Here, increasing
means pointwise, as neither algebra is a priori a von Neumann algebra acting on a Hilbert
space.)

While the kernel is generally difficult to describe and is highly dependent on E, we claim
this map is surjective. Indeed, suppose [f ] ∈ L∞(E), so that E({|f | > c}) = 0 for some
c > 0. Then consider the function fχ{|f |≤c} ∈ B∞(X). Observe that [fχ{|f |≤c}] = [f ] since
∥fχ{|f |>c}∥E = 0. Indeed, for all ε > 0 (with c > ε), we have

E({|fχ{|f |>c}| > ε}) = E({|f | > c}) = 0.

Construction 3.5.8. Given a spectral measure E : (X,M) → P (H), we construct an iso-
metric unital ∗-homomorphism

∫
· dE : L∞(E)→ B(H).

Step 1: We first define it for simple functions
∫ ∑n

i=1 ciχSi
dE :=

∑n
i=1 ciE(Si).

Well-defined. Suppose
∑n

i=1 ciχSi
= 0. For F ⊆ {1, . . . , n}, let

SF :=

(⋂
i∈F

Si

)
\

⋃
j /∈F

Sj

 .

Then the sets {SF |F ⊆ {1, . . . , n}} are mutually disjoint and Si =
⋃

i∈F SF .
We calculate

0 =
n∑

i=1

ciχSi
=

n∑
i=1

ciχ⋃
i∈F SF

=
n∑

i=1

ci
∑
i∈F

χSF
=
∑
F

(∑
i∈F

ci

)
χSF

,

so
∑

i∈F ci = 0 for all F . Thus

n∑
i=1

ciE(Si) =
n∑

i=1

ciE

(⋃
i∈F

SF

)
=

n∑
i=1

∑
i∈F

ciE(SF ) =
∑
F

∑
i∈F

ci︸ ︷︷ ︸
=0

E(SF ) = 0.

□

Step 2: For all simple functions f , ∥
∫
f dE∥B(H) = ∥f∥E.

Proof. As in the proof of Step 1,
∑n

i=1 ciχSi
=
∑

F

(∑
i∈F ci

)
χSF

and
∫
f dE =∑

F

(∑
i∈F ci

)
E(SF ) where the SF are disjoint. Both norms are equal to the

largest
∣∣∑

i∈F ci
∣∣ such that E(SF ) ̸= 0. □

Step 3: Since
∫
· dE is a linear isometry from simple functions in L∞(E) to B(H), and the

simple functions are dense in L∞(E), it extends uniquely to an isometry L∞(E) →
B(H).

Facts 3.5.9. The unital ∗-homomorphism
∫
· dE satisfies the following properties. All

functions below are assumed to be in L∞(E).
13



(
∫
1)
∫
f dE =

(∫
f dE

)∗
.

Proof. The condition is clearly L∞(E)-norm closed and holds for simple func-
tions, which are norm-dense in L∞(E). □

(
∫
2)
(∫

f dE
) (∫

g dE
)
=
(∫

fg dE
)

Proof. Again, this holds when f, g are simple functions, and we can approxi-
mate separately. □

(
∫
3)
〈(∫

f dE
)
η, ξ
〉
=
∫
f dµη,ξ

Proof. Again, use simple functions. □

(
∫
4) If (fi) ⊂ L∞(E) with fi ↗ f ∈ L∞(E) pointwise, then

∫
fi dE ↗

∫
f dE SOT.

Proof. For ξ ∈ H, µξ,ξ(S) = ⟨E(S)ξ, ξ⟩, which is a non-negative finite measure
on (X,M). Since fi ↗ f in L∞(E) and µξ,ξ is finite, f ∈ L1(µξ,ξ). By the
Monotone Convergence Theorem,〈(∫

fi dE

)
ξ, ξ

〉
=

∫
fi dµξ,ξ ↗

∫
f dµξ,ξ =

〈(∫
f dE

)
ξ, ξ

〉
.

Since ξ was arbitrary,
∫
fi dE ↗

∫
f dE. □

(
∫
5) (Spectral Mapping) spB(H)(

∫
f dE) = ess. range(f) in L∞(E).

Proof. Suppose λ ∈ C and ε > 0 such that E(S := {|f − λ| < ε}) = 0. Define
g ∈ L∞(E) by

g(z) :=

{
(f(z)− λ)−1 if |f(z)− λ| ≥ ε ⇔ z /∈ S

0 if |f(z)− λ| < ε ⇔ z ∈ S,

and note that ∥g∥E ≤ ε−1. Then(∫
g dE

)(∫
f dE − λ

)
=

∫
g(f − λ) dE

=

∫
S

g(f − λ) dE︸ ︷︷ ︸
:=

∫
χSg(f − λ)︸ ︷︷ ︸

=0

dE

+

∫
X\S

g(f − λ) dE︸ ︷︷ ︸
:=

∫
χSg(f − λ)︸ ︷︷ ︸

=1

dE

= E(X \ S) = 1,

so λ /∈ sp
(∫

f dE
)
.
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Conversely, suppose E(Sε := {|f − λ| < ε}) ̸= 0. Since |f − λ|χSε < εχSε , for
all unit vectors ξε ∈ E(Sε)H,∥∥∥∥(∫ f dE − λ

)
ξε

∥∥∥∥ =

∥∥∥∥(∫ (f − λ) dE
)
E(Sε)ξε

∥∥∥∥
=

∥∥∥∥(∫ χSε(f − λ) dE
)
ξε

∥∥∥∥
≤
∥∥∥∥(∫ χSε(f − λ) dE

)∥∥∥∥
≤ ε ∥χSε∥ = ε.

Thus λ is an approximate eigenvalue for
∫
f dE and lies in its spectrum. □

Theorem 3.5.10 (Spectral). Let A ⊆ B(H) be a unital commutative C∗-algebra. There is

a unique regular Borel spectral measure Ex on Â such that
∫
f dEx = f(x) for all f ∈ C(Â).

Moreover,
∫
· dEx is an isometric unital ∗-homomorphism L∞(Ex)→ A′′ ⊂ B(H).

The proof proceeds in a series of steps.

Step 1: Construction of the candidate operator Ex(S) for S ⊂ Â Borel.

Proof. For η, ξ ∈ H, f 7→ ⟨f(x)η, ξ⟩ is a continuous linear functional on C(Â).
By the Riesz Representation Theorem, there is a unique finite regular Borel

measure µη,ξ on Â such that ⟨f(x)η, ξ⟩ =
∫
f dµη,ξ for all f ∈ C(Â). Now µξ,ξ

is non-negative, and since Â is compact Hausdorff and thus normal, for every

open U ⊂ Â,

µξ,ξ(U) = sup

{∫
f dµξ,ξ

∣∣∣∣f ∈ C(Â), 0 ≤ f ≤ 1, supp(f) ⊂ U

}
. (3.5.11)

We now observe that (η, ξ) 7→ µη,ξ is linear in η, conjugate linear in ξ, and so
by polarization,

µη,ξ =
1

4

3∑
k=0

ikµη+ikξ,η+ikξ.

By (3.5.11) and regularity, it follows that µη,ξ(S) = µξ,η(S) for every Borel set
S and η, ξ ∈ H. Fixing S Borel, the map (η, ξ) 7→ µη,ξ(S) is sesquilinear and
bounded. Hence there is a unique operator E(S) ∈ B(H) such that µη,ξ(S) =
⟨E(S)η, ξ⟩ for all η, ξ ∈ H. □

Step 2: Ex : (Â,Borel)→ B(H) is a regular spectral measure which takes values in P (A′′).

Proof. This step of the proof proceeds in a series of sub-steps. In the proofs
below, η, ξ ∈ H are arbitrary.
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(a) Ex(∅) = 0 and Ex(Â) = 1:

⟨Ex(∅)η, ξ⟩ = µη,ξ(∅) = 0 and ⟨Ex(Â)η, ξ⟩ = µη,ξ(Â) = ⟨η, ξ⟩.

(b) Ex(S)
∗ = E(S) for all Borel S ⊂ Â:

⟨Ex(S)
∗η, ξ⟩ = ⟨η, Ex(S)ξ⟩ = µξ,η(S) = µη,ξ(S) = ⟨Ex(S)η, ξ⟩.

(c) If S1 ∩ S2 = ∅, E(S1 ∪ S2) = E(S1) + E(S2):

⟨Ex(S1 ∪ S2)η, ξ⟩ = µη,ξ(S1 ∪ S2)

= µη,ξ(S1) + µη,ξ(S2)

= ⟨Ex(S1)η, ξ⟩+ ⟨Ex(S2)η, ξ⟩
= ⟨(Ex(S1) + Ex(S2))η, ξ⟩

(d) For all g ∈ C(Â), dµg(x)η,ξ = gdµη,ξ:∫
f dµg(x)η,ξ = ⟨f(x)g(x)η, ξ⟩ =

∫
fg dµη,ξ ∀f ∈ C(Â).

(e) For all g ∈ C(Â) and S ⊆ Â Borel, dµEx(S)η,ξ = χSdµη,ξ:∫
f dµEx(S)η,ξ = ⟨f(x)Ex(S)η, ξ⟩ = ⟨Ex(S)η, f(x)

∗ξ⟩

= µη,f∗(x)ξ(S) = µf(x)ξ,η(S)

=

∫
χSf dµξ,η =

∫
fχS dµη,ξ ∀f ∈ C(Â).

(f) Ex(S1 ∩ S2) = Ex(S1)Ex(S2). In particular Ex(S)
2 = Ex(S):

⟨Ex(S1)Ex(S2)η, ξ⟩ = µEx(S2)η,ξ(S1) =

∫
χS1χS2︸ ︷︷ ︸
=χS1∩S2

dµη,ξ = ⟨Ex(S1 ∩ S2)η, ξ⟩.

(g) If (Sn) is a sequence of disjoint Borel sets, then Ex (S :=
⋃
Sn) =∑

Ex(Sn) where the sum converges SOT:
Indeed, for all N ∈ N,

Ex(S)−
N∑

n=1

Ex(Sn) = Ex(S)− Ex

(
N⋃

n=1

Sn

)
= Ex

(
S \

N⋃
n=1

Sn

)
.
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Then for all ξ ∈ H,∥∥∥∥∥
(
Ex(S)−

N∑
n=1

Ex(Sn)

)
ξ

∥∥∥∥∥
2

=

∥∥∥∥∥Ex

(
S \

N⋃
n=1

Sn

)
ξ

∥∥∥∥∥
2

=

〈
Ex

(
S \

N⋃
n=1

Sn

)
ξ, ξ

〉

= µξ,ξ

(
S \

N⋃
n=1

Sn

)
n→∞−−−→ 0.

(h) For all Borel S ⊆ Â, Ex(S) ∈ A′′:

Indeed, for all a ∈ A′, µaη,ξ = µη,a∗ξ since for all f ∈ C(Â),∫
f dµaη,ξ = ⟨f(x)aη, ξ⟩ = ⟨f(x)η, a∗ξ⟩ =

∫
f dµη,a∗ξ.

Thus for all Borel S ⊆ Â,

⟨E(S)aη, ξ⟩ = µaη,ξ(S) = µη,a∗ξ(S) = ⟨E(S)η, a∗ξ⟩ = ⟨aE(S)η, ξ⟩. □

Step 3: For all f ∈ C(Â), f(x) =
∫
f dEx. Thus C(X) sits injectively inside L∞(Ex), and

thus for all non-empty open U ⊂ Â, Ex(U) ̸= 0 by Urysohn’s Lemma.

Proof. Let f ∈ C(Â). Then f also defines an element of L∞(Ex). We simply
check for all η, ξ ∈ H,

⟨f(x)η, ξ⟩ =
∫
f dµη,ξ =

〈(∫
f dEx

)
η, ξ

〉
. □

Step 4: Ex is the unique regular Borel spectral measure such that f(x) =
∫
f dEx for all

f ∈ C(Â).

Proof. Suppose F is another such regular Borel spectral measure so that for

η, ξ ∈ H, νη,ξ(S) := ⟨F (S)η, ξ⟩ is a regular Borel measure on Â. Then for all

f ∈ C(Â),∫
f dνη,ξ =

〈(∫
f dF

)
η, ξ

〉
= ⟨f(x)η, ξ⟩ =

〈(∫
f dEx

)
η, ξ

〉
=

∫
f dµη,ξ

so νη,ξ = µη,ξ. We conclude that E(S) = F (S) for all Borel S ⊆ Â. □

Construction 3.5.12 (Borel/L∞ functional calculus (BFC)). Let x ∈ B(H) be normal and
consider the von Neumann algebra W∗(x) := {x, x∗}′′ generated by x. There is a unique
regular Borel spectral measure Ex on sp(x) such that

∫
id dEx = x where id(z) = z for all
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z ∈ sp(x). Moreover,
∫
f dEx = f(x) for all f ∈ C(sp(x)). We may thus unambiguously

denote
∫
f dEx = f(x) for f ∈ L∞(Ex).

Proposition 3.5.13. Suppose x ∈ B(H) is normal and f ∈ L∞(Ex). Then for all g ∈
L∞(Ef(x)), g ◦ f ∈ L∞(Ex), and (g ◦ f)(x) = g(f(x)).

Proof. First, since sp(f(x)) = ess. range(f) in L∞(Ex) and g is Borel measurable on
sp(f(x)), g ◦ f is Borel measurable on sp(x), and defines an element of L∞(Ex).
It suffices to prove that

G(S) := (χS ◦ f)(x) ∈ P (W∗(x)) S ⊂ sp(f(x)) Borel

is a regular Borel spectral measure on sp(f(x)) such that
∫
id dG = f(x). Note that

χS ◦ f = χf−1(S), so G(S) = E(f−1(S)), and for all η, ξ ∈ H, µG
η,ξ on ess. range(f) is

the pushforward of µE
η,ξ via f : sp(x)→ sp(f(x)). Hence µG

η,ξ is regular Borel. (Recall
that any finite Borel measure on a second countable locally compact space is regular,
and ess. range(f) ⊂ C is compact.)
Now if we approximate id ∈ B∞(sp(f(x))) by simple functions gn → id in ∥ · ∥∞, then
gn ◦ f → f in ∥ · ∥∞ in B∞(sp(x)), so gn ◦ f → f in L∞(E). Finally,∫

id dG = lim

∫
gn dG = lim(gn ◦ f)(x) = lim

∫
gn ◦ f dE =

∫
f dE = f(x). □

Facts 3.5.14. Here are some elementary applications of the BFC. Let M ⊂ B(H) be a von
Neumann algebra.

(1) M is the norm-closure of the span of its projections.

Proof. It suffices to approximate any positive operator in the unit ball ofM by
a linear combination of projections. Just uniformly approximate the identity
function on [0, 1] by a simple function.

1

1

1

1

1

1

1

1

etc. □

(2) If L ⊆M is a non-zero left-ideal, then L contains a projection.

Proof. If x ∈ L\{0}, then x∗x ∈ L\{0}. Without loss of generality, ∥x∗x∥ = 1.
Let 0 < ε < 1 and consider f(t) = t−1χ[ε,1](t). Then f(x

∗x)x∗x = χ[ε,1](x) ∈ L
is a non-zero projection. □

(3) If x ∈M is normal, then χ{0}(x) = pker(x).

Proof. Clearly xχ{0}(x) = 0, so χ{0}(x) ≤ pker(x).
For n ≥ 0, let En := sp(x) \ B1/(n+1)(0); then set F0 = E0 and for n ∈ N
inductively define Fn := En \ En−1. Then the projections pn := χFn(x) are
mutually orthogonal, and

∑∞
n=0 pn = χsp(x)\{0}(x) converges SOT. For n ≥ 0,
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define fn : sp(x)→ C by

fn(z) =

{
z−1 if z ∈ Fn

0 else,

and observe that pn = fn(x)x. If ξ ∈ ker(x), then for all n ≥ 0, pnξ =
fn(x)xξ = 0. Thus χsp(x)\{0}(x)ξ =

∑∞
n=0 pnξ = 0, and thus ξ = χ{0}(x)ξ.

Hence pker(x) ≤ χ{0}(x), and so they are equal. □

(4) For all x ∈M , supp(x) and range(x) lie in M .

Proof. Since pker(x∗x) = χ{0}(x
∗x) ∈ M and ker(x) = ker(x∗x), supp(x) =

1− pker(x) ∈M . Formally, range(x) = supp(x∗) ∈M . □

(5) The unitary group U(M) is path connected in the norm topology.

Proof. Let u ∈ U(M) and let log be any branch of the logarithm. Then u =
exp(log(u)) = exp(i(−i log(u))) where −i log(u) is self-adjoint by the Spectral
Mapping Theorem (

∫
5). Then t 7→ exp(it(−i log(u))) is a norm-continuous

path of unitaries from u to 1 in U(M). □

Corollary 3.5.15. (Kaplansky) If A ⊂ B(H) is a unital C∗-algebra, then U(A) is SOT-

dense in U(A
SOT

).

Proof. Suppose u ∈ U(ASOT
). Let x ∈ ASOT

sa such that u = exp(ix). By the Kaplansky
Density Theorem 3.3.4, there is a net (xi) ⊂ Asa with ∥xi∥ ≤ ∥x∥ and xi → x SOT.
Let f ∈ C0(R) such that f = exp(it) on [−∥x∥, ∥x∥]. Then f(xi) ∈ U(A) for all i, and
since f is SOT-continuous by (SOT4), f(xi)→ f(x) SOT. □

Definition 3.5.16. SupposeM ⊂ B(H) is a von Neumann algebra. A unital ∗-homomorphism
Φ : M → B(K) is called normal if 0 ≤ xi ↗ x in M implies Φ(xi) ↗ Φ(x). Observe that
σ-WOT continuous unital ∗-homomorphisms are normal by

Example 3.5.17. Every σ-WOT continuous unital ∗-homomorphism is normal by Exercise
3.1.7 and Proposition 3.4.5.

Proposition 3.5.18. Suppose Φ :M → B(K) is a normal ∗-homomorphism and x ∈M is
normal. For all f ∈ B∞(sp(x)), Φ(f(x)) = f(Φ(x)).

Proof. Since Φ is contractive, spB(K)(Φ(x)) ⊆ spM(x), and thus f(Φ(x)) is well-defined.
Since Φ is normal, F (S) := Φ(Ex(S)) is a well-defined regular Borel spectral measure
on sp(x). Moreover, as simple functions are dense in L∞(F ), for all f ∈ C(sp(x)),∫

f dF = Φ(f(x)).
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Note that Φ(f(x)) = f(Φ(x)) whenever f is a polynomial in z and z, so by Stone-
Weierstrass, Φ(f(x)) = f(Φ(x)) for any f ∈ C(sp(x)). Thus for all f ∈ C(sp(x)) and
η, ξ ∈ K, ∫

f dµF
η,ξ =

〈(∫
f dF

)
η, ξ

〉
= ⟨Φ(f(x))η, ξ⟩

= ⟨f(Φ(x))η, ξ⟩ =
〈(∫

f dEΦ(x)

)
η, ξ

〉
=

∫
f dµ

EΦ(x)

η,ξ .

Hence µF
η,ξ = µ

EΦ(x)

η,ξ for all η, ξ ∈ K, and thus F (S) = EΦ(x)(S) for all Borel sets
S ⊆ sp(x). The result follows. □

Corollary 3.5.19. The partial isometry u in the polar decomposition x = u|x| is independent
of the choice of faithful σ-WOT continuous representation of M .

Proof. Suppose K is another Hilbert space and π : M → B(K) is a faithful σ-WOT
continuous unital ∗-homomorphism, which is automatically normal. Let π(x) =
vπ(|x|) be the polar decompostion on K, where we have used that π(|x|) = |π(x)|
as π(x∗x) = π(x)∗π(x) has a unique positive square root. By the uniqueness state-
ment of the polar decomposition, it suffices to prove ker(π(u)) = ker(v), which follows
by the calculation

v∗v = supp(π(x)) = χsp(π(x))\{0}(π(x)) = χsp(x)\{0}(π(x))

= π(χsp(x)\{0}(x)) = π(supp(x)) = π(u∗u) = π(u)∗π(u). □

3.6. Abelian von Neumann algebras and multiplicity theory.

Exercise 3.6.1. Suppose M ⊂ B(H) is a unital ∗-subalgebra. A vector ξ ∈ H is called:

• cyclic for M if Mξ is dense in H.
• separating for M if for every x, y ∈M , xξ = yξ implies x = y.

(1) Prove that ξ is cyclic for M if and only if ξ is separating for M ′.
(2) Prove that H can be orthogonally decomposed into M -invariant subspaces H =⊕

i∈I Ki, such that each Ki is cyclic for M (has a cyclic vector). Prove that if H is
separable, this decomposition is countable.

(3) Prove that if M is abelian and H is separable, then there is a separating vector in H
for M .

Exercise 3.6.2. LetH be a separable Hilbert space and A ⊆ B(H) an abelian von Neumann
algebra. Prove that the following are equivalent.

(1) A is maximal abelian, i.e., A = A′.
(2) A has a cyclic vector ξ ∈ H.
(3) For every norm separable SOT-dense C*-subalgebra A0 ⊂ A, A0 has a cyclic vector.
(4) There is a norm separable SOT-dense C*-subalgebra A0 ⊂ A such that A0 has a

cyclic vector.
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(5) There is a finite regular Borel measure µ on a compact Hausdorff second countable
space X and a unitary u ∈ B(L2(X,µ), H) such that f 7→ uMfu

∗ is an isometric
∗-isomorphism L∞(X,µ)→ A.

Hints:
For (1)⇒ (2), use Exercise 3.6.1.
For (3) ⇒ (4) it suffices to construct a norm separable SOT-dense C*-algebra. First show
that A∗ = L1(H)/A⊥ is a separable Banach space. Then show that A is σ-WOT separable,
which implies SOT-separable. Take A0 to be the unital C*-algebra generated by an SOT-
dense sequence.

For (4) ⇒ (5) show that A0 separable implies X = Â0 is second countable. Define µ = µξ,ξ

on X, and show that the map C(X)→ H by f 7→ Γ−1(f)ξ is a ∥ · ∥2 − ∥ · ∥H isometry with
dense range.

Exercise 3.6.3. Suppose E : (X,M)→ P (H) is a spectral measure with H separable, and
let A ⊂ B(H) be the unital C*-algebra which is the image of L∞(E) under

∫
· dE. Suppose

there is a cyclic unit vector ξ ∈ H for A.

(1) Show that ωξ(f) = ⟨(
∫
fdE)ξ, ξ⟩ is a faithful state on L∞(E) (ωξ(|f |2) = 0 =⇒ f =

0).
(2) Consider the finite non-negative measure µ = µξ,ξ on (X,M). Show that a measur-

able function f on (X,M) is essentially bounded with respect to E if and only if f
is essentially bounded with respect to µ.

(3) Deduce that for essentially bounded measurable f on (X,M), ∥f∥E = ∥f∥L∞(X,M,µ).
(4) Construct a unitary u ∈ B(L2(X,M, µ), H) such that for all f ∈ L∞(E) = L∞(X,M, µ),

(
∫
fdE)u = uMf .

(5) Deduce that A ⊂ B(H) is a maximal abelian von Neumann algebra.

Definition 3.6.4. A normal operator x ∈ B(H) is called multiplicity free if one of the
following equivalent conditions holds:

• C∗(x) has a cyclic vector or
• W∗(x) = W∗(x)′(= C∗(x)′)

Corollary 3.6.5. Suppose His separable and x ∈ B(H) is normal and multiplicity free.
There exist a regular Borel measure µ on sp(x) and a unitary u ∈ B(L2(sp(x), µ) → H)
such that

(1) L∞(X,µ) = L∞(Ex),
(2) for all f ∈ L∞(X,µ), uMfu

∗ =
∫
f dEx = f(x), and

(3) the map L∞(X,µ) ∋ f 7→ f(x) ∈W∗(x) is an isometric ∗-isomorphism.

Theorem 3.6.6. Suppose H is separable and x ∈ B(H) is normal.

(1) There exists a sequence (pn) ⊂ C∗(x)′ of mutually orthogonal projections such that∑
n pn = 1 SOT and pnH is a cyclic subspace for C∗(x) for all n.

(2) For all n, there is a finite regular Borel measure µn on sp(x) and a unitary un ∈
B(L2(sp(x), µn)→ H) such that
• for all f ∈ B∞(sp(x)), unMfu

∗
n = f(x)pn = f(xpn), and

• the map L∞(sp(x), µn) ∋ f 7→ f(x)pn ∈W∗(x)pn is an isometric ∗-isomorphism.
(3) Setting µ :=

∑
2−nµn,

• for all f ∈ L∞(sp(x), µ),
∑
unMfu

∗
n =

∑
f(x)pn = f(x) SOT, and
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• the map L∞(sp(x), µ) ∋ f 7→ f(x) ∈W∗(x) is an isometric ∗-isomorphism.
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