
Penneys Math 8110, Higher Linear Algebra Hilbert spaces

Higher linear algebra concerns itself with higher vector/Hilbert spaces and their applica-
tions to mathematics and physics. In order to generalize ordinary linear algebra to the higher
categorical context, we begin with a solid foundation of finite dimensional linear algebra, in
particular, finite dimensional Hilbert spaces and operator algebras. It is assumed the reader
has a solid understanding of finite dimensional linear algebra. All vector spaces will be finite
dimensional unless stated otherwise, and we always work over the complex numbers.

We begin by studying finite dimensional Hilbert spaces. We do so abstractly rather than
just the concrete Hilbert space Cn, as many Hilbert spaces will arise in higher linear algebra
which do not exactly look like Cn. We study the abstract complex ∗-algebra B(H) of linear
operators on a Hilbert space H rather thanMn(C) for the same reason. For this reason, some
proofs may certainly be simplified by replacing B(H) with Mn(C) and a ‘unitary algebra’
(finite dimensional C∗-algebra) with a multimatrix algebra. However, the proofs here are
really operator algebraic in nature and many can be adapted to the infinite dimensional
setting (with more work).

1.1. Hilbert spaces.

Definition 1.1.1. A Hilbert space is a vector space H equipped with a positive definite
inner product, i.e.,

• (linear in second variable) ⟨η|λξ1 + ξ2⟩ = λ⟨η|ξ1⟩+ ⟨η|ξ2⟩ for all η, ξ1, ξ2 ∈ H,

• (anti-symmetric) ⟨η|ξ⟩ = ⟨ξ|η⟩ for all η, ξ ∈ H and λ ∈ C,
• (positive definite) ⟨η|η⟩ ≥ 0 for all η ∈ H with equality if and only if η = 0.

(Since H was assumed to be finite dimensional, there is no completeness condition!) The

length of η ∈ H is ∥η∥ :=
√

⟨η|η⟩.

Example 1.1.2. The space Cn is a Hilbert space with ⟨η|ξ⟩ =
∑n

j=1 ηjξj. Under the

identification of Cn = Mn×1(C), ⟨η|ξ⟩ = η†ξ.

Exercise 1.1.3. A sesquilinear form on a complex vector space V is a function (·|·) : V 2 → C
which is linear in the second variable and anti-linear in the first variable, i.e.,

(λη1 + η2|ξ) = λ(η1|ξ) + (η2|ξ) ∀ η1, η2, ξ ∈ H and λ ∈ C.

Prove that every sesquilinear form satisfies the polarization identity

4(u|v) =
3∑

k=0

ik(v + iku|v + iku). (1.1.4)

Remark 1.1.5. In a Hilbert space H, η = 0 if and only if ⟨η|ξ⟩ = 0 for all ξ ∈ H.

Theorem 1.1.6 (Cauchy-Schwarz). For all η, ξ ∈ H, |⟨η|ξ⟩ ≤ ∥η∥ · ∥ξ∥ with equality if and
only if η, ξ are proportional.

Proof. We may assume ∥ξ∥ ≠ 0 and that ⟨η|ξ⟩ ∈ R by multiplying η by a phase. The real
non-negative polynomial

p(t) := ⟨η − tξ|η − tξ⟩ = ∥η∥2 − 2t⟨η|ξ⟩+ t2∥ξ∥2
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achieves its minimum at t0 = ⟨η|ξ⟩/∥ξ∥2, at which

0 ≤ p(t0) = ∥η∥2 − ⟨η|ξ⟩2/∥ξ∥2 ⇐⇒ ⟨η|ξ⟩ ≤ ∥η∥ · ∥ξ∥.

Equality holds if and only if p(t0) = 0, so that η = t0ξ. □

Definition 1.1.7. An orthonormal basis (ONB) for H is a finite set {ej}nj=1 ⊂ H such that

• (linearly independent)
∑

λjej = 0 implies λj = 0 for all j,
• (spans) every η ∈ H can be written as a linear combination η =

∑
λjej for some

scalars λ1, . . . , λn ∈ H, and

• (orthonormal) ⟨ei|ej⟩ = δi=j :=

{
1 if i = j

0 else.

Each element ei of an ONB is a unit vector, meaning it has unit length.

Example 1.1.8. The computational basis for Cn is {|0⟩, . . . , |n−1⟩}, where |i⟩ is the vector
which is one in the (i+ 1)-st coordinate and zero in every other coordinate.

Exercise 1.1.9. If {ej}nj=1 ⊂ H is an ONB, then η =
∑n

j=1⟨ej|η⟩ej for all η ∈ H.

Proposition 1.1.10. An orthonormal basis exists for every Hilbert space.

Proof. We use the Gram-Schmidt algorithm. We assume we have a basis {v1, . . . , vn} of H.

Set e1 := v1/∥v1∥, and then inductively set wk := vk−
∑k−1

j=1⟨ej|vk⟩ej and ek := wk/∥wk∥. □

Corollary 1.1.11. Each Hilbert space H is isomorphic as a Hilbert space to Cn where
n = dim(H).

Proof. Let {e1, . . . , en} be an ONB for H. The coordinate map [·] : η 7→ (λj)
n
j=1 where η =∑n

j=1 λjej is the desired isomorphism. One checks that this map satisfies ⟨η|ξ⟩H = ⟨[η]|[ξ]⟩Cn

for all η, ξ ∈ H. □

Definition 1.1.12. Given a Hilbert space H, the conjugate space H is the set of symbols
{η|η ∈ H} with vector space structure given by

η + ξ := η + ξ and λ · η := λ · η

and inner product given by ⟨η|ξ⟩ := ⟨ξ|η⟩.
The dual space is the space of linear functionals H → C.

Theorem 1.1.13 (Riesz Representation). The dual space H∨ is canonically isomorphic as
a vector space to H.

Proof. Every η ∈ H gives a linear functional ⟨η| : H → C by ⟨η|ξ := ⟨η|ξ⟩. We claim the map
η 7→ ⟨η| is the desired isomorphism. First, ⟨λη + ξ| = λ⟨η| + ⟨ξ|, so this map is linear and
thus well-defined. If ⟨η| = ⟨0|, then ⟨η|ξ⟩ = 0 for all ξ ∈ H, so η = 0. Finally, if f : H → C
is a non-zero linear functional, pick an ONB {ej}nj=1 of H, and observe that f is completely
determined by f(e1), . . . , f(en). It is readily checked that f =

∑n
j=1 f(ej)⟨ej|. □

Using the above proposition, we endow H∨ canonically with an inner product by

⟨⟨η| |⟨ξ| ⟩ := ⟨ξ|η⟩.
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1.2. Operators. Given Hilbert spaces H,K, we denote the linear operators H → K by
B(H → K), and we write B(H) = B(H → H).

Definition 1.2.1. Given a linear map x : H → K, observe that the map H ∋ η 7→ ⟨ξ|xη⟩
is a linear functional in H∨ for every ξ ∈ K. Hence there is some vector x†ξ ∈ H such
that the above map is equal to ⟨x†ξ|. It can be verified that the adjoint map x 7→ x† is a
conjugate-linear map B(H → K) → B(K → H) such that:

• When x, y are composable operators, (xy)† = y†x†, and
• x†† = x for all operators x.

We call x† the adjoint of x.

Exercise 1.2.2. Show the polarization identity for operators:

4x†y =
3∑

k=0

ik(x+ iky)†(x+ iky).

Given ONBs {ej}nj=1 for H and {fk}mk=1 for K, we have a canonical isomorphism B(H →
K) ∼= Mm×n(C) by

x 7−→ [x] := (⟨fi|xej⟩)i,j.
Here, the columns correspond to the ONB of the source, and the rows correspond to the
ONB of the target. Under this isomorphism, composition of linear operators corresponds to
matrix multiplication, and the adjoint corresponds to the conjugate transpose, also denoted
†. That is, the following diagrams commute:

(H, {ej}nj=1) (K, {fk}mk=1) (L, {gℓ}pℓ=1)

Cn Cm Cp

x

[·]

xy

y

[·] [·]

[x]

[x][y]

[y]

(H, {ej}nj=1) (K, {fk}mk=1)

Cn Cm.

x†

[·] [·]

[x]†

Thus studying operators between Hilbert spaces and operations between them is studying
matrices and their operations. Below, we use the abstract language of Hilbert spaces, but
the reader may safely replace B(H) with Mn(C) if they choose.

Definition 1.2.3. Gien η ∈ H and ξ ∈ K, the rank one operator |ξ⟩⟨η| : H → K is given
by ζ 7→ ⟨η|ζ⟩ξ.

Remark 1.2.4. If x ∈ Mn(C) commutes with all y ∈ Mn(C), then x = λ1 for some λ ∈ C.
This can be easily seen by looking at rank one operators of the form y = |ei⟩⟨ej| for some
ONB.

Definition 1.2.5. An operator x ∈ B(H) is called:

• normal if xx† = x†x
• self-adjoint if x† = x
• positive if ⟨ξ|xξ⟩ ≥ 0 for all ξ ∈ H (denoted x ≥ 0)
• a projection if x2 = x = x†

An operator u ∈ B(H → K) is called:
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• a partial isometry if u†u is a projection.
• a unitary if u is invertible with u−1 = u†.

Example 1.2.6. Given an orthonormal set S = {e1, . . . , ek} ⊂ H, we get an orthogonal

projection onto span(S) by
∑k

j=1 |ej⟩⟨ej|.

Exercise 1.2.7. Prove that the projection
∑k

j=1 |ej⟩⟨ej| is independent of the choice of ONB

of span(S).

Example 1.2.8. Given an orthonormal set {e1, . . . , ek} ⊂ H and another orthonormal set

{f1, . . . , fk} ⊂ K of the same size, we get a partial isometry by
∑k

j=1 |ej⟩⟨fj|.

Example 1.2.9. Suppose x is an invertible operator on H. Define a second inner product on
H by ⟨η|ξ⟩x := ⟨xη|xξ⟩, and let Hx denote H with this second inner product. The operator
Hx → H given by η 7→ xη is unitary.

Example 1.2.10. A system of matrix units in B(H) is a collection of operators {eij} sat-
isfying

(SMU1) eijekℓ = δj=keiℓ,
(SMU2)

∑
j ejj = 1, and

(SMU3) e†ij = eji

for all i, j, k, ℓ. Observe that each eij is a partial isometry and each eii is an orthogonal
projection. What sizes of systems of matrix units can occur in Mn(C)?

Lemma 1.2.11. For all x ∈ Mm×n(C), ker(x) = ker(x†x). In particular, x†x = 0 implies
x = 0.

Proof. Clearly xη = 0 implies x†xη = 0. Conversely, if x†xη = 0, then ∥xη∥2 = ⟨η|x†xη⟩ = 0,
so xη = 0. For the final statement, observe x†x = 0 if and only if ker(x) = ker(x†x) = Cn. □

Lemma 1.2.12 (Vector states separate points). An operator x : H → H is zero if and only
if ⟨η|xη⟩ = 0 for all η ∈ H.

Proof. Suppose ⟨η|xη⟩ = 0 for all η ∈ H. Consider the sesquilinear form (η|ξ) := ⟨η|xξ⟩. By
(1.1.4),

4⟨η|xξ⟩ = 4(η|ξ) =
3∑

k=0

ik(ξ+ ikη|ξ+ ikη) =
3∑

k=0

ik⟨ξ+ ikη|x(ξ+ ikη)⟩ = 0 ∀ η, ξ ∈ H.

Thus ⟨η|xξ⟩ = 0 for all η, ξ ∈ H, so xξ = 0 for all ξ ∈ H, and x = 0. The other direction is
trivial. □

Corollary 1.2.13. Positive operators are self-adjoint.

Proof. Observe that

⟨ξ|x†ξ⟩ = ⟨x†ξ|ξ⟩ = ⟨ξ|xξ⟩ = ⟨ξ|xξ⟩ ≥ 0 ∀ ξ ∈ H

whenever x ≥ 0. Hence ⟨ξ|(x − x†)ξ⟩ = 0 for all ξ ∈ H, and thus x = x† by Lemma
1.2.12. □
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Exercise 1.2.14. We say two projections p, q ∈ B(H) are (Murray-von Neumann) equiva-
lent, denoted p ≈ q, if there is a partial isometry u ∈ B(H) such that uu∗ = p and u∗u = q.
Prove that ≈ is an equivalence relation on P (B(H)), the set of projections of B(H). Then
describe the set of equivalence classes P (Mn(C))/ ≈.

Proposition 1.2.15. There is a bijective correspondence between orthogonal projections in
B(H) and subspaces of H given by p 7→ pH and H ⊃ K 7→

∑k
j=1 |ej⟩⟨ej| where {ej}kj=1 is

an ONB of K.

Proof. Note that the second map is well-defined by Exercise 1.2.7. Given an ONB {ej}kj=1

of K, im
(∑k

j=1 |ej⟩⟨ej|
)

= K. Given a projection p and an ONB {ej}kj=1 of pH, pη =∑k
j=1⟨ej|pη⟩ej =

∑k
j=1 |ej⟩⟨ej|η by Exercise 1.1.9. □

Corollary 1.2.16. Suppose p ∈ B(H) is a projection and x ∈ B(H) is an operator.

(1) pH is invariant for x if and only if xp = pxp.
(2) pH is invariant for x and x† if and only if xp = px.

Proof. To prove (1), observe that pH invariant for x means that pxpη = xpη for all η ∈ H,
and thus pxp = xp. Conversely, if pxp = xp, then xpH ⊆ pH.
To prove (2), observe that if pH invariant for x and x† is equivalent to xp = pxp and

x†p = px†p. Hence px = (x†p)† = (px†p)† = pxp = xp. Conversely, xp = px implies both
xp = pxp and x†p = px†p. □

Remark 1.2.17. Given an operator x ∈ B(H) and a projection p ∈ B(H), we can view x
as matrix with operator entries

x =

[
pxp px(1− p)

(1− p)xp (1− p)x(1− p)

]
acting on pH ⊕ (1− p)H = H. Under this identification,

p =

[
1 0
0 0

]
and 1− p =

[
0 0
0 1

]
.

Thus (1) of Corollary 1.2.16 above is equivalent to x being upper triangular, and (2) of
Corollary 1.2.16 above is equivalent to x being diagonal.

Proposition 1.2.18. Show that the following are equivalent for u ∈ B(H):

(1) u is a partial isometry.
(2) u = uu†u.
(3) u† = u†uu†.
(4) u† is a partial isometry.

Proof.
(1) ⇒ (2): Observe that

(u− uu†u)†(u− uu†u) = (u† − u†uu†)(u− uu†u) = u†u− 2u†uu†u+ u†uu†uu†u = 0,

so u− uu†u = 0 by Lemma 1.2.11.
(2) ⇒ (1): Multiply both sides on the left by u† to see u†u = u†uu†u, which is self-adjoint.

(1) ⇔ (2): Just take adjoints.
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(3) ⇔ (4): Apply (1) ⇒ (2) and (2) ⇒ (1) to u†. □

Remark 1.2.19. Proposition 1.2.18 above gives a geometric interpretation about what it
means to be a partial isometry. Indeed, u : H → K restricts to a unitary isomorphism
from u†uH onto uu†K with inverse u†. Every partial isometry is of this form; that is, given
projections p ∈ B(H) and q ∈ B(K) and a unitary isomorphism u : pH → qK, we can
extend u to an operator in B(H → K) satisfying u†u = p and uu† = q by defining u on
(1− p)H to be zero.

Definition 1.2.20. Define a partial order on B(H) by x ≤ y if y − x ≥ 0.

Exercise 1.2.21. Show that if x ≤ y and z ∈ B(H), then z†xz ≤ z†yz.

Exercise 1.2.22. Prove that for projections, p ≤ q if and only if pH ⊆ qH.

Exercise 1.2.23. Show that if p1, . . . , pn are projections such that
∑

pj = 1, then pipj = 0
when i ̸= j. Deduce that (SMU1) can be replaced with eijejk = eik for all i, j, k.

Definition 1.2.24. A non-zero projection p ∈ B(H) is called minimal if pB(H)p = Cp.

Exercise 1.2.25. Show that the following are equivalent for a non-zero projection p.

(1) p is minimal.
(2) 0 ≤ q ≤ p implies q = or q = p.
(3) pH is 1-dimensional (rank(p) = 1).
(4) p = |ξ⟩⟨ξ| for some unit vector ξ ∈ H.

Proposition 1.2.26. The complex ∗-algebra B(H) has no non-trivial 2-sided ideals. Hence
any ∗-algebra map from Mn(C) into another complex ∗-algebra is either injective or the zero
map.

Proof. Suppose I is a 2-sided ideal, and let x ∈ I be non-zero. Pick a unit vector ξ ∈ H
such that xξ ̸= 0, and set η := xξ/∥xξ∥. Then |η⟩⟨η| · x · |ξ⟩⟨ξ| ∈ I is non-zero, so I contains
the rank one operator |η⟩⟨ξ| and the minimal projection |ξ⟩⟨ξ|.

Extend ξ to an ONB {e1, . . . , en} of H with e1 = ξ. Observe that |ej⟩⟨ej| = |ej⟩⟨e1| ·
|e1⟩⟨e1| · |e1⟩⟨ej| ∈ I for all j, so 1 =

∑n
j=1 |ej⟩⟨ej| ∈ I.

The last statement follows by analyzing the kernel of such a map together with the iden-
tification Mn(C) = B(Cn). □

1.3. Direct sum and tensor product.

Definition 1.3.1. Given two Hilbert spaces H,K, their direct sum is defined as a Hilbert
space H ⊕K together with isometries iH : H → H ⊕K and iK : K → H ⊕K which satisfy
iHi

†
H + iKi

†
K = 1. By Proposition 1.2.18 and Exercise 1.2.23, it follows that i†HiK = 0 and

i†KiH = 0. By Remark 1.2.17, operators on H ⊕K can be viewed as matrices of operators:

x =

[
i†HxiH i†HxiK
i†KxiH i†KxiH

]
∈
[
B(H → H) B(K → H)
B(H → K) B(K → K)

]
.

Given a second direct sum H⊕′K with isometries jH : H → H⊕′K and jK : K → H⊕′K
satisfying jHj

†
H + jKj

†
K = 1, there is a canonical unitary isomorphism u := jHi

†
H + jKi

†
K :
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H ⊕K → H ⊕′K which is compatible with iH , iK and jH , jK in the sense that the following
diagram commutes.

H H ⊕K K

H ⊕′ K

iH

jH
u

iK

jK

This map is canonical in the sense that the canonical isomorphisms between H ⊕ K,H ⊕′

K,H ⊕′′ K for a second and third choice of direct sum fit in the following commutative
diagram.

H ⊕K H ⊕′′ K

H ⊕′ K

∼=

∼= ∼=

Thus models for H ⊕K form a contractible space.

Exercise 1.3.2. Prove that the direct sum of Hilbert spaces is simultaneously a product
and coproduct in the category of Hilbert spaces.

Definition 1.3.3. Given two Hilbert spaces H,K, their tensor product is the Hilbert space
H⊗K, which can be defined in a number of ways. The easiest is in terms of choosing ONBs
{ej} of H and {fk} of K. The tensor product H ⊗ K then has ONB the formal symbols
{ej ⊗ fk}. Thus dim(H ⊗K) = dim(H)⊗ dim(K).
It can be readily checked that if we chose different ONBs {e′j} of H and {f ′

k} of K,
there is a canonical isomorphism of Hilbert spaces from the Hilbert space H ⊗K with ONB
{ej⊗fk} to the Hilbert space H⊗′Kwith ONB {e′j⊗f ′

k}. This map is canonical in the sense
that given a third choice {e′′j} of H and {f ′′

k } of K, the canonical isomorphisms between
H ⊗K,H ⊗′ K,H ⊗′′ K fit in the following commutative diagram.

H ⊗K H ⊗′′ K

H ⊗′ K

∼=

∼= ∼=

Thus models for H ⊗K form a contractible space.

Example 1.3.4. The computational basis for Cm ⊗ Cn is usually denoted by

{|ij⟩|i = 0, . . . ,m− 1 and j = 0, . . . , n− 1} .

Exercise 1.3.5. Show that the choices of ONBs for H,K give a canonical isomorphism
B(H ⊗K) ∼= B(H)⊗B(K).

One can also define the tensor product via universal property. Any object which satisfies
the universal property is unique up to unique isomorphism.

Definition 1.3.6. The tensor product Hilbert space of H,K is a Hilbert space H ⊗ K
together with a bilinear map ⊗ : H ×K → H ⊗K which satisfy the universal property that
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for every Hilbert space L and every bilinear map T : H ×K → L, there is a unique linear

map T̃ : H ⊗K → L such that the following diagram commutes.

H ⊗K L

H ⊗K

T

⊗ T̃

Exercise 1.3.7. Use the universal property above to prove that the tensor product Hilbert
space (H ⊗K,⊗ : H ×K → H ⊗K) is unique up to unique isomorphism.

1.4. Spectral theory.

Definition 1.4.1. The spectrum of an operator x ∈ B(H) is

spec(x) := {λ ∈ C|λ− x is not invertible} .

This set is the same as the set of eigenvalues of x after identifying B(H) ∼= Mn(C), which
is also the set of roots of the characteristic polynomial χx(λ) = det(λ − x). Recall that
spec(x) ̸= ∅ by the Fundamental Theorem of Algebra (every complex polynomial has a
root).

Exercise 1.4.2. Suppose x ∈ B(H) is normal. Prove that ∥xη∥ = ∥x†η∥ for all η ∈ H.
Deduce that if λ ∈ spec(x) with corresponding eigenvector η ∈ H, then λ ∈ spec(x†) with
corresponding eigenvector η.

Theorem 1.4.3 (Spectral). The following are equivalent x ∈ Mn(C).
(1) There is an ONB of Cn consisting of eigenvectors for x.
(2) There is a unitary u ∈ Mn(C) such that u†xu is diagonal.
(3) x is normal.

Proof.
(1) ⇒ (2) : Let {ej} be such an ONB of eigenvectors for x, and set

u :=
[
e1 · · · en

]
.

The eigenvalue equation implies xu = ud where

d := diag(λ1, . . . , λn)

is the diagonal matrix whose entries are the corresponding eigenvalues of x. Then u is unitary
as its columns are orthonormal, so u†xu = d.
(2) ⇒ (3) : When d = u†xu is diagonal,

x†x = ud†u†udu† = ud†du† = udd†u† = udu†ud†u† = xx†.

(3) ⇒ (1) : Suppose x is normal and let λ ∈ spec(x) with eigenvector η ∈ Cn. By Exercise

1.4.2, η is also an eigenvector of x† with eigenvalue λ ∈ spec(x†). Hence Cη is invariant for
x and x†. By Corollary 1.2.16, xp = px where p = |η⟩⟨η|. By Remark 1.2.17, x is diagonal
with respect to the direct sum decomposition Cn = im(p)⊕ im(1− p). We now replace x by
(1− p)x = x(1− p) (which is again normal) acting on im(1− p) ⊂ Cn (which has dimension
n− 1) and repeat the above procedure to obtain the desired ONB of eigenvectors. □
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Definition 1.4.4 (Functional calculus). Suppose x ∈ Mn(C) is normal. For λ ∈ spec(x)
let Eλ ⊂ Cn denote the corresponding eigenspace, and let pλ ∈ Mn(C) be the orthogonal
projection onto Eλ. We call the pλ the spectral projections of x, and we note that they are
mutually orthogonal (pλpµ = 0 for λ ̸= µ in spec(x)) and sum to 1.

Note that
x =

∑
λ∈spec(x)

λpλ and x† =
∑

λ∈spec(x)

λpλ

as both operators agree on an orthonormal basis of Cn, namely the orthonormal basis con-
sisting of eigenvectors for x from the Spectral Theorem 1.4.3. For f : spec(x) → C, we
define

f(x) :=
∑

λ∈spec(x)

f(λ)pλ ∈ Mn(C).

Observe that spec(f(x)) = f(spec(x)), as f(x) is a diagonal operator with respect to the
projections pλ.

Theorem 1.4.5 (Gelfand). Suppose x ∈ Mn(C) is normal, and let C(spec(x)) denote the
unital ∗-algebra of C-valued functions on spec(x). The map C(spec(a)) ∋ f 7→ f(x) ∈ Mn(C)
is an injective unital ∗-algebra homomorphism onto the unital ∗-algebra generated by x.

Proof. It is straightforward to verify that f 7→ f(x) is a unital ∗-algebra map by checking the
action of f(x) on the ONB of eigenvectors of x from the Spectral Theorem 1.4.3. Injectivity
follows as f ̸= g on spec(x) implies that f(λ)pλ ̸= g(λ)pλ for some λ ∈ spec(x). Since the
image contains 1, x, and x† by construction, it is onto the unital ∗-algebra generated by
x. □

Exercise 1.4.6. Use the functional calculus to prove that every positive x ∈ Mn(C) has a
unique positive square root. That is, if x ≥ 0, there is a unique positive operator

√
x ∈ Mn(C)

such that
√
x
2
= x.

Proposition 1.4.7. Suppose x, y ∈ Mn(C) with x normal and xy = yx. Then f(x)y = yf(x)
for every f ∈ C(spec(x)).

Proof. Since spec(x) is a finite set, there is a polynomial p such that p = f on spec(x). Since
xny = yxn for every n, p(x)y = yp(x), and the result follows. □

Proposition 1.4.8. The following are equivalent for x ∈ Mn(C).
(1) x ≥ 0.
(2) x is normal and all eigenvalues of x are non-negative.
(3) There is a y ∈ Mn(C) such that y†y = x.
(4) There is a y ∈ Mn×k(C) for some k ∈ N such that y†y = x.

Proof.
(1) ⇒ (2) : Positive implies self-adjoint by Corollary 1.2.13, and self-adjoint clearly implies

normal. If η is an eigenvector of x with eigenvalue λ, 0 ≤ ⟨η|xη = λ⟨η|η⟩, so λ ≥ 0.
(2) ⇒ (3) : Use the functional calculus to define

√
x ∈ Mn(C) as in Exercise 1.4.6 above.

Observe
√
x is self-adjoint and satisfies

√
x
2
= x.

(3) ⇒ (1) : Trivial.

(4) ⇒ (1) : Observe that for all η ∈ Cn, ⟨η|xη⟩Cn = ⟨η|y†yη⟩Cn = ⟨yη|yη⟩Ck ≥ 0. □
9



Definition 1.4.9. For an operator x ∈ Mn(C) its support projection is supp(x) := 1−pker(x)
where pker(x) is the orthogonal projection onto ker(x). Observe that x = x supp(x).

Remark 1.4.10. When x is normal, x = x supp(x) = supp(x)x, and supp(x) is the sum
of all spectral projections of x except for p0 if 0 ∈ spec(x). Thus supp(x) is well-defined
independent of the action of Mn(C) on Cn.

Definition 1.4.11 (Polar decomposition). Suppose x ∈ Mm×n(C). Using functional cal-

culus, we define |x| :=
√
x†x. The map u : |x|ξ 7→ xξ on supp(x)Cn and and u = 0 on

(1− supp(x))Cn is an isometric linear operator and thus well-defined:

∥|x|ξ∥2 = ⟨ |x|ξ | |x|ξ ⟩ = ⟨ ξ | |x|2ξ ⟩ = ⟨x†xξ, ξ⟩ = ⟨xξ|xξ⟩ = ∥xξ∥2.
Hence we may write x = u|x| where u is a partial isometry and |x| ≥ 0; this is called the
polar decomposition of x.

Remark 1.4.12. When x ∈ Mn(C), the partial isometry u constructed above commutes
with all unitaries v ∈ Mn(C) which commute with x and x†. Indeed, such a v commutes
with x†x, and thus with |x| and supp(|x|) by Proposition 1.4.7. This means v = 0 on
(1− supp(x))Cn and on supp(x)Cn,

vuv∗|x|ξ = vu|x|v∗ξ = vxv∗ξ = xξ.

Thus vuv∗ = u, so vu = uv.

Exercise 1.4.13. In this exercise, we will prove the uniqueness of the polar decomposition.

(1) Show that |x| is the unique positive operator that squares to x†x.
(2) Prove that u is the unique partial isometry such that x = u|x| and ker(u) = ker(x).
(3) Deduce that u is the unique partial isometry such that with x = u|x| and u†u =

supp(|x|). In this sense, the polar decomposition is independent of the action of
Mm×n(C) on Cn.

The following lemma was worked out with David Reutter and Jan Steinebrunner.

Lemma 1.4.14. Suppose x ∈ Mm×n(C), and let x = u|x| be its polar decomposition.

(1) u†u = supp(x) and uu† = supp(x†), and
(2) u†x = |x| and x = |x†|u, and
(3) the polar decomposition of x† is given by u†|x†|.

Proof.
(1): First, since ker(u) = ker(x), u†u = 1− pker(x) = supp(x).

Second, since x† = |x|u†, ker(u†) ⊆ ker(x†). If η ∈ ker(x†), then 0 = x†η = |x|u†η, so
u†η ∈ ker(|x|) = ker(u). Hence uu†η = 0, so η ∈ ker(uu†) = ker(u†) by Lemma 1.2.11. Thus
ker(x†) = ker(u†), so uu† = 1− pker(x†) = supp(x†).

(2): Since ker(x) = ker(|x|), supp(|x|) = u†u by (1). Thus u†x = u†u|x| = supp(|x|)|x| = |x|
by Remark 1.4.10.

Since uu†|x†| = |x†| and |x|u†u = |x|,
(u†|x†|u)2 = u†|x†|uu†|x†|u = u†|x†|2u = u†xx†u = |x|2 = x†x.

Hence u†|x†|u = |x| by uniqueness of the positive square root (Exercise 1.4.6). Hence

x = u|x| = uu†|x†|u = supp(|x†|)|x†|u = |x†|u.
10



(3): Taking † in the second equation in (2) gives x† = u†|x†|. Since we showed ker(u†) =

ker(x†) in (1), it is indeed the polar decomposition. □

Corollary 1.4.15. For x ∈ Mm×n(C), the following are equivalent.

(1) x has a left inverse.
(2) x†x is invertible.
(3) In the polar decomposition x = u|x|, u is an isometry.

Dually, x has a right inverse if and only if xx† is invertible if and only if u is a coisometry.

Proof. Since ker(x) = ker(x†x), x has a left inverse if and only if ker(x†x) = ker(x) = 0 if
and only if x†x is invertible (by the Rank-Nullity Theorem). Moreover, ker(x) = 0 if and
only if u†u = 1− pker(x) = 1.

The dual statement for (1) ⇔ (2) follows formally by considering f †. The dual statement
for (2) ⇔ (3) follows as uu† = supp(f †) = 1− ker(f †) = 1− ker(ff †). □

1.5. Complex ∗-algebras and states.

Definition 1.5.1. A complex algebra is a complex vector space equipped with a compatible
associative multiplication satisfying

• (distributive) (a+ b) · c = a · c+ b · c and a · (b+ c) = a · b+ a · c for all a, b, c ∈ A, and
• (compatibility with scalars) (λa) · (µb) = (λµ)(a · b) for all a, b ∈ A and λ, µ ∈ C.

These conditions just say that · : A2 → A is bilinear. We assume that complex algebras are
finite dimensional unless stated otherwise.

A complex ∗-algebra is a complex algebra A equipped with an anti-linear involution ∗ :
A → A satisfying (ab)∗ = b∗a∗ and a∗∗ = a for all a, b ∈ A.

Lemma 1.5.2. Every algebra automorphism of Mn(C) is inner, i.e., if θ : Mn(C) → Mn(C)
is a complex algebra isomorphism, then there is an invertible h ∈ Mn(C) such that θ(x) =
h−1xh for all x ∈ Mn(C).

Proof. Let {ej} be an ONB for Cn. Then {|ei⟩⟨ej|} is a system of matrix units (see Example
1.2.10) for Mn(C). Since θ is an algebra map, {pij := θ(|ei⟩⟨ej|)} is a collection of rank
one operators satisfying (SMU1) and (SMU2), i.e., pijpkℓ = δj=kpiℓ and

∑
j pj = 1. Pick

f1 ∈ im(p11) and set fj := pj1f1 for all j > 1. Note that

pijfk = pijpk1f1 = δj=kpi1f1 = δj=kfi. (1.5.3)

Now define h ∈ Mn(C) by hfj := ej. Then since fk = pkkfk for all k,

h−1|ei⟩⟨ej|hfk = h−1|ei⟩⟨ej|ek = δj=kh
−1ei = δj=kfi =

(1.5.3)
pijfk = θ(|ei⟩⟨ej|)fk ∀ i, j, k.

Since {|ei⟩⟨ej|} is a basis for Mn(C) and {fk} is a basis for Cn, the result follows. □

Theorem 1.5.4.

(1) Any involution ∗ on Mn(C) is of the form x∗ = hx†h−1 for some invertible h ∈ Mn(C)
such that h = h†.

(2) We have an isomorphism (Mn(C), ∗) ∼= (Mn(C), †) as complex ∗-algebras if and only
if the corresponding h for ∗ is positive or negative definite.
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Proof. To prove (1), observe that x 7→ x∗† is an automorphism of Mn(C), and is thus inner
by Lemma 1.5.2. Thus there is an k ∈ Mn(C) such that x∗† = k−1xk. Taking adjoints and
setting h = k†, we have x∗ = hx†h−1. The condition that x∗∗ = x for all x ∈ Mn(C) is then

x = x∗∗ = (hx†h−1)∗ = h(h†)−1xh†h−1 ⇐⇒ xh†h−1 = h†h−1x ∀x ∈ Mn(C).

Thus h†h−1 ∈ Z(Mn(C)) = C1, so h† = λh for some λ ∈ C. Taking adjoints,

h = λh† = |λ|2h,

so λ ∈ U(1), the unimodular complex scalars. Replacing h by λ1/2h which does not affect
conjugation by h, we may assume h = h†.

To prove (2), first suppose h is positive or negative definite. We may assume h is positive
definite by replacing h with −h if necessary. The map x 7→ h−1/2xh1/2 is the desired ∗-
algebra isomorphism (Mn(C), ∗) → (Mn(C), †). Conversely, if θ : (Mn(C), ∗) → (Mn(C), †)
is a ∗-algebra isomorphism, then θ is an algebra automorphism, so there is a k ∈ Mn(C) such
that θ(x) = k−1xk. Similar to above, the ∗-algebra isomorphism condition then reduces to
h−1kk† ∈ Z(Mn(C)), so h = λkk† for some λ ∈ C×. Since h = h†, λ ∈ R×, so h is positive
or negative definite as claimed. □

Definition 1.5.5. Let A be a unital complex ∗-algebra. We call a linear functional φ : A →
C:

• a trace or tracial if φ(ab) = φ(ba) for all a, b ∈ A.
• positive if φ(a∗a) ≥ 0 for all a ∈ A.
• a state if φ is positive and φ(1) = 1.
• faithful if φ is positive and φ(a∗a) = 0 implies a = 0.

Example 1.5.6. The trace on Mn(C) given by tr(x) :=
∑n

j=1 xjj is a tracial state.

Lemma 1.5.7. The complex ∗-algebra (Mn(C), †) has a unique normalized trace.

Proof. Suppose φ : Mn(C) → C is another trace with φ(1) = 1. Then

φ(|ei⟩⟨ei|) = φ(|ei⟩⟨ej| · |ej⟩⟨ei|) = φ(|ej⟩⟨ei| · |ei⟩⟨ej|) = φ(|ej⟩⟨ej|) ∀ i, j,

and

φ(|ei⟩⟨ej|) = φ(|ei⟩⟨ej|·|ej⟩⟨ej|) = φ(|ej⟩⟨ej|·|ei⟩⟨ej|) = ⟨ej|ei⟩φ(|ej⟩⟨ej|) = 0 ∀ i ̸= j.

The result follows. □

Exercise 1.5.8. Suppose φ is a state on Mn(C) such that φ(|ej⟩⟨ej|) = 1
n
for all ej in an

ONB of Cn. Show that φ = tr.

Exercise 1.5.9. For η, ξ ∈ Cn, show that tr(|η⟩⟨ξ|) = ⟨ξ|η⟩.

Exercise 1.5.10. Suppose φ : A → C is a linear functional on a unital complex ∗-algebra.
Use Exercise 1.2.2 to prove that φ is a trace if and only if φ(a∗a) = φ(aa∗) for all a ∈ A.

Exercise 1.5.11. Let A = C2 with coordinate-wise multiplication and (a, b)∗ := (b, a).
Prove that A has no states.
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Definition 1.5.12. Suppose φ is a faithful state on a (finite dimensional) complex ∗-algebra
A. Then ⟨a|b⟩φ := φ(a∗b) defines a positive definite inner product on A (thought of as a
C-vector space). We denote the corresponding Hilbert space by L2(A,φ); this is called the
GNS-Hilbert space.
We denote the image of 1 ∈ A in L2(A,φ) by Ω, so aΩ is the image of a ∈ A.

Proposition 1.5.13. For any state φ on Mn(C), there exists a unique d ∈ Mn(C) with d ≥ 0
and tr(d) = 1 (called the density matrix of φ) such that φ(a) = tr(da) for all a ∈ Mn(C).
Moreover, φ is a faithful if and only if d is invertible.

Proof. Since tr is a state by Lemma 1.5.7, L2(Mn(C), tr) is a Hilbert space. By the Riesz-
Representation Theorem 1.1.13, every linear map Mn(C) → C can be uniquely expressed as
⟨d| for some d ∈ Mn(C) for the trace inner product. Thus there is a unique d ∈ Mn(C) such
that φ(x) = tr(d†x) for all x ∈ Mn(C). Taking x = |ξ⟩⟨ξ| for a unit vector ξ ∈ H, we have

0 ≤ φ(|ξ⟩⟨ξ|) = tr(d† · |ξ⟩⟨ξ|) = tr(|ξ⟩⟨ξ| · d† · |ξ⟩⟨ξ|) = ⟨ξ|d†ξ⟩ tr(|ξ⟩⟨ξ|) =
(Exer. 1.5.9)

1

n
⟨ξ|d†ξ⟩,

so d = d† ≥ 0. Clearly 1 = φ(1) = tr(d). □

Proposition 1.5.14. Suppose φ is a faithful state on A. For a ∈ A, the map given by
bΩ 7→ abΩ defines a left multiplication operator λa ∈ B(L2(A,φ)). The adjoint of this
operator is λa∗ given by bΩ 7→ a∗bΩ.

Proof. We compute that

⟨bΩ|λacΩ⟩φ = ⟨bΩ|acΩ⟩φ = φ(b∗ac) = φ((a∗b)∗c) = ⟨a∗bΩ|cΩ⟩φ.
It follows that λ†

a = λa∗ . □

Exercise 1.5.15. Prove that if a ∈ A, the map given by bΩ 7→ baΩ defines a right multipli-
cation operator ρa ∈ B(L2(A,φ)). Calculate the adjoint of ρa. When does ρ†a = ρa∗?

Remark 1.5.16. If f : A → A commutes with right multiplication in A, then f is left
multiplication by an element of A. That is, End(AA) = A. Thus λA = {λa|a ∈ A} ⊂
B(L2(A,φ)) is the set of all operators which commute with ρA = {ρa|a ∈ A}.

1.6. Operator algebras. We now have all the background material necessary to study
finite dimensional operator algebras. For this section, A is a unital complex ∗-algebra (always
assumed to be finite dimensional).

Definition 1.6.1. We call A a C∗-algebra if there exists a norm ∥ · ∥ on A which is submul-
tiplicative (∥ab∥ ≤ ∥a∥ · ∥b∥) such that

∥a∗a∥ = ∥a∥2 ∀ a ∈ A (1.6.2)

Example 1.6.3. On Mn(C) , define
∥x∥ := sup

∥η∥=1

∥xη∥,

and observe that ∥xξ∥ ≤ ∥x∥ · ∥ξ∥ for all ξ ∈ H (divide both sides by ∥ξ∥ assuming ξ ̸= 0).
One verifies this defines a norm. Submultiplicativity follows from the fact that

∥xyη∥ ≤ ∥x∥ · ∥yη∥ ≤ ∥x∥ · ∥y∥ · ∥η∥ ∀η ∈ H.
13



To prove the C∗-axiom 1.6.2, First note that

∥xη∥2 = ⟨xη|xη⟩ = ⟨η|x†xη⟩ ≤
(Cauchy-Schwarz)

∥η∥ · ∥x†xη∥ ≤ ∥x†x∥ · ∥η∥2 ∀ η ∈ H.

Thus ∥x∥2 ≤ ∥x†x∥ ≤ ∥x∥ · ∥x†∥. Similarly, ∥x†∥2 ≤ ∥xx†∥ ≤ ∥x∥ · ∥x†∥. These two sets of
inequalities together imply ∥x∥ = ∥x†∥, and thus these inequalities are all equalities.

Lemma 1.6.4. All norms on Cn are equivalent. That is, if ∥ · ∥1, ∥ · ∥2 are two norms on
Cn, there is a C > 0 such that C−1∥ · ∥2 ≤ ∥ · ∥1 ≤ C∥ · ∥2.

Proof. Without loss of generality, we may assume that ∥ · ∥2 is our favorite norm on Cn. We
fix our favorite for which we know that the unit ball is compact. (Mine is ∥ · ∥∞, for which
the unit ball is [−1, 1]n.) Then the unit sphere (the x ∈ Cn such that ∥x∥2 = 1) is also
compact. Pick C > 0 such that both

C−1 ≤ min
∥x∥2=1

∥x∥1 and max
∥x∥2=1

∥x∥1 ≤ C.

Then whenever x ∈ Cn is non-zero,

C−1 ≤
∥∥∥∥ x

∥x∥2

∥∥∥∥
1

≤ C ⇐⇒ C−1∥x∥2 ≤ ∥x∥1 ≤ C∥x∥2. □

Proposition 1.6.5. The only C∗ norm on Cn = C({1, . . . , n}) is ∥f∥∞ := maxnj=1 |fj|.

Proof. We leave it to the reader to verify ∥ · ∥∞ is a C∗ norm.
Suppose ∥ · ∥ is another C∗ norm. By (1.6.2), ∥ · ∥ is completely determined by its values

on elements of the form ff , which only take positive values.
First, observe that for an orthogonal projection p ∈ Cn, ∥p∥ = ∥p∗p∥ = ∥p∥2, so

∥p∥ ∈ {0, 1}. Consider a positive function f = (f1, . . . , fn). By replacing f with f−1
j f =

(f1/fj, . . . , fn/fj) where fj = max(f), we may assume that fi ≤ 1 for all i, and at least one fj
is equal to 1. The C∗ axiom (1.6.2) tells us that ∥f 2∥ = ∥f∥2, and iterating, ∥f 2n∥ = ∥f∥2n

for all n. If r < 1, rn → 0 as n → ∞, so f 2n converges point-wise (and thus in some
norm!) to some non-zero orthogonal projection p. Since all norms are equivalent on Cn by
Lemma 1.6.4, ∥f∥2n = ∥f 2n∥ → ∥p∥ = 1. This is only possible if ∥f∥ = 1. We conclude that
∥f∥ = maxnj=1 fj. □

Theorem 1.6.6 (Fundamental Theorem of finite dimensional operator algebras). The fol-
lowing conditions are equivalent for a finite dimensional unital complex ∗-algebra A.

(C∗1) A is a C∗-algebra.

(C∗2) (multimatrix) There exists a ∗-isomorphism A ∼=
⊕k

i=1Mai(C) where each summand
has the usual conjugate transpose † operation.

(C∗3) (matrix †-subalgebra) There exists an injective unital ∗-homomorphism A → Mn(C)
for some n ∈ N, where Mn(C) has the usual conjugate transpose † operation.

(C∗4) (∃ faithful state) There exists a faithful state φ : A → C, i.e., φ(a∗a) ≥ 0 for all
a ∈ A, and φ(a∗a) = 0 implies a = 0.

(C∗5) (∗-definite) For every a ∈ A, a∗a = 0 implies a = 0.
14



Proof. We prove the following implications:

(C∗2) (C∗5)

(C∗1)

(C∗3) (C∗2)

The interesting part is proving (C∗5) ⇒ (C∗2).

(C∗2) ⇒ (C∗3): Set n :=
∑k

i=1 ai and embed A as block-diagonal matrices.

(C∗3) ⇒ (C∗1): By Example 1.6.3, Mn(C) is a C∗-algebra, so we may restrict its norm to the
image of A.
(C∗3) ⇒ (C∗4): Take φ = tr from Example 1.5.6.

(C∗1) ⇒ (C∗5): If a∗a = 0, then by 1.6.2, ∥a∥2 = ∥a∗a∥ = 0, so a = 0.

(C∗4) ⇒ (C∗5): If a∗a = 0, then φ(a∗a) = 0, so a = 0.

(C∗5) ⇒ (C∗2): We proceed in 4 steps.

Step 1: Recall that one description of the Jacobson radical of A is

J(A) = {b ∈ A|1 + abc is invertible ∀a, c ∈ A} .

We first show every element of J(A) is nilpotent.

Proof. Suppose b ∈ J(A). Since A is finite dimensional, eventually an is a linear
combination of the ak for k < n. Thus there is a polynomial of the form

p(x) = xn + λn−1x
n−1 + · · ·+ λ1x+ λ0

such that p(b) = 0. If j is minimal such that λj ̸= 0, then

0 =
1

λj

p(b)

=
1

λj

bn +
λn−1

λj

bn−1 + · · ·+ λj+1

λj

bj+1 + bj

= bj
(
1 +

λj+1

λj

b+ · · · λn−1

λj

bn−1−j +
1

λj

bn−j

)
︸ ︷︷ ︸

invertible as b ∈ J(A)

.

Since b ∈ J(A), the the term on the right hand side is invertible, and thus bj = 0, so
b is nilpotent. □

Step 2: A is semisimple. Thus by the Artin-Wedderburn Theorem, A is a finite direct sum
of matrix algebras, i.e., a multimatrix algebra.

Proof. We must prove that J(A) = 0. Suppose for contradiction that b ∈ J(A) and
b ̸= 0. Since the Jacobson radical is an ideal, if b ∈ J(A), b∗b ∈ J(A), and b∗b ̸= 0 by
(C∗5). So we may assume our original b is self-adjoint.

By Step 1 above, b is nilpotent. Pick k > 1 minimal such that bk = 0. If k is even,
then 0 = bk = c∗c where c = bk/2. If k is odd, then 0 = bk+1 = c∗c where c = b(k+1)/2.
But both k/2 and (k+ 1)/2 are strictly less than k when k > 1, a contradiction. □

Step 3: Each full matrix algebra summand Mn(C) of A is preserved under ∗.
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Proof. We know that A ∼=
⊕k

i=1Mai(C). Consider the k mutually orthogonal central
projections p1, . . . , pk where pi corresponds to the unit of Mai(C). Then p∗1, . . . , p

∗
k

are also mutually orthogonal central projections, so p∗i = pj for some j = 1, . . . , n.
Since each pj ̸= 0, we also have p∗jpj ̸= 0 by (C∗5), so p∗j = pj for all j. □

Step 4: Restricting ∗ to a full matrix algebra summand Mn(C) of A, by Theorem 1.5.4, there

is a self-adjoint h ∈ Mn(C) such that x∗ = hx†h−1 for all x ∈ Mn(C). We show h

is positive or negative definite, which proves (A, ∗) ∼=
(⊕k

i=1Mai(C), †
)
as complex

∗-algebras.
Proof. If h is not positive or negative definite, choose −∞ < r < 0 < s < ∞ such
that r, s ∈ spec(h), and pick unit length eigenvectors η, ξ ∈ Cn for h corresponding
to r, s respectively. Observe that η, ξ are also eigenvectors of h−1 corresponding to
eigenvalues 1

r
, 1
s
respectively. Since η, ξ are eigenvectors corresponding to distinct

eigenvalues, η ⊥ ξ, i.e., ⟨η|ξ⟩ = 0. Setting

x :=
[√

−rη +
√
sξ 0 · · · 0

]
∈ Mn(C),

we have

hx†h−1x = h


√
−rη† +

√
sξ†

0
...
0

h−1
[√

−rη +
√
sξ 0 · · · 0

]

= h


√
−rη† +

√
sξ†

0
...
0

[√
−r
r

η +
√
s
s
ξ 0 · · · 0

]

= h


−r
r
+ s

s
0 · · · 0

0 0 · · · 0
...

...
0 0 · · · 0

 = 0.

Thus x∗x = hx†h−1x = 0, contradicting (C∗5). □

Definition 1.6.7. A unitary algebra is a finite dimensional unital complex ∗-algebra that
satisfies the equivalent conditions of Theorem 1.6.6. Note that unitary algebras are more
commonly called finite dimensional C∗-algebras.

Corollary 1.6.8. Every unitary algebra A has a unique C∗ norm.

Proof. By (1.6.2), every C∗ norm is completely determined by its values on positive operators.
Suppose a ∈ A is positive, and consider A unitally ∗-embedded in Mn(C) from (C∗3).
The Gelfand Theorem 1.4.5 says that the unital ∗-algebra generated by a is isomorphic to
C(spec(a)), so it suffices to prove the result for C∗-algebras of the form C(X) for X ⊂ C
a finite set. Since C(X) ∼= Cn as a unital complex ∗-algebra, the result now follows from
Proposition 1.6.5. □

We now prove that every finite dimensional C∗-algebra A is also a von Neumann algebra,
which means we can perform polar decomposition internal to A.
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Proposition 1.6.9. Every unitary algebra A is closed under the functional calculus and
polar decomposition.

Proof. Identify A with a ∗-closed subalgebra of Mn(C). If a ∈ A is normal and f : spec(a) →
C, then f(a) is in the unital ∗-algebra generated by a and a†, which again lies in A.

Next, identifyingA ∼=
⊕k

i=1Mni
(C), each a ∈ A corresponds to a tuple (xi) ∈

⊕k
i=1Mni

(C).
Then ai = ui|ai| is the polar decomposition in Mni

(C), and a = u|a| where u = (ui) and
|a| = (|ai|). □

Exercise 1.6.10. Suppose A is a unitary algebra and a ∈ A.

(1) Show that a can be written uniquely as Re(a)+ i Im(a) where both Re(a), Im(a) ∈ A
are self-adjoint.

(2) Show that if a is self-adjoint, then a can be written uniquely as a = a+ − a− where
a+, a− are both positive and a+a− = 0.

(3) Show that if a is self-adjoint, then a ≤ ∥a∥, i.e., ∥a∥ − a ≥ 0.
(4) Show that if a is self-adjoint, then a can be written as a linear combination of two

unitaries in A.
Hint: if ∥a∥ ≤ 1, consider u := a+ i

√
1− a2.

Definition 1.6.11. For a subset S ⊂ B(H), the commutant of S is

S ′ := {x ∈ B(H)|xs = sx for all s ∈ S} .

Exercise 1.6.12. Show that if S ⊂ T ⊂ B(H), then T ′ ⊂ S ′, S ⊂ S ′′, and S ′ = S ′′′.

Definition 1.6.13. Let A ⊂ B(H) be a ∗-closed subalgebra. For k ∈ N, we define the

k-amplification of H is the Hilbert space
⊕k

j=1H. The algebra A acts on the amplified

Hilbert space
⊕k

j=1H by diagonal operators. That is, as in Remark 1.2.17, we may think of

B
(⊕k

j=1 H
)
as k × k matrices over B(H). The A-action is given by

a ·

η1...
ηk

 :=

aη1...
aηk

 =

a . . .
a

η1...
ηk

 .

Exercise 1.6.14. Suppose S ⊆ B(H) is a subset, and let α : B(H) → Mn(B(H)) be the
amplification

x 7−→

x
. . .

x

 .

Prove that:

(1) α(S)′ = Mn(S
′), and

(2) If 0, 1 ∈ S, then Mn(S)
′ = α(S ′).

(3) Deduce that when 0, 1 ∈ S, α(S)′′ = α(S ′′).

Theorem 1.6.15 (von Neumann Bicommutant). If A ⊂ B(H) is a unital ∗-subalgebra, then
A = A′′.
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Proof. Our proof follows [Jon15, Thm. 3.2.1]. Consider the n-amplification
⊕n

j=1H where

n = dim(H) which carries the diagonal A-action α : A → Mn(B(H)). Let {ei} be an ONB
of H, and consider the vector

η :=

e1...
en

 ∈
n⊕

j=1

H,

i.e., η is the j-th standard basis vector in the j-th summand of the amplified Hilbert space.

Consider the subspace K := α(A)η ⊂
⊕n

j=1H, and let pK ∈ B
(⊕n

j=1H
)
be the projection

onto K. Since A is ∗-closed, pK ∈ α(A)′ = Mn(A
′) by Exercise 1.6.14.

If x ∈ A′′, then α(x) ∈ Mn(A
′)′ and thus commutes with pK . Thus α(x)K ⊆ K. Since A

is unital, there is an a ∈ A such that α(x)α(1)η = α(a)η. In particular, xej = aej for all j,
so x = a ∈ A. Hence A′′ ⊆ A, so A = A′′. □

Unital ∗-subalgebras A ⊂ B(H) such that A = A′′ are called von Neumann algebras. By
Exercise 1.6.12, A′ is also a von Neumann algebra, von Neumann algebras always come in
pairs: A and A′. Combining Theorems 1.6.6 and 1.6.15, we immediately have the following
corollary

Corollary 1.6.16. Unitary algebras are the same thing as finite dimesional von Neumann
algebras.

Although the following corollary was already proven in Proposition 1.6.9 above, we provide
a second von Neumann algebraic proof.

Corollary 1.6.17. Suppose A ⊂ B(H) is a unitary algebra. For a ∈ A, let a = u|a| be the
polar decomposition from Definition 1.4.11. Then |a| and u are again in A.

Proof. We know |a| =
√
a∗a ∈ A by Proposition 1.6.9. Recall that the u constructed in

Definition 1.4.11 commutes will all unitaries v which commute with a. This means that
u commutes with all unitaries v ∈ A′. Since A′ is a unitary algebra, it is spanned by its
unitaries by Exercise 1.6.10. This means u commutes with all of A′, so u ∈ A′′ = A. □
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