Penneys Math 8110

Here are 4 charts which summarize this course.

- The staircase of *n*-vector/Hilbert spaces [GJF19]
- The synoptic chart of tensor categories n = 1 and $k \leq 3$ [HPT16]¹
- The periodic table of k-tuply monoidal n-categories, $-2 \le n \le 2$ [BD95].
- The chart of higher categories and topological order from the 2022 AIM workshop on Higher Categories and Topological Order [Del22]

The staircase for nVect/nHilb [GJF19]

¹Here is a great research project: Do a chart for n = 2 and $k \le 4!$

²Here is another research project: Show that the 4-category of multifusion 2-categories goes here.

The synoptic chart of tensor categories [HPT16]

In the chart below, which is adapted from [HPT (MR3578212, arXiv:1509.02937), §2.3],

- (A) \rightarrow (B) indicates that B can be obtained from A by forgetting part of the data; equivalently, A can be obtained from B by adding extra structure.
- $(A) \hookrightarrow (B)$ indicates that A can be obtained from B by imposing extra axioms; equivalently, A is a *property* of B, and not extra structure.
- $(A) \xrightarrow{z} (B)$ indicates that the Drinfeld center construction goes from A to B.
- $(A) \leftrightarrow (B)$ indicates an equivalence between A and B.
- (A) \xrightarrow{P} (B) indicates that A implies B assuming in addition property P.

The periodic table of k-tuply monoidal n-categories [BD95, BS10]

<i>k</i> -tuply monoidal <i>n</i> -categories [BD95, BS10]. For a <i>k</i> -tuply monoidal <i>n</i> -category, being trivial at height k corresponds to extra structure on an <i>n</i> -category, except at height $n-1$, which is a property of an $(n+2)$ -tuply monoidal <i>n</i> -category.						
	n = -2	n = -1	n = 0	n = 1	n=2	
k = 0	* = T	$\{T,F\}$	set	category	2-category	
k = 1	"	*=T	monoid	monoidal	monoidal	
k = 2	"	"	commutative	braided	braided	
k = 3	"	"	"	symmetric	sylleptic	
k = 4	"	"	"	"	symmetric	
k = 5	"	"	"	"	"	

In the chart above, we included columns for n = -2, -1, 0, when strictly speaking, these values of n do not give categories. It is helpful to think of these levels as 'lower' categories using *negative categorical thinking* [BS10].

Chart of fusion categories and topological order [Del22]

- The topological quantum field theories constructed from unitary fusion categories are fully extended.
- The unitary modular tensor categories constructed from unitary fusion categories are achiral.

References

- [BD95] John C. Baez and James Dolan. Higher-dimensional algebra and topological quantum field theory. J. Math. Phys., 36(11):6073-6105, 1995. MR1355899 arXiv:q-alg/9503002 DOI:10.1063/1.531236.
- [BS10] John C. Baez and Michael Shulman. Lectures on n-categories and cohomology. In Towards higher categories, volume 152 of IMA Vol. Math. Appl., pages 1–68. Springer, New York, 2010. MR2664619 arXiv:math/0608420.
- [Del22] Colleen Delaney. Chart of higher fusion categories and topological order, 2022. Talk from 2022 AIM workshop on Higher Categories and Topological Order.
- [GJF19] Davide Gaiotto and Theo Johnson-Freyd. Condensations in higher categories, 2019. arXiv:1905. 09566.
- [HBJP22] Peter Huston, Fiona Burnell, Corey Jones, and David Penneys. Composing topological domain walls and anyon mobility, 2022. arXiv:2208.14018, to appear SciPost Phys.
- [HPT16] André Henriques, David Penneys, and James Tener. Categorified trace for module tensor categories over braided tensor categories. Doc. Math., 21:1089–1149, 2016. MR3578212 arXiv:1509. 02937.
- [KK12] Alexei Kitaev and Liang Kong. Models for gapped boundaries and domain walls. Comm. Math. Phys., 313(2):351-373, 2012. MR2942952 DOI:10.1007/s00220-012-1500-5 arXiv:1104.5047.