Classification of groups of small(ish) order

Groups of order 12. There are 5 non-isomorphic groups of order 12. By the fundamental theorem of finitely generated abelian groups, we have that there are two abelian groups of order 12, namely

\[\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \quad \text{and} \quad \mathbb{Z}/12\mathbb{Z}. \]

Let \(G \) be a non-abelian group of order 12. Let \(n_3 \) denote the number of Sylow-3 subgroups of \(G \). Then \(n_3 \) is either 1 or 4.

Suppose \(n_3 = 4 \). Let \(G \) act on the set of Sylow-3 subgroups by conjugation. This induces a homomorphism \(\varphi : G \to S_4 \). Suppose \(x \in \ker \varphi \). Then \(x \in N(P) \) for all Sylow-3 subgroups \(P \) where \(N(P) \) is the normalizer in \(P \). Now, by the orbit-stabilizer theorem, it follows that \(N(P) = P \) for all Sylow-3 subgroups \(P \). So \(x \) is an element of \(P \) for every Sylow-3 subgroup \(P \). Since \(|P| = 3 \) is prime, it follows that \(x = 1 \). Hence \(\varphi \) is an injection. It’s easy to see that \(\varphi G \) contains all 3 cycles of \(S_4 \). So it follows that \(\varphi G = A_4 \), the alternating group on 4 letters.

Now, suppose \(n_3 = 1 \). Then there is a single Sylow-3 subgroup of \(G \), say \(P \). Let \(Q \) be a Sylow-4 subgroup of \(G \). Since \(P \) is normal, the set \(PQ = \{ pq : p \in P, q \in Q \} \) is a subgroup of \(G \), in fact, \(PQ = G \). Now, let \(Q \) act on \(P \) by conjugation. This induces a homomorphism \(\varphi : Q \to \text{Aut}(P) \). Then \(G \cong P \ltimes \varphi Q \) where

\[(p_1, q_1) \cdot (p_2, q_2) = (p_1\varphi(q_1)(p_2), q_1q_2). \]

Let \(V_4 \) be the Klein-4 group and \(C_4 \) the cyclic group of order 4. Then the 5 non-isomorphic groups of order 12 are

\[\mathbb{Z}_2 \times \mathbb{Z}_6, \mathbb{Z}_{12}, A_4, P \ltimes \varphi V_4, P \ltimes \varphi C_4. \]

Groups of order 28. There are 4 non-isomorphic groups of order 28. By the Fundamental theorem for finite abelian groups, there are two abelian groups of order 28:

\[\mathbb{Z}_2 \times \mathbb{Z}_{14} \quad \text{and} \quad \mathbb{Z}_{28}. \]

Now, let \(G \) be a non-abelian group of order 28, let \(P \) be the Sylow-7 subgroup, and let \(Q \) be a Sylow-2 subgroup. Then \(PQ = \{ pq : p \in P, q \in Q \} \) is a subgroup of \(G \) since \(P \) is normal (by Sylow):

\[p_1q_1p_2q_2 = p_1(q_1p_2q_1^{-1})q_1q_2 \in PQ. \]

In fact, \(PQ = G \). Let \(\text{Aut}(P) \) denote the group of automorphisms of \(P \). Note that \(\text{Aut}(P) \) is cyclic of order 6 generated by \(\sigma : 1 \mapsto 3 \). Conjugation induces a map from \(\varphi : Q \to \text{Aut}(P) \). By order considerations, \(\ker \varphi \) is either equal to \(Q \) or of order 2. \(\ker \varphi = Q \) if and only if \(G \) is abelian.
So ker $\phi \neq Q$. Then im ϕ is a subgroup of Aut(P) of order 2. It follows that the non-trivial elements of im ϕ act on P by inversion. Now, Q could be isomorphic to either V_4, the Klein-4 group, or C_4, the cyclic group of order 4. This gives us two possible groups:

$$P \rtimes_{\phi} V_4 \quad P \rtimes_{\phi} C_4,$$

where the group operation in $P \rtimes_{\phi} Q$ is

$$(p_1, q_1) \cdot (p_2, q_2) = (p_1\phi(q_1)(p_2), q_1q_2).$$

These two groups are non-isomorphic since they have different Sylow-2 subgroups. It’s easy to verify that the choice of ϕ is irrelevant.

Groups of order 45. There are only 2 groups of order 45, and they are abelian. Let G be a group of order $45 = 5 \cdot 3^2$. Let n_5 denote the number of Sylow-5 subgroups of G. Note that $n_5 \equiv 1 \mod 5$ and $n_5 | 9$. Hence $n_5 = 1$, thus G contains a unique, normal Sylow-5 subgroup, say Q. Let P be any Sylow-3 subgroup. Since $P \cap Q = \{\text{id}\}$, and since Q is normal, we have that for every $g \in G$ there exists unique $p \in P$ and $q \in Q$ such that $g = pq$. Since

$$p_1q_1p_2q_2 = p_1p_2(p_2^{-1}q_1p_2)q_2,$$

we have that $G \simeq Q \times_p P$ where $\phi : P \to \text{Aut}(Q)$ defined by $p \mapsto (q \mapsto p^{-1}qp)$. But $|\text{Aut}(Q)| = 4$ whereas $|P| = 9$. Hence ϕ is the trivial map, that is, for all $q \in Q$, $p^{-1}qp = q$ for all $p \in P$.

Hence $G \simeq Q \times P$. Since any group of order p or p^2 where p is a prime must be abelian, we get that G must be abelian. In fact, we have

$$G \simeq \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z} \quad \text{or} \quad G \simeq \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}.$$

Groups of order pq where p and q are primes (not necessarily distinct). Suppose $p = q$. Then G is a p-group, so G has a nontrivial center. So $|Z(G)| \geq p$, so $G/Z(G)$ is cyclic. Hence G is abelian. By the fundamental theorem for finitely generated abelian groups, we have that G is isomorphic to one of the following:

$$\mathbb{Z}_{p^2} \quad \text{or} \quad \mathbb{Z}_p \times \mathbb{Z}_p.$$

Now, suppose p and q are distinct, and without loss of generality that $p < q$. Let $n_q = \# \text{Syl}_q(G)$. Then $n_q \equiv 1 \mod q$ and $n_q | p$. Since $p \equiv 1 \mod q$ implies that $q \leq p - 1$, it must be that $n_q = 1$. Let Q be the normal Sylow-q subgroup of G, and let $P \in \text{Syl}_p(G)$. Since Q is normal in G, we have that $PQ \leq G$ is a subgroup. Since $P \cap Q = \{\text{id}\}$, we have that $G = PQ$, in fact,

$$G \simeq Q \rtimes_{\phi} P,$$

where $\phi : P \to \text{Aut}(Q)$ is defined by $\phi : p \mapsto (\sigma_p : q \mapsto pqp^{-1})$.

Suppose \(q \not\equiv 1 \mod p \). Then \(\phi : P \rightarrow \text{Aut}(Q) \) must be trivial, and \(G \simeq Q \times P \simeq \mathbb{Z}_{pq} \).

Suppose \(q \equiv 1 \mod p \). Since \(P \) and \(Q \) are prime power ordered we have that \(P \) is cyclic generated by, say, \(g \), and \(\text{Aut}(Q) \) is cyclic, generated, say, by \(\sigma \). Since \(\phi \) is a homomorphism, we must have \(\phi = \phi_\alpha : g \mapsto \sigma^{(q-1)\alpha/p} \) where \(0 < \alpha \leq p - 1 \), since elements of the form \(\sigma^{(q-1)\alpha/p} \) are precisely those elements of \(\text{Aut}(Q) \) that are order \(p \). We associate \(Q \simeq \mathbb{Z}_q \) and \(P \simeq \mathbb{Z}_p \). We take \(g = 1 \) and \(\sigma : 1 \mapsto 2 \). So, \(\sigma^{(q-1)\alpha/p} : 1 \mapsto 2^{(q-1)\alpha/p} \) and in general

\[
\sigma^{(q-1)\alpha/p} : a \mapsto a \cdot 2^{(q-1)\alpha/p}.
\]

Then

\[
\phi_\alpha : b \mapsto \sigma^{(q-1)\alpha b/p}.
\]

Let \(0 < \alpha, \beta \leq p - 1 \). The map

\[
\psi : \mathbb{Z}_q \times_{\phi_\alpha} \mathbb{Z}_p \rightarrow \mathbb{Z}_q \times_{\phi_\beta} \mathbb{Z}_p,
\]

\[
(a, b) \mapsto \left(a, \frac{\alpha b}{\beta} \right)
\]

defines an isomorphism. Hence there are precisely 4 isomorphism classes of groups of order \(pq \):

\[
\mathbb{Z}_{p^2}, \quad \mathbb{Z}_p \times \mathbb{Z}_p, \quad \mathbb{Z}_{pq}, \quad \mathbb{Z}_q \times_{\phi_\alpha} \mathbb{Z}_p,
\]

where the first pair are when \(q = p \), and the second pair when \(q > p \).