
Penneys Math 8110 Introduction to the course

Here are 4 charts which summarize this course.

• The staircase of n-vector/Hilbert spaces [GJF19]
• The synoptic chart of tensor categories n = 1 and k ≤ 3 [HPT16]1

• The periodic table of k-tuply monoidal n-categories, −2 ≤ n ≤ 2 [BD95].
• The chart of higher categories and topological order from the 2022 AIM workshop
on Higher Categories and Topological Order [Del22]

The staircase for nVect/nHilb [GJF19]

Formal construction of kVect from (k − 1)Vect.
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Notation:

• B means take the delooping [BS10, §5.6], i.e., consider the monoidal k-category
as a (k + 1)-category with one object.

• Cauchyu means take a unital higher Cauchy completion [GJF19].
• Σ is the composite Cauchyu ◦ B, called the suspension.
• Mod is the equivalence given by taking the 1- or 2-category of modules for the
algebra/multifusion category respectively.

1Here is a great research project: Do a chart for n = 2 and k ≤ 4!
2Here is another research project: Show that the 4-category of multifusion 2-categories goes here.



The synoptic chart of tensor categories [HPT16]

In the chart below, which is adapted from [HPT (MR3578212, arXiv:1509.02937), §2.3],
• A B indicates that B can be obtained from A by forgetting part of the data;

equivalently, A can be obtained from B by adding extra structure.

• A B indicates that A can be obtained from B by imposing extra axioms;

equivalently, A is a property of B, and not extra structure.

• A B
Z

indicates that the Drinfeld center construction goes from A to B.

• A B indicates an equivalence between A and B.

• A B
P indicates that A implies B assuming in addition property P.
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http://www.ams.org/mathscinet-getitem?mr=MR3578212
http://arxiv.org/abs/1509.02937


The periodic table of k-tuply monoidal n-categories [BD95, BS10]

k-tuply monoidal n-categories [BD95, BS10]. For a k-tuply monoidal n-category,
being trivial at height k corresponds to extra structure on an n-category, except at
height n− 1, which is a property of an (n+ 2)-tuply monoidal n-category.

n = −2 n = −1 n = 0 n = 1 n = 2
k = 0 ∗ = T {T, F} set category 2-category
k = 1 ” ∗=T monoid monoidal monoidal
k = 2 ” ” commutative braided braided
k = 3 ” ” ” symmetric sylleptic
k = 4 ” ” ” ” symmetric
k = 5 ” ” ” ” ”

In the chart above, we included columns for n = −2,−1, 0, when strictly speaking, these
values of n do not give categories. It is helpful to think of these levels as ‘lower’ categories
using negative categorical thinking [BS10].

Chart of fusion categories and topological order [Del22]

(2+1)D Topological
quantum field theory

Unitary fusion categories Unitary modular tensor categories

(2+1)D Topologically ordered
phase of matter

Levin-Wen
string-net

model

Drinfeld center Z

Low energy effective

field theory

Localized
anyonic
excitations

Turaev-Viro
Barrett-Westbury
Ocneanu
Evans-Kawahigashi

• The topological quantum field theories constructed from unitary fusion categories are
fully extended.

• The unitary modular tensor categories constructed from unitary fusion categories are
achiral.
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