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Preface

Given a Lie group G acting on a space X, the equivariant cohomology
ring H∗

G
X packages information about the interaction between the

topology of X and the representation theory of G. On one hand, it
provides a way of exploiting the symmetry of X, as manifested by the
G-action, to understand H∗X; on the other hand, appropriate choices
of X are useful in studying representations of G.

Defined by A. Borel in his 1958–9 seminar on transformation
groups, equivariant cohomology arose in the context of a problem of
interest to topologists: given some cohomological information about
X, what can be said about the group actions X admits? Must there
be fixed points? How many? By constructing an auxiliary space,
Borel built a framework for answering these questions in special situ-
ations, e.g., when G is a torus and X is a compact manifold satisfying
a technical hypothesis (now known as equivariant formality).

It took several decades for ideas of equivariant cohomology to
enter mainstream algebraic geometry. By 2000, though, localiza-
tion had become a standard technique in Gromov-Witten theory and
applications to enumerative geometry. Equivariant methods were
also used in producing degeneracy locus formulas and in proving
Littlewood-Richardson rules in Schubert calculus.

One reason for the lag may be the role of infinite-dimensional
spaces. Indeed, Borel’s construction produces a certain fiber bundle
over the classifying space BG, with fiber X. Classifying spaces are
almost always infinite-dimensional, so they are certainly not alge-
braic varieties. However, for the groups appearing most frequently
in applications to algebraic geometry—linear algebraic groups, and
especially torus groups—these spaces can be “approximated” by fa-
miliar finite-dimensional varieties. Such approximation spaces were

ix
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introduced by Totaro in the late 1990s, building on ideas of Bogo-
molov, and they were incorporated into a theory of equivariant Chow
groups by Edidin and Graham. The same ideas work equally well
for cohomology, and in fact, some of the foundational notions are
simpler for cohomology than for Chow groups.

Our aim in this text is to introduce the main ideas of equivariant
cohomology to an audience with a general background in algebraic
geometry. We therefore avoid using infinite-dimensional spaces in
any essential way, relying instead on finite-dimensional approxima-
tions. A recurring theme is that studying the equivariant geometry of
X is essentially the same as studying fiber bundles with fiber X. The
fiber bundle point of view has a long tradition in algebraic geometry,
and by emphasizing this, we hope that newcomers to equivariant
cohomology will find that many of the constructions are already
familiar.

In our choice of topics, we were guided by a desire to keep preq-
uisites minimal. Apart from a “Leray-Hirsch” type lemma, and a
few basic facts about Chern classes and cohomology classes of sub-
varieties, all that we need is standard material from first courses in
algebraic topology and algebraic geometry. Projective spaces and
Grassmannians are usually familiar to beginners, and they suffice
to illustrate a broad range of equivariant phenomena. Toric varieties
and homogeneous spaces are natural next steps, and here one already
encounters the frontiers of current research.

On the other hand, this introductory text is not an all-inclusive ref-
erence, and we have left out many exciting topics, inevitably includ-
ing ones which some researchers (even ourselves!) might consider
essential. Readers will have to look elsewhere for the construction
of equivariant cohomology via differential forms; for a detailed dis-
cussion of the moment map and the symplectic point of view; for
applications to the cohomology of finite or discrete groups; and for
equivariant K-theory and more exotic cohomology theories. Part of
our aim is to prepare and encourage readers to explore the many
excellent sources for learning about such things.
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The book grew out of lectures, and we have tried to blend some
of the organic character of a series of lectures with the logical organi-
zation of a textbook. The first six chapters cover the basics, including
a simple version of the localization theorem and an illustration of its
application to the space of conics. This material is important for most
users of equivariant cohomology. Refinements of the localization the-
orem, including the “GKM” description of equivariant cohomology,
are given in Chapter 7. Here we employ some more technical argu-
ments, and for the most part the results are not logically required
elsewhere in the book.

The remainder of the text consists of examples and applications—
to toric varieties, Grassmannians, flag varieties, and general homo-
geneous spaces.

Grassmannians and flag varieties are fascinating objects of study
in their own right, and we give an account of their combinatorial
structure and equivariant geometry in Chapters 9 and 10. These
spaces also form part of the link between equivariant cohomology
and degeneracy locus formulas: in a precise way, a formula for the
cohomology class of a degeneracy locus is equivalent to one for the
equivariant class of a certain Schubert variety. This connection moti-
vated much of our perspective, and it is the subject of Chapter 11.

Projective spaces, Grassmannians, and flag varieties are examples
of homogeneous spaces for the general linear group. Other classical
groups—the symplectic and orthogonal groups—appear in a similar
way, and their corresponding flag varieties are related to refined de-
generacy locus problems. The problem of extending what is known
for GLn (“type A”) to the other classical types has received much
attention over the last few decades. For a complete telling of this
story, putting all classical groups on equal footing, we must refer
elsewhere. Chapters 13 and 14 provide a sample, describing the
equivariant cohomology of symplectic flag varieties (“type C”).

The type C degeneracy locus formulas require a new coefficient
ring, and this raises a question: where is the analogous coefficient
ring in type A? The answer has become clear only in very recent work,
involving a certain infinite-dimensional Grassmannian. (As usual,
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and in keeping with our general theme, it can also be understood
via appropriate finite-dimensional approximations.) To provide a
bridge between type A and type C, this is discussed rather briefly in
Chapter 12.

Once one understands something about flag varieties for sym-
plectic and orthogonal groups, it is natural to ask about general
homogeneous spaces. These spaces play a key role in the story of
equivariant cohomology, too: thanks to a theorem of Borel, if G is a
reductive group with Borel subgroup B and maximal torus T, then
the G-equivariant cohomology of any space on which G acts is re-
lated to its T-equivariant cohomology through the flag variety G/B.
This is explained in Chapter 15, and further developed in Chapter 16.

There are several possible approaches to defining equivariant ho-
mology. One which is well-suited to our theme of finite-dimensional
approximation is presented in Chapter 17, based on ideas of Edidin,
Graham, and Totaro. Equivariant Segre classes appear naturally in
this context, as do the equivariant multiplicities introduced by Ross-
mann and Brion.

In Chapters 18 and 19, we conclude with a study of Schubert
varieties in homogeneous spaces. Highlights include a formula for
the restriction of a Schubert class to a fixed point (due to Andersen-
Jantzen-Soergel and Billey), a criterion for a Schubert variety to be
nonsingular at a fixed point (following Kumar and Brion), and some
formulas for multiplying equivariant Schubert classes, along with a
theorem of Graham which asserts that such products always expand
positively, in a suitable sense.

Each chapter ends with a “Notes” section, providing some limited
historical and mathematical context, as well as references for material
in the text. We have also included hints for many of the exercises,
and complete solutions in a few cases.

Appendix A is a brief summary of basic results from algebraic
topology which we need in the text; much of this material is essential,
and we advise the reader to review it before embarking on the main
text. The other appendices may be perused as needed.
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Early drafts of what became this book began with WF’s Eilenberg
Lectures at Columbia University in 2007, and DA’s notes have been
available online since then. In the meantime, both authors have given
lectures augmenting and improving on these notes—in courses at the
University of Michigan, the University of Washington, and the Ohio
State University, and in lecture series at the Institute for Advanced
Study in Princeton in 2007, at IMPANGA in Bedłewo in 2010, and
at IMPA in Rio de Janeiro in 2014. We heartily thank the many
students, friends, and colleagues who attended these lectures and
gave feedback on the notes. Special thanks go to P. Achinger, I. Cavey,
J. de Jong, D. Genlik, O. Lorscheid, D. Speyer, and A. Zinger for their
detailed comments, and to M. Brion, D. Edidin, W. Graham, and
B. Totaro for their influence on our understanding of the subject.





CHAPTER 1

Preview

Before beginning in earnest, we offer a taste of the themes and
topics this book will explore. Although we give some definitions
and sketches of arguments here, the reader should rest assured that
later chapters will provide more detail.

1. The Borel construction

Suppose a Lie group G acts on a space X (on the left). The
standard definition of the G-equivariant cohomology of X, written
H∗

G
X, goes like this. Find a contractible space EG with G acting freely

(on the right), and form the quotient

EG ×G X :� (EG × X)/(e · g , x) ∼ (e , g · x).

Then define
H i

GX :� H i(EG ×G X).

The idea behind this definition is to have H i
G

X � H i(G\X) when the
action on X is free; replacing X by EG ×X leaves the homotopy type
unchanged, but produces a free action, with quotient EG ×G X. This
construction first appeared (unnamed) in Borel’s 1958-9 seminar on
transformation groups, so the space EG ×G X is often called the Borel
construction.

The space BG :� EG/G is a classifying space for G and it, along
with the quotient map EG → BG, is universal in an appropriate
category, so this definition is independent of choices. We will not
need this general topological machinery, though.

The case when X is a point is important. Here we are looking at

ΛG :� H∗G(pt) � H∗BG.

1



2 §1. The Borel construction

Since BG usually has nontrivial cohomology, H∗
G
(pt) , Z in general!

This is an essential feature of equivariant cohomology.

Example 1.1. For the multiplicative group G � C∗, we can take
EG � C∞ r {0}. Certainly G acts freely, and it is a pleasant exercise
to prove this space is contractible.1 The quotient is BG � CP∞. This
lets us compute our first equivariant cohomology ring:

ΛC∗ � H∗
C∗
(pt) � H∗CP∞ � Z[t],

where t is the Chern class of the tautological line bundle on CP∞.
For the circle group G � S1, regarded as the unit complex num-

bers, we can use EG � S∞, regarded as the unit sphere in C∞. This is
contractible, since C∞ r {0} retracts onto it, and we obtain the same
quotient space BG � CP∞ as for C∗. Alternatively, we could use the
same space EG � C∞ r {0}, since the subgroup G � S1 ⊆ C∗ acts
freely here. Either way, we obtain

ΛS1 � ΛC∗ � Z[t].

This is an instance of a general phenomenon: cohomology for a
complex group is the same as for a maximal compact subgroup.

Example 1.2. Elaborating on the previous example, for the torus
T � (C∗)n we can take ET � (C∞ r {0})n to get BT � (CP∞)n . We find

ΛT � Z[t1, . . . , tn],

where ti comes from the tautological bundle on the ith factor of (P∞)n .
As before, we get the same result for the compact torus (S1)n ⊆ (C∗)n .

Early applications of equivariant cohomology were topological,
focusing on questions about how the cohomology of a space con-
strains the group actions it admits. Algebraic geometers were slower
to realize its utility, perhaps because the spaces EG ×G X are gener-
ally infinite-dimensional (as we’ve already seen). However, some of
the core ideas of equivariant cohomology had been used in algebraic
geometry for quite a while. The space EG ×G X is a fiber bundle over
the classifying spaceBG, with fiber X, and the study of such bundles
goes back at least to Ehresmann in the 1940’s. In algebraic geometry,
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fiber bundle constructions are familiar and ubiquitous—we are used
to going from a vector space to a vector bundle, projective space to
projective bundle, or Grassmannian to Grassmann bundle. A key
theme for us is that equivariant cohomology is intimately linked to
the study of general fiber bundles.

In fact, we will work with an alternative (but equivalent) definition
of H∗

G
which stays within the realm of finite-dimensional spaces. This

involves using “approximations” Em to EG, and each Em ×
G X will be

a finite-dimensional algebraic manifold whenever X is. (A technical
assumption on G or X may be necessary, to guarantee algebraicity
of the quotient, but it will be automatic in most applications.) For
instance, we’ll use Em � Cm r 0 → Bm � Pm−1 to approximate BC∗.
In the next chapter, we’ll prove lemmas that show this leads to a
well-defined theory.

As we’ll see, equivariant cohomology shares many familiar prop-
erties with ordinary (singular) cohomology: it is functorial (con-
travariant for equivariant maps), has Chern classes (for equivariant
vector bundles), and fundamental classes (for invariant subvarieties
of a nonsingular variety). Most of these properties are verified by do-
ing the analogous construction for ordinary cohomology on EG×G X

(or an approximation).

2. Fiber bundles

The Borel construction produces a certain fiber bundle from the
action of G on X: the fiber is X, and the base is BG (or an approxi-
mation). It is helpful to think of the diagram

X E ×G X

pt B

with the vertical arrow on the right coming from the projection on
the first factor. Pullback along the horizontal arrows—i.e., restriction
to a fiber—defines a forgetful homomorphism H∗

G
X → H∗X, from

equivariant to ordinary cohomology. Pullback along the vertical
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arrows gives homomorphisms

Z � H∗(pt) → H∗X and ΛG � H∗G(pt) → H∗GX.

The first of these is trivial, but the second endows H∗
G

X with the richer
structure of a ΛG-algebra, at least when this ring is commutative. In
some cases, this structure is rich enough to determine X itself! (For
example, this happens when X is a toric manifold.)

Example 2.1. The standard action of T � (C∗)n on Cn (by scaling
coordinates) defines an action on Pn−1

� P(Cn), giving the universal
quotient line bundle O(1) an equivariant structure. Writing ζ �

cT
1
(O(1)) for its equivariant Chern class in H2

T
Pn−1, we have

H∗TP
n−1

� ΛT[ζ]/
n∏

i�1

(ζ + ti).

We will work this out in detail soon; it follows easily from the general
formula for the cohomology of a projective bundle. Note that sending
ti 7→ 0 for all i defines a surjection H∗

T
Pn−1 → H∗Pn−1

� Z[ζ]/(ζ
n
),

where ζ � c1(O(1)) is the ordinary Chern class.

3. The localization package

The possibility of carrying out global computations using only
local information at fixed points provides one of the most powerful
applications of equivariant cohomology. This works best when G � T

is a torus. Two notions underwrite this technique. The first is that
equivariant cohomology should determine ordinary cohomology: in good
situations,

H∗TX → H∗X is surjective, with kernel generated by
the kernel of ΛT → Z.

The second notion is that equivariant cohomology should be determined
by fixed points: in good situations, for ι : XT ֒→ X,

H∗
T

X
ι∗

−→ H∗
T

XT is injective, and becomes an isomor-
phism after inverting enough elements of ΛT .

We will also see theorems characterizing the image of ι∗.
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Both of these are desired properties, but they can certainly fail
for a given action of T on X. (For example, if X has no fixed points,
it will be difficult for the second notion to hold; if X � T, acting
on itself by translation, then both properties fail. A useful exercise
is to look for other examples where one or both of these properties
fails.) In plenty of common situations, though, both do hold true: for
example, whenever X is a nonsingular projective variety with finitely
many fixed points. Theorems about when these properties hold form
the core of the localization package.

Another component of this package is an integration formula which
computes the pushforward along a proper map of nonsingular va-
rieties, f : X → Y, via restriction to fixed points. In the especially
useful case of ρ : X → pt, with XT finite, this takes the form∫

X

α :� ρ∗(α) �
∑

p∈XT

α |p

cT
top(TpX)

,

where the right-hand side is a finite sum of elements of the fraction
field of ΛT—that is, rational functions in the variables ti .

All of this package consists of essentially equivariant phenom-
ena: for any space X with nontrivial cohomology and finitely many
fixed points, you could never have an injection H∗X → H∗XT , by de-
gree! Similarly, the right-hand side of the integration formula is only
defined equivariantly, since the denominators are positive-degree
elements of H∗

T
(pt).

Localization fits into the fiber bundle picture via sections: in terms
of the previous diagram, we have

X E ×G X

pt B

ιp

with the inclusion ιp : {p} ֒→ X of a fixed point inducing a section of
the fiber bundle E ×G X → B. Pulling back along this section gives
the restriction homomorphism ι∗p : H∗

G
X → H∗

G
(p) � ΛG.
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4. Schubert calculus and Schubert polynomials

Our two main thematic strands—fiber bundles and localization—
braid together nicely in modern Schubert calculus. Here X is a pro-
jective homogeneous space, for example, Pn−1, Gr(d ,Cn), Fl(Cn), or
more generally, G/P for a reductive group G and parabolic subgroup
P. The cohomology ring has a basis of Schubert classes [Ωw], where
Ωw ⊆ X is a Schubert variety, defined by certain incidence conditions.
These subvarieties are invariant for the action of a torus, and in fact
their equivariant classes σw � [Ωw]

T form a ΛT-basis for H∗
T

X. (The
set W indexing the Schubert basis is a quotient of the Weyl group of
G. For G � GLn , this is the symmetric group Sn .)

A central problem is to understand these classes σw. In particular,
one would like expressions for them as polynomials in ring gener-
ators for H∗

T
X; formulas for their restrictions to fixed points; and

combinatorial rules for their multiplication. The last of these is a
long-standing open problem: one can write

σu · σv �

∑
w

cw
uv σw ,

for some homogeneous polynomials cw
uv in ΛT � Z[t1, . . . , tn]. What

are these polynomials?
The structure constants cw

uv satisfy a positivity property: when
written in appropriate variables, these polynomials have nonnega-
tive coefficients. (When there is no torus, the structure constants are
nonnegative integers, by an application of Kleiman-Bertini transver-
sality.) The problem is to find a combinatorial formula for cw

uv man-
ifesting this positivity. Good answers are known for some spaces—
Grassmannians, cominuscule varieties, 3-step flag varieties—but even
the non-equivariant question remains open in most cases, despite
much recent progress. A key theme in recent advances is that equi-
variant techniques aid in proving non-equivariant theorems.

One can say more about the other problems. There is an elegant
formula for restricting σw to a fixed point pu , expressed as a sum
over certain reduced words in the Weyl group. And there are good
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formulas for representing σw as a polynomial in Chern classes, at
least in classical types.

We will focus on “type A”, and in particular the complete flag
variety Fl(Cn). For each permutation w ∈ Sn , there are Schubert
classes [Ωw] ∈ H∗Fl(Cn) and [Ωw]

T ∈ H∗
T

Fl(Cn). In 1982, Lascoux
and Schützenberger defined and initiated the study of Schubert poly-
nomialsSw(x) ∈ Z[x1, . . . , xn], which are homogeneous polynomials
mapping to [Ωw] under a ring presentation Z[x]։ H∗Fl(Cn).

There are also double Schubert polynomials

Sw(x; y) ∈ Z[x1, . . . , xn , y1, . . . , yn],

and it was later proved that these map to [Ωw]
T in H∗

T
Fl(Cn) �

Z[x , y]/I. Since H∗
T

Fl(Cn) is a quotient of a polynomial ring, there
are necessarily many choices for polynomials representing [Ωw]

T ,
but it is generally agreed thatSw(x; y) are the best ones. They have
many wonderful combinatorial and geometric properties, and we
will study them in detail later.

Briefly, here is a different way the polynomials Sw(x; y) arise,
which would have been familiar to mathematicians working over
100 years earlier. We will place rank conditions on n × n matrices,
and compute the degree of the corresponding variety defined by
the vanishing of certain minors. This sort of problem was studied
by 19th century geometers, especially Cayley, Salmon, Roberts, and
Giambelli. For a permutation w ∈ Sn , consider the (transposed)
permutation matrix A†w having 1’s in the w(i)th column of the ith row
(position (i , w(i))) and 0’s elsewhere. For example, the permutation
w � 2 3 1 has matrix

A†2 3 1 �
©«

0 1 0
0 0 1
1 0 0

ª®®
¬
.

Let A[p , q] denote the upper-left p × q submatrix of any matrix A,
and define

Dw �

{
A ∈ Mn,n

�� rk(A[p , q]) ≤ rk(A†w[p , q]) for all 1 ≤ p , q ≤ n
}
.
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This is an irreducible subvariety of Mn,n � A
n2

, of codimension
ℓ(w) � {i < j | w(i) > w( j)}. It is invariant for an action of T �

(C∗)n × (C∗)n which scales rows and columns: viewing each factor of
T as diagonal matrices, (u , v) · A � u A v−1. This means there is a
class

[Dw]
T ∈ H∗T Mn,n � ΛT � Z[x1, . . . , xn , y1, . . . , yn],

homogeneous of degree ℓ(w) in the variables. (Since Mn,n is con-
tractible, its equivariant cohomology is that of a point.)

Theorem. This class equals the Lascoux-Schützenberger double Schu-
bert polynomial: [Dw]

T
�Sw(x; y).

This theorem is one piece of evidence of the naturality of Schubert
polynomials, as well as the advantage of working equivariantly: there
are no relations in the polynomial ring H∗

T
Mn,n , so no choices.

Example. The locus D2 3 1 is defined by two equations, a11 � a21 �

0. Each coordinate ai j comes with T-weight xi − y j , so Bézout’s
theorem impliesS2 3 1(x; y) � (x1 − y1)(x2 − y1).

Notes

In addition to the original construction, many of the core ideas of equi-
variant cohomology appear in Borel’s seminar on transformation groups
[Bor60]. This includes the fiber bundle and localization perspective, as well
as the idea of approximating by finite dimensional spaces. (They used CW
complexes, not algebraic varieties.) In modern language, the Borel con-
struction can be regarded as a “homotopy quotient” of X by G, since it is
the homotopy colimit of a diagram G×X ⇒ X. Alternatively, one can view
H∗

G
X as the cohomology of the quotient stack [G\X]. See [Beh04] for an

introduction to the stack perspective.
Much of the current work on equivariant cohomology in algebraic ge-

ometry has roots in the story of modern Schubert calculus. Recent break-
throughs in the structure constant problem begin with Knutson and Tao’s
puzzle rule for Grassmannians [KnTao03], which we will see in Chap-
ter 9. Since then, formulas for two-step flag varieties have been found
[Co09, Buc15, BKPT16], as well as very recent formulas for two- and three-
step flags [KnZJ20]. There are also some rules for classical Schubert calculus
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on certain spaces G/P for groups G other than GLn. Pragacz showed that a
formula of Stembridge computes the structure constants of the Lagrangian
Grassmannian [Pra91], and more generally, Thomas and Yong have found
type-uniform formulas for all cominuscule flag varieties [ThYo09].

The restriction formula for equivariant Schubert classes at fixed points is
due to Andersen-Jantzen-Soergel [AJS94] and Billey [Bi99]; we will prove it
in Chapter 18. The relationship between double Schubert polynomials and
equivariant classes was established in the 1990’s [Ful92, KnMi05, FeRi03].

Hints for exercises

1A solution can be found in [Hat02, Ex. 1B.3]. See, e.g., [MilSta74, §14] for the
computation of H∗CP∞.





CHAPTER 2

Defining equivariant cohomology

We will introduce our definition of equivariant cohomology using
finite-dimensional algebraic varieties, constructing a contravariant
functor from spaces with G-action to rings, and compute several
examples of ΛG from this definition. First we need some basic facts
about principal bundles, which predate equivariant cohomology and
to some extent motivated its original construction.

Throughout this book, G is a Lie group. Usually—though not
always—it will be a complex linear algebraic group.

1. Principal bundles

Before discussing the general setup, here is a special case which
may be familiar. Suppose E is a complex vector bundle of rank n on
a space Y, so it is trivialized by some open cover Uα. The transition
functions (from Uα ∩Uβ to GLn) can be used to construct a principal
GLn-bundle. Explicitly, let

p : Fr(E) → Y

be the frame bundle of E, whose fiber over y ∈ Y is the set of all ordered
bases (v1, . . . , vn) of Ey . (This is also known as the Stiefel manifold of
E.) There is a natural right action of GLn on Fr(E), by

(v1, . . . , vn) · g � (w1 , . . . , wn) where w j �

n∑
i�1

gi j vi ,

and over an open set U ⊆ Y where E is trivial, the isomorphism

E |U U × Cn

U

∼

11
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gives rise to

Fr(E |U) � p−1(U) U × GLn

U

∼

so Fr(E)/GLn � Y. This bundle p : Fr(E) → Y, together with its
GLn action, is called the associated principal bundle to the vector bun-
dle E. One can recover E from its associated principal bundle, via
isomorphisms

Fr(E) ×GLn Cn E

Fr(E) ×GLn pt Y,

∼

(v1, . . . , vn) × (z1, . . . , zn) 7→

n∑
i�1

zi vi .

Here we are using the balanced product notation introduced in Chap-
ter 1 when describing the Borel construction: in general, if G acts on
the right on a space X, and on the left on a space Y, then

X ×G Y

is the quotient of X × Y by the relation (x · g , y) ∼ (x , g · y).
The associated bundle can be used to construct other bundles.

Multi-linear constructions on the standard GLn-representation Cn

lead to analogous ones on E. For instance, one has

Fr(E) ×GLn (Cn)∨ � E∨,

Fr(E) ×GLn
∧d Cn �

∧d E,

Fr(E) ×GLn Symd Cn
� Symd E.

Using the (left) action of GLn on projective space Pn−1
� P(Cn), the

Grassmannian Gr(d ,Cn), or flag variety Fl(Cn), one obtains projec-
tive bundles, Grassmann bundles, and flag bundles:

Fr(E) ×GLn P(Cn) � P(E),

Fr(E) ×GLn Gr(d ,Cn) � Gr(d , E),

Fr(E) ×GLn Fl(Cn) � Fl(E).
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In fact, any space X with a left GLn-action produces a bundle

Fr(E) ×GLn X → Y

which is locally trivial with fiber X. Special cases of this construction
will give us Hk

GLn
(X), at least if H̃ i(Fr(E)) � 0 for i ≤ k. Often it is

simpler and more natural to study bundles in general, keeping in
mind that this special case recovers equivariant cohomology.

Exercise 1.1. For d ≤ n, let Fr(d , E) → Y be the bundle whose
fiber over y is{
(v1, . . . , vd)

�� v1, . . . , vd are linearly independent in the fiber Ey

}
.

There is a right GLd-action, as before. Show that Fr(d , E) ×GLd Cd is
naturally identified with the tautological rank d subbundle S ⊆ EGr

on the Grassmann bundle π : Gr(d , E) → Y, where EGr � π∗E is the
pullback vector bundle.1

Exercise 1.2. Note that Fr(d , E) is an open subspace of the Hom
bundle Hom(Cd

Y
, E), where Cd

Y
� Y × Cd is the trivial bundle. Use

a similar open subset of Hom(E,Cn−d
Y
) to construct the tautological

rank n − d quotient bundle EGr ։ Q � EGr/S on Gr(d , E).

Generally, for a Lie group G, a (right) principal G-bundle is

p : E→ B,

where G acts freely on E (on the right) and the map p is isomor-
phic to the quotient map E → E/G. We will always assume such
bundles are locally trivial, so that B is covered by open sets U , with
G-equivariant isomorphisms p−1U � U × G, where G acts on U × G

by right multiplication on itself.

Exercise 1.3. With G acting by right multiplication on itself, triv-
ially on a space B, and on the left on a space X, show that there is a
canonical isomorphism

(B × G) ×G X � B × X.
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Exercise 1.4. Suppose G acts on the right on E and on the left on
X, and H acts on the right on X and on the left on Y, compatibly so
that

g · (x · h) � (g · x) · h

for all g ∈ G, x ∈ X, and h ∈ H. Show that there is a canonical
isomorphism

(E ×G X) ×H Y � E ×G (X ×H Y).

Remark. If one restricts to a category of paracompact and Haus-
dorff spaces, there is a universal principal G-bundleEG→ BG, with the
property that any principal bundle E→ B comes from the universal
one by a pullback

E EG

B BG

for some map B→ BG, uniquely defined up to homotopy. The base
BG of such a bundle is called a classifying space for G. In fact, a
principal bundle E→ B is universal if and only if E is contractible.

The conditions paracompact and Hausdorff guarantee that par-
titions of unity exist, which is what is needed to construct the clas-
sifying map B → BG. Any complex algebraic variety has these
properties. On the other hand, for most groups G, there is no (finite-
dimensional) algebraic variety E which is contractible and admits a
free G-action, so the classifying space BG cannot be represented by
any algebraic variety. See Appendix E for an algebraic approach to
this universal property.

We will not need the universal construction in our approach to
equivariant cohomology. Instead, we construct finite-dimensional
algebraic varieties which “approximate” EG → BG, and suffice to
compute cohomology in any finite degree.

2. Definitions

The equivariant cohomology groups H i
G

will be contravariant
functors for G-equivariant maps f : X → Y, and H∗

G
X �

⊕
i≥0 H i

G
X
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will be a ring. To define H i
G

X in any range i < N (with N a positive
integer or infinity), it suffices to find a principal G-bundle E → B
with H̃ iE � 0 for i < N . (That is, E is path-connected and H iE � 0
for 0 < i < N .) Then we set

H i
GX :� H i(E ×G X) for i < N.

To use this definition, we must show it is independent of choices, and
we must also find spaces Ewith N arbitrarily large.

For any G which embeds as a closed subgroup of GLn , we have
an answer to the second point:

Lemma 2.1. Let G be any complex linear algebraic group, and N > 0 an
integer. There are nonsingular finite-dimensional algebraic varieties E and
B, with H̃ iE � 0 for i < N , and G acting freely on E so that E→ B � E/G

is a principal G-bundle which is locally trivial in the complex topology.

In §4 we will give an explicit construction of E making the proof
of the lemma clear. Let us grant this for now, and check that the
definition does not depend on the choice of E.

Proposition 2.2. If E→ B and E′→ B′ are principal G-bundles with
H̃ iE � H̃ iE′ � 0 for i < N , then there are canonical isomorphisms

H i(E ×G X) � H i(E′ ×G X)

for all i < N , and these are compatible with cup products in this range.

Proof. Consider the product spaceE×E′, with the diagonal action
of G, so (e , e′) · g � (e · g , e′ · g). The projections are equivariant and
give a commuting diagram

E × X E × E′ × X E′ × X

E ×G X (E × E′) ×G X E′ ×G X.

The horizontal maps to the left are locally trivial bundles with fiber
E′, and those to the right are locally trivial with fiber E. A special
case of the Leray-Hirsch theorem (see Appendix A, §4) says that such
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bundle maps determine isomorphisms

H i(E ×G X)
∼
−→ H i((E × E′) ×G X)

∼
←− H i(E′ ×G X)

for i < N . Since these come from ring homomorphisms

H∗(E ×G X) → H∗((E × E′) ×G X) ← H∗(E′ ×G X),

they respect cup products. �

Exercise 2.3. Verify that for a third principal bundleE′′→ B′′ such
that H̃ iE′′ � 0 for i < N , the canonical isomorphisms are compatible:
there is a commuting triangle

H i(E ×G X) H i(E′ ×G X)

H i(E′′ ×G X)

∼

∼ ∼

for i < N .2

Exercise 2.4. With E and E′ as above, suppose there is a G-
equivariant continuous map ϕ : E′→ E, so ϕ(e′ · g) � ϕ(e′) · g for all
e′ ∈ E′, g ∈ G. This defines a continuous map E′ ×G X → E ×G X,
and a pullback homomorphism H i(E ×G X) → H i(E′ ×G X). Show
that this is the same as the canonical isomorphism given above when
i < N .3

Any G-equivariant continuous map f : X→ Y determines a con-
tinuous map E ×G X → E ×G Y, by [e , x] 7→ [e , f (x)], so we get
homomorphisms

f ∗ : H i
GY→ H i

GX.

In particular, from the projection X → pt, we obtain a ring homo-
morphism

ΛG :� H∗G(pt) → H∗GX,

making H∗
G

X a graded-commutativeΛG-algebra. (IfΛodd
G

is nonzero,
then one needs to use the convention that for a ∈ Λ

p

G
and b ∈ H

q

G
X,

one has b · a � (−1)pq a · b.) So we have constructed a contravariant
functor

H∗G : (G-spaces) → (ΛG-algebras).
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In Chapter 3, §2, we will construct more general pullbacks, allowing
the group to vary as well.

Exercise 2.5. Check that the isomorphisms verifying indepen-
dence of the choice of E are functorial: given an equivariant map
X → Y, and spaces E and E′ with H̃ iE � H̃ iE′ � 0 for i < N , show
that the diagram

H i(E ×G Y) H i(E′ ×G Y)

H i(E ×G X) H i(E′ ×G X)

∼

∼

commutes.

As a simple and fundamental example, consider G � C∗. This
acts freely on Em � Cm r 0, by (z1 , . . . , zm) · s � (z1s , . . . , zm s). The
quotient is Bm � Pm−1. Since H̃ iEm � H̃ iS2m−1

� 0 for i < 2m− 1, any
space X with a C∗-action has

H i
C∗

X � H i((Cm r 0) ×C
∗

X) for i < 2m − 1.

In particular, for the range i < 2m − 1 one has

H i
C∗
(pt) � H i(Pm−1) �

{
Z if i is even;

0 if i is odd.

Each H∗(Pm−1) is a truncated polynomial ring isomorphic toZ[t]/(tm ),
so H∗

C∗
(pt) is a polynomial ring:

ΛC∗ � Z[t], for t a variable of degree 2.

There are two possibilities for t, differing by a sign. In fact, there is a
canonical choice of sign, as we will see in the next section.

For G � (C∗)n , one can take Em � (Cm r 0)n , so Bm � (Pm−1)n and
ΛG � Z[t1, . . . , tn].

In these examples one already sees a key feature of our definition
of equivariant cohomology: it takes place within the world of finite-
dimensional varieties.
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Proposition 2.6. Let G be a complex linear algebraic group acting
algebraically on a variety X. For any integer N > 0, there is a nonsingular
algebraic variety E so that H i

G
X � H i(E ×G X) for i < N , where E ×G X

is a complex analytic space, nonsingular whenever X is.

Proof. Quite generally, suppose Z is a complex analytic space,
and Y → Z is a continous map of topological spaces which is a locally
trivial fiber bundle. If the fibers F are complex analytic spaces, and
the transition functions are holomorphic maps ϕαβ : Uα ∩ Uβ → G

for some complex subgroup G ⊆ Aut(F) of holomorphic automor-
phisms, then Y inherits a canonical complex analytic structure by
glueing. If both Z and F are complex manifolds, so is Y.

The proposition is the special case where Y � E ×G X and Z � B,
where E→ B is chosen as in Lemma 2.1. �

3. Chern classes and fundamental classes

A G-equivariant vector bundle on X is a vector bundle E→ X with
G acting linearly on fibers, so that the projection is equivariant. (That
is, G acts on E, and for all g ∈ G and x ∈ X, and e ∈ Ex , the map
e 7→ g · e is a linear map of vector spaces Ex → Eg·x .) An equivariant
vector bundle produces an ordinary vector bundle E×G E→ E×G X.
Choosing E so that H̃ iE � 0 for i ≤ 2k, we take the Chern classes of
this bundle on E ×G X to define the equivariant Chern classes of E:

cG
k
(E) :� ck(E ×

G E) in H2k
G X � H2k(E ×G X).

Similarly, a G-invariant subvariety V of codimension d in a non-
singular variety X determines a subvariety E ×G V ⊆ E ×G X of
codimension d, and therefore an equivariant fundamental class

[V]G � [E ×G V] in H2d
G X � H2d(E ×G X).

(Here we assume G is a complex linear algebraic group and E is a
nonsingular algebraic variety. Then Proposition 2.6 says that E×G V

is a complex analytic subvariety of the complex manifold E ×G X.)
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Exercise 3.1. Using arguments from before, show that these defi-
nitions are independent of choices.4 More precisely,

ck(E ×
G E) 7→ ck(E

′ ×G E) under H2k(E ×G X)
∼
−→ H2k(E′ ×G X),

when H̃ iE � H̃ iE′ � 0 for i ≤ 2k; and

[E ×G V] 7→ [E′ ×G V] under H2d(E ×G X)
∼
−→ H2d(E′ ×G X),

when H̃ iE � H̃ iE′ � 0 for i ≤ 2d.

Exercise 3.2. Show that multilinear constructions on vector bun-
dles are preserved by the Borel construction. For instance, if E and F

are G-equivariant vector bundles on X, verify that

E ×G (E ⊕ F) � (E ×G E) ⊕ (E ×G F)

as vector bundles on E ×G X, where E→ B is a principal G-bundle.
Do the same for tensor products E ⊗ F,

∧k E, and Symk E.

The basic properties of equivariant Chern classes and fundamen-
tal classes follow directly from the corresponding properties of ordi-
nary classes on approximation spaces; details and references can be
found in Appendix A, §3 and §5. For instance, one has the following:

• For equivariant line bundles L and M, equivariant Chern
classes are additive: cG

1 (L ⊗ M) � cG
1 (L) + cG

1 (M).

• When 0 → E′ → E → E′′ → 0 is an equivariant short exact
sequence, there is a Whitney formula cG(E) � cG(E′) · cG(E′′).

• If E has rank e on a nonsingular variety X, and s is an equivari-
ant section, then Z(s) ⊆ X is an invariant subvariety of codi-
mension at most e. If codim(Z(s)) � e, then [Z(s)]G � cG

e (E)

in H2e
G

X.

• If G is connected, and two invariant subvarieties V and W of a
nonsingular variety X intersect properly, with V ·W �

∑
miZi

as cycles, then [V]G · [W]G �

∑
mi[Zi]

G in H∗
G

X. In particular,
if V ∩W � ∅, then [V]G · [W]G � 0.
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(In the last item, connectedness of G is needed to guarantee that each
Zi is also G-invariant.)

As usual, the basic case X � pt offers plenty to study. Here a
G-equivariant vector bundle is just a representation of G, so each
representation V of G has Chern classes cG

i
(V) ∈ H2i

G
(pt) � Λ2i

G
.

Example 3.3. For each integer a, C∗ has the 1-dimensional repre-
sentation Ca , where C∗ acts on C by z · v � zav. So C1 is the standard
representation. In Exercise 1.1, we saw that

(Cm r 0) ×C
∗
C1 O(−1)

(Cm r 0) ×C
∗
pt Pm−1,

∼

∼

so E ×C
∗
C1 gets identified with the tautological bundle O(−1) on B.

Taking t � cC
∗

1 (C1) � c1(O(−1)) as a generator for ΛC∗ � Z[t], we see

ΛC∗ is a polynomial ring generated by the Chern class
of the standard representation.

More generally, since Ca ⊗ Cb � Ca+b , we have cC
∗

1 (Ca) � at. One can
also see this from an identification E ×C

∗
Ca � O(−a).

Example 3.4. Consider T � (C∗)n acting onCn
� V by the standard

action scaling coordinates. For 1 ≤ i ≤ n, we have one-dimensional
representations Cti , where z · v � zi v. Then

cT
i (V) � ei(t1, . . . , tn) in ΛT � Z[t1, . . . , tn],

where ti � cT
1 (Cti ) and ei is the elementary symmetric polynomial.

Using E � (Cm r 0)n and Bm � (Pm−1)n , the class ti is identified with
the Chern class of the tautological bundle from the ith factor of Bm .

Example 3.5. In the equivariant setting, it is harder to move G-
invariant subvarieties so that they intersect properly. For example,
consider G � C∗ acting on C in the standard way. Then the only
invariant subvarieties are {0} and C. In ordinary cohomology, one
could move 0 to 1 to see [0]2 � [0] · [1] � [{0} ∩ {1}] � 0, but this is
not possible equivariantly. Indeed, ([0]T)2 � t2 , 0 in H∗

C∗
(C).
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4. The general linear group

Now we will consider G � GL(V), for an n-dimensional vector
space V . This has its standard representation on V itself, so there are
Chern classes cG

i
(V) ∈ H2i

G
(pt) � Λ2i

G
. Our main calculation is this:

Proposition 4.1. We have

ΛG � Z[c1, . . . , cn]

where ci � cG
i
(V).

In other words,

ΛGL(V) is a polynomial ring generated by the Chern
classes of the standard representation.

To prove this, we will use Em � Emb(V,Cm), the space of linear
embeddings V ֒→ Cm , for m ≥ n. Choosing a basis, so V � Cn, one
identifies Em with M◦m,n , the space of full-rank m × n matrices. Let
Ωn−1 � Hom(V,Cm) r Em ; choosing a basis identifies Ωn−1 ⊆ Mm,n

with the locus of m × n matrices of rank at most n − 1. A standard
exercise in algebraic geometry computes its dimension.

Exercise 4.2. Consider the locusΩr ⊆ Mm,n of matrices of rank at
most r. Show this is irreducible of codimension (m − r)(n − r).5

Lemma 4.3. We have H̃ iEm � 0 for i ≤ 2(m − n).

Proof. From the long exact sequence in cohomology, we have
H̃ iEm � H i+1(Hom(V,Cm),Em) � H2mn−i−1Ωn−1. By the exercise,
Ωn−1 has (real) dimension 2mn−2(m−n+1). When i ≤ 2(m−n), we
have 2mn− i−1 > 2mn−2(m−n+1), so this Borel-Moore homology
group vanishes. �

(For an alternative way of proving the lemma, see Appendix A, §7.)
We also need a coarse description of the cohomology of the Grass-

mannian, which says it is generated by Chern classes, with no rela-
tions in small degree.

Lemma 4.4. We have

H∗Gr(n ,Cm) � Z[c1(S), . . . , cn(S)]/(Rm−n+1 , . . . , Rm),
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where Rk is a relation of degree k.

The lemma can be found in standard algebraic topology texts, and it
also follows from computations we will do later (Chapter 4, §5).

Now we can prove Proposition 4.1. Observe that Bm � Em/G �

Gr(n ,Cm), where G acts on Emb(V,Cm) by (ϕ · g)(v) � ϕ(g · v).
By Exercise 1.1, Em → Bm is the frame bundle Fr(S) → Gr(n ,Cm)

associated to the tautological S ⊆ Cm
Gr

, and so the vector bundle
Em ×

G V identifies with the tautological bundle S itself. (The map
is by (ϕ, v) 7→ (ϕ, ϕ(v)).) Thus cG

i
(V) is identified with ci(S). The

proposition now follows from Lemma 4.4. �

5. Some other groups

Any closed subgroup G ⊆ GL(V) acts freely onEm � Emb(V,Cm),
so we can use these same approximation spaces for such G. (For
computations, it is sometimes useful to use other choices.) Let us see
how far we can get using this explicit construction.

Exercise 5.1. Consider G � SL(V) ⊆ GL(V) as the subgroup
preserving the determinant

∧n V
∼
−→ C. Show that

ΛSL(V) � Z[c1, . . . , cn]/(c1) � Z[c2, . . . , cn],

where ci � cG
i
(V). (Note that

∧n V is the trivial representation, so
cG

1 (V) � cG
1 (

∧n V) � 0.)6

For now, let us fix a basis, so V � Cn . Our main example going
forward will be T � (C∗)n , and we have already seen two possibilities
for constructing its equivariant cohomology. Using T � (GL1)

n , we
get

Em � (Cm r 0)n �

{
A ∈ Mm,n | no column is zero

}
,

with Bm � (Pm−1)n .
On the other hand, from embedding T ⊆ GLn as diagonal matri-

ces, we have

Em � M◦m,n �

{
A ∈ Mm,n | columns are linearly independent

}
.
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Using this choice, we get

Bm � M◦m,n/T �

{
V ⊆ Cm of dimension n ,

with a decomposition V � L1 ⊕ · · · ⊕ Ln

}
,

by sending a matrix to the tuple (L1, . . . , Ln), with Li the span of the
ith column. Call this space the “split Grassmannian” Grsplit(n ,Cm);
it comes with tautological line bundles L1, . . . ,Ln, whose classes
ti � c1(Li) generate the cohomology ring.

There is a projection map π : Grsplit(n ,Cm) → Gr(n ,Cm) sending
(L1, . . . , Ln) to V � L1 ⊕ · · · ⊕ Ln ⊆ C

m .

Exercise 5.2. Taking m sufficiently large, show that the corre-
sponding pullback map on cohomology gives

ΛGLn � Z[c1, . . . , cn] → Z[t1, . . . , tn] � ΛT ,

defined by ci 7→ ei(t1 , . . . , tn), so ΛGLn embeds in ΛT as the ring of
symmetric polynomials.7

Remark. The inclusion ΛGLn ֒→ ΛT is a manifestation of the split-
ting principle: given a vector bundle E on a space X, one can find a
map f : X′ → X such that f ∗E splits into a direct sum of line bun-
dles on X′, and the pullback homomorphism f ∗ : H∗X → H∗X′ is
injective. For any d ≤ n � rk E, there is a “split Grassmann” bundle
Grsplit(d , E) → X, constructed as before by taking a quotient of the
frame bundle, so

Fr(E) ×GLn Grsplit(d ,Cn) � Grsplit(d , E).

Taking d � n � rk E and X′ � Grsplit(n , E), the pullback of E from X

to X′ splits, and the cohomology of X embeds into that of X′.
Using functorial pullbacks in equivariant cohomology, exactly

the same construction establishes the analogous equivariant splitting
principle: for a G-equivariant vector bundle E → X, there is an
equivariant map f : X′→ X such that f ∗E splits into equivariant line
bundles, and such that f ∗ : H∗

G
X → H∗

G
X′ is injective.
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In between the torus and GLn , there is the Borel group B of upper-
triangular matrices. Using Em � M◦m,n again, we have

Bm � M◦m,n/B �

{
V ⊆ Cm of dimension n ,

with a filtration V1 ⊂ V2 ⊂ · · · ⊂ Vn � V

}

� Fl(1, 2, . . . , n;Cm),

the partial flag variety parametrizing chains V1 ⊂ · · · ⊂ Vn ⊆ C
m,

with dim Vi � i. (The projection Em → Bm sends a matrix to the
flag where Vi is the span of the first i columns.) This comes with a
tautological flag of bundles S1 ⊂ · · · ⊂ Sn ⊆ C

m
Fl

. The flag variety sits
between Grsplit(n ,Cm) and Gr(n ,Cm), with maps

Grsplit(n ,Cm) → Fl(1, . . . , n;Cm) → Gr(n ,Cm),

sending (L1 , . . . , Ln) to the flag with Vi � L1 ⊕ · · · ⊕ Li , and projecting
a flag V• to V � Vn ⊆ C

m.

Exercise 5.3. Show that Grsplit(n ,Cm) is a locally trivial affine
bundle, so the pullback map induces an isomorphism ΛB

∼
−→ ΛT .

The isomomorphism in this exercise is part of a general phenom-
enon, as we will see in the next chapter, since the inclusion T ֒→ B

is a deformation retract. On the other hand, one can also compute
directly that H∗Fl(1, . . . , n;Cm) is generated by the Chern classes
ti � c1(Si/Si−1), with relations in degrees 2(m − n + 1), . . . , 2m, so
that ΛB � Z[t1, . . . , tn].

Exercise 5.4. Let χi : B→ C∗ be the character which picks out the
ith diagonal entry of a matrix in B, and let Cχi be the corresponding
representation. Show that ti � cB

1 (Cχi ).

For other groups, the rings ΛG can be much more complicated.
For instance, the answer for PGLn is not completely known!

In the case of the symplectic group G � Sp2n ⊆ GL2n , with its
standard representation V � C2n, there is a simple answer:

ΛSp2n � Z[c2, c4, . . . , c2n], where c2k � cG
2k
(V),

so here again ΛG is generated by the Chern classes of the standard
representation.
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Here is the easy half of this computation. Using Em � M◦m,n , we
find

Bm � M◦m,2n/Sp2n �

{
(V, ω)

���� V ⊆ Cm has dimension 2n , and
ω is a symplectic form on V

}
.

Using the projection to M◦
m,2n
/GL2n � Gr(2n ,Cm), one can pull back

the tautological bundle S. On Bm , this pullback bundle acquires a
tautological symplectic form, identifying it with its dual. Whenever
i is odd, then, 2ci 7→ 0 under the map ΛGL2n → ΛSp2n . (This comes
from the general fact that ci(E) + (−1)ici(E

∨) � 0 for any bundle E.)
To complete the argument, one must show that H∗Bm has no torsion,
and that ΛGL2n → ΛSp2n is surjective. See Chapter 15, Example 5.2.

Similar arguments show that ΛGLn → ΛSOn sends 2ci to 0 for i

odd, but in this case it is not true that ci 7→ 0 (there is 2-torsion on
ΛSOn ), and the map is not surjective in general.

Exercise 5.5. Show that ΛZ/2Z � Z[t]/(2t), where t is a class in
degree 2. For the additive group Z, show that ΛZ � Z[t]/(t2), where
t has degree 1.8

Remark. For a finite group G, there is another construction, which
gives rise to an explicit cochain complex computingΛG � H∗

G
(pt). Let

C• � C•(G,Z) be the complex with

Ci
�

{
functions ϕ : Gi → Z

}
and for ϕ ∈ Ci define the differential dϕ ∈ Ci+1 by

dϕ(g0 , . . . , gi) � ϕ(g1 , . . . , gi)

+

i−1∑
j�0

(−1) j+1ϕ(g1 , . . . , g j−1, g j g j+1, . . . , gi)

+ (−1)i+1ϕ(g0 , . . . , gi−1).

Then Hk
G
(pt) is the cohomology Hk(C•) of this complex. One way

to prove this goes through the Milnor construction for the universal
principal bundle EG→ BG.
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In the context of group theory, H∗
G
(pt) � H∗BG � H∗(G,Z) is

known as the group cohomology of G with coefficients in the trivial
G-module Z.

6. Projective space

Let G be any group acting linearly on an n-dimensional vector
space V . Then G also acts on the projective space P(V), as well as the
tautological subbundle O(−1) and its dual O(1). Let ζ � cG

1 (O(1)) be
the Chern class in H2

G
P(V).

Proposition 6.1. We have

H∗GP(V) � ΛG[ζ]/(ζ
n
+ c1ζ

n−1
+ · · · + cn),

where ci � cG
i
(V) are the Chern classes of the given representation.

Proof. This is a special case of the general formula computing the
cohomology of a projective bundle in terms of that of the base. In
our circumstance, the relevant identification is

E ×G P(V) P(E ×G V)

B B,

compatibly with identifications of O(1). Thus ζ is the hyperplane
class for the projective bundle, and cG

i
(V) � ci(E×

G V) are the Chern
classes of this vector bundle on B. �

Example 6.2. For G � GL(V), we have

H∗GP(V) � Z[c1, . . . , cn][ζ]/(ζ
n
+ c1ζ

n−1
+ · · · + cn).

For T � (C∗)n acting on V via the standard action, we have

H∗TP(V) � Z[t1, . . . , tn][ζ]/
n∏

i�1

(ζ + ti).

(This comes from the computation cT
i
(V) � ei(t1 , . . . , tn).)
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Notes

Our definition of equivariant cohomology, using approximations by
alebgraic varieties, is modelled on the analogous construction for Chow
groups. This technique was pioneered by Totaro [Tot99] and further de-
veloped by Edidin and Graham, who defined equivariant Chow groups
[EdGr98].

Algebraic versions of Lemma 2.1 appear in Totaro’s construction of the
Chow ring of a classifying space; see [Tot99, Remark 1.4] or [Tot14, §2].
In algebraic geometry, the method of proving Proposition 2.2 (establish-
ing independence of choice of approximation) was used by mathemati-
cians studying invariant theory; see especially Bogomolov’s definition of
the Brauer group [Bog87, §3]. In topology, this argument goes back to
Borel’s foundational papers; see [Bor53, §18].

An alternative argument for Proposition 2.6 showing that the quotient
E×G X � (E×X)/G is a complex analytic space can be given using a general
statement about analytic structures on quotients, proved by Cartan [Car57]
and generalized by Holmann [Hol60].

Even when X is a nonsingular variety, the space E×G X may not exist as
a scheme (although it is always an algebraic space). Some general criteria
guaranteeing that it does exist are given by Edidin and Graham [EdGr98,
Proposition 23]. Sufficient conditions include: X is quasi-projective, with
a linearized G-action; or G is a special group such as GLn, SLn, a torus, or
products of such groups.

We will work out the cohomology rings of Grassmannians and flag vari-
eties in Chapter 4. Alternative arguments for the computation in Lemma 4.4
can be found in many algebraic topology texts; for example, the book by
Dold [Do80, Proposition 12.17].

Using coefficients in a field, there are classical computations of H∗BG by
Borel [Bor53]. Some computations of integral cohomology for orthogonal
groups were done by Brown and Feshbach [Bro82, Fes83].

In many other cases, the integral cohomology (or Chow) rings ofBG are
either unknown, or were computed rather recently. The Chow ring for SO2n

was computed by Field in her 2000 Ph. D. thesis [Fie12]. Computations for
PGLp, with p prime, were done in both cohomology and Chow rings by
Vistoli, whose paper also serves as a good survey for other work on the
subject [Vis07].
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The “Milnor construction” for BG was given in [Mi56]; see also [Hus75,
§4.11].

Hints for exercises

1For the fiber over y ∈ Y, the map to the tautological bundle of Gr(d , Ey) is
simply (v1, . . . , vd) × (z1 , . . . , zd) 7→ (span{v1 , . . . , vd},

∑
zi vi).

2Use the triple product E × E′ × E′′.

3The equivariant map ϕ induces a section of the projection (E × E′) ×G X →

E′ ×G X.

4For Chern classes, this just uses the pullback of the vector bundle E to E × E′.
For classes of subvarieties, one needs the smooth pullback property; see Appendix
A, Proposition 3.2.

5Use a Grassmannian correspondence to parametrize the kernel of such a ma-
trix. See [Har92, Proposition 12.2].

6Use the same Em , and identify Em/SL(V) → Em/GL(V) with the variety
Iso(

∧n
S,C) over Gr(n,Cm), parametrizing subspace V ⊆ Cm together with an

isomorphism
∧n V → C. Explicitly, this is the variety cut by Plücker equa-

tions in
∧n
Cm r 0. It is also the complement of the 0-section in the line bundle

Hom(
∧n
S,C) �

∧n
S∨. Then one can use the following general fact, which is an

easy application of the Gysin sequence: for a vector bundle E of rank r on X, if the
homomorphism

H i−2r+1X
cr(E)·
−−−−→ H i+1X

is injective, then H i(Er 0) � (H iX)/(cr(E) ·H
i−2rX). See [MilSta74, Theorem 12.2].

7Use π∗S � L1 ⊕ · · · ⊕ Ln .

8For Z/2Z, use Em � Sm, so Bm � RPm . For Z, use E � R, which is already
contractible, with B � S1.



CHAPTER 3

Basic properties

In this chapter we will develop the basic properties of equivari-
ant cohomology. Some are the expected analogues from ordinary
cohomology, such as functoriality, homotopy-invariance, and Mayer-
Vietoris sequences. Some are more intrinsically equivariant, as in
computations for free or trivial actions. We’ll begin with a detailed
study of tori, where functoriality can be seen explicitly.

1. Tori

A torus T is a group which is isomorphic to (C∗)n , so we already
know ΛT � Z[t1, . . . , tn]—for example, by using Em � (Cm r 0)n and
Bm � (Pm−1)n . We want an intrinsic description, though, without
choosing the isomorphism T � (C∗)n .

Let M be the group of characters of T,

M � Homalg. gp.(T,C
∗).

The group operation is written additively: (χ1 + χ2)(z) � χ1(z)χ2(z).
Each χ ∈ M determines an equivariant line bundle on a point, de-
noted Cχ, by the action z · v � χ(z)v for z ∈ T and v ∈ C. This
correspondence is compatible with the group structure on M: we
have Cχ1+χ2

� Cχ1
⊗ Cχ2

, so we get a group homomorphism

M→ Λ2
T � H2

T(pt), χ 7→ cT
1 (Cχ).

In fact, this is an isomorphism, as one can easily check by choosing a
basis, so that T � (C∗)n and M � Zn . We therefore have a canonical
isomorphism

Sym∗M
∼
−→ ΛT .

29
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Example 1.1. Consider T � {(z1 , . . . , zn) ∈ (C
∗)n |

∏
zi � 1}, so

there are exact sequences

1→ T → (C∗)n → C∗→ 1 and 0→ Z→ Zn → M → 0,

realizing M � Zn/Z · (1, . . . , 1). (This T can be viewed as the diagonal
torus in SLn .)

Example 1.2. Consider T � (C∗)n/C∗, with exact sequences

1→ C∗→ (C∗)n → T → 1 and 0→ M → Zn → Z→ 0,

where C∗ ֒→ (C∗)n is the diagonal (z , . . . , z), and

M �

{
(a1, . . . , an) ∈ Z

n
��� ∑ ai � 0

}
.

(This T is the image of the diagonal torus in PGLn � GLn/C
∗.)

In both of these examples, M � Zn−1, but not canonically!
In fact, we will see that the isomorphism Sym∗M � ΛT is natural

for homomorphisms of tori ϕ : T → T′. Such a homomorphism cor-
responds to a homomorphism M′→ M of character groups. (Given
ϕ, one gets M′ → M by pulling back homomorphisms. Conversely,
there is a canonical isomorphism T � SpecC[M], so a group alge-
bra homomorphism C[M′] → C[M] determines a homomorphism
of tori ϕ : T → T′.) Thus a homomorphism of tori gives a ring
homomorphism

Sym∗M′→ Sym∗M.

On the other hand, we will construct ring homomorphisms ΛG′ →

ΛG associated to any group homomorphism ϕ : G → G′. For tori,
these two maps are compatible:

(∗)

Sym∗M′ ΛT′

Sym∗M ΛT .

∼

∼
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2. Functoriality

We have already seen that for a fixed group G acting on spaces
X and X′, with an equivariant map f : X → X′, there is a pullback
homomorphism f ∗ : H∗

G
X′→ H∗

G
X. In fact, equivariant cohomology

is functorial in the group, as well. Here is the general setup. Let
ϕ : G → G′ be a continuous homomorphism of groups. Suppose
G acts on X and G′ acts on X′. A continuous map f : X → X′ is
equivariant with respect to ϕ if

f (g · x) � ϕ(g) · f (x)

for all g ∈ G and x ∈ X. Given such a map, we have a pullback
homomorphism (of rings)

f ∗ : H∗G′X
′→ H∗GX.

(This depends on ϕ as well, but we suppress that in the notation.) In
particular, a group homomorphism G → G′ determines a ring map
ΛG′ → ΛG.

To construct these pullbacks, take principal bundles E→ B for G

andE′→ B′ for G′. Then G acts onE×E′ by (e , e′)· g � (e · g , e′ ·ϕ(g)).
This action is free, and the projection toE′ is equivariant (with respect
to ϕ). Thus there are maps

(E × E′) ×G X→ (E × E′) ×G X′→ E′ ×G′ X′,

where G acts on X′ via ϕ in the middle space. If H̃ iE � H̃ iE′ � 0 for
i < N , then H i

G
X � H i((E × E′) ×G X) for i < N , and the pullback

via (E × E′) ×G X → E′ ×G′ X′ produces the desired homomorphism
H i

G′
X′→ H i

G
X.

Exercise 2.1. Check that the result of this construction is indepen-
dent of choices of E and E′.

If there is an equivariant map E → E′ (with respect to ϕ), check
that pullback via E ×G X → E′ ×G′ X′ agrees with the one we con-
structed.1

Exercise 2.2. For G � G′ � C∗, consider ϕ(z) � za , some a ∈ Z.
Using E � Cm r 0, find an equivariant map E → E (with respect to
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ϕ).2 Show that the corresponding endomorphism of ΛC∗ � Z[t] is
given by t 7→ at.

If E′ → X′ is a G′-equivariant vector bundle, it acquires a G-
equivariant structure via ϕ, and the pullback E � f ∗E′ is a G-
equivariant vector bundle on X. Under the corresponding homo-
morphism H2k

G′
X′→ H2k

G
X, we have

cG′

k
(E′) 7→ cG

k
(E).

That is, equivariant Chern classes commute with pullback.
Since the isomorphism Sym∗M → ΛT was constructed by send-

ing χ ∈ M to cT
1 (L(χ)), functoriality of equivariant Chern classes

establishes the naturality claimed at the end of the last section, in
diagram (∗).

Exercise 2.3. Suppose ϕ : (C∗)n → (C∗)r is given by

(z1 , . . . , zn) 7→

(
n∏

i�1

z
ai ,1

i
, . . . ,

n∏
i�1

z
ai ,r

i

)
,

for some n × r integer matrix A � (ai, j ). (So A gives a linear map
Zr → Zn .) Show that the homomorphism

Z[s1, . . . , sr] � Λ(C∗)r → Λ(C∗)n � Z[t1, . . . , tn]

sends s j to
∑n

i�1 ai j ti . By choosing bases so that T � (C∗)n and
T′ � (C∗)r , this gives an alternative argument for the naturality of the
isomorphism ΛT � Sym∗M.

Exercise 2.4. If E → B is a principal G-bundle, and E′ → B′ is
a principal bundle for G′, show that E × E′ → B × B′ is a principal
bundle for G×G′. IfΛG or ΛG′ is free over Z, deduce that the natural
map ΛG ⊗ ΛG′ → ΛG×G′ is an isomorphism.

3. Invariance

When the maps f : X→ X′ and ϕ : G→ G′ induce isomorphisms
on ordinary cohomology, the same is true for equivariant cohomol-
ogy. To prove this, we can break the problem into simple steps.
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Proposition 3.1. Let f : X → X′ be G-equivariant, and suppose
f ∗ : H iX′→ H iX is an isomorphism for i < N . Then f ∗ : H i

G
X′→ H i

G
X

is an isomorphism for i < N .

Proof. Take a principal G-bundle E→ Bwith H̃ iE � 0 for i < N .
Then the map E ×G X → E ×G X′ induces isomorphisms

H i(E ×G X′) → H i(E ×G X)

for i < N , by a general fact about fiber bundles. Indeed, we have

E ×G X E ×G X′

B

with fiber maps X → X′, so the claim is an instance of Lemma 4.3 of
Appendix A. �

Corollary 3.2. If ϕ : G → G′ is a continuous homomorphism such
that H iG′ → H iG is an isomorphism for i < N , then for any principal
G-bundle E → B, the map H i(E ×G G′) → H iE is an isomorphism for
i < N .

In particular, if H̃ iE � 0 for i < N then also H̃ i(E ×G G′) � 0 for
i < N .

Putting these together, we get the claimed invariance for equivari-
ant cohomology.

Theorem 3.3. Suppose f : X → X′ is equivariant with respect to
ϕ : G → G′, and H iG′ → H iG and H iX′ → H iX are isomorphisms
for i < N . Then H i

G′
X′→ H i

G
X is an isomorphism for i < N .

Proof. Take a principal G-bundle E → B so that H̃ iE � 0 for
i < N . By the Corollary, E′ � E ×G G′ works as an approximation
space for G′, that is, H̃ iE′ � 0 for i < N . Now we have

H i
G′X

′
� H i((E ×G G′) ×G′ X′) � H i(E ×G X′) � H i

GX′,

and we can apply the Proposition. �

We will often encounter situations where the maps are homotopy
equivalences, so N can be taken to be∞.
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Corollary 3.4. If ϕ : G → G′ and f : X → X′ are (weak) homotopy
equivalences, then H∗

G′
X′ � H∗

G
X.

(In fact, one can use the Whitehead theorem and the Hurewicz
isomorphism to show E′ ×G′ X′ and E ×G X are weakly homotopy
equivalent, but we do not need this.)

Example 3.5. The inclusion of the diagonal torus T � (C∗)n in
upper-triangular matrices B ⊆ GLn is a deformation retract, since
B/T � AN (where N �

(n
2

)
). This gives a general reason for the

identification ΛT � ΛB , which we have already observed.

Example 3.6. A unipotent group is a closed subgroup U of the
unitriangular matrices in GLn (meaning the diagonal entries are 1).
Any such group is isomorphic to affine space, so it is contractible,
and ΛU � Z.

More generally, any linear algebraic group G has a maximal nor-
mal unipotent subgroup, the unipotent radical Ru(G), with reductive
quotient Gred, so there is an exact sequence

1→ Ru(G) → G
ϕ
−→ Gred→ 1.

Such a sequence makes ϕ a locally trivial fiber bundle with fibers
isomorphic to Ru(G), so ϕ is a homotopy equivalence and we see
ΛG � ΛGred . Comparing with the previous example, U � Ru(B) is the
group of unitriangular matrices, with T � B/U .

Example 3.7. Let P ⊆ GLn be the subgroup stabilizing the sub-
space spanned by the first d basis vectors e1, . . . , ed, so

P �

[
∗ ∗

0 ∗

]

in block form. The unipotent radical and reductive quotient are

Ru(P) �

[
I ∗

0 I

]
and Pred

�

[
∗ 0
0 ∗

]
� GLd × GLn−d ,

so ΛP � ΛGLd×GLn−d
� Z[c1, . . . , cd , c

′
1, . . . , c

′
n−d
].
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4. Free and trivial actions

Proposition 4.1. Suppose G acts freely on X, so that X → G\X is a
locally trivial principal bundle. Then H i

G
X � H i(G\X) for all i.

Proof. Take Ewith H̃ iE � 0 for i < N , and consider the diagram

E × X X

E ×G X G\X,

where the horizontal arrows are locally trivial with fiber E. By an
application of the Leray-Hirsch theorem, H i(G\X)

∼
−→ H i(E ×G X) �

H i
G

X for i < N . (See Corollary 4.2 of Appendix A.) �

Proposition 4.2. Suppose G acts trivially on X, and E → B is a
principal G-bundle with H̃ iE � 0 for i < N . Then

H i
GX � H i(B × X)

for i < N .
When N � ∞ and the Künneth theorem applies—for instance, when

ΛG is free over Z, or when Λodd
G

� HoddX � 0, we have

H∗GX � ΛG ⊗ H∗X

as ΛG-algebras.

Proof. There is a canonical homeomorphism E ×G X → B × X,
by [e , x] 7→ (b , x), where e 7→ b under E→ B. �

Example 4.3. If H ⊆ G is a closed subgroup, acting on X (on the
left), then G acts on G ×H X and there is a canonical isomorphism

H i
G(G ×

H X) � H i
H X,

natural with respect to H-equivariant maps X → Y. In particular,
taking X � pt, we have

H∗G(G/H) � H∗H(pt) � ΛH .

To see this, use the isomorphism E ×G G ×H X � E ×H X from Exer-
cise 1.4 of Chapter 2.
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Example 4.4. In the situation of the previous example, if G acts
on X extending the action of H, then there is a G-equivariant isomor-
phism

G ×H X
∼
−→ G/H × X,

with G acting on G ×H X via left multiplication, and diagonally on
G/H × X. (The map is given by [g , x] 7→ (gH, g · x).) So

H∗G(G/H × X) � H∗H X

in this case.

Exercise 4.5. Projective space Pn−1 can be realized as the homo-
geneous space G/P, where G � GLn and P is the subgroup of block
upper-triangular matrices stabilizing the coordinate line spanned by
the first standard basis vector e1; that is, invertible matrices of the
form 

∗ ∗ · · · ∗

0 ∗ · · · ∗
...
...

...

0 ∗ · · · ∗


.

In Example 6.2 of Chapter 2, we saw

H∗GP
n−1

� ΛG[ζ]/(ζ
n
+ c1ζ

n−1
+ · · · + cn).

On the other hand,

H∗G(G/P) � ΛP

� ΛC∗×GLn−1

� Z[t , c′1, . . . , c
′
n−1].

Find an explicit ring isomorphism between these two rings.3

5. Exact sequences

If U and V are G-invariant open subsets of X, there is a natural
long exact Mayer-Vietoris sequence

· · · → Hk
G(U∪V) → Hk

GU⊕Hk
GV → Hk

G(U∩V) → Hk+1
G (U∪V) → · · · ,

which can be useful for computations.



Chapter 3. Basic properties 37

There are also exact sequences for triples of G-invariant subspaces
Z ⊆ Y ⊆ X. One defines Hk

G
(X, Y) in the usual way, by choosing E

so that H̃ iE � 0 for all i < N , and setting

Hk
G(X, Y) :� Hk(E ×G X,E ×G Y)

for k < N . Then

· · · → Hk
G(X, Y) → Hk

G(X, Z) → Hk
G(Y, Z) → Hk+1

G (X, Y) → · · ·

is exact.

Exercise 5.1. Let C∗ act on P1 by z · [a , b] � [a , zb], fixing the
points 0 � [1, 0] and ∞ � [0, 1]. Let X be the nodal curve obtained
by identifying 0 ∼ ∞, with the induced C∗-action. Show that

H∗
C∗

X � ΛC∗[α]/(α
2, tα),

for a class α in H1
C∗

X, where ΛC∗ � Z[t].4

6. Gysin homomorphisms

Consider a linear algebraic (or complex Lie) group G acting on a
nonsingular varieties X and Y. For a G-equivariant proper morphism
f : X → Y, there is an equivariant Gysin homomorphism

f∗ : H i
GX → H i+2d

G Y,

where d � dim Y − dim X. These are constructed, as usual, from
the ordinary Gysin homomorphism for E ×G X → E ×G Y, where E
is a finite-dimensional nonsingular variety. (See §6 of Appendix A
for the construction and properties. Our conditions on G, X, Y,
and f mean that this is a proper map of complex manifolds, with
d � dimE ×G Y − dimE ×G X.)

Exercise 6.1. Check that this definition is compatible for different
choices of E. That is, if E→ B and E′ → B′ are principal G-bundles
with H̃ iE � H̃ iE′ for i < N , then the maps E ×G X → E ×G Y

and E′ ×G X → E′ ×G Y determine the same Gysin homomorphism
H i

G
X→ H i

G
Y for any i < N .5
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Basic examples which we will often use are the inclusion of a
G-invariant nonsingular subvariety, ι : X ֒→ Y, and the projection of
a complete nonsingular variety to a point, ρ : X → pt.

Here are some key properties of equivariant Gysin homomor-
phisms. They all follow directly from the analogous properties of
ordinary Gysin maps, applied to approximation spaces. Here all
varieties are assumed to be nonsingular unless otherwise indicated.

(1) (Functoriality) For proper G-equivariant maps X
f
−→ Y

g
−→ Z,

we have (g ◦ f )∗ � g∗ f∗.

(2) (Projection formula) For b ∈ H∗
G

Y and a ∈ H∗
G

X, we have
f∗( f

∗b · a) � b · f∗a.

As particular case, considering b ∈ ΛG mapping to H∗
G

Y, the
projection formula says that f∗ is a homomorphism of ΛG-modules.

(3) (Naturality) For a fiber square of equivariant maps

X′ X

Y′ Y,

g′

f ′ f
g

with f (and f ′) proper, and dim Y−dim X � dim Y′−dim X′,
we have g∗ f∗ � f ′∗ (g

′)∗.

As with the corresponding property for ordinary Gysin maps, our
convention is that the dimension condition is automatically satisfied
whenever X′ � ∅ in the fiber square. So g∗ f∗ � 0 whenever the images
of g and f are disjoint.

(4) (Self-intersection) If ι : X ֒→ Y is an equivariant closed em-
bedding with normal bundle N of rank d, then we have
ι∗ι∗(a) � cG

d
(N) · a for any a ∈ H∗

G
X.

The equivariant embedding gives an inclusion of equivariant vec-
tor bundles TX ֒→ ι∗TY, so it induces a canonical G-equivariant struc-
ture on N � ι∗TY/TX .
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(5) (Finite cover) If f : X → Y is a proper equivariant map, V ⊆

X is a G-invariant irreducible subvariety (possibly singular),
and W � f (V) ⊆ Y, then

f∗[V]
G
�

{
deg(V/W)[W]G if dim W � dim V ;

0 otherwise.

Equivariant Gysin maps are compatible with change-of-groups
homomorphisms. Suppose f : X → Y is a proper G-equivariant
morphism of nonsingular varieties, so it has a Gysin map. A group
homomorphism ϕ : G′→ G determines actions of G′ on X and Y, for
which f is also equivariant, and the corresponding diagram

H∗
G

X H∗
G′

X

H∗
G

Y H∗
G′

Y

f∗ f∗

commutes. In particular, taking G′ to be the trivial group, ordinary
Gysin homomorphisms are compatible with equivariant ones. (This
is proved by applying the non-equivariant version of the naturality
property to a diagram

E′ ×G′ X E ×G X

E′ ×G′ Y E ×G Y

of approximation spaces.)

Example 6.2. Let a torus T act on C2 by characters χ1 and χ2,
inducing an action on P1. (So z · [a , b] � [χ1(z)a , χ2(z)b].) Then
0 � [1, 0] and ∞ � [0, 1] are fixed points. Setting χ � χ2 − χ1, the
tangent space T0P

1 has weight χ, since

z · [1, b] � [χ1(z), χ2(z)b] � [1, χ(z)b].

Similarly, T∞P
1 has weight −χ. Writing ι0 and ι∞ for the inclusions

of 0 and∞, and ζ � cT
1 (O(1)), we have

ι∗0ζ � −χ1 � χ − χ2 and ι∗∞ζ � −χ2 � −χ − χ1.
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Since (ι0)∗(1) � [0]T and (ι∞)∗(1) � [∞]T , the self-intersection formula
says

ι∗0[0]
T
� χ and ι∗∞[∞]

T
� −χ.

Naturality says
ι∗0[∞]

T
� ι∗∞[0]

T
� 0

(since {0} ∩ {∞} � ∅). Putting these together, we see

[0]T � ζ + χ2 and [∞]T � ζ + χ1

in H2
TP

1.

Remark. We have pullbacks with respect to ϕ : G → G′ and
f : X → X′, so f ∗ : H∗

G′
X′ → H∗

G
X, as well as Gysin pushforwards

for G � G′. Under what conditions is there a functorial Gysin push-
forward associated to a map f which is equivariant with respect to
ϕ?

For example, when X � X′ � pt and ϕ : B ֒→ GLn is the inclusion,
one has

ΛB � Z[t1, . . . , tn] → ΛGLn � Z[c1, . . . , cn]

given by f 7→ ∂w◦( f ), where ∂w◦ is the divided difference operator
for the longest element w◦ ∈ Sn . (In Chapter 10, we will see these
operators in a different context.)

7. Poincaré duality

Suppose f : X → Y is a fiber bundle, with f proper and X, Y,
and the fiber F being oriented manifolds. If {ai} are classes in H∗X

restricting to a basis of H∗F, so they form a basis for H∗X over H∗Y

by Leray-Hirsch, then there is a unique Poincaré dual basis {bi} such
that

f∗(ai · b j) � δi j

in Λ � H∗Y.

Exercise 7.1. Prove this, using ordinary Poincaré duality and the
graded Nakayama lemma. Note that demanding f∗(ai · b j) � 0 for
i , j is a stronger requirement than in the case where Y is a point,
because here H∗Y may be nonzero in positive degree.
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For such dual bases {ai} and {bi}, any class c ∈ H∗X is expressed
uniquely as

c �

∑
f∗(c · bi) ai ,

with coefficients f∗(c · bi) ∈ H∗Y. Furthermore, there is a relative
Künneth decomposition of the diagonal in this context.

Proposition 7.2. Assume X, Y, and F are complex manifolds. Then
for δ : X → X ×Y X, we have

δ∗(1) �
∑

i

bi × ai

in H∗(X ×Y X).
Further assuming HoddF � 0, we have

δ∗(ak) �
∑
i, j

ck
i j ai × a j ⇔ bi · b j �

∑
k

ck
i j bk

for certain coefficients ck
i j
∈ H∗Y.

That is, the same coefficients express both the Künneth decompo-
sition of δ∗(ak) in H∗(X ×Y X) and the expansion of the cup product
bi · b j in H∗X. The proof is a straightforward calculation, using the
fact that {ai × b j} and {bi × a j} are Poincaré dual bases for H∗(X×Y X)

over H∗Y, as are {ai × a j} and {bi × b j}.
Consider the case where X � E×G F and Y � B, for G acting on F

and E→ B a principal G-bundle with H̃kE � 0 for k ≤ 2 dimR F. In
this setting, the proposition applies to Poincaré dual bases {ai} and
{bi} for H∗

G
F over ΛG.

More generally, suppose f : X → Y is a G-equivariant fiber bundle
with fiber F, and elements {ai} in H∗

G
X restricting to a basis for H∗F.

Then the ai form a basis for H∗
G

X over H∗
G

Y, there is a unique Poincaré
dual basis {bi}, and the proposition holds for these bases. (Apply it
to the fiber bundle E ×G X→ E ×G Y, also with fiber F.)

Exercise 7.3. If HoddF , 0, the coefficients for the Künneth de-
composition and those in the cup product are equal up to sign. Show
that

δ∗(ak) �
∑
i, j

ck
i j ai × a j ⇔ bi · b j �

∑
k

dk
i j bk
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where dk
i j
� (−1)deg(bi)deg(a j ) ck

i j
.

Hints for exercises

1As before, use a section of E × E′→ E.

2The induced map on B � Pm−1 will pull back the line bundle O(1) to O(a). If
a < 0, such a map cannot be holomorphic! In this case,

(x1 , . . . , xm) 7→ ‖x‖
a

(
1
xa

1

, . . . ,
1

xa
m

)

works, where x i is complex conjugation and ‖x‖ is the hermitian norm.

3Use ci 7→ c′
i
+ tc′

i−1
for i < n, cn 7→ tc′n−1

, and ζ 7→ −t. In fact, this comes
from identifying t � cG

1
(O(−1)), c′

i
� cG

i
(Cn/O(−1)), and using the Whitney sum

relations.

4Replace C∗ by S1 without changing cohomology; then use the Mayer-Vietoris
sequence on a contractible open neighborhood U of the node, with V being the
complement of the node.

5Use the naturality property of Gysin maps: with respect to a fiber square

(E × E′) ×G X (E × E′) ×G Y

E ×G X E ×G Y

f ′

π′ π
f

one has π∗ f∗ � f ′∗ (π
′)∗.



CHAPTER 4

Grassmannians and flag varieties

Our goal in this chapter is to compute and study the equivariant
cohomology rings H∗

G
X, where X is a variety of partial flags in a

vector space V , and G is a group acting linearly on V . We will also
see some first examples of equivariant Poincaré duality.

1. Schur polynomials

For each partition λ � (λ1 ≥ · · · ≥ λd ≥ 0), there is a Schur
polynomial sλ in variables x1, x2, . . . , xn. There are many ways to
define these polynomials; we will review three equivalent definitions.

Bialternants. Schur functions were first studied by Cauchy, who con-
sidered ratios of two determinants:

sλ(x1, . . . , xn) �

���xλ j+n− j

i

���
1≤i, j≤n���xn− j

i

���
1≤i, j≤n

.

Here we assume n � d, which can always be achieved by appending
0’s to either λ or x. Since both the numerator and denominator
are alternating functions of the x variables, the ratio is symmetric.
Furthermore, both numerator and denominator vanish when xi �

x j for any pair i , j; since the denominator is the Vandermonde
determinant

∏
i< j(xi − x j), it must divide the numerator, and the

ratio is a polynomial.

Young tableaux. We identify a partition λ with its Young diagram—
a left-justified collection of boxes with λi boxes in the ith row. A
semistandard Young tableau (SSYT) of shape λ is a filling T of the
boxes of λwith postive integers, so that entries weakly increase along

43



44 §1. Schur polynomials

rows, and strictly increase down columns. To such a tableau, one
assigns a monomial weight xT �

∏
(i, j)∈λ xT (i, j). For instance, with

λ � (5, 4, 3, 1),

the SSYT

1 1 2 2 3
2 3 3 3
4 4 5
5

has weight xT � x2
1 x3

2 x4
3 x2

4 x2
5.

A combinatorial definition of Schur functions says

sλ(x1, . . . , xn) �
∑

T ∈SSYT(λ)

xT ,

the sum over all SSYT T of shape λ with entries in {1, . . . , n}. From
this definition it is obvious that a Schur polynomial has nonnegative
cofficients when written in terms of monomials in x (although it is
less obvious that it is symmetric).

Jacobi-Trudi determinant. Let ek � ek(x1, . . . , xn) be the elementary
symmetric polynomial, and hk � hk(x1, . . . , xn) the complete homo-
geneous symmetric polynomial. (That is, ei is the sum of all square-
free monomials of degree k, and hk is the sum of all monomials of
degree k.) The Jacobi-Trudi formula expresses a Schur polynomial as
a determinant:

(1) sλ �

��hλi+ j−i

��
1≤i, j≤d

.

There is a dual formulation (also known as the Nägelsbach-Kostka
formula):

(2) sλ �

���eλ′
i
+ j−i

���
1≤i, j≤d′

,

where λ′ � (λ′1 ≥ · · · ≥ λ
′
d′
≥ 0) is the conjugate partition, that is, the

partition whose diagram is the transpose of that of λ. For example,
if λ � (5, 4, 3, 1) then λ′ � (4, 3, 3, 2, 1). Note that (λ′)′ � λ, and λ′1 is
the number of nonzero parts of λ.

Both determinants are unchanged if one appends 0’s to the parti-
tion λ, since e0 � h0 � 1, and ek � hk � 0 for k < 0.

Basic results in algebraic combinatorics demonstrate the equiva-
lence of these three definitions.
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When manipulating Chern class formulas, the Jacobi-Trudi de-
terminantal expression will often be the most useful version of the
Schur polynomial. We will introduce notation based on this.

Definition 1.1. Given a series c � 1 + c1 + c2 + · · · and a partition
λ, the Schur determinant ∆λ(c) is defined as

∆λ(c) �
��cλi+ j−i

��
1≤i, j≤d

,

where λ has at most d parts.

Example 1.2. Let c � c(E) be the total Chern class of a vector
bundle. Then ∆(k)(c) � ck(E) is the kth Chern class, and ∆(1k)(c) �

sk(E
∨) is the kth Segre class of E∨.

More generally, taking c � c(E − F) to be the total Chern class of
a virtual bundle, we have

(3) ∆λ(c(E − F)) � ∆λ′(c(F
∨ − E∨)).

To see this, write hk � ck(E−F) and ek � ck(F
∨−E∨) � (−1)k ck(F−E).

These satisfy the same basic relation as the complete homogeneous
and elementary symmetric functions, namely(∑

k≥0

hk uk

) (∑
k≥0

(−1)k ek uk

)
� 1.

So the identity (3) follows from the Jacobi-Trudi formula and its dual
(1)-(2).

Generally, when E is a vector bundle with Chern roots x1, . . . , xn,

∆λ(c(E)) � sλ′(x1, . . . , xn).

(The switch between λ and λ′ can be avoided by using Segre classes
in the Schur determinant, since ∆λ(s(E∨)) � sλ(x1, . . . , xn).)

A fundamental fact about symmetric functions is that the Schur
polynomials sλ form an additive basis for the ring of symmetric poly-
nomials in x1, . . . , xn, as λ ranges over partitions with at most n parts.
(By taking an appropriate graded limit as n →∞, one can suppress

the dependence on the number of variables.) A recurring theme in
algebraic geometry, combinatorics, and representation theory is that
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the Schur basis is often the most natural one to use when expanding
a given symmetric polynomial.

Example 1.3. Griffiths asked which polynomials in Chern classes
are positive for all ample vector bundles. That is, for which polyno-
mials P � P(c1, . . . , cn), homogeneous of (weighted) degree n, does
one have

∫
X

P > 0 whenever one evaluates cr � cr(E) for an ample
vector bundle E on an n-dimensional variety X?

Bloch showed that the Chern classes c1, . . . , cn are positive in this
sense. Griffiths gave other examples, e.g.,

c2
1 − c2,

������
c1 c2 c3

1 c1 c2

0 1 c1

������ , etc.

The complete answer was given by Fulton and Lazarsfeld: Write
P �

∑
aλ∆λ(c), where ∆λ(c) is as above, and aλ is an integer. Then P

is positive if and only if aλ ≥ 0 for all λ (and at least one aλ > 0). For
example, c2

1 − 2c2 � ∆(1,1) − ∆(2) is not positive.

Example 1.4. For each partition λ � (λ1 ≥ · · · ≥ λn ≥ 0), there
is an irreducible polynomial representation Vλ of G � GL(V) �

GLnC. These are called Schur modules, and they interpolate between
Symk Cn—the case λ � (k , 0, . . . , 0), a single row with k boxes—and∧k Cn , where λ � (1, . . . , 1, 0, . . . , 0), a single column with k boxes.

Considering Vλ as a G-equivariant vector bundle on a point, there
are classes

cG
r (Vλ) ∈ ΛG � Z[c1, . . . , cn],

for 1 ≤ r ≤ dim Vλ. Restricting to the diagonal torus T � (C∗)n ⊆ G

gives an inclusion ΛG ֒→ ΛT , sending ck 7→ ek(t1, . . . , tn), and one
obtains a symmetric function cT

r (Vλ). Thus one has an expression

(4) cT
r (Vλ) �

∑
µ

a
µ

r,λ
sµ ,

the sum over partitions µ of size r having at most n parts. By the

Jacobi-Trudi formula, we have sµ � sµ(t1, . . . , tn) �
���cµ′

i
+ j−i

���
1≤i, j≤m

.

(Here µ1 ≤ m, so µ′ has at most m parts.)
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Semistandard tableaux arise naturally here, as well: they index
the T-weights of the representation Vλ, so the total Chern class can
be expressed as

cG(Vλ) �
∏

T∈SSYT(λ)

(
1 +

∑
i∈T

ti

)
.

So the expansion (4) can be computed explicitly in any given case.
A remarkable fact, observed by Pragacz, is that the integers a

µ

r,λ

are nonnegative. The proof1 of this combinatorial statement involves
deep theorems in algebraic geometry! Lascoux gave positive formu-
las for cG

r (
∧2 V) and cG

r (Sym2 V). Beyond these cases, however, few
explicit general formulas for these polynomials are known.

2. Flag bundles

Let V be a vector bundle of rank n on a variety Y, and fix an
integer 0 ≤ d ≤ n. We have the Grassmann bundle

Gr(d ,V) → Y

representing the functor which assigns to a morphism f : Z→ Y the
set of rank-d subbundles S ⊂ VZ :� f ∗V . (By subbundle, we mean that
the inclusion is locally split, so VZ/S is also a vector bundle; this is a
stronger requirement than asking that S be a locally free subsheaf.)
We saw a construction of Gr(d ,V) using the frame bundle of V in
Chapter 2, §1. Here we construct it as a scheme using local data.

For a split vector bundle V � A ⊕ B, with A of rank d and B of
rank e � n − d, there is an open subset U ⊆ Gr(d ,V), defined by the
additional condition that the composition

S ֒→ V ։ A

be an isomorphism. There is a natural identification U
∼
−→ Hom(A, B),

making U a vector bundle over Y, by

(S ⊂ V) 7→ (A � S ֒→ V ։ B).

The inverse morphism sends a local section ϕ ∈ Hom(A, B) to its
graph Γϕ ⊆ A ⊕ B.
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Since any vector bundle V splits locally on Y, these open sets U

give an affine covering of Gr � Gr(d ,V), constructing it as a scheme.
It also shows that the projection ρ : Gr → Y is smooth of relative
dimension d(n − d) � rk Hom(A, B).

The functorial description equips Gr(d ,V) with a tautological
subbundle S ⊂ VGr � ρ∗V , as well as a quotient bundle Q � VGr/S,
so there is a universal sequence

0→ S→ VGr→ Q→ 0

on Gr(d ,V). The relative tangent bundle is

TGr/Y � Hom(S,Q),

as one sees from the local description of the open sets U .
There are several dualities among Grassmannians. For e � n− d,

there is a canonical isomorphism

Gr(d ,V) � Gr(e ,V∨),

by sending a subspace S ⊂ V to the subspace (V/S)∨ ⊆ V∨. Often it
is also useful to consider the Grassmannian of quotients,

Gr(d ,V) � Gr(V, e) � {V ։ Q}/�,

where two rank e quotients of V are identified if there is an isomor-
phism Q � Q′ commuting with the projection from V .

Example 2.1. For d � 0 or d � n, one has Gr(d ,V) � Y.
For d � 1, one has the projective bundle P(V) � Gr(1,V), and

the dual projective bundle P∨(V) � Gr(V, 1). The first has tautolog-
ical subbundle S � O(−1), and the second has tautological quotient
bundle Q � O(1).

In general, sending S ⊆ V to
∧d S ⊆

∧d V defines the Plücker
embedding

Gr(d ,V) P(
∧d V)

Y,
ρ
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a closed embedding locally defined by the Plücker relations, so ρ is
projective.

More generally, given a sequence d � (0 ≤ d1 < · · · < dr ≤ n), we
have a partial flag bundle

Fl(d,V)
ρ
−→ Y,

parametrizing flags S1 ⊂ · · · ⊂ Sr ⊂ VZ for any f : Z→ Y, where the
rank of Si is di .

A partial flag bundle can be constructed inductively as a sequence
of Grassmann bundles, in r! ways. For instance, if one starts by
choosing S1, so Gr(d1,V) → Y has a tautological bundle S1 ⊂ VGr of
rank d1, one obtains a factorization

Fl(d2 − d1, . . . , dr − d1,VGr/S1) Gr(d1,V)

Fl(d1, . . . , dr ,V) Y.

Alternatively, for any 1 ≤ s ≤ r, one can start by choosing the sub-
space Ss , and obtain a factorization

Fl(d1, . . . , ds−1, Ss) ×Gr Fl(ds+1 − ds , . . . , dr − ds ,VGr/Ss)

Fl(d1, . . . , dr ,V) Gr(ds ,V)

Y.

A partial flag bundle is equipped with tautological subbundles
and quotient bundles,

S1 ⊂ · · · ⊂ Sr ⊂ VFl ։ Q1 ։ · · ·։ Qr ,

just as for Grassmannians. Also as before, these are identified with
quotient flag bundles

Fl(d1, . . . , dr ,V) � Fl(V, e1, . . . , er),

where n ≥ e1 > · · · > er ≥ 0 and ei � n − di . These are related in the
evident way, by sending Si ⊂ V to V ։ Qi � V/Si .
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The complete flag bundle is the case Fl(V) � Fl(1, . . . , n − 1,V).
One choice of the inductive construction realizes this as a tower of
projective bundles,

Y ← P(V) ← P(V/S1) ← · · · ← P(V/Sn−2) � Fl(V).

3. Projective space

For G acting linearly on an n-dimensional vector space V , we have
already seen a computation

H∗GP(V) � ΛG[ζ]/(ζ
n
+ c1ζ

n−1
+ · · · + cn),

where ζ � cG
1 (O(1)) and ci � cG

i
(V). (This was done in Chapter 2,

§6.) This was a special case of the general formula for cohomology of
a projective bundle P(V) → Y, using the Leray-Hirsch theorem and
the fact that 1, ζ, . . . , ζn−1 form a basis for H∗P(V) over H∗Y.

The relations come from the Whitney formula for the exact se-
quence

0→ O(−1) → V → Q→ 0,

so

cG(Q) �
cG(V)

cG(O(−1))
�

1 + c1 + · · · + cn

1 − ζ
,

and cG
n (Q) � 0.

Before moving on to other flag varieties (and bundles), it is worth
investigating a second basis and presentation suggested by symme-
try. The classes 1, cG

1 (Q), . . . , c
G
n−1(Q) also form a basis for H∗P(V)over

H∗Y, since cG
k
(Q) restricts to ζk on fibers. What are the relations?

Proposition 3.1. We have

H∗GP(V) � ΛG[ξ1, . . . , ξn−1]/(s2, . . . , sn),

where ξi maps to cG
i
(Q) and sk is the degree k term in the expansion of

1 + c1 + c2 + · · · + cn

1 + ξ1 + ξ2 + · · · + ξn−1
.

Proof. Let R be the algebra on the right-hand side. There is a well-
defined homomorphism R→ H∗

G
P(V), since sk maps to cG

k
(V −Q) �
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cG
k
(O(−1)), which vanishes for k > 1. Since the classes cG

k
(Q) form a

basis for the free ΛG-module H∗
G
P(V), the sequence

0→ I → R→ H∗GP(V) → 0

splits, and it suffices to show that the classes 1, ξ1, . . . , ξn−1 span R

as a ΛG-module. By the graded Nakayama lemma, it is enough to
do this modulo Λ+

G
, i.e., after setting ck � cG

k
(V) � 0 for k > 0. This

case is a basic fact about symmetric functions, stated in the exercise
below. �

Exercise 3.2. Let Λ be an associative ring, with commuting in-
determinates e1, . . . , ed, for some 0 < d < n. For k > 0, let hk be
defined inductively by the relation hk − hk−1e1 + · · · + (−1)k ek � 0,
using the conventions e0 � h0 � 1 and ek � 0 for k > d. Show that
hk lies in the two-sided ideal (hn−d+1, . . . , hn) ⊆ Λ[e1, . . . , ed] for all
k > n− d. Taking d � n−1, conclude that the elements 1, e1, . . . , en−1

span Λ[e1, . . . , en−1]/(h2, . . . , hn) as a Λ-module.2

The same argument leads to presentations for equivariant projec-
tive bundles.

Exercise 3.3. Suppose V → Y is a G-equivariant vector bundle of
rank n, so G acts equivariantly on the projective bundle P(V) → Y,
with universal line bundle O(1) and quotient bundle Q � V/O(−1).
Show that

H∗GP(V) � (H
∗
GY)[ζ]/(ζn

+ c1ζ
n−1

+ · · · + cn)

� (H∗GY)[ξ1, . . . , ξn−1]/(s2, . . . , sn),

where ζ maps to cG
1 (O(1)), ξi maps to cG

i
(Q), ck � cG

k
(V), and sk is

defined as in Proposition 3.1.

4. Complete flags

A partial flag variety Fl(d,V) � Fl(d1, . . . , dr ,V) has quotient
bundles Ai � Si/Si−1 of rank ai � di − di−1. (By convention, d0 � 0
and dr+1 � n, so S0 � 0 and Sr+1 � V .) Equivalently, these bundles
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are Ai � ker(Qi−1 → Qi) � ker(V/Si−1 → V/Si), so ai � ei−1 − ei .
From the Whitney formula, we have

(5) cG(V) �

r+1∏
i�1

cG(Ai).

We will see that H∗
G

Fl(d,V) is generated by the Chern classes of Ai ,
with relations coming from (5).

The first step is to compute the cohomology of the complete flag
variety Fl(V). Here the Ai are line bundles, with xi � cG

1 (Ai).

Proposition 4.1. We have

H∗GFl(V) � ΛG[x1, . . . , xn]/(ei(x) − ci)i�1,... ,n ,

where ci � cG
i
(V). A basis over ΛG is given by

{xm1
1 · · · x

mn
n | 0 ≤ mi ≤ n − i},

so H∗
G

Fl(V) has rank n! as a ΛG-module.

The presentation is symmetric in the variables x1, . . . , xn, so any
permutation of them gives another basis.

Proof. Let R be the algebra on the right-hand side. The basis for
H∗

G
Fl(V) comes directly from writing Fl(V) as a tower of projective

bundles. The relations hold by the Whitney formula (5), so we have a
homomorphism R→ H∗

G
Fl(V). As for projective space, it suffices to

show the monomials xm1
1 · · · x

mn
n span R as a ΛG-module; by graded

Nakayama, this reduces to showing the same monomials span the
Z-module A � Z[x1, . . . , xn]/(e1(x), . . . , en(x)).

To see this, observe that in A[u]we have
∏n

i�1(1− xiu) � 1, so for
any 1 ≤ ℓ ≤ n, the polynomial

∑
k≥0

hk(x1, . . . , xℓ)u
k
�

ℓ∏
i�1

1
1 − xiu

�

n∏
i�ℓ+1

(1 − xiu)

has degree n − ℓ. It follows that hn−ℓ+1(x1, . . . , xℓ) � 0, which gives
a relation expressing xn−ℓ+1

ℓ
in terms of the given monomials by

induction on ℓ. �
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As in §3, the same argument leads to presentations for equivariant
flag bundles. For a G-equivariant vector bundle V → Y, we have G

acting equivariantly on the associated flag bundle Fl(V) → Y, with
equivariant tautological line bundles Ai � Si/Si−1. Then

H∗GFl(V) � (H∗GY)[x1, . . . , xn]/(ei(x) − ci)i�1,... ,n ,

where xi maps to cG
1 (Ai) and ci � cG

i
(V).

5. Grassmannians and partial flag varieties

Consider a G-equivariant vector bundle V of rank n on Y. The
Grassmann bundle can be factored as

Fl(V)

Y Gr(d ,V),

qp

ρ

where both p and q are towers of projective bundles. We will
use this to compute H∗

G
Gr(d ,V). Since a partial flag bundle is a

tower of Grassmann bundles, this will also lead to a computation of
H∗

G
Fl(d,V).
Let X � Gr(d ,V), with tautological sequence

0→ S→ VX → Q→ 0,

so A1 � S has rank d, and A2 � Q has rank e � n − d.

Proposition 5.1. We have

H∗GX � (H∗GY)[c1, . . . , cd , c̃1, . . . , c̃e]/(c · c̃ � cG(V))

� (H∗GY)[c1, . . . , cd]/(se+1, . . . , sn)

� (H∗GY)[c̃1, . . . , c̃e]/(̃sd+1, . . . , s̃n),

under the evaluations c 7→ cG(S) and c̃ 7→ cG(Q). The elements sm are
defined by

s � cG(V)/c � 1 + (cG
1 (V) − c1) + (c

G
2 (V) − cG

1 (V)c1 + c2
1 − c2) + · · · ,

and the elements s̃m are defined similarly, by s̃ � cG(V)/c̃.
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A basis over H∗
G

Y is given by monomials

d∏
j�1

cG
j (S
∨)m j , with

∑
m j ≤ e .

(There are
(n

d

)
such monomials.) Another basis is given by Schur determi-

nants

∆λ(c
G(S∨)) for λ ⊆ e

d

,

i.e., d ≥ λ1 ≥ · · · ≥ λe ≥ 0.
Similarly, there are bases of monomials

e∏
j�1

cG
j (Q)

m j , with
∑

m j ≤ d ,

and of Schur determinants

∆λ(c
G(Q)) for λ ⊆ d

e

,

i.e., e ≥ λ1 ≥ · · · ≥ λd ≥ 0.

As before, we will only discuss the case where Y is a point, so
X � Gr(d ,V) and H∗

G
Y � ΛG. The general case is no different.

In the proof, we show that monomials in cG
j
(S), and determinants

∆λ(c
G(S)), form bases. (Replacing S by S∨ only changes the sign, but

it ensures these classes are positive.) The argument for Q is similar.

Proof. The cases d � 1 and e � 1 have been done, since these are
projective spaces. In general, one knows the relations hold, because
cG

m(V − Q) � cG
m(S) vanishes for m > d, and cG

m(V − S) � cG
m(Q)

vanishes for m > e. So, as before, we have a homomorphism from
each algebra on the right-hand side to H∗

G
X.

Now we use a trick that goes back to Grothendieck. Consider the
two-step flag variety

X̃ � Fl(d , d + 1,V)

X X′ � Gr(d + 1,V).

qp
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By descending induction on d, with the base case e � 1, we may
assume we know the presentation for X′. Let S � Sd be the tautolog-
ical bundle on X, and Sd+1 the tautological on X′, so on X̃ we have
Sd ⊂ Sd+1. (We suppress notation for pullbacks.) Let ai � cG

i
(Sd),

bi � cG
i
(Sd+1), and x � cG

1 (Sd+1/Sd). In H∗
G

X̃, we have

(6) bi � ai + xai−1 for 1 ≤ i ≤ d + 1,

coming from the relation cG(Sd+1) � cG(Sd)(1 + x).
Since X̃ � P∨(Sd+1) � Gr(d , Sd+1) → X′ is an equivariant pro-

jective bundle, with x � cG
1 (O(1)), we see that H∗

G
X̃ is free over

H∗
G

X′, with basis {1, x , . . . , xd}. By the inductive assumption, H∗
G

X′

is spanned over ΛG by monomials in bi ’s, so we conclude that H∗
G

X̃

is spanned over ΛG by monomials in ai’s and x, using (6).
On the other hand, X̃ � P(V/Sd) → X, with x � cG

1 (O(−1)), so
H∗

G
X̃ is free over H∗

G
X with basis 1, x , . . . , xe−1, and relation

xe − cG
1 (V/Sd)x

e−1
+ · · · + (−1)e cG

e (V/Sd) � 0.

Each cG
i
(V/Sd) lies in the subalgebra A ⊆ H∗

G
X generated over ΛG

by a1, . . . , ad, so each element of H∗
G

X̃ can be expressed uniquely as∑e−1
i�0 αi x

i , for some αi ∈ A. It follows that H∗
G

X � A, so the map

A′ � ΛG[c1, . . . , cd]/(se+1, . . . , sn) → H∗GX, ci 7→ ai ,

is surjective, and this surjection splits. (The ΛG-module H∗
G

X is pro-
jective, since it embeds as a direct summand in the free ΛG-module
H∗

G
X̃.)
As an aside, the above arguments show

rkΛG H∗GX̃ � (d + 1) · rkΛG H∗GX′ � (d + 1) ·

(
n

d + 1

)

and

rkΛG H∗GX �

1
e
· rkΛG H∗GX̃ �

d + 1
e
·

(
n

d + 1

)
�

(
n

d

)
.

To conclude the proof, it suffices to show that the algebra A′ is

spanned over ΛG by the
(n

d

)
elements ∆λ(c), for λ ⊆ e

d

. Since
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these elements belong to A, it will follow that the split surjection
A′→ A is an isomorphism.

Using graded Nakayama, it is enough to show that these elements
span in the case where G is trivial, so ΛG � Z, and we will assume
this for the rest of the argument. As shown in Exercise 5.2, the set
{∆λ(c) | λ1 ≤ d} is a basis for the polynomial ring Z[c1, . . . , cd], so we
just need to see that ∆λ(c) maps to zero in A′ whenever λ has more
than e nonzero parts.

For this, we use the duality formula (Eq. (3) from §1) to write
∆λ(c) � ∆λ′(c

′), where c′ is defined inductively by relations

c′k − c′k−1c1 + · · · + (−1)k ck � 0

for k ≥ 1. Note that c′
k
� (−1)k sk , and by Exercise 3.2, c′

k
lies in the

ideal (se+1, . . . , sn) for all k > e. We can write

∆λ′(c
′) �

��������
c′
λ′1

c′
λ′1+1 · · ·

... c′
λ′2

. . .

��������
,

so if λ′1 > e, each entry in the top row maps to zero in A′, and hence
∆λ′(c

′) also maps to zero in A′.
Finally, using Exercise 5.2 again, the monomials cm can be ordered

so that cλ1 · · · cλe is the leading term of ∆λ(c), and it follows that the
monomials cm1

1 · · · c
md

d
with

∑
m j ≤ e map to another basis of A′. �

Exercise 5.2. Find a monomial order on cm
� cm1

1 · · · c
md

d
so that the

diagonal term cλ1 · · · cλe is the smallest term in∆λ(c), for any partition
λ and any d , e. Use this to conclude that the determinants∆λ(c) (with
no restrictions on λ) form a basis for the polynomial ring in infinitely
many variables Λ[c1, c2, . . .], where Λ is an associative ring, and that
the kernel of the projection Λ[c1, c2, . . .] → Λ[c1, . . . , cd] (sending ci

to 0 if i > d) has basis {∆λ(c) | λ1 > d}. Conclude that {∆λ(c) | λ1 ≤ d}

is a basis for Λ[c1, . . . , cd].3
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Example 5.3. Consider G � GL(V) acting on X � Gr(d ,V), so
X � G/P, where

P �

[
∗ ∗

0 ∗

]

is block upper-triangular, with diagonal blocks of size d and e; in
other words, it is the stabilizer of the subspace E ⊆ V spanned by the
first d standard basis vectors. So we have two kinds of presentations:
on one hand, Proposition 5.1 says that

H∗GX � H∗GGr(d ,V)

� ΛG[c
G
1 (S), . . . , c

G
d
(S), cG

1 (Q), . . . , c
G
e (Q)]/I ,

where I is the ideal generated by the relations cG(S) · cG(Q) � cG(V);
on the other hand, we have

H∗GX � H∗G(G/P) � ΛP � Z[a1, . . . , ad , b1, . . . , be],

using Examples 3.7 and 4.3 from Chapter 3.
The isomorphism between these rings can be written quite simply,

by ai 7→ cG
i
(S) and bi 7→ cG

i
(Q). We also have H∗

G
X � ΛP as a ΛG-

algebra via an inclusion

ΛG � Z[c1, . . . , cn] ֒→ ΛP[a1, . . . , ad , b1, . . . , be].

Associated to ρ : X → pt, there is the Gysin pushforward homo-
morphism H∗

G
X → ΛG. Under these isomorphisms, this becomes a

Z[c]-module homomorphism Z[a , b] → Z[c] which drops degree by
de. (What is an explicit formula?)

Finally, we can deduce presentations and bases for partial flag
varieties. To take advantage of inductive structure—a partial flag
variety is an iterated Grassmann bundle—it helps to state the theorem
for equivariant flag bundles. (As we already seen several times, there
is no additional work needed.)

Corollary 5.4. Let V → Y be a G-equivariant vector bundle, with
associated partial flag bundle X � Fl(d,V) → Y, and tautological bundles
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S1 ⊂ · · · ⊂ Sr ⊂ V . Setting Ai � Si/Si−1, we have

H∗GX � (H∗GY)[cG
j (Ai)]/

(
r+1∏
i�1

cG(Ai) � cG(V)

)
,

where the generators cG
j
(Ai) run over 1 ≤ i ≤ r + 1 and 1 ≤ j ≤ di − di−1.

There is a basis of products of Schur determinants,{
r∏

i�1

∆λ(i)(c
G(S∨i ))

}
, for λ(i) ⊆ di+1 − di .

di

Proof. Factor X → Y as

X � Fl(d1, . . . , dr−1, Sr) → Gr(d ,V) → Y,

and use induction on r together with our calculation for Grassman-
nians. �

Exercise 5.5. Prove the dual version of the theorem: the products

r∏
i�1

∆µ(i)(c
G(Qi)), for µ(i) ⊆ ei − ei+1,

ei

form a basis for H∗
G

Fl(d,V) as a module over H∗
G

Y.

Remark. The ΛG-module H∗
G

Fl(d,V) has rank

rkΛG H∗GFl(d,V) �
∏ (

di+1

di

)
�

n!
a1! · · · ar+1!

�

(
n

a1, . . . , ar+1

)
,

where ai � rk Ai � di − di−1.

6. Poincaré dual bases

The bases we have computed for Grassmann bundles are Poincaré
dual, in the sense of Chapter 3, §7. Given a partition λ in the d × e

rectangle, its complement in the e × d rectangle is the conjugate to
(e − λd , . . . , e − λ1). For example, if λ � (5, 3, 2, 2, 2) in the 5 × 6
rectangle, then µ � (5, 4, 4, 3, 0, 0) is its complement.

Theorem 6.1. Let V be a G-equivariant vector bundle of rank n on Y,
with Grassmann bundle ρ : X � Gr(d ,V) → Y. The bases {∆λ(cG(Q))}
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λ

µd

e

and {∆µ(cG(S∨))} are Poincaré dual, where

λ ⊆ d

e

and µ ⊆ e
d

are complementary partitions.

Proof. By Chapter 3, Proposition 7.2, the assertion is equivalent
to the formula

(7) [δ(X)]G �

∑
λ,µ complementary

∆λ(c
G(Q)) × ∆µ(c

G(S∨)),

where δ(X) ⊆ X ×Y X is the diagonal, so [δ(X)]G � δ∗(1).
On X ×Y X, we have the universal bundles Q(1) and S(2) pulled

back from the first and second factors, respectively. Writing V also
for the pullback of this vector bundle to X ×Y X, we have S(2) ⊆ V

and V ։ Q(1), and the diagonal is the locus in X ×Y X where the
composition S(2) → Q(1) vanishes. The class of δ(X) is therefore the
top Chern class of the corresponding Hom bundle:

[δ(X)]G � cG
de
((S(2))∨ ⊗ Q(1)).

There are several ways to show this is equal to the right-hand
side. One way is to appeal to the splitting principle and argue using
Chern roots y1, . . . , yd of (S(2))∨ and x1, . . . , xe of Q(1). Formula (7) is
then equivalent to the symmetric function identity

(8)
e∏

i�1

d∏
j�1

(xi + y j) �
∑

λ,µ complementary

sλ′(x1, . . . , xe) · sµ′(y1, . . . , yd),

which follows from a well-known “Cauchy identity” for Schur func-
tions. �

Example 6.2. When d � 1, the theorem says that the bases

{1, cG
1 (Q), . . . , c

G
n−1(Q)} and {ζn−1 , . . . , ζ, 1}
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are Poincaré dual, where as usual ζ � cG
1 (O(1)). We can see this

directly, using the relation ζn
+ cG

1 (V)ζ
n−1

+ · · · + cG
n (V) � 0. We can

write

ζi c j(Q) � ζ
i cG

j (V − S) � ζ
i cG

j (V) + ζ
i+1cG

j−1(V) + · · · + ζ
i+ j .

By the projection formula, we have

ρ∗(ζ
k cG

m(V)) � ρ∗(ζ
k)cG

m(V),

so this is 0 if k < n − 1. On the other hand, for k ≥ 0, we can use

ζn−1+k
� cG

1 (V
∨ −Q∨)n−1+k

� cG
n−1+k

(Q − V)

� cG
n−1(Q) c

G
k
(−V) + cG

n−2(Q) c
G
k+1(−V) + · · · ,

so ρ∗(ζn−1+k cG
m(V)) � cG

k
(−V) · cG

m(V). Putting these calculations
together, we see

ρ∗(ζ
i cG

j (Q)) � cG
i+ j−n+1(V) + cG

1 (−V) cG
i+ j−n(V) + · · · + cG

i+ j−n+1(−V)

� cG
i+ j−n+1(V − V)

�

{
1 if i + j � n − 1,

0 otherwise.

7. Bases and duality from subvarieties

When looking at H∗
G

X, we have not yet seen “geometric” classes
coming from invariant subvarieties. Indeed, for G � GL(V) acting
on X � Fl(d,V), there are no invariant subvarieties, except X itself!
For other group actions, we will often have invariant subvarieties, so
we can compare their classes with bases we have already seen.

The first tool is an equivariant cell-decomposition lemma.

Proposition 7.1. Suppose G acts on a nonsingular variety X, and there
are G-invariant closed algebraic subsets

∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xm � X,
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such that each Xp r Xp−1 �

∐
j Up, j is a disjoint union of finitely many

irreducible nonsingular subvarieties with H∗
G

Up, j � ΛG. Let Vp, j � Up, j .
The classes [Vp, j]

G form a basis for H∗
G

X over ΛG.

Proof. This follows by applying the fibered cell decomposition
lemma, Proposition 3.4 of Appendix A, to the bundleE×G X → B. �

A common case where the proposition holds is when all Up, j are
affine spaces Cn(p, j).

Example 7.2. Consider the Borel subgroup B ⊂ GL(V) of upper-
triangular matrices acting on X � P(V). This subgroup fixes a flag E•,
0 ⊂ E0 ⊂ · · · ⊂ En−1 � V , with dim Ei � i + 1. (In the standard basis,
Ei � span{e1, . . . , ei+1}.) The B-invariant subvarieties are Xi � P(Ei),
with dim Xi � i. We have Xi r Xi−1 � C

i , so the classes

1 � [Xn−1]
B , [Xn−2]

B , . . . , [X0]
B

form a basis for H∗BP(V) over ΛB .

When two bases come from sufficiently transverse invariant sub-
varieties, they are Poincaré dual.

Proposition 7.3. Suppose {Xi} and {Yj} are closed G-invariant subva-
rieties of X giving two ΛG-bases for H∗

G
X. If Xi ∩Yi � {pt} transversally,

and Xi ∩ Yj � ∅ whenever i , j and codim Yj ≥ dim Xi , then [Xi]
G and

[Yi]
G define Poincaré dual bases.

Proof. The assumptions imply [Xi]
G · [Yi]

G
� [pt]G, so we have

ρ∗([Xi]
G · [Yi]

G) � 1, and they also imply [Xi]
G · [Yj]

G
� 0 whenever

i , j and codim Yj ≥ dim Xi , so that ρ∗([Xi]
G · [Yj]

G) � 0 in this
case. In the remaining case, when codim Yj < dim Xi , we have
ρ∗([Xi]

G · [Yj]
G) � 0 automatically, since it lies in degree

2 codim Xi + 2 codim Yj − 2 dim X < 0,

and ΛG is zero in negative degrees. �

To see geometric Poincaré dual bases in P(V), we need to reduce
the group further, to a torus.
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Example 7.4. Let T act on an n-dimensional vector space V by
characters χ1, . . . , χn, so V � L1 ⊕ · · · ⊕ Ln . Consider flags

E• : L1 ⊂ L1 ⊕ L2 ⊂ · · · ⊂ V,

writing Ei � L1 ⊕ · · · ⊕ Li+1 as before, as well as

Ẽ• : Ln ⊂ Ln ⊕ Ln−1 ⊂ · · · ⊂ V,

with 0 � Ẽn ⊂ Ẽn−1 ⊂ · · · ⊂ Ẽ0
� V , so Ẽi has dimension n − i.

Let Xi � P(Ei) as before, so dim Xi � i and the classes [Xi]
T form

as basis. Then Yi � P(Ẽ
i) has codim Yi � i, and the classes [Yi]

T are
the Poincaré dual basis. Indeed, one sees

Xi �
{
[∗, . . . , ∗︸  ︷︷  ︸

i+1

, 0, . . . , 0]
}

and Yj �
{
[0, . . . , 0︸  ︷︷  ︸

j

, ∗, . . . , ∗]
}
,

so

Xi ∩ Yj �




{
[0, . . . , 0, 1, 0, . . . , 0]

}
� {pi+1} if i � j;{

[0, . . . , 0, ∗, . . . , ∗︸  ︷︷  ︸
i+1− j

, 0, . . . , 0]
}

if j < i;

{
[0, . . . , 0]

}
� ∅ if j > i.

It is easy to compute the classes xk � [Xk]
T and yk � [Yk]

T in
H∗TP(V) � ΛT[ζ]/

∏
(ζ + χi). Since Yk � {a1 � · · · � ak � 0} is the

zeroes of a map

O(−1) → V/Ẽk
� L1 ⊕ · · · ⊕ Lk ,

we have

yk � cT
k
(O(1) ⊗ V/Ẽk) �

k∏
i�1

(ζ + χi),

by basic properties of Chern classes (Chapter 2, §3, and Appendix A,
§5). Similarly, Xk is the zeroes of

O(−1) → V/Ek � Lk+2 ⊕ · · · ⊕ Ln ,

so

xk � cT
k (O(1) ⊗ V/Ek) �

n∏
i�k+2

(ζ + χi).
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Furthermore, for each k � 1, . . . , n, we have

pk � [0, . . . , 0, 1, 0, . . .] � {ai � 0 for i , k},

so
[pk]

T
�

∏
i,k

(ζ + χi).

Putting this together, we can see the Poincaré dual bases algebraically:

ρ∗(xi · y j) � 0 if j < i by degree;

ρ∗(xi · y j) � 0 if j > i by the relation
n∏

i�1

(ζ + χi) � 0;

ρ∗(xk · yk) � 1 since xk · yk �

∏
i,k+1

(ζ + χi) � [pk+1]
T .

The classes xi and yi are simple examples of Schubert bases in
equivariant cohomology—they are defined by incidence conditions
on geometric figures. (In this case, the condition is that a line be
contained in a subspace.) A major goal of equivariant Schubert calculus
is to compute the multiplication of elements in such a basis.

Exercise 7.5. With yk as above, show that

yi · y j � yi+ j +

∑
j≤k<i+ j

ck
i j yk ,

where

ck
i j �

∑
1≤p1<···<pr≤i

r∏
s�1

(χps − χps+ j+1−s)

and r � i + j − k.4

With a moment’s thought, one can see from the formula that the
structure constants ck

i j
have an interesting positivity feature: each ck

i j

is a nonnegative sum of monomials in χa − χb , with a < b. That is,

ck
i j ∈ Z≥0[χ1 − χ2, χ2 − χ3, . . . , χn−1 − χn].

For example, one computes

y2
1 � (ζ + χ1)(ζ + χ1) � (ζ + χ1)((ζ + χ2) + (ζ + χ1))

� y2 + (χ1 − χ2) y1.
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A similar computation shows y1 · yp � yp+1 + (χ1 − χp+1) yp, which
is a simple instance of an equivariant Pieri rule.

An interesting challenge is to find a formula for ck
i j

which makes

both the positivity and the symmetry ck
i j
� ck

ji
evident.

This positivity feature is common to Schubert bases in all homo-
geneous spaces G/P by a theorem of Graham (see Chapter 19, §3),
although no such explicit rule for the structure constants is known in
this generality.

Notes

Pragacz’s theorem on the nonnegativity of the coefficients a
µ

r,λ
of (4)

applies more generally to the coefficient a
µ

ν,λ
in the expansion of any Schur

functor of Vλ:
sν(c

T(Vλ)) �
∑
µ

aνν,λ sµ.

See [Pra96, Corollary 7.2], and also [Laz04, Example 8.3.13]. In the cases λ �

(k , 0, . . . , 0) or λ � (1, . . . , 1, 0, . . . , 0), Lascoux’s formulas for the coefficients
a
µ

r,λ
are in [Las78] (see also [Mac95, §I.3, Ex. 10 and §I.4, Ex. 5]). Very

recently, a version of this problem has found applications in other parts of
combinatorics [BBT18].

The Schur polynomial identity (8), used in our proof of the Poincaré
duality theorem for Grassmann bundles, can be found in [Mac95, §I.4,
Ex. 5].

The rule for the structure constants ck
i j

in H∗
T
Pn−1 is the simplest closed

formula we know. Other formulas, including ones for the structure con-
stants for weighted projective spaces, can be found in [BFR09, Tym08c].

Hints for exercises

1Given an ample vector bundle E, the Schur power SλE is also ample, so by
the Bloch-Giesker theorem [BlGi71], the Chern class cr(S

λE) is a Griffiths-positive
polynomial in E; now it follows from [FulLaz83, Theorem 1] that it is Schur-positive.
Applying this to the situation where E is the ample bundle L−t1 ⊕ · · · ⊕ L−tn on the
approximation space BmT � (Pm−1)n yields the positivity.

2Use the relation (
∑

k≥0(−1)khk uk)(1 + e1u + · · · + ed ud) � 1.
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3Use graded lexicographic order, i.e., for two monomials of the same degree,
define cm < cn if the smallest i so that mi , ni has mi < ni .

4Show that ck
i j

� ck−1
i−1, j

+ (χi − χk+1)c
k
i−1, j

for i ≤ j ≤ j ≤ i + j − 2, and use
induction on i.





CHAPTER 5

Localization I

The possibility of restricting attention to fixed points is a key
feature of equivariant cohomology. The technique works best when
the group is a torus T, and we will see some examples indicating
why. There are three basic pieces of the localization package:

(1) the main localization theorem, which says when the restriction
homomorphism ι∗ : H∗

T
X → H∗

T
XT is injective, or an isomor-

phism after inverting elements of ΛT ;

(2) the integration formula, which computes a Gysin homomor-
phism f∗ : H∗

T
X→ H∗

T
Y in terms of a corresponding map on

fixed loci; and

(3) The image theorem, describing the image of ι∗ as a subring of
H∗TXT defined by divisibility conditions.

We will return to the third component in Chapter 7, and focus on
the first two pieces here.

1. The main localization theorem (first approach)

The main theorem says the restriction homomorphism

ι∗ : H∗TX → H∗TXT

becomes an isomorphism after inverting classes in ΛT � Sym∗M,
coming from characters χ ∈ M. This is true for any algebraic variety
X, as we will see later. A very simple proof can be given for non-
singular varieties, though, so we consider that case first. The main
idea is to prove this statement about restriction to the fixed locus by
considering the Gysin pushforward from the fixed locus.

67
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Example 1.1. Let T act on P(V) � Pn−1 by characters χ1, . . . , χn.
We have computed

H∗TP
n−1

� ΛT[ζ]/
∏
(ζ + χi),

where ζ � cT
1 (O(1)). If the characters χ1, . . . , χn are distinct, the

fixed points are the coordinate lines pi � [0, . . . , 0, 1, 0, . . . , 0], for
i � 1, . . . , n. The tangent spaces are

TpiP
n−1

� Hom(Li ,V/Li) �
⊕

j,i

L∨i ⊗ L j ,

where Li is the coordinate line, isomorphic toCχi as a T-representation.
In coordinates, one sees this by computing

z · [a1, . . . , ai−1 , 1, ai+1, . . . , an] � [χ1(z) a1 , . . . , χi(z), . . . , χn(z) an]

� [
χ1(z)

χi(z)
a1, . . . , 1, . . . ,

χn(z)

χi(z)
an].

So cT
n−1(TpiP

n−1) �
∏

j,i(χ j − χi).
The self-intersection formula then says (ιpi )

∗(ιpi )∗ is multiplication
by

∏
j,i(χ j − χi). One can also see this directly. The Gysin pushfor-

ward (ιpi )∗ : H∗
T
(pi) → H∗

T
Pn−1 sends 1 to [pi]

T
�

∏
j,i(ζ+χ j), and the

restriction of the tautological bundle is O(−1)|pi � Li , so ζ restricts to
cT

1 (L
∨
i
) � −χi .

Exercise 1.2. Using the basis {1, ζ, . . . , ζn−1} for H∗
T
Pn−1 and the

standard basis for Λ⊕n , compute the matrix of the restriction homo-
momorphism

ι∗ : H∗TP
n−1 → H∗T(P

n−1)T � Λ⊕n .

Compute its determinant, and conclude that the map is injective.1

Exercise 1.3. If the characters χ1, . . . , χn are not distinct, the fixed
locus (Pn−1)T has positive-dimensional components. Identify the
fixed locus, and show that the restriction homomorphism is still
injective.

The slice theorem provides a useful tool for linearizing group
actions near fixed points or orbits: For any reductive (or compact)
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group G acting on X, there is an invariant neighborhood of p in X

which is equivariantly isomorphic to an invariant neighborhood of 0
in TpX. More generally, we have the following:

Theorem 1.4 (Slice theorem). Let X be a nonsingular complex aleg-
braic variety.

(1) Suppose K is a compact Lie group acting on X, with an orbit O �

K · x ⊆ X. Then there is a K-invariant open neighborhood U ⊆ X

of O which is equivariantly isomorphic to an open neighborhood of
the zero section in the normal bundle NO/X .

(2) Suppose X is affine, and G is a reductive group acting on X, with
a closed orbit O � G · x. Then there is a G-equivariant étale
neighborhood U → X of O which is equivariantly isomorphic
to an étale neighborhood of the zero section of the normal bundle
NO/X .

The first statement, for compact groups, is easily proved: by
averaging any hermitian metric over K, one can find a K-invariant
hermitian metric on X. A tubular neighborhood of the orbit K · x

with respect to this metric provides the desired K-invariant open
neighborhood. References with more details can be found in the
Notes.

Often we will assume that T acts with finitely many fixed points.
This has a characterization in terms of tangent spaces. A fixed point
p ∈ XT is isolated if it is a connected component of XT .

Lemma 1.5. Let G be a connected reductive linear algebraic group (or
compact connected Lie group) acting on a nonsingular algebraic variety X,
with a fixed point p ∈ XG. The point p is isolated if and only if the trivial
representation does not occur in TpX.

Proof. By the slice theorem, we can reduce to the case where
X � V is a representation of G, and p � 0 is the origin. In this
case, the lemma is immediate, since for any representation V of a
connected group, the origin 0 ∈ V is an isolated fixed point if and
only if V contains no copy of the trivial representation. �
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The reductive (or compact) hypothesis is necessary.

Example 1.6. Let the additive group G � C act onC2 by the matrix[
1 a
0 1

]
, inducing an action on P1. The point p � [1, 0] is the unique

fixed point, but the representation on TpP
1 is trivial.

When G � T is a torus and dim X � n, the lemma says that p ∈ XT

is isolated if and only if cT
n (TpX) , 0. This formulation is particular

to tori, and is not true for other reductive groups.

Example 1.7. Consider G � SLn � X acting on itself by conju-
gation. The fixed points are the center of G, so there are finitely
many; in particular, the identity element e ∈ G is isolated. The action
of G on Te G � sln is the adjoint representation. Restricting this to
the diagonal torus T ⊂ SLn one sees an (n − 1)-dimensional space
of weight zero, namely t ⊆ sln , so cT

top(Te G) � 0. Since this is the

image of cG
top(Te G) under the injective map ΛG → ΛT , it follows that

cG
top(Te G) � 0, as well.

We can now state our first localization theorem.

Theorem 1.8 (Localization Theorem, finite fixed locus). Consider
a d-dimensional nonsingular variety X with finitely many fixed points. Let

c �

∏
p∈XT

cT
d (TpX) ∈ Λ,

and let S ⊆ Λ be a multiplicative set containing c (which is nonzero, since
all fixed points are isolated). Assume there are m ≤ #XT classes in H∗

T
X

restricting to a basis of H∗X.
Then m � #XT , the homomorphisms

S−1H∗TX
S−1ι∗

−−−→ S−1H∗TXT and S−1H∗TXT S−1ι∗
−−−→ S−1H∗TX

are isomorphisms, and ι∗ : H∗TX → H∗TXT is injective.

Most of hypotheses can be omitted, and we will see a stronger
form of the localization theorem in Chapter 7. However, this simple
version suffices for all the examples we will study, and it has the
advantage of being very easy to prove. The main idea is to use the
Gysin pushforward, as we saw for projective space.
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Proof. Let us temporarily write n � #XT , so we have

Λ
⊕n

� H∗TXT ι∗
−→ H∗TX

ι∗

−→ H∗TXT
� Λ

⊕n .

By basic properties of Gysin maps, the composition ι∗◦ι∗ : Λ⊕n → Λ⊕n

is diagonal, and on the summand corresponding to p ∈ XT it is
multiplication by cT

d
(TpX). So det(ι∗ι∗) � c, and the cokernel of ι∗ is

annihilated by c. In particular, S−1H∗
T

X → S−1H∗
T

XT is surjective.
The assumption that m elements restrict to a basis of H∗X means

that H∗
T

X is a free Λ-module of rank m (by Leray-Hirsch or graded
Nakayama). Since Λ is noetherian, we conclude that m � n and
S−1H∗

T
X → S−1H∗

T
XT is an isomorphism. Injectivity of ι∗ follows

from the fact that H∗
T

X is free over the domain Λ. �

Example 1.9. When T acts on V � Cn by distinct characters
χ1, . . . , χn , the localization theorem for X � P(V) � Pn−1 is simply
the Chinese Remainder Theorem. Indeed, with

A � S−1H∗TP
n−1

� (S−1
Λ)[ζ]/

(∏
(ζ + χi)

)
,

the localization theorem says that the homomorphism

A→ A/(ζ + χ1) × · · · × A/(ζ + χn)

is an isomorphism. Algebraically, this is true because the ideals
(ζ + χi) are pairwise comaximal.

Example 1.10. Again suppose T acts on V � Cn by distinct char-
acters χ1, . . . , χn. Then X � Gr(d ,V) has finitely many fixed points,
corresponding to coordinate subspaces:

XT
�

{
pI | I � {i1 < · · · < id} ⊆ {1, . . . , n}

}
,

where pI � [EI] is the subspace EI � 〈ei1 , . . . , eid
〉 � 〈ei | i ∈ I〉.

Indeed, each tangent space

TpI X � Hom(EI ,V/EI) �
⊕

i∈I
j<I

L∨i ⊗ L j
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has weights χ j − χi , for i ∈ I and j < I, which are all nonzero. We see

cT
top(TpI X) �

∏
i∈I
j<I

(χ j − χi).

There are
(n

d

)
fixed points, and we know bases of H∗

T
X with

(n
d

)
elements, restricting to bases of H∗X. So H∗

T
X ֒→ H∗

T
XT � Λ

⊕(nd).
An explicit coordinate description of this action is as follows.

Given a subset I, let J � {1, . . . , n} r I be the complement, so V/EI �

EJ and there is a decomposition V � EI ⊕ EJ . As in Chapter 4, §2,
corresponding to this decomposition there is an open neighborhood
U � Hom(EI , EJ) of pI . For instance, let us take n � 6, d � 3, and
I � {2, 4, 5}, and the standard action of T � (C∗)6 on V � C6. The
induced action on U can be represented in matrix form as

z ·



∗ ∗ ∗

1 0 0
∗ ∗ ∗

0 1 0
0 0 1
∗ ∗ ∗



�



z1∗ z1∗ z1∗

z2 0 0
z3∗ z3∗ z3∗

0 z4 0
0 0 z5

z6∗ z6∗ z6∗



�



z1
z2
∗ z1

z4
∗ z1

z5
∗

1 0 0
z3
z2
∗ z3

z4
∗ z3

z5
∗

0 1 0
0 0 1

z6
z2
∗ z6

z4
∗ z6

z5
∗



.

This description makes the tangent weights visible.

With only a little more care, we can relax the hypothesis that
the fixed locus be finite. We still assume that X is nonsingular.
A basic fact is that XT is always nonsingular. In fact, this is true
more generally of fixed loci for actions by diagonalizable groups, i.e.,
G � (C∗)r × A for some finite abelian group A:

Lemma 1.11. When a diagonalizable group G acts on a nonsingular
variety X, the fixed locus XG is nonsingular.

(In topology, this can be deduced easily from the slice theorem, and
it holds more generally for the action of any compact group G. A
stronger version of this lemma in algebraic geometry was proved by
Iversen.)
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We will need another lemma about the characters of the torus
acting on the normal bundle to a fixed component.

Lemma 1.12. Let X be a nonsingular variety, and let Z ⊆ XT be a
connected component of the fixed locus, of codimension d in X. Write
N � NZ/X for its normal bundle, an equivariant vector bundle of rank d

on Z. Then there are nonzero characters χ1, . . . , χd so that for any point
p ∈ Z, the fiber Np � TpX/TpZ has T acting by these weights. The action
of T on TpZ is trivial.

Proof. Use the slice theorem to find a neighborhood U ⊆ X of
p which is equivariantly isomorphic to a neighborhood of 0 in TpX.
Then Z ∩ U maps to an open subset of the 0-weight space of TpX

(where T acts trivially), since this is TpZ ⊆ TpX. It follows that the
characters on Np � TpX/TpZ are all nonzero. Since Z is connected,
these characters are the same for any other point q ∈ Z. �

For any connected component Z ⊆ XT of codimension d, the
self-intersection formula says that the composition

H∗TZ
ι∗
−→ H∗TX

ι∗

−→ H∗TZ

is multiplication by the top Chern class cT
d
(NZ/X). In H∗

T
Z � Λ⊗ZH∗Z,

this class can be written as

cT
d (NZ/X) � χ1 · · · χd +

d∑
i�1

ad−ici ,

for some classes a j ∈ Λ
2 j and ci ∈ H2iZ, where χ1, . . . , χd are the

characters of T on the normal bundle, as in the previous lemma.
Since H∗Z is a finite-dimensional ring, the elements ci are nilpotent,
so cT

d
(NZ/X) becomes invertible in S−1H∗

T
Z, for any multiplicative set

S containing χ1 · · · χd .
With these observations, the proof of the following goes just as in

the case where XT is finite.

Theorem 1.13 (Localization Theorem, nonsingular varieties).

Let X be a nonsingular variety, and S ⊆ Λ a multiplicative set containing
all nonzero characters appearing in TpX, for all p ∈ XT . Write XT

�

∐
Zα
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as a union of connected components. Assume there are m elements of H∗
T

X

restricting to a basis of H∗X, with m ≤
∑
α rk H∗Zα.

Then m �

∑
rk H∗Zα , the homomorphisms

S−1H∗TX
S−1ι∗

−−−→ S−1H∗TXT and S−1H∗TXT S−1ι∗
−−−→ S−1H∗TX

are isomorphisms, and ι∗ : H∗
T

X → H∗
T

XT is injective.

Exercise 1.14. Prove Theorem 1.13, using the Gysin homomor-
phism as before.

Exercise 1.15. Consider T acting on X � P2 by characters 0, χ, χ.
What is XT? Work out the weights on each tangent space.

Exercise 1.16. Suppose the T-action on V decomposes as V �⊕m
i�1 Vi, where Vi is the χi-isotypic component, and χ1, . . . , χm are

distinct. Say dim Vi � ni . Show that X � Gr(d ,V) has fixed locus

XT
�

∐
d1+···+dm�d

0≤di≤ni

Gr(d1,V1) × · · · × Gr(dm ,Vm).

Note that rk H∗X �

(n
d

)
�

∑∏m
i�1

(ni

di

)
� rk H∗XT . The normal bundle

to a component Zd � Gr(d1,V1) × · · · × Gr(dm ,Vm) is

Nd �

⊕
j,i

Hom(Si ,Q j).

What are the characters of T acting on the restriction of Nd to a fixed
point?2

2. Integration formula

From now on, we will assume that S ⊆ Λ is a multiplicative set
such that the maps

S−1H∗TXT S−1ι∗
−−−→ S−1H∗TX

S−1ι∗

−−−→ S−1H∗TXT

are isomorphisms. (We have proved this in the case where X is
nonsingular, with H∗TX free over Λ of rank equal to that of H∗XT . In
fact, S−1ι∗ is an isomorphism for any X, for a suitable S, as we will
see in Chapter 7.)
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Consider a proper T-equivariant map of nonsingular varieties
f : X → Y. For each connected component P ⊆ XT , f (P) is contained
in a unique connected component Q ⊆ YT ; let fP : P → Q be the
restriction of f . For any class u ∈ H∗

T
X, we will write u |P ∈ H∗

T
P

for the restriction of this class to P, and similarly for the restriction
classes in H∗

T
Y to Q.

Being components of the fixed locus for actions on nonsingular
varieties, both P and Q are nonsingular, and the map fP is proper, so
both vertical maps in the diagram

P X

Q Y

fP f

have associated Gysin homomorphisms. Our goal is to compute f∗
in terms of ( fP)∗. More precisely, we compute the restrictions f∗(u)|Q ,
for any u ∈ H∗

T
X.

Theorem 2.1 (Integration formula). For any u ∈ H∗
T

X and any
connected component Q ⊆ YT , we have

f∗(u)|Q � cT
top(NQ/Y) ·

∑
P: f (P)⊆Q

( fP)∗

(
u |P

cT
top(NP/X)

)
.

In general, the formula takes place in the image ofΛ⊗H∗Q � H∗
T

Q

in S−1H∗
T

Q � S−1Λ⊗H∗Q. When H∗Q is free over H∗(pt)—for exam-
ple, if Q is a point, or if one uses field coefficients for cohomology—
the homomorphism Λ ⊗ H∗Q → S−1Λ ⊗ H∗Q is injective, and the
formula holds in H∗

T
Q � Λ ⊗ H∗Q. This will be the case in all our

applications.

Proof. Since the Gysin map S−1ι∗ : S−1H∗
T

XT → S−1H∗
T

X is an
isomorphism, it suffices to prove the formula for u � (ιP)∗(z), for
some component P ⊆ XT and z ∈ H∗

T
P. By functoriality and the
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self-intersection formula, the left-hand side is

(ι∗Q ◦ f∗ ◦ (ιP)∗)(z) � (ι
∗
Q(ιQ)∗( fP)∗)(z)

�

{
cT

top(NQ/Y) · ( fP)∗(z) if f (P) ⊆ Q;

0 otherwise.

On the right-hand side, using the same properties of Gysin maps,
we have

u |P � (ι∗P ◦ (ιP)∗)(z) � cT
top(NP/X) · z ,

and u |P′ � 0 for P′ , P. So the sum on this side reduces to the single
term

cT
top(NQ/Y) · ( fP)∗

(
cT

top(NP/X) · z

cT
top(NP/X)

)
� cT

top(NQ/Y) · ( fP)∗(z),

agreeing with the left-hand side. �

Example 2.2. When Y is a point, we get an integration formula for
ρ : X → pt:

ρ∗(u) �
∑

P⊆XT

(ρP)∗

(
u |P

cT
top(NP/X)

)
,

where (ρP)∗ : H∗
T

P→ Λ is integration over P.

Example 2.3. Suppose X and Y have finitely many fixed points,
and f : X → Y is a smooth morphism with relative tangent bundle
TX/Y . For each q ∈ YT we have

f∗(u)|q �

∑
p∈ f −1(q)T

u |p

cT
top(TX/Y |p)

,

since each fp is an isomorphism.

When P � {p} is a point, the Chern class appearing in the corre-
sponding summand is cT

d
(TpX) � χ1(p) · · · χd(p), where d � dim X

and the χi(p) are the characters of T acting on the tangent space TpX.
Combining the two previous examples gives a particularly useful and
simple case:
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Corollary 2.4. Let X be a d-dimensional nonsingular compact alge-
braic variety with finitely many fixed points. Then

ρ∗(u) �
∑

p∈XT

u |p

cT
d
(TpX)

for any class u ∈ H∗
T

X.

Example 2.5. For T acting onPn−1 via distinct charactersχ1 , . . . , χn,
with ζ � cT

1 (O(1)), we know

ρ∗(ζ
k) �

{
0 if k < n − 1,

1 if k � n − 1,

by degree considerations in the first case, and by the classical fact
that n − 1 hyperplanes intersect in a point in the second case. On the
other hand, the integration formula computes this as

ρ∗(ζ
k) �

n∑
i�1

(−χi)
k∏

j,i(χ j − χi)
.

Comparing the two yields a nontrivial algebraic identity!

Example 2.6. Consider T � C∗ acting on P2 by the characters
0, t , 2t, so z · [a , b , c] � [a , zb , z2c]. The fixed points are the usual co-
ordinate points p1, p2, p3. For u ∈ H∗

T
P2, let ui � u |pi . The integration

formula says

ρ∗(u) �
u1

2t2
+

u2

−t2
+

u3

2t2
�

u1 − 2u2 + u3

2t2
.

This must be a class in Λ � Z[t], so the integration formula implies a
divisibility condition relating the restrictions to the three fixed points:
2t2 must divide the polynomial u1 − 2u2 + u3.

When computing via localization, it is often convenient to rep-
resent the fixed points of X as the vertices of a graph, with edges
connecting vertices when the corresponding fixed points are con-
nected by a T-invariant curve. This graph is called the moment graph
of X, and we will see several examples in the next few chapters.
(Symplectic geometry explains the way these graphs are drawn; see
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12

23 13

24 14

34

χ3 + χ4 − χ1 − χ2

χ4 − χ2 χ4 − χ1

χ3 − χ2 χ3 − χ1

0

Figure 1. The fixed points in X � Gr(2,C4), and the class
[Ω]T restricted to H∗

T
XT .

the Notes in Chapter 7.) The image of a class under the restriction
H∗

T
X ֒→ H∗

T
XT is given by labelling the vertices of the moment graph

with characters.

Example 2.7. We will compute the number of lines meeting four
general lines in P3. Let X � Gr(2,C4) be the space of lines on P3, with
an action of T induced by characters χ1, . . . , χ4.

Fix the line ℓ0 corresponding to the subspace E12 � span{e1, e2} ⊆

C4, and consider the locus Ω ⊆ X of lines ℓ meeting ℓ0, i.e.,

Ω �

{
E ⊆ C4

�� dim(E ∩ E12) ≥ 1
}
.

This is defined by the condition that S → C4/E12 has rank at most
1, where S is the tautological bundle on X. In other words, the
determinant homomophism∧2 S→

∧2(C4/E12)

is zero. So Ω � Z(s) is the zeroes of a section of the line bundle

Hom(
∧2 S,

∧2(C4/E12)) �
∧2 S∨ ⊗ Cχ3+χ4 ,

and [Ω]T is equal to its equivariant first Chern class. We will compute
its restriction to the fixed points pI .

We have cT
1 (

∧2 S∨ ⊗ Cχ3+χ4)|pi j � −χi − χ j + χ3 + χ4. The class
[Ω]T is shown as a labelled moment graph in Figure 1.
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To address the four-lines problem, first note that the assumption
that the given lines be general means that the intersection

Ωℓ1 ∩Ωℓ2 ∩Ωℓ3 ∩Ωℓ4 �

{
ℓ | ℓ meets ℓ1, ℓ2, ℓ3, and ℓ4

}
is transverse and zero-dimensional, and we wish to compute the
number of points—that is,∫

X
[Ωℓ1] · [Ωℓ2] · [Ωℓ3] · [Ωℓ4],

where
∫

X
is the (non-equivariant) pushforward H∗X → H∗(pt) � Z.

Any line ℓ′ in P3 can be translated to ℓ0 by an element g ∈ GL4.
So

Ωℓ′ �
{
ℓ | ℓ ∩ ℓ′ , ∅

}
� g−1

Ω,

and since GL4 is a connected group, we have [Ωℓ′] � [Ω] in H∗X. So
it is equivalent to compute

∫
X
[Ω]4.

By basic properties of Gysin homomorphisms (Chapter 3, §6),∫
X
[Ω]4 is equal to the image of ρ∗(([Ω]T )4) under H∗

T
(pt) → H∗(pt).

The class is in degree 0, and H0
T
(pt) � H0(pt) � Z. So this non-

equivariant pushforward is the same as the equivariant one, and we
can compute it using the integration formula:

ρ∗(([Ω]
T)4) �

(χ3 + χ4 − χ1 − χ2)
4

(χ3 − χ1)(χ3 − χ2)(χ4 − χ1)(χ4 − χ2)

+

(χ4 − χ1)
4

(χ2 − χ1)(χ2 − χ3)(χ4 − χ1)(χ4 − χ3)

+ (four more terms, one of which is zero).

This expression can be evaluated quickly by computer algebra, but
to carry out the calculation by hand, it is useful to employ another
simplification.

Let us writeΩi j � {E | dim(E∩Ei j ) ≥ 1}, soΩ � Ω12. By the same
reasoning as before, we can compute with any four choices of i j; in
particular, we may choose them so that many terms in the integration
formula are zero. For example, the product [Ω12]

T · [Ω13]
T · [Ω34]

T ·

[Ω24]
T has nonzero localizations at only two fixed points, p14 and p23.

(See Figure 2.) Using the integration formula for this product, one
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[Ω12]
T

χ4 − χ2

χ3 − χ1

0

[Ω13]
T

χ4 − χ3

0 χ2 − χ1

0
[Ω34]

T

χ1 − χ3

χ2 − χ4

[Ω24]
T

χ1 − χ2 0

χ3 − χ4

�

0

(χ4 − χ2)(χ4 − χ3)(χ1 − χ3)(χ1 − χ2) 0

0 (χ3 − χ1)(χ2 − χ1)(χ2 − χ4)(χ3 − χ4)

0

Figure 2. The product [Ω12]
T · [Ω13]

T · [Ω34]
T · [Ω24]

T in
H∗

T
Gr(2,C4), represented by its localizations at fixed points.

sees ∫
X

[Ω]4 � ρ∗
(
[Ω12]

T · [Ω13]
T · [Ω34]

T · [Ω24]
T
)

�

(χ3 − χ1)(χ2 − χ1)(χ2 − χ4)(χ3 − χ4)

(χ2 − χ1)(χ3 − χ1)(χ2 − χ4)(χ3 − χ4)

+

(χ4 − χ2)(χ4 − χ3)(χ1 − χ3)(χ1 − χ2)

(χ1 − χ2)(χ4 − χ2)(χ1 − χ3)(χ4 − χ3)

� 1 + 1 � 2,

so there are two lines through the four given lines.

Exercise 2.8. How many lines in P4 meet six general planes?3

3. Equivariant formality

There are general criteria which imply the hypotheses of the lo-
calization theorems—in particular, freeness of H∗

T
X as a Λ-module.

As noted earlier, we will be able to verify these hypotheses directly
for our main examples and applications, so the results of this section
are not logically necessary. However, it is sometimes useful to know
when to expect the localization package to work, and the terminology
appears frequently in the literature.
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For a Lie group G acting on X, an integer m > 0, and a coefficient
ring R (usually Z or a field), consider the following condition:

(∗m) For 0 ≤ i ≤ m, H iX is finitely generated and free over R, and
there are elements xi j ∈ H i

G
X that restrict to a basis for H iX.

The space X is called (cohomologically) equivariantly formal with respect
to the action of G and the coefficient ring R if it satisfies (∗m ) for all m >

0. The main reason for introducing this condition is the following
direct consequence of the Leray-Hirsch theorem (Appendix A, §4):

Proposition 3.1. Assume (∗m) holds for some m > 0.

(1) Every element of Hm
G

X has a unique expression as
∑

i, j ci j xi j , for
some ci j ∈ Hm−iBG.

(2) If X is equivariantly formal, then H∗
G

X is a free ΛG-module with
basis {xi j}, and the forgetful homomorphism

H∗GX ⊗ΛG R→ H∗X

is an isomorphism. In fact, for any G′ acting on X through a
homomorphism G′→ G, the corresponding homomorphism

H∗GX ⊗ΛG ΛG′ → H∗G′X

is an isomorphism.

We are most interested in the case where G � T is a torus. For
nonsingular complete varieties with finitely many fixed points, a
general theorem provides a cell decomposition.

Theorem 3.2 (Białynicki-Birula). Suppose a torus T acts on a non-
singular complete variety X with finitely many fixed points. Then there is a
filtration by T-invariant closed subsets X � Xn ⊇ Xn−1 ⊇ · · · ⊇ X0 ⊇ ∅,
with Xi r Xi−1 �

∐
Ui j and Ui j � A

i . Moreover, the total number of cells
Ui j is equal to #XT .

This implies such varieties are always equivariantly formal, since
the classes of the invariant subvarieties Ui j form bases for H∗

T
X and

H∗X, over Λ and R, respectively.
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Corollary 3.3. Let a torus T act on a nonsingular complete variety
X, with finitely many fixed points. Then X is equivariantly formal with
integral coefficients. In particular,

(1) H∗
T

X → H∗X is surjective, with kernel generated by the kernel of
ΛT → Z; and

(2) H∗TX → H∗TXT is injective, and becomes an isomorphism after
inverting finitely many characters in ΛT .

Proof. With cells Ui j as in the Białynicki-Birula decomposition,
the equivariant class [Ui j]

T restricts to the nonequivariant class [Ui j],
so X is equivariantly formal. Injectivity of the restriction homomor-
phism comes from the diagram

H∗
T

X H∗
T

XT

S−1H∗
T

X S−1H∗
T

XT ,

ι∗

∼

for a suitable multiplicative set S ⊆ Λ, where the vertical arrows are
injective since H∗

T
X and H∗

T
XT are free overΛ, and the bottom arrow is

an isomorphism by the basic localization theorem (Theorem 1.8). �

Thus complete nonsingular varieties with finitely many fixed
points give a large class of examples where one sees the “two no-
tions” about equivariant cohomology described in Chapter 1.

Applying the general localization theorem to be proved in Chap-
ter 7, similar reasoning shows that if a T-variety X is equivariantly
formal, and H∗XT is also free over R, then the restriction homomor-
phism ι∗ : H∗

T
X → H∗

T
XT is injective.

Notes

Luna’s étale slice theorem is explained in [GIT, p. 198]. The topological
slice theorem is apparently due to Koszul [Ko53], and can be found in
Audin’s book [Aud04, Chapter I]. We learned Example 1.7 from Johan de
Jong.

Iversen’s theorem on the nonsingularity of the fixed locus (Lemma 1.11)
applies more generally for actions of linearly reductive groups, i.e., those
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for which all finite-dimensional respresentations are completely reducible;
in positive characteristic this amounts to considering diagonalizable groups
[Iv72]. Iversen also includes a formula for Euler characteristics which gives
rk H∗X � #XT in the case when X has finitely many fixed points and no
odd-dimensional cohomology. Again, the novelty is mainly the algebraic
proof and the application to positive characteristic; as Iversen points out, in
topology it can be deduced from the Lefschetz trace formula.

The idea of proving localization theorems using Gysin pushforwards
can be traced to Quillen [Qn71a] and Quart [Qt79], who used similar tech-
niques in cobordism and K-theory, respectively.

The integration formula, especially in the finite fixed point case of Corol-
lary 2.4, is known by many names in the literature. Names commonly at-
tached to it include Atiyah-Bott (after their paper [AtBo84]), Berline-Vergne
([BeVer82]), Duistermaat-Heckman ([DuHe82]), and “stationary phase for-
mula” (especially in the physics literature).

Example 2.5 is one case of a family of identities due to Sylvester, and
rediscovered by many other mathematicians. A short review of the his-
tory, along with an elementary proof, can be found in [Bh99]. Many such
identities can be obtained by equivariant localization on other spaces.

The usage of the term “equivariantly formal” in the sense of §3 ap-
pears to originate in the seminal article of Goresky-Kottwitz-MacPherson
[GKM98]. In this paper (and in much of the literature stemming from it), an
equivariantly formal space is defined to be one for which the Serre spectral
sequence for the fibration EG ×G X→ BG,

E
p,q
2

� Hp(BG; HqX) ⇒ H
p+q

G
X,

degenerates at the E2 term. This condition was considered earlier by Borel
[Bor60, §XII.3–6].

Using coefficients in Q, nine sufficient conditions for equivariant for-
mality are given in [GKM98, Theorem 14.1], including the following.

– H∗(X;Q) vanishes in odd degrees, and G is a connected linear
algebraic group or compact Lie group.

– X is a nonsingular projective variety, and G � T is a torus.

– X is a possibly singular projective algebraic variety, G � T is a
torus, and for all q ≥ 0, Hq(X;Q) is pure of weight q (in the sense
of mixed Hodge theory).
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The last condition includes all toric varieties. The use of field coefficients is
essential in all of these conditions.

A different notion of equivariant formality is used in rational homotopy
theory, where it involves an isomorphism between H∗(X;Q) and a certain
differential graded algebra. In order to disambiguate the terminology,Franz
and Puppe propose to add the modifier “cohomological” to the equivariant
formality we consider. (They also point out that the abbreviation CEF also
stands for “cohomology extension of the fiber”, which nicely captures the
geometry.)

Białynicki-Birula proved a stronger version of Theorem 3.2, where the
fixed locus XT may have positive-dimensional components [BB73]; see also
[Bri97b, §3.1].

Hints for exercises

1Here is another way to prove injectivity. The composition

Λ
⊕n

� H∗T(P
n−1)T

ι∗
−→ H∗TP

n−1 ι∗

−→ H∗T(P
n−1)T � Λ

⊕n

is diagonal. What is its determinant? (This shows the maps S−1H∗T(P
n−1)T →

S−1H∗TP
n−1 → S−1H∗T(P

n−1)T are isomorphisms, for an appropriate multiplicative
set S.)

2The tangent bundle TX restricts to Zd as Hom(S,Q) �
⊕

i , j Hom(Si ,Q j), and
TZd accounts for the diagonal summands; this explains the computation of Nd.
The characters are χ j − χi for i , j, appearing with multiplicity di(n j − d j).

3The locus Ω ⊆ Gr(2,C5) of lines meeting the plane P(E123) is given by the
vanishing of

∧2 S→
∧2(C5/E123). So its class is [Ω]T � cT

1
(
∧2 S∨ ⊗ Cχ4+χ5).



CHAPTER 6

Conics

The problem of determining the number of conics tangent to five
given conics is a famous example in intersection theory. In this
chapter, we work out the answer as a sample computation using
localization in equivariant cohomology.

1. Steiner’s problem

In 1848, Steiner asked for the number of conics which are tangent
to five fixed general conics. One approach is to compactify the space
of conics as the projective space of coefficients of an equation aX2

+

bY2
+ cZ2

+ dXY + eYZ + f XZ � 0; that is, using P(V) � P5, where
V � Sym2 C3. For a given conic C, the set ZC of all C′ tangent
to C forms a sextic hypersurface in P(V). Steiner observed this by
examining the equations. It can also be seen geometrically by taking
C to be an ellipse, and drawing the pencil of circles tangent to a fixed
line at a fixed general point in the interior of C: one sees six circles
tangent to C in this pencil.

Naively, one might use [ZC] � 6H to compute the desired number
as ∫

P(V)
[ZC1] · [ZC2] · [ZC3] · [ZC4] · [ZC5] �

∫
P5
(6H)5 � 7776,

by Bézout’s theorem. This gives the wrong answer, though: each
of the hypersurfaces ZCi contains the Veronese surface S of double
lines, so the intersection ZC1 ∩ZC2 ∩ZC3 ∩ZC4 ∩ZC5 is not transverse.

The correct answer, 3264, was first computed by de Jonquières
in 1859, and Chasles in 1864. From a modern point of view, the
basic idea is to modify the moduli space by blowing up the Veronese
surface S ⊆ P(V), working instead with the space of complete conics
C � BlSP(V).

85
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Exercise 1.1. Consider the simpler problem of conics tangent to
five general lines. Show that the set Zℓ ⊆ P(V) of conics tangent to a
given line is a quadric hypersurface. On the other hand, every such
Zℓ contains the Veronese surface S; show that the number of conics
tangent to five lines is 1.1

2. Cohomology of a blowup

We first consider the general setting of blowing up a nonsingular
variety along a nonsingular subvariety.

Let G be a linear algebraic group acting on a nonsingular variety
X, with S ⊆ X a nonsingular G-invariant subvariety. The blowup of
X along S, written X̃ � BlSX, is equipped with a natural G-action. Let
d be the codimension of S in X, so the normal bundle N � NS/X has
rank d, and the exceptional divisor E � P(N) → S is a Pd−1-bundle.
These fit into a diagram

E X̃

S X,

j

q p

i

and j∗O(E) � O(−1) ⊆ p∗N is the normal bundle to E in X̃. All these
maps and bundles are naturally G-equivariant.

Proposition 2.1. There is an isomorphism

Hk
GX ⊕

d−1⊕
ℓ�1

Hk−2ℓ
G S

∼
−→ Hk

GX̃ ,

(a , b1, . . . , bd−1) 7→ p∗a + j∗

(
d−1∑
ℓ�1

ζℓ−1q∗bℓ

)
,

where ζ � cG
1 (O(1)).

The product is determined by three formulas:

(1) p∗(a) · p∗(a′) � p∗(a · a′);
(2) j∗(b) · j∗(b

′) � − j∗(b · b
′ · ζ); and

(3) p∗(a) · j∗(b) � j∗(q
∗i∗(a) · b).
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The inverse to the isomorphism of the proposition maps a class c

to (a , b1, . . . , bd−1), with a � p∗c and bℓ � q∗(c
G
d−1−ℓ(Q) · j

∗(c − p∗p∗c)).
Here Q is the quotient bundle on E � P(N), i.e., there is an exact
sequence 0 → O(−1) → q∗N → Q → 0 on E. There is also a split
exact sequence

0→ Hk
GX̃ → Hk

GX ⊕ Hk
GE→ Hk

GS→ 0,

where the first map is given by c 7→ (p∗c , j∗c), and the second by
(a , b) 7→ i∗a − q∗(c

G
d−1(Q) · b).

The proofs of all these facts are exactly the same as in the non-
equivariant setting.

Another useful formula, whose proof is the same as in the non-
equivariant case, is the following equivariant analogue of a theorem
of Keel:

Proposition 2.2 (Keel). Suppose i∗ : H∗
G

X→ H∗
G

S is surjective, with
kernel I. Choose lifts ak 7→ cG

k
(N), for k � 1, . . . , d − 1. Then

H∗GX̃ � (H∗GX)[E]/J,

where the ideal J is generated by [E] · I and [E]d− a1[E]
d−1

+ · · ·+ (−1)d[S].

Exercise 2.3. Consider vector bundles F ⊆ V on a variety Y. There
is a rational map

P(V) d P(V/F)

of projective bundles, whose indeterminacy is resolved by

X̃ � BlP(F)P(V)

X � P(V) P(V/F).

π

Show that π identifies X̃ � P(F′) → P(V/F), where F′/F � O(−1) ⊆
V/F is the tautological bundle on P(V/F). Compute H∗X̃ using the
projective bundle formula.

Exercise 2.4. Let G � GL3 act on S � P2 via its standard action on
C3, and on P5 via the representation Sym2C3. Let i : S ֒→ P5 be the
Veronese embedding, so it is G-equivariant. Then i∗ : H∗P5 → H∗S is
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surjective if one uses Q coefficients (but not Z coefficients). Compute
the Keel presentation of H∗

G
BlSP

5 (with Q coefficients).2

For our purposes, local information on tangent spaces will often
suffice. It follows from the definition of the blowup that there are
canonical isomorphisms TxX̃ � TxX for x ∈ X̃rE � XrS. Similarly,
for x ∈ E ⊆ X̃, there are exact sequences

0→ TxE→ TxX̃ → L→ 0

and
0→ Hom(L,N/L) → TxE→ TsS→ 0,

where s � q(x) ∈ S ⊆ X, N � NS/X, and L � O(−1)|x ⊆ (q∗N)x � Ns .
(So L ⊆ Ns is the line corresponding to the point x ∈ E � P(N).)

Now suppose G � T is a torus acting on X, with S ⊆ X a T-
invariant subvariety. The above isomorphisms and exact sequences
are T-equivariant, for a fixed point x. That is, there are isomorphisms
of T-modules

TxX̃ � TxX

for x ∈ X̃T r ET
� XT r ST , and

TxX̃ � TxE ⊕ L

� Hom(L,Ns/L) ⊕ TsS ⊕ L,

for x ∈ ET mapping to s ∈ ST . These observations lead to a criterion
for X̃ to have finitely many fixed points.

Proposition 2.5. Suppose XT is finite. Then X̃T is finite if and only if
for all s ∈ ST , the characters on Ns � NS/X |s are distinct.

Proof. As we saw in Chapter 5, Lemma 1.5, a fixed point x is
isolated if and only if all characters at x are nonzero. There is nothing
to check for x ∈ X̃ r E � X r S, since XT is finite. At a point
x ∈ ET ⊆ X̃T corresponding to a T-invariant line L ⊆ Ns of nonzero
weight χ, the characters on TxX̃ are

{characters of TsS} ∪ {χ} ∪ {χi − χ | χi is a character of Ns/L}.
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All the characters in the first two sets are nonzero; those of the third
are nonzero for any choice of L exactly when all characters of Ns are
distinct. �

Example 2.6. Consider X � A2 with T acting by nonzero char-
acters χ1, χ2. Let S � {0} be the origin, and X̃ � Bl0A2. Take
x � [1, 0] ∈ E � P1, corresponding to the horizontal tangent line at 0,
that is, L � 〈e1〉 ⊆ C

2
� T0X. The weight on TxE ⊆ TxX̃ comes from

TxE � Hom(L,C2/L), so it is χ2 − χ1. The weights on TxX̃ are there-
fore {χ1, χ2 − χ1}. (This is also easy to see directly from coordinates
on X̃.)3

3. Complete conics

Given a nonsingular plane curve C ⊂ P2, the dual curve C∨ ⊆

(P2)∨ � {ℓ ⊆ P2} is

C∨ �

{
ℓ ⊆ P2 | ℓ is tangent to C

}
.

If C is singular and irreducible, C∨ is defined to be the closure of the
locus of tangents to C at nonsingular points. When C is a nonsingular
conic in P2, the dual curve C∨ is a nonsingular conic in (P2)∨.

Recall that P(V) � P5 parametrizes degree two equations, where
V � Sym2 C3. Taking the dual curve defines a rational map

P(V) d P(V∨)

[C] 7→ [C∨].

In fact, this map is regular on P(V) r S, the complement of the
Veronese surface of double lines: a reduced degenerate conic, the
union of two distinct lines C � ℓ1 ∪ ℓ2, maps to the double line
through points [ℓ1] and [ℓ2] in (P2)∨.

The blowup C � X̃ � BlSP(V) resolves the indeterminacy of this
rational map:
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C �

{
([C], [C∨]) | C, C∨ are nonsingular conics

}
⊂ P(V) × P(V∨)

π ϕ

P(V) P(V∨).

The space C is a moduli space of complete conics. It parametrizes four
types of geometric figures in P2:

(1) nonsingular conics C;
(2) unions of two lines ℓ1 ∪ ℓ2;
(3) lines with two marked points (ℓ ∋ p1, p2); and
(4) lines with one marked point (ℓ ∋ p).

Duality preserves types (1) and (4), and exchanges types (2) and (3).
For any point p ∈ P2, there is a divisor Σp ⊆ P(V) of conics

containing p; this is a hyperplane. Similarly, for any line ℓ ⊆ P2,
there is a divisor Θℓ ⊆ P(V) of conics tangent to ℓ; this is a (singular)
quadric. The two are exchanged under duality: the rational map
P(V) d P(V∨) sends Σp toΘ∨

[p]
andΘℓ to Σ∨

[ℓ]
, where [p] ⊆ (P2)∨ and

[ℓ] ∈ (P2)are the line and point corresponding to p and ℓ, respectively.
Let σp ⊆ C and τℓ ⊆ C be the proper transforms of Σp and

Θℓ , respectively. We will abuse notation by using the same symbols
for their (equivariant) cohomology classes. Non-equivariantly, these
classes are independent of p and ℓ, so we may omit the subscripts.
One has π∗σ � Σ � H and π∗τ � Θ � 2H, where H is the hyperplane
class in H2P(V); similarly, ϕ∗σ � Θ

∨
� 2H∨ and ϕ∗τ � Σ

∨
� H∨ in

H2P(V∨).
The class of the proper transform Z̃C of ZC—the sextic hypersur-

face of conics tangent to C—is also independent of C, and in H∗C

there is a relation Z̃ � 2σ + 2τ. One can prove that for five general
conics C1, . . . , C5, the corresponding subvarieties Z̃Ci ⊆ C do inter-
sect transversally, so the solution to Steiner’s problem is given by the
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integral∫
C

(2σ + 2τ)5 � 32

(∫
σ5

+ 5
∫
σ4τ + 10

∫
σ3τ2

+10
∫
σ2τ3

+ 5
∫
στ4

+

∫
τ5

)
.(∗)

There are many ways to compute the numbers
∫
σiτ5−i . We will do

this equivariantly, as an example of the localization techniques from
the previous chapter.

Let T � (C∗)3 act in the standard way on P2, with characters
t1, t2, t3. The induced action on V � Sym2C3 has characters

2t1, 2t2, 2t3, t1 + t2, t2 + t3, t1 + t3,

corresponding to the basis

X2, Y2, Z2, XY, YZ, XZ.

It is often useful to record this in a weight diagram:

X2

XY

Y2 YZ Z2

XZ

t1

t2 t3

The tangent spaces to P(V) at X2 and XY have weights

TX2P(V) :
{

t2 + t3 − 2t1, t2 − t1, 2(t2 − t1), t3 − t1, 2(t3 − t1)
}

and

TXYP(V) :
{
2t3 − t1 − t2, t1 − t2, t2 − t1, t3 − t2, t2 − t3

}
.

The others can be obtained from these by symmetry.
Products of tangent weights can be represented by arrows on the

weight diagram: each arrow represents a weight (considered as a
vector in the character lattice), and when several arrows are drawn
together, they are multiplied. An example is shown in Figure 1.
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Figure 1. cT
5 (TX2P(V)) � 4(t2− t1)

2(t3− t1)
2(t2+ t3−2t1),

represented via arrows

The Veronese surface S ⊆ P(V) has fixed points X2, Y2, Z2. The
tangent space TX2 S has weights {t2 − t1, t3 − t1}, from the standard
action of T on S � P2. So the normal weights to S at X2 are

NX2 :
{

t2 + t3 − 2t1, 2(t2 − t1), 2(t3 − t1)
}
.

This is all we need in order to compute weights on C � BlSP(V).
First, since the normal weights are distinct at each fixed point of

S, the fixed locus C T is finite, by Proposition 2.5. In fact, there are 6
fixed points in P(V), 3 of which lie in S. Each fiber of π : C → P(V)

over S is a P2, so there are 3 fixed points in C mapping to each fixed
point in S. Thus we have

#C
T
� #(P(V) r S)T + 3 · #ST

� 3 + 3 · 3 � 12.

On the other hand, from the blowup exact sequence

0→ H∗C → H∗P(V) ⊕ H∗E→ H∗S→ 0,

we see H∗C is free, of rank 6 + 9 − 3 � 12. (The exceptional E is a
P2-bundle over S � P2, so its cohomology has rank 3 · 3 � 9.) Using
the simple localization theorem, Theorem 1.8 of Chapter 5, we know
that

H∗TC ֒→ H∗TC
T .

(While not logically necessary for computing integrals, this allows us
to determine classes in H∗

T
C from their localizations.)
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X2

XY

Y2

YZ

Z2

XZ

Figure 2. The 12 fixed points in the space of complete
conics.

What are the fixed points of C ? They map to fixed points in P(V),
so to points of the form XY or X2.

(1) Over XY, the projection π is an isomorphism, so the corre-
sponding fixed point is just a pair of lines.

(2) Over the double line X2, we need to add the data of one or
two points, and these points must be T-fixed.

Torus-fixed points and lines in P2 can be represented as a triangle,
and T-fixed complete conics can be drawn on such a triangle. Here
is P2, together with the complete conics XY � 0 and (X � 0, [0, 0, 1]).

[0, 0, 1] [0, 1, 0]

[1, 0, 0] XY (X,[0,0,1])

Figure 2 displays a diagram showing all 12 fixed points of C .
The tangent weights to C at are the same as those on TXYP(V):

T C : {2t3 − t1 − t2, t1 − t2, t2 − t1, t3 − t2, t2 − t3}.

Next we consider points in the exceptional divisor, in the fiber over
X2 ∈ S. As noted earlier, the normal weights to S at the point X2 are
{t2+ t3−2t1, 2(t2− t1), 2(t3− t1)}, each corresponding to a T-invariant
line L ⊆ N and therefore a fixed point in ET . Taking L with character
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p � p � p �

Figure 3. Top Chern classes of TpC at three points.

2(t2 − t1) corresponds to the point , and we see weights

T E :
{

t2 − t1, t3 − t1︸           ︷︷           ︸
from TX2 S

}

∪
{
(t2 + t3 − 2t1) − 2(t2 − t1), 2(t3 − t1) − 2(t2 − t1)︸                                                         ︷︷                                                         ︸

from L∨⊗N/L

}
.

Including L (the normal space to E), we see weights

T C :
{

t2 − t1, t3 − t1, t3 − t2, 2(t3 − t2)︸                                    ︷︷                                    ︸
from E

, 2(t2 − t1)︸    ︷︷    ︸
from L

}
.

Starting with L ⊆ N of character t2 + t3 − 2t1, which corresponds to
the point , a similar calculation gives

T C :
{

t2 − t1, t3 − t1, t2 − t3, t3 − t2, t2 + t3 − 2t1
}
.

Diagrams for these three examples are in Figure 3. Weights at the
other fixed points can be obtained by symmetry.

We can compute the classes σp and τℓ by localizing. For the point
p � [1, 0, 0] � , the hyperplane Σp ⊆ P(V) is the zeroes of a map
O(−1) → V/F, where F � 〈Y2, Z2,XY,XZ, YZ〉. That is, it is the
zeroes of a section of O(1) ⊗ C2t1 , so its class in H2

TP(V) is

[Σp]
T
� cT

1 (O(1) ⊗ C2t1).
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0

t1 − t2

2(t1 − t2)

t1 − t3

2(t1 − t3)2t1 − t2 − t3

Σ

0 0 0

t1 − t2

2(t1 − t2)

2(t1 − t2)

2(t1 − t2)

2t1 − t2 − t3

t1 − t3

2(t1 − t3)

2(t1 − t3)

2(t1 − t3)

σ

2(t3 − t2)
t3 − t2 0

2(t3 − t2)

2(t3 − t2)

t1 + t3 − 2t2

2(t1 − t2)
2(t1 − t2)

0

0

t1 − t2

2(t1 − t2)

τ

2(t2 − t1)
t2 + t3 − 2t1

2(t3 − t1)

0

2(t1 − t2)

t1 + t3 − 2t2

2(t3 − t2) 0

0

2(t1 − t3)

t1 + t2 − 2t3

2(t2 − t3)

E

Figure 4. Localizations of divisor classes.

We know the restriction of O(1) to each fixed point, from Chapter 5,
Example 1.1. Since σ � π∗Σ , we have

σ | � σ | � σ | � Σ | � 0,

σ | � Σ | � t1 − t2,

etc.

Similarly, τ � ϕ∗Σ∗ is the proper transform of a hyperplane in

the dual projective space P(V ∗), and we have

τ | � τ | � τ | � 0,

τ | � t3 − t2,

etc.

The restrictions of the exceptional divisor E are even easier to com-
pute, since one simply records the character of L ⊆ N at each fixed
point. Figure 4 shows the complete data.
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Exercise 3.1. For any fixed points p , q inP2, show σp+σq−E � τpq

in H2
T
C .4

Now we can compute the numbers
∫
C
σiτ5−i by localization. As

we saw with the Grassmannian, convenient choices of equivariant
lifts will simplify the calculation.

We know
∫
σ5

�

∫
τ5

� 1, since these come from hyperplanes in
P(V) and P(V∨). More generally,

∫
σiτ5−i

�

∫
σ5−iτi by duality, so

there are only two more integrals to compute.
To compute

∫
C
σ4τ, we use localization on the product

α � (σ )2 σ σ τ .

Diagrammatically, this is

©«

0 0 0 ª®®®¬

2 ©«
0

0

0

ª®®®¬
©« 0

0

0

ª®®®¬
©«

0

0

0

ª®®®¬
�

©
«

0 0 0

0

0

0

0

0

0

0 ª®®®¬
,

so the integration formula gives∫
C

σ4τ �

α |

cT
5 (T C )

+

α |

cT
5 (T C )

�

(t1 − t2)
2(2t3 − t1 − t2)(t2 − t1)(2(t3 − t2))

(2t3 − t1 − t2)(t1 − t2)(t2 − t1)(t3 − t2)(t3 − t1)

+

(2t1 − t2 − t3)
2(t3 − t2)(t2 − t3)(2(t1 − t2))

(2t1 − t2 − t3)(t1 − t2)(t1 − t3)(t3 − t2)(t2 − t3)

�

2(t1 − t2)

t3 − t1
+

2(2t1 − t2 − t3)

t1 − t3

� 2.
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Similarly, to compute
∫
C
σ3τ2, one can apply the integration formula

to β � σ σ σ τ τ and obtain

∫
C

σ3τ2
�

β |

cT
5 (T C )

�

(2t1 − t2 − t3)(2(t1 − t2))(2(t1 − t3))(t3 − t2)(t2 − t3)

(2t1 − t2 − t3)(t1 − t2)(t1 − t3)(t3 − t2)(t2 − t3)

� 4.

With these numbers in Equation (∗), we obtain∫
C

(2σ + 2τ)5 � 32(1 + 5 · 2 + 10 · 4 + 10 · 4 + 5 · 2 + 1)

� 3264

conics tangent to five (general) conics.

Notes

A sketch of the six circles tangent to the ellipse, along with a solution
to Steiner’s problem using modern intersection theory, can be found in
[FulMac78]. The claim about 7776 conics appears near the end of Steiner’s
paper [S1848]. A more detailed history of this problem was assembled by
Kleiman [Kl80].

The first serious applications of the equivariant integration formula
as a tool to solve classical problems in enumerative geometry appeared
in the 1990s, especially in work of Ellingsrud and Strømme [ElSt96] and
Kontsevich [Kon95]. For example, Ellingsrud and Strømme use localization
on Hilbert schemes to show that there are 317, 206, 375 twisted cubic curves
on a quintic threefold in P4.

Proposition 2.1 is proved in [Ful-IT, §6.7]. Proposition 2.2 is in [Keel92].
A generalization of Keel’s theorem to Chow motives was given by Li [Li09].

The space of complete conics is a prototypical example of a spherical
variety, and a description of its equivariant cohomology ring from this point
of view can be found in Brion’s expository articles [Bri89, Bri98].

We learned the notation for representing (localized) equivariant classes
as arrows on moment graphs from Allen Knutson.
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Hints for exercises

1Use projective duality: this is equivalent to the number of conics passing
through five general points.

2Let z � cG
1
(OP5 (1)) and ζ � cG

1
(OP2 (1)), and write ΛG � Z[c1 , c2 , c3]. We have

presentations

H∗GP
5
� ΛG[z]/

(
(z3

+ 2c1z2
+ (c2

1 + c2)z + c1c2 − c3)(z
3
+ 2c1z2

+ 4c2z + 8c3)
)

and
H∗GS � ΛG[ζ]/(ζ

3
+ c1ζ

2
+ c2ζ + c3),

and the homomorphism H∗
G
P5 → H∗

G
S is given by z 7→ 2ζ.

One computes

cG
1 (NS/P5) � 9ζ + 3c1 and cG

2 (NS/P5) � 30ζ2
+ 8c1ζ + 4c2

so, now using Q coefficients, these classes are lifted to H∗
G
P5 by

a1 �
9
2

z + 3c1 and a2 �
15
2

z2
+ 4c1z + 4c2

respectively. Since we have

[S] � 4(z3
+ 2c1z2

+ (c2
1 + c2)z + c1c2 − c3),

setting e � [E], the Keel presentation is H∗
G

BlSP
5
� ΛG[z, e]/( f , g , h), where the

ideal is generated by elements

f � (z3
+ 2c1z2

+ (c2
1 + c2)z + c1c2 − c3)(z

3
+ 2c1z2

+ 4c2z + 8c3),

g � (z3
+ 2c1z2

+ 4c2z + 8c3) · e , and

h � e3 − (
9
2

z + 3c1)e
2
+ (

15
2

z2
+ 4c1z + 4c2)e − 4(z3

+ 2c1z2
+ (c2

1 + c2)z + c1c2 − c3).

(One way to verify these computations is by using the calculations of local tangent
and normal weights from §3.)

3Use coordinates x , y on X, and x , y′ on X̃, where y � x y′. Since the characters
of x , y are χ1 , χ2, one sees the character of y′ is χ2 − χ1.

4Non-equivariantly, σp � σq � σ in H∗C , so this says 2σ − E � τ. Since 2σ − E is
the class of the proper transform of the quadric hypersurface parametrizing conics
tangent to a given line, one has∫

(2σ − E)5 �

∫
τ5

� 1,

resolving the “conics tangent to 5 lines” problem.



CHAPTER 7

Localization II

In this chapter, we refine the main localization theorem from
Chapter 5 to see that it applies to all algebraic varieties. We then turn
to the third piece of the localization package, which characterizes
the image of the restriction homomorphism: we will see verison
of a theorem due to Chang and Skjelbred, refined to allow integer
coefficients. Along the way, we give a criterion for a nonsingular
variety to have finitely many T-invariant curves.

Most of the results of this chapter are not needed elsewhere in the
book. However, it is often useful—at least psychologically—to know
a particular case of the image theorem, where there are finitely many
fixed points and finitely many invariant curves. This is often known
as the “GKM” description of equivariant cohomology, after Goresky,
Kottwitz, and MacPherson.

1. The general localization theorem

We first set up some notation, which will be useful later in the
chapter as well. Given a subgroup L ⊆ M of the character lattice
M � Hom(T,C∗), let T(L) ⊆ T be the subgroup of T corresponding
to the quotient M/L; that is,

T(L) �
⋂
χ∈L

ker(χ).

Let S(L) ⊆ Λ � Sym∗M be the multiplicative set generated by M r L.
By Lemma 1.11 of Chapter 5, the fixed locus XT(L) is nonsingular
whenever X is, because T(L) is a diagonalizable group.

99
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Theorem 1.1 (Localization). Let X be an algebraic variety with the
action of a torus T. The restriction homomorphism

S(L)−1H∗TX
S(L)−1ι∗

−−−−−→ S(L)−1H∗TXT(L)

is an isomorphism, where ι : XT(L) ֒→ X is the inclusion.
In fact, S(L) may be replaced by a smaller multiplicative set, generated

by a finite set of characters depending on X.

Taking L � 0, the theorem says that whenever S contains all
nonzero characters, S−1H∗

T
X→ S−1H∗

T
XT is an isomorphism.

In proving the localization theorem, we will use some fundamen-
tal (but nontrivial) facts about torus actions.

Theorem 1.2. Let a torus T act on an algebraic variety X.

(1) (Sumihiro) If X is normal, then it is covered by (finitely many)
T-invariant Zariski open affine sets U ⊆ X.

(2) (Alper-Hall-Rydh) For any X, there is a T-equivariant affine étale
cover U → X.

References can be found in the Notes at the end of the chapter.
We also use a very easy fact about equivariant cohomology:

Lemma 1.3. Suppose Y′ → Y is a T-equivariant map. If c ∈ Λ

annihilates H∗TY, then it also annihilates H∗TY′.
More precisely, suppose one has a map of spaces

Y′ Y

B,

and cup product by c ∈ H∗B annihilates HkY. Then c also annihilates
HkY′.

(This second statement immediate from the functoriality of cohomol-
ogy, because H∗Y → H∗Y′ is a homomorphism of H∗B-algebras. The
first statement follows, by applying the Borel construction.)

Proof of Theorem 1.1. First we treat the case where XT(L)
� ∅, in

three steps.
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Case 1. Suppose V is an affine space with a linear T-action, and
X � V r VT(L). We can write

V �

⊕
χ∈M

Vχ � V+ ⊕ V−,

where V+ is the sum of Vχ with χ ∈ L, and V− is the sum of Vχ
with χ < L. Then V+

� VT(L) is the fixed locus for T(L). Regarding
X � VrVT(L) as the complement of the zero section of a vector bundle
over VT(L), it follows from the Gysin sequence that H∗

T
X � Λ/(c),

where c �

∏
χ<L χ

dim Vχ . Since c ∈ S(L), we have S(L)−1H∗
T

X � 0.
(Note that it suffices to invert the finitely many characters χ < L such
that Vχ , 0.)

Case 2. Next suppose X is any affine variety with XT(L)
� ∅. It

is a basic fact about linear algebraic group actions that one can find
an equivariant embedding X ֒→ V in an affine space V with linear
T-action. By the assumption XT(L)

� ∅, we have X ֒→ V r VT(L).
Taking c as in the previous case, Lemma 1.3 says that c annihilates
H∗

T
X, so S(L)−1H∗

T
X � 0.

Case 3. Now consider any variety X with XT(L)
� ∅. Using

Theorem 1.2, we can find a finite cover of X by invariant affines
Ui → X. From the previous case, we have elements ci annihilating
H∗

T
Ui, for each i. It follows from the Mayer-Vietoris sequence that

c �

∏
ci annihilates H∗TX.

For the general case where XT(L) may be nonempty, proving the
theorem is equivalent to showing that S(L)−1H∗T(X,X

T(L)) � 0. We
will do this by working on approximation spaces.

Choose a principal T-bundle E→ B so that

Hk
T(X,X

T(L)) � Hk(E ×T X, E ×T XT(L)),

and letU be an open neighborhood of E ×T XT(L) in E ×T X. By the
case where the fixed locus XT(L) is empty, we have an element c ∈ H∗B

which annihilates Hk((E ×T X) r (E ×T XT(L))). From Lemma 1.3, it
follows that c also annihilates Hk(U r (E ×T XT(L))), and therefore it
annihilates Hk((E ×T X) r (E ×T XT(L)), U r (E ×T XT(L))), using the
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long exact sequence. By tautness and excision, we have

Hk
T(X,X

T(L)) � Hk(E ×T X, E ×T XT(L))

� lim
−−→
U

Hk(E ×T X, U)

� lim
−−→
U

Hk((E ×T X) r (E ×T XT(L)), U r (E ×T XT(L))),

so this group is also annihilated by c.
Finally, observe the element c is a product of finitely many char-

acters in M r L, and S(L) may be replaced by any multiplicative set
containing c. �

The localization theorem has many consequences. Here is one.

Corollary 1.4. Let S ⊆ Λ be the multiplicative set generated by Mr0.
Suppose Y ⊆ X is a T-invariant subvariety, and assume the restriction
H∗XT → H∗YT is surjective. If {α} is a set of generators for H∗TX as a
Λ-algebra, then their restrictions to H∗

T
Y generate S−1H∗

T
Y as an S−1Λ-

algebra.

A special case of the corollary gives a strong statement about
varieties with finitely many attractive fixed points. An isolated fixed
point p ∈ XT is attractive if all the weights in the (Zariski) tangent
space TpX lie in an open half-space of M ⊗ R; that is, there is some
dual vector λ ∈ (M ⊗ R)∨ such that 〈λ, χ〉 > 0 for all weights χ on
TpX.

Corollary 1.5. If X is an irreducible projective variety with finitely
many fixed points, all of which are attractive, then the S−1Λ-algebra S−1H∗

T
X

is generated by the equivariant Chern class of an ample line bundle.

This is a direct consequence of the previous corollary, using the
following lemma.

Lemma 1.6. Suppose X is an irreducible projective variety, and let
X ֒→ PN be an equivariant embedding. Suppose p ∈ XT is an attractive
fixed point mapping to a connected component Z ⊆ (PN )T . Then p is the
only point of X which maps to Z.



Chapter 7. Localization II 103

Proof. Note that Z is a linear subspace with trivial T-action. We
need to show Z∩XT consists of at most one point. If Z is a point, this
is obvious, so we may assume Z is positive-dimensional. One can
find a hyperplane in Z avoiding any finite collection of points, and
any hyperplane in Z may be written as Z ∩ H, for some T-invariant
hyperplane H ⊆ PN . By choosing H so that it avoids Z∩XT , we may
replace X by the affine variety U � X r H.

We have reduced to proving that if an irreducible affine T-variety
U contains an attractive fixed point p, then UT

� {p}. To see this,
let A � O(U) be the coordinate ring, and consider the action of C∗

on TpU via λ : C∗ → T, where 〈λ, χ〉 > 0 for all characters χ of T

acting on TpU . Lifting a basis of eigenvectors from (TpU)∨ � mp/m
2
p

to generators of mp, we obtain a grading

A �

⊕
d≥0

Ad .

It follows that UT is defined by the ideal of positive-degree elements,
and its coordinate ring is isomorphic to A0. Since A0 ⊆ A is a subring,
it is a domain; since p is an isolated fixed point, it then follows that
A0 � C, so UT

� {p} as claimed. �

In the situation of Corollary 1.5, if X is also nonsingular, the
Białynicki-Birula decomposition (Chapter 5, Theorem 3.2) implies
that H∗

T
X is a free Λ-module, so that it embeds in S−1H∗

T
X. This

leads to a remarkable and useful property of such varieties:

If X is an irreducible nonsingular projective variety with
finitely many attractive fixed points, then the ring structure
of H∗

T
X is determined by multiplication by divisors.

This principle applies to standard torus actions on Grassmannians
and flag varieties, and more generally, homogeneous spaces G/P —
although for most such spaces, H∗TX is not generated by divisor
classes! Later we will see an alternative, algorithmic proof of this
principle for X � G/P.

Without the assumption on attractive fixed points, however, the
lemma and corollary may fail.
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Exercise 1.7. Let T act on P3 by characters χ,−χ, 0, 0, for some
nonzero character χ. Using homogeneous coordinates x , y , z , w, the
quadric hypersurface X � {x y � z2 − w2} is T-invariant. Check that
XT is finite, determine the tangent weights on each fixed point, and
show that two fixed points of X lie in the same fixed component of
P3. Show that the homomorphism H∗

T
P3 → H∗

T
X does not become

surjective after tensoring with the fraction field of Λ.1

2. Invariant curves

Much information can be gleaned from the T-invariant curves in
a variety X. In the next section we will see how they determine the
image of the restriction homomorphism ι∗ : H∗

T
X → H∗

T
XT . First, we

will need some notation and basic facts about such curves.
Suppose T acts on P1 by distinct characters χ1 and χ2, so the fixed

points are 0 � [1, 0] and ∞ � [0, 1]. Writing χ � χ2 − χ1, we have
seen T0P

1
� Cχ and T∞P

1
� C−χ.

More generally, if T acts on a nonsingular curve C with two fixed
points, CT

� {p , q}, then there is an equivariant isomorphism C � P1

sending p to 0 and q to∞. Indeed, for any x ∈ CrCT , the action map

T → T · x � T/Tx ,

realizes CrCT as a one-dimensional quotient of T. One sees that C is
rational; a nonsingular rational curve containing T/Tx � C

∗ is either
C∗, A1, or P1, and only the latter has two fixed points. Choosing the
isomorphism T/Tx � C

∗ so that p � limz→0 z ·x defines an equivariant
isomorphism C → P1, with p 7→ 0 and q 7→ ∞. This also identifies
the action map T → T · x � C∗ as a character χ.

There is one other choice of isomorphism, swapping p with q, z

with z−1, and χ with −χ. Up to sign, then, the character χ depends
only on the T-action on C. We will call ±χ the character of T acting
on C.

Similarly, the character of T acting on any (possibly singular) curve
C is defined to be ±χ if a choice of isomorphism T · x � C∗ identifies
T → T · x with χ : T → C∗, for some x ∈ C r CT ; and it is defined to
be 0 if the action is trivial.



Chapter 7. Localization II 105

For T acting on a variety X, a T-curve C ⊆ X is the closure of a
one-dimensional T-orbit in X, so C � T · x. By choosing T · x � C∗,
each T-curve has an associated nonzero character ±χ.

Example 2.1. Even when the fixed locus XT is finite, there are
often infinitely many T-curves.

Suppose T acts on P2 by characters 0, χ, 2χ, for some nonzero
character χ. The fixed points are the standard coordinate points
p1 � [1, 0, 0], p2 � [0, 1, 0], and p3 � [0, 0, 1]. The T-curves are the
coordinate lines

{X1 � 0} with character ± χ,

{X2 � 0} with character ± 2χ, and

{X3 � 0} with character ± χ,

together with the conics

{X2
2 − λX1X3 � 0} with character ± χ,

for λ , 0.
Invariant curves may be singular. For example, if T acts on P2

via characters 0, aχ, bχ, with 0 < a < b, then the curves defined by
Xb

2 − λXb−a
1 Xa

3 are invariant; these have cuspidal singularities if, for
example, a � 1 and b ≥ 3.

However, there are limitations on the singularities that can occur.

Example 2.2. Let C � P1/(0 ∼ ∞) be a nodal curve with a non-
trivial T-action induced from an action on P1. Such a curve cannot
occur as a T-curve in any nonsingular, or even normal, algebraic va-
riety X. This is because Sumihiro’s theorem (Theorem 1.2) provides
a T-invariant affine cover of such an X, but there is no T-invariant
affine neighborhood of the singular point of C.

The local structure of T-curves on nonsingular varieties can be
classified. We will use some terminology for characters and curves.
Any nonzero character χ ∈ M is uniquely c · η, where c is a positive
integer and η is a primitive character—that is, the only expression
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η � c′ · η′, with c′ a positive integer, is c′ � 1 and η′ � η. Writing
a character χ this way, we call c its coefficient and η its direction.
Two characters χ1, χ2 are parallel if their directions are the same or
opposite, that is, if η1 � ±η2.

Proposition 2.3. Let T act on an n-dimensional nonsingular algebraic
variety X, and let p ∈ XT be an isolated fixed point, so the tangent weights
χ1, . . . , χn on TpX are all nonzero.

(1) If no two characters at p are parallel, then there are finitely many
T-curves in X through p. In fact, there are n such curves, all
nonsingular at p, with characters χ1, . . . , χn.

(2) If two characters have the same direction, then there are infinitely
many T-curves through p.

(3) If two characters have opposite directions, then there are infinitely
many T-curves through any T-invariant neighborhood of p.

Proof. Using the slice theorem as in Chapter 5, we find a T-
invariant neighborhood of p, equivariantly isomorphic to a neigh-
borhood of 0 ∈ TpX, thereby reducing to the case where p � 0 in
X � Cn, with T acting via characters χ1, . . . , χn .

If, say, χ1 and χ2 are parallel, Example 2.1 shows that there are
infinitely many T-curves in the corresponding plane; if χ1 and χ2

also have the same direction, all these curves go through 0. (More
precisely, suppose χ1 � aχ and χ2 � bχ, with a and b relatively
prime, and let (x1, x2) be coordinates on the plane C2 ⊆ Cn where T

acts by χ1 and χ2. If a , b > 0 then for all λ , 0, the curves {xb
1 � λxa

2}

are invariant and pass through 0. If a > 0 > b, then for all λ , 0, the
curves {x−b

1 xa
2 � λ} are invariant, and by taking λ small, they pass

arbitrarily close to 0.) This proves (2) and (3).
For (1), if no two characters are parallel, any point x ∈ Cn with

at least two nonzero coordinates has a T-orbit of dimension at least
two. So in this case, the only T-curves are the n coordinate axes. �

Exercise 2.4. Let X be a (possibly singular) variety of dimension
n, with an isolated fixed point p ∈ XT . Show that the number of
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T-curves through p is at least n. If X has finitely many T-curves, but
there are more than n through p, then p is a singular point.

3. Image of the restriction map

Our final aim is to characterize the image of the homomorphism
ι∗ : H∗

T
X → H∗

T
XT . Throughout this section, we use cohomology

with coefficients in a UFD R. (Typically one takes R to be Z, Q, or
Fp.) Using the terminology of the previous section, two characters
correspond to relatively prime elements of Λ if and only if they are
non-parallel, and their coefficients are relatively prime in R.

Before turning to the general theorems, we consider three illus-
trative examples. The strongest results will characterize the image
of ι∗ using the characters of T-curves, so let us first consider the case
where X itself is a curve.

Example 3.1. Let T act on P1 by distinct characters χ1, χ2, so the
fixed points are 0 � [1, 0] and ∞ � [0, 1]. Writing χ � χ2 − χ1 for
the character of this action, we have T0P

1
� Cχ and T∞P

1
� C−χ. The

image of H∗
T
P1 in H∗

T
(P1)T � Λ⊕Λ consists of pairs (u0 , u∞) such that

u∞ − u0 is divisible by χ.
To see this, recall that H∗

T
P1

� Λ[ζ]/(ζ + χ1)(ζ + χ2) maps to
H∗

T
(P1)T � Λ ⊕ Λ by ζ 7→ (−χ1,−χ2). The image satisfies the divis-

ibility condition, because the image of ζ does. On the other hand,
using the basis {1, [∞]T} for H∗

T
P1, we see the divisibility condition

is also sufficient to characterize the image: if (u0 , u∞) satisfies it, we
can write

(u0 , u∞) � u0 · (1, 1) + u′∞ · (0, χ)

� ι∗(u0 · 1 − u′∞ · [∞]
T),

where u∞ − u0 � χ · u′∞.

Next, we consider the general case of a projective space with
finitely many T-curves.
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Example 3.2. Let T act on Pn−1 by distinct characters χ1, . . . , χn,
and for each i, assume the n − 1 characters χ j − χi (for j , i) are pair-
wise relatively prime in Λ. By Proposition 2.3, this means there are
finitely many T-curves, namely the coordinate lines Ci j connecting
points pi and p j .

Claim. An element (u1, . . . , un) ∈ H∗
T
(Pn−1)T � Λ⊕n belongs to

the image of ι∗ : H∗TP
n−1 → H∗T(P

n−1)T if and only if ui−u j is divisible
by χi − χ j for all i , j.

First observe that divisibility is necessary. The restriction map
factors as

H∗TP
n−1 → H∗TCi j

ι∗
i j

−→ Λ ⊕ Λ,

and any (ui , u j) in the image of ι∗
i j

must have ui − u j divisible by

χi − χ j , by the P1 case discussed in Example 3.1.
To see that it is also sufficient, we can proceed inductively. For

any u1 ∈ Λ, the element (u1 , . . . , u1) � u1 · (1, . . . , 1) is certainly in the
image of ι∗. To see (u1, u2, . . . , un) is in the image, it suffices to show
that (0, u2 − u1, . . . , un − u1) is in the image—that is, we may assume
the first entry is zero. By the divisibility condition, we can write such
an element as (0, (χ1 − χ2)v2, (χ1 − χ3)v3, . . . , (χ1 − χn)vn).

The element (ζ + χ1)v2 ∈ H∗
T
Pn−1 restricts to

(0, (χ1 − χ2)v2, (χ1 − χ3)v2, . . .),

and by subtracting this, we reduce to the case where the first two
entries are zero. So it suffices to prove that

(0, 0, (χ1−χ3)(χ2−χ3)w3, (χ1−χ4)(χ2−χ4)w4, . . . , (χ1−χn)(χ2−χn)wn)

lies in the image. In using the divisibility condition to extract the
factors (χ1−χi)(χ2−χi), we have used that R (and henceΛ) is a UFD.

Continuing in this way, we reduce to proving that

(0, . . . , 0,
n−1∏
i�1

(χi − χn)zn)

lies in the image. By the self-intersection formula, this is the restric-
tion of zn ·

∏n−1
i�1 (ζ + χi) � zn · [pn]

T ∈ H∗
T
Pn−1 (Chapter 4, §7). �
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Without the condition that characters be relatively prime—so
with infinitely many T-curves—the divisibility criterion is more com-
plicated.

Example 3.3. Let T act on P2 by characters 0, χ, 2χ, where χ is a
primitive (nonzero) character. The image of

H∗TP
2
� Λ[ζ]/ζ(ζ + χ)(ζ + 2χ) → Λ⊕3

� H∗T(P
2)T

ζ 7→ (0,−χ,−2χ)

is the subring of triples (u1 , u2, u3) such that

(1) u2 − u1 and u3 − u2 are divisible by χ, u3 − u1 is divisible by
2χ; and

(2) u1 − 2u2 + u3 is divisible by 2χ2.

Necessity of the first condition is just as before, by factoring through
H∗

T
Ci j . Necessity of the second condition follows from the integration

formula, as we saw in Chapter 5, Example 2.6. Sufficiency of the
conditions is an exercise.2

To state and prove the general theorems about the image of the
restriction map, we introduce one more piece of notation. An irre-
ducible element f ∈ Λ is an irreducible factor if it is the image of a
prime in Z or a primitive character in M under the canonical homo-
morphisms Z→ Λ and M → Λ. (So f has degree 0 or 2.) These are
the elements which occur as factors of characters in Λ.

Given an irreducible factor f , we will write L f ⊆ M for the sub-
group of characters divisible by f , and T( f ) � T(L f ) ⊆ T for the
corresponding subtorus. If f � χ is a primitive character in M, then
T( f ) ⊆ T is a subtorus of codimension one; if f � p is a prime in
Z, then T( f ) ⊆ T is the finite subgroup of all elements of order p (a
“p-torus”). Note that XT ⊆ XT( f ) ⊆ X.

The main theorem on the image of the restriction homomorphism
gives a characterization in terms of the fixed loci XT( f ).

Theorem 3.4 (Chang-Skjelbred). Let T act on a variety X, and assume
that H∗XT is a free R-module and H∗

T
X is a freeΛ-module. Then an element
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α ∈ H∗
T

XT lies in the image of ι∗ : H∗
T

X → H∗
T

XT if and only if it lies in
the image of H∗

T
XT( f ) → H∗

T
XT for all irreducible factors f .

Letting Z ⊆ XT range over connected components, so

H∗TXT
�

⊕
Z⊆XT

Λ ⊗R H∗Z,

one can write α � (αZ) as a tuple of elements of Λ ⊗R H∗Z. This is
especially useful when the fixed points are isolated, where (αZ) is
just a tuple of polynomials. (See Corollary 4.3.)

Proof. Since XT( f ) ⊇ XT , the “only if” direction is clear. For the
other direction, assume α ∈ H∗

T
XT lies in the images of all H∗

T
XT( f ).

Since S−1H∗
T

X � S−1H∗
T

XT for S ⊆ Λ generated by all nonzero char-
acters, we can find an element g ∈ S such that gα ∈ H∗

T
X. Take g to

be minimal, so that for any proper divisor g′ of g, g′α < H∗
T

X. Let
e1, . . . , er be a basis for H∗

T
X over Λ, and write gα � a1e1 + · · · + ar er .

Suppose for contradiction that α is not in the image of H∗
T

X. Then
g is not a unit inΛ. Let f be an irreducible factor of g. By minimality
of g, some ai is relatively prime to f ; say this is a1.

By the general localization theorem, S( f )−1H∗
T

X � S( f )−1H∗
T

XT( f ),
where S( f ) is the multiplicative set generated by characters not di-
visible by f . So there is an element ψ f ∈ S( f ) so that ψ f α ∈ H∗

T
X.

Write ψ f α � b1e1 + · · · + br er . From the definition of S( f ), we know
f does not divide ψ f . On the other hand, the coefficient of e1 in
(gψ f )α is ψ f a1 � gb1. Since f divides the right-hand side, we reach
a contradiction. �

A version of the theorem was first proved by Chang and Skjelbred,
using Q coefficients. In fact, one can relax the requirement that
H∗

T
X be a free Λ-module, as shown in the following exercises. More

comments on this story are in the Notes.

Exercise 3.5. Show that one can strengthen the statement of Theo-
rem 3.4, by requiring only that the quotient of H∗

T
X moduloΛ-torsion

is free as a Λ-module. (In the case where T � C∗ and R is a field, this
hypothesis holds for any space X, since Λ is a PID.)
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Exercise 3.6. Let X be the nodal curve obtained by identifying the
points 0 � [1, 0] and∞ � [0, 1] on P1, with a C∗ action induced by the
action z · [a , b] � [a , zb] on P1. (This was considered in Exercise 5.1
of Chapter 3.) Compute the restriction map H∗

T
X → H∗

T
XT

� H∗
T
(p),

where p ∈ XT is the node, and verify the conditions of Theorem 3.4,
as refined by Exercise 3.5. On the other hand, show that the forgetful
map H∗

T
X → H∗X is not surjective.

Exercise 3.7. Let X ⊆ P2 be the union of the three coordinate lines.
(If X1,X2,X3 are homogeneous coordinates on P2, X is defined by
the equation X1X2X3 � 0.) Let T � C∗, and let K � S1 ⊂ T be the
(compact) circle subgroup, soΛT � ΛK � Z[t]. Consider the action of
T given by z · [x1, x2, x3] � [z

2x1, zx2, x3], so X is T- and K-invariant.
Using the Mayer-Vietoris sequence, compute H∗

T
X � H∗

K
X. In

particular, show that H i
TX is zero for i > 1 odd, but H1

TX � Z.
Therefore t · H1

T
X � 0, so H∗

T
X is not a free Λ-module.

On the other hand, H∗TX is free moduloΛ-torsion. Check that the
image of H∗

T
X → H∗

T
XT

� Λ⊕3 is characterized by the condition of
Theorem 3.4 (using the refinement from Exercise 3.5).3

4. The image theorem for nonsingular varieties

Theorem 3.4 describes the image of H∗
T

X as an intersection of
H∗TXT( f ) over all irreducible factors f , but in fact it suffices to con-
sider only finitely many fixed loci. When X is nonsingular, further
refinements are possible.

Let S ⊆ M be the (finite) set of all characters occurring as weights
on TpX, for fixed points p ∈ XT . Given an irreducible factor f , take
L f ⊆ M to be the subgroup of characters divisible by f (as before).
Let S

+

f
� S ∩ L f be the set of characters which occur as tangent

weights and are divisible by f , and let S
−
f
� S rS

+

f
be those which

are not divisible by f . Finally, let

T f �

⋂
χ∈S +

f

ker(χ) and X f
� XT f ,

and let S f ⊆ Λ be the multiplicative set generated by S
−
f

.
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Since T f ⊆ T is a diagonalizable group and X is nonsingular, X f is
also nonsingular. In general, T( f ) ⊆ T f , XT( f ) ⊆ X f , and S( f ) ⊇ S f .
If f does not divide any characters occurring at fixed points, then
X f

� XT .

Exercise 4.1. Suppose X is nonsingular. Show that in Theorem 3.4,
one can replace XT( f ) and S( f ) by X f and S f , respectively. Further-
more, in the “if” statement of the theorem, it suffices to consider only
those f which occur as irreducible factors of tangent weights at fixed
points.

When X has finitely many T-curves, the sets X f have a more
concrete description.

Lemma 4.2. Suppose X is nonsingular, XT is finite, and at each fixed
point, the tangent weights are relatively prime, so there are finitely many
T-curves in X. Then X f is the union of all T-curves C whose character
is divisible by f , together with all isolated fixed points p ∈ XT where no
weight of TpX is divisible by f .

Proof. We may assume R � Z and dim X > 1. Certainly X f con-
tains this union: T f fixes all T-curves whose character χ is divisible
by f , because T f ⊆ ker(χ) by definition.

For the other direction, we must show that T-curves whose char-
acters are not divisible by f are not fixed by T f . That is, when
χ ∈ S

−
f

, the restriction of χ to T f is nontrivial. Note that S
−
f

is
nonempty—since the characters at a given fixed point are pairwise
relatively prime, those which are divisible by f form a proper subset
S

+

f
( S .

Let K f be the sublattice generated by S
+

f
, so K f ⊆ L f ⊆ M, and

M f � M/K f is the character group of T f . Any character χ ∈ S
−
f

lies in M r L f ⊆ M r K f . Its restriction to T f is therefore nonzero,
because this is given by the surjection M ։ M f � M/K f . �

A particularly vivid instance of the image theorem was popular-
ized by Goresky, Kottwitz, and MacPherson.
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Corollary 4.3 (GKM). Let X be a nonsingular variety with XT finite,
and assume H∗

T
X is free over Λ. Suppose that for each p ∈ XT , the weights

on TpX are relatively prime. Then a tuple

(up)p∈XT ∈ H∗TXT

lies in the image of ι∗ : H∗TX → H∗TXT if and only if for each T-curve
Cpq � P

1 connecting distinct points p , q ∈ XT , the difference up − uq is
divisible by the character ±χpq of Cpq .

Proof. The divisibility condition is always necessary: as before,
we can factor ι∗ as

H∗
T

X H∗
T

XT
�

⊕
p∈XT Λ

H∗
T

Cpq H∗
T

CT
pq � Λ ⊕ Λ,

ι∗

and apply the P1 case.
For sufficiency, we will show that the divisibility condition means

(up) lifts to H∗
T

X f , for each irreducible factor f , and apply The-
orem 3.4. Using the lemma, X f is the union of T-curves whose
character is divisible by f , together with isolated fixed points. Such
T-curves are nonsingular and disjoint, so each component must be
(1) Cpq � P

1, (2) Cp � A
1, or (3) C∅ � C

∗. Now consider the re-
striction homomorphism H∗

T
X f → H∗

T
XT , on components of each

type. Divisibility guarantees that (up) lifts to each summand H∗
T

Cpq

of type (1), by the P1 case. Summands of type (2) map isomorphically,
H∗

T
Cp � H∗

T
A1 ∼−→ H∗

T
(p) � Λ, so lifting is trivial for such summands.

Finally, summands of type (3) map to zero, since H∗
T

C∅ is a torsion
module.

Putting this together, we see that (up) lifts to H∗
T

X f , so the corol-
lary follows. �

The relatively prime condition on torus weights impies that X

has finitely many T-curves. In fact, when the coefficients are R � Q

(or any field), having relatively prime weights at all fixed points is
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Figure 1. The moment graph for T � (C∗)4 acting on
Gr(2,C4), with edges labeled by characters of T-curves.

equivalent to having finitely many T-curves; such varieties are often
called GKM varieties.

The hypothesis of the “GKM” corollary also implies that ι∗ is
injective, so it gives an appealing characterization of H∗

T
X as tuples

of polynomials satisfying divisibility conditions. As we have seen
in the last two chapters, this information is often organized into a
moment graph: vertices correspond to fixed points p ∈ XT , and edges
correspond to T-curves Cpq for p , q. Each edge is labelled by the
character ±χpq of Cpq . It is a basic fact from symplectic geometry
that the moment graph can be embedded in Euclidean space so that
edges with parallel characters embed as parallel lines. We have seen
examples of this in the last two chapters.

Example 4.4. Consider X � Gr(2,C4), with the standard action of
T � (C∗)4. The fixed points are pi j � 〈ei , e j〉, that is, the coordinate
subspaces. We have already computed the weights at fixed points,
and this is enough to determine the characters of the T-curves. (Half
of the 12 edge labels are shown in Figure 1; the remaining labels are
determined by parallel edges.)

Inside X, we have

Ω �

{
E ⊆ C4

�� dim(E ∩ E12) ≥ 1
}
� Ω◦,



Chapter 7. Localization II 115

where Ω◦ is a neighborhood of p24 in Ω. Using columns of a matrix
to represent points of X,

Ω
◦
�



∗ ∗

1 0
0 ∗
0 1


.

We know that p34 < Ω, and can see that p24 ∈ Ω is a nonsingular
point with normal character t3 − t2. These observations show that

[Ω]T |p34 � 0 and [Ω]T |p24 � t3 − t2.

The restrictions to all other fixed points are determined by the divis-
ibility condition! (We saw another way to compute in Example 2.7 of
Chapter 5.)

Exercise 4.5. Use divisibility to work out all restrictions [Ω]T |pi j .

Using the integration formula, divisibility criteria extend to vari-
eties with possibly infinite families of T-curves.

Corollary 4.6. Let X be a nonsingular variety, with T acting so that
H∗

T
X is a freeΛ-module. For all irreducible factors f , assume X f is compact

and H∗
T

X f is free overΛ. Letting Z ⊆ XT range over connected components,
an element (αZ) ∈ H∗

T
XT lies in the image of H∗

T
X if and only if for all

irreducible factors f and all β ∈ H∗TX f , we have∑
Z⊆XT

αZ β |Z

cT
top(NZ/X f )

∈ Λ.

In fact, it suffices to let f vary over irreducible factors of tangent
weights at fixed points in XT , and to choose β from aΛ-module basis
of H∗

T
X f .

Proof. If (αZ) is the image of α ∈ H∗
T

X, and α f is the restriction of

α to H∗TX f , then by the integration formula, the sum equals ρ f
∗ (α f ·β),

where ρ f : X f → pt is the projection. Thus the condition is necessary.
To see that the condition is sufficient, suppose it holds for some

f . We will show that (αZ) lies in the image of H∗
T

X f → H∗
T

XT , and
conclude by Theorem 3.4.
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Let x1, . . . , xr be a Λ-module basis for H∗
T

X f , with Poincaré dual
basis y1, . . . , yr . Choose S so that S−1H∗

T
X f

� S−1H∗
T

XT , and write
α � (αZ) � a1x1 + · · · + ar xr , for some ai ∈ S−1Λ. So α lies in
H∗

T
X f exactly when all ai lie in Λ. By Poincaré duality, we know

ai � ρ
f
∗ (α · yi), where ρ f

∗ is extended linearly to a homomorphism
S−1H∗

T
X f → S−1Λ. By the observation above, this is

ai � ρ
f
∗ (α · yi) �

∑
Z⊆XT

αZ · yi |Z

cT
top(NZ/X f )

,

which lies in Λ by hypothesis. �

When XT is finite and the tangent weights at each fixed point
are relatively prime, so each X f is a union of P1’s and isolated fixed
points, we recover the case of the GKM theorem (Corollary 4.3) where
all T-curves are complete. Here we can take β � 1. For a component
Cpq � P

1 of X f where T acts with character χ, the condition of
Corollary 4.6 says

αp

χ
+

αq

−χ
�

αp − αq

χ
∈ Λ.

That is, χ divides αp − αq .
The description of H∗

T
P2 given in Example 3.3 may be obtained

using Corollary 4.6. A similar example is given in the following
exercise.

Exercise 4.7. Let T act on P1 by characters (0, χ) (for nonzero χ),
and diagonally on X � P1 × P1. Check that XT consists of the four
fixed points p1 � (0, 0), p2 � (0,∞), p3 � (∞, 0), and p4 � (∞,∞), but
there are infinitely many T-curves. Use Corollary 4.6 to compute the
image of H∗TX → H∗TXT .4

Notes

Topological versions of the main localization theorem can be found in
textbooks on transformation groups [Hs75, §III.2], [tD87, §III.3], [AllPup93,
§3.1]. A simple proof in this context was given by Brion and Vergne
[BriVer97b].
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Sumihiro’s theorem [Su74, Corollary 2], was refined by Brion to include
non-normal quasi-projective varieties [Bri15], and vastly generalized by
Alper-Hall-Rydh to the setting of algebraic spaces (and beyond) [AHR20,
Theorem 2.4].

Special cases of Corollaries 1.4 and 1.5 appear in [CFKS08, Lemma 4.1.3]
and [BCMP16, Remark 5.11].

The image theorem can be phrased quite generally, but less explicitly, in
terms of natural exact sequeneces. Chang and Skjelbred proved one of the
first theorems of this type [ChSk74, 2.3, 2.4]:

Theorem. Suppose X is equivariantly formal with respect to a T-action andQ
coefficients. Let Xi be the union of all T-orbits of complex dimension at most i, so
X0 � XT . Then the sequence

(∗) 0→ H∗T(X;Q) → H∗T(X0;Q) → H∗+1
T (X1,X0;Q)

is exact.

The last map in (∗) comes from the long exact sequence of the pair (X1,X0),
so the theorem says the image of H∗TX under the restriction map is equal to
that of H∗

T
X1; that is, equivariant cohomology of X is determined by equi-

variant cohomology of one-dimensional orbits (its “1-skeleton”). There is
no hypothesis on dim(Xi), so in this form the theorem applies to the situa-
tion of infinitely many fixed points or T-curves. Our proof of Theorem 3.4
is similar to the one given in [ChSk74].

For a compact nonsingular variety X with the action of an n-dimensional
torus T, and a T-equivariant ample line bundle L, there is a moment map
µL : X → t∨

R
� Rn . The Atiyah-Guillemin-Sternberg convexity theorem

[At82, GS82] says that the image of the moment map is convex, and its
fibers are connected. The fact that the moment graph embeds so that edges
are parallel to their labels is a consequence of the convexity theorem, but it
also follows from two easier properties of the moment map: (1) if Y ⊆ X is
a T-invariant subvariety, then µL |Y : Y→ t∨

R
is the restriction of µL to Y; and

(2) the image of the moment map of a T-curve is a line segment parallel to
its character.

These theorems belong to a more general story about Hamiltonian ac-
tions on symplectic manifolds; see [Aud04, §IV.4].

The formulation of the image theorem (Theorem 3.4) in terms of explicit
divisibility conditions—at least in the case of finitely many T-curves, and
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using coefficients in Q, R, or C—is due to Goresky, Kottwitz, and MacPher-
son [GKM98, Theorems 1.2.2 and 7.2]. The idea of encoding equivariant
cohomology in a moment graph also appears in this paper. (As the authors
note, the Euclidean embedding of the moment graph is not necessarily a
graph embedding, since edges may cross or overlap.)

The idea of exploiting exactness of the sequence (∗) to describe equivari-
ant cohomology in terms of fixed points can be traced to work of Atiyah
in K-theory [At74, Lecture 7] and Bredon in cohomology [Bre74, Main
Lemma]. For an n-dimensional torus, Bredon proves exactness of the longer
sequence
(∗∗)

0→ H∗T(X) → H∗T(X0) → H∗+1
T (X1,X0) → · · · → H∗+n

T (Xn ,Xn−1) → 0,

again using Q coefficients.
Franz and Puppe have carried out a detailed study of the role of equivari-

ant formality in localization theorems, emphasizing the “Atiyah-Bredon se-
quence” (∗∗) [FrPu07, FrPu11]. They give extensions of the Chang-Skjelbred
theorem to allow integer coefficients, as well as weaker conditions which
imply partial exactness of the sequence (∗∗).

A version of Corollary 4.6 was proved by Evain [Ev07], developing
ideas of Brion. Some variations are discussed by Braden, Chen, and Sottile
[BCS08, §5.C].

We thank Volker Puppe for explaining the history of these ideas.

Hints for exercises

1In the patch A3
� {w , 0} ⊆ P3, X is given by {x y � z2 − 1}. The torus fixes

the z-axis of A3. The fixed points of X are (0, 0,±1) in this patch.

2Imitate the argument from Example 3.2, noting that an element of the form
(0, 0, w3)which satisfies the second divisibility condition must have w divisible by
2χ2, so (0, 0, w3) is a multiple of the point class [p3]

T .

3H∗TX � Λ[x , y , z, α]/I, where α has degree 1 and the other variables have
degree 2, and I is generated by

α2 , x + y + z − t , x y , xz, yz, x2 − tx , y2 − t y , z2 − tz, xα, yα, zα.

The groups are H0
T X � Z, H1

TX � Z, H2i
T X � Z3, and H2i+1

T X � 0 (for i > 0). They
can be computed via the Mayer-Vietoris sequence for two K-invariant open sets.
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This forces most of the relations in the ring; to see x + y + z � t, use restriction to
fixed points.

4The image consists of tuples (u1 , u2 , u3 , u4) such that

u1 − u2 , u1 − u3 , u2 − u4 , and u3 − u4

are divisible by χ, and
u1 − u3 + u2 − u4

is divisible by χ2.





CHAPTER 8

Toric varieties

Toric varieties provide a rich source of examples of equivariant
geometry. In this chapter, we will describe the equivariant cohomol-
ogy of a complete nonsingular toric variety. There are many ways to
present this ring, and we will see several of them. With finitely many
fixed points and invariant curves, one can apply the “GKM” package
developed in the last chapter to obtain one such description.

1. Equivariant geometry of toric varieties

We begin by quickly reviewing some basic notions; references are
given at the end of the chapter.

Let T be an n-dimensional torus with character group M, and
let N � HomZ(M,Z) be the dual lattice, with pairing denoted 〈 , 〉.
A complete nonsingular toric variety X � X(Σ) corresponds to a
complete nonsingular fan Σ. This means Σ is a collection of convex
polyhedral cones σ in the vector space NR � N ⊗Z R such that any
two cones meet along a face of each; each cone must be generated by
part of a basis for N (so Σ is nonsingular), and the union of the cones
is all of NR (so Σ is complete).

For any convex cone σ ⊆ NR, the dual cone in MR is

σ∨ � {u ∈ MR | 〈u , v〉 ≥ 0 for all v ∈ σ}.

Intersecting with the lattice, one obtains a semigroup σ∨ ∩M, with
corresponding semigroup algebra C[σ∨ ∩ M]. For any u ∈ M, we
will write eu ∈ C[M] for the corresponding element of the semigroup
algebra.

The toric variety X is covered by T-invariant open affine sets
Uσ � SpecC[σ∨ ∩M]. In fact, Uσ � C

k × (C∗)n−k , where k � dim σ.
The affines Uσ for n-dimensional (maximal) cones σ suffice to cover X.

121
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At the other extreme, U{0} � SpecC[M] � T. In general, intersection
of cones corresponds to intersection of open sets: Uσ ∩Uτ � Uσ∩τ.

Each cone τ of the fan Σ also determines a closed T-invariant
subvariety V(τ) ⊆ X. This is again nonsingular, and its codimension
in X is the dimension of τ. On open affines, it is given by

V(τ) ∩Uσ � SpecC[τ⊥ ∩ σ∨ ∩M],

with the containment in Uσ given by

C[σ∨ ∩M]։ C[τ⊥ ∩ σ∨ ∩M],

eu 7→

{
eu if u ∈ τ⊥;

0 otherwise.

(This is a homomorphism, because τ⊥ ∩ σ∨ is a face of σ∨.) Thus
V(τ) is a nonsingular toric variety, for the torus with character group
τ⊥ ∩M (a quotient of T); it corresponds to a fan in N/Nτ, where Nτ

is the sublattice generated by τ.
The V(τ) are all the T-invariant subvarieties of X. In particular,

the T-fixed points are pσ � V(σ) for maximal cones σ (so dim σ � n).
The invariant curves are V(τ) for cones τ of dimension n − 1. Each
such τ lies in exactly two maximal cones, with τ � σ ∩ σ′, and
the corresponding invariant curve V(τ) is isomorphic to P1, with
V(τ)T � {pσ , pσ′}.

A toric variety X is projective if and only if there is a lattice
polytope P ⊆ MR such that Σ is the (inward) normal fan to P. (A
polytope in MR is the convex hull of finitely many points. A lattice
polytope is one whose vertices are in M.) More precisely, for each face
F of P, the corresponding cone in Σ is

σF � {v | 〈u′, v〉 ≥ 〈u , v〉 for all u′ ∈ P, u ∈ F}.

This correspondence reverses dimensions and inclusions: dim σF �

codim F, and σF ⊆ σF′ iff F ⊇ F′. The normal fan to P is nonsingular
if and only if P is simple: at each vertex of P, the primitive lattice
vectors along incident edges form a basis for M.
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P Σ

Figure 1. Polytope and fan for X � P2

Example. Let e1, . . . , en be a basis for M � Zn . For the standard n-
dimensional simplex, with vertices at 0, e1, . . . , en, the corresponding
toric variety is Pn . (See Figure 1.) The n-dimensional cube, with
vertices at ±e1, . . . ,±en, corresponds to (P1)n .

2. Cohomology rings

Suppose X � X(Σ) is projective, with P a polytope whose normal
fan is Σ. Choosing a general vector v ∈ NR, one obtains an ordering
of the vertices u1, . . . , us by 〈u1, v〉 < · · · < 〈us , v〉. Via the corre-
spondence between faces of P and cones of Σ, we get an ordering of
maximal cones, σ1, . . . , σs . For 1 ≤ i ≤ s, let

τi �

⋂
j>i

dim(σ j∩σi)�n−1

σi ∩ σ j ,

so τ1 � {0}, τs � σs , and generally τp ⊆ τq implies p ≤ q. Such an
ordering of cones is called a shelling of the fan.

A shelling gives a cellular decomposition of X, with the closures
of cells being V(τ1), . . . ,V(τs). It follows that the classes

[V(τ1)], . . . , [V(τs)]

forms a basis for H∗X (over Z), and the corresponding equivariant
classes [V(τ1)]

T , . . . , [V(τs)]
T form a basis for H∗

T
X over Λ � ΛT .

If X is not projective, by subdividing cones one can always find
a refinement Σ′ of Σ, giving a surjective birational T-equivariant
morphism π : X′ → X, with X′ � X(Σ′) projective and nonsingular.
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Under π, a subvariety V(τ′)maps onto V(τ), where τ is the smallest
cone of Σ containing τ. The map V(τ′) → V(τ) is birational if
dim τ′ � dim τ.

The composition π∗ ◦ π∗ is the identity on H∗X and on H∗
T

X (e.g.,
by the projection formula), and it follows that π∗ is injective and π∗
is surjective. This also shows:

Proposition. For any complete nonsingular toric variety X, the co-
homology ring H∗X is generated by classes [V(τ)] as a Z-module, and
H∗

T
X is generated by [V(τ)]T as a Λ-module. There is an isomorphism

H∗
T

X ⊗Λ Z
∼
−→ H∗X.

In the next section, we will see that H∗X and H∗
T

X are always
free of rank s, the number of maximal cones. Unlike the projective
case, however, we don’t know if the cohomology always has a basis
of classes of invariant varieties.

Let D1, . . . ,Dd be the T-invariant divisors, with Di � V(ρi) for
rays ρ1, . . . , ρd of Σ. Let vi ∈ N be the minimal generator of the ray
ρi . For u ∈ M, the element eu ∈ C[M] determines a rational function
on X. The corresponding divisor is

div(eu) �
∑
〈u , vi〉Di .

Equivariantly, eu is a rational section of the (topologically trivial) line
bundle Lu with character u, so we have a relation

u � cT
1 (Lu) � [div(eu)]T �

∑
〈u , vi〉[Di]

T

in H2
T

X.
If two cones σ and τ span a cone γ, then V(σ) ∩ V(τ) � V(γ). If

dim γ � dim σ + dim τ, the intersection is transverse, so

[V(σ)]T · [V(τ)]T � [V(γ)]T

in H∗TX. If σ and τ are not contained in a common cone of Σ, then
V(σ) ∩V(τ) � ∅, and in this case [V(σ)]T · [V(τ)]T � 0. In particular,
given distinct rays ρi1 , . . . , ρir , we have

[Di1]
T · · · [Dir ]

T
� [V(τ)]T
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if the rays span a cone τ ofΣ, and the product is zero otherwise. (The
same is true for non-equivariant products.)

3. The Stanley-Reisner ring

Let X1, . . . ,Xd be variables, one for each ray of Σ. In the polyno-
mial ring Z[X] � Z[X1, . . . ,Xd], we have two ideals:

• I is generated by all monomials Xi1 · · ·Xir such that the cor-
responding rays ρi1 , . . . , ρir do not span a cone.

• J is generated by all elements
∑
〈u , vi〉Xi , ranging over all

u ∈ M.

To generate I ⊆ Z[X], it suffices to consider minimal sets of rays
not spanning a cone (so any proper subset does span a cone). To
generate J ⊆ Z[X], it suffices to let u run over a basis for M. The ring
Z[X]/I is called the Stanley-Reisner ring of Σ.

We have a homomorphism

(∗) Z[X]/(I + J) → H∗X,

given by Xi 7→ [Di]. Indeed, we have seen that I and J map to
zero, so the homomorphism is well-defined. It is surjective, because
[V(τ)] � [Di1] · · · [Dir ], where ρi1 , . . . , ρir are the rays spanning τ.
In fact, (∗) is an isomorphism, and we will deduce this from the
corresponding equivariant statement.

Turning to equivariant cohomology, in Λ[X] � Λ[X1, . . . ,Xd]

again we have two ideals:

• I′ has the same generators as I, all monomials Xi1 · · ·Xir such
that the corresponding rays ρi1 , . . . , ρir do not span a cone.

• J′ is generated by elements u −
∑
〈u , vi〉Xi , ranging over all

u in M (or a basis for M).

We have a homomorphism

(∗T) Λ[X]/(I′ + J′) → H∗TX,

by Xi 7→ [Di]
T . Again, we have seen that I′ and J′map to zero, so the

homomorphism is well-defined; it is surjective for similar reasons.
We will prove that it is an isomorphism.
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Theorem 3.1. The homomorphisms (∗) and (∗T) are isomorphisms, pre-
senting the cohomology rings as

H∗X � Z[X]/(I + J) and H∗TX � Λ[X]/(I′ + J′).

This identifies the equivariant cohomology of X � X(Σ) with the
Stanley-Reisner ring of Σ, thanks to the following simple lemma.

Lemma 3.2. The canonical homomorphism

Z[X]/I → Λ[X]/(I′ + J′)

is an isomorphism.

Proof. Let u1, . . . , un be a basis for M. Since Λ � Z[u1, . . . , un],
the elements

u1 −
∑

i

〈u1, vi〉Xi , . . . , un −
∑

i

〈un , vi〉Xi

form a regular sequence in Λ[X] and generate J′, with quotient
Λ[X]/J′ � Z[X]. Since I′ � I · Λ[X] by definition, we have the
asserted isomorphism. �

There are several ways to prove the theorem. We will construct a
complex which is useful for studying general toric varieties, includ-
ing singular or non-compact ones, and use this complex to give an
algebraic argument that Z[X]/I is a free Λ-module. (Another proof,
based on the GKM picture, is indicated in Exercise 4.1 below.)

For each cone τ, let vi1 , . . . , vik
be its minimal generators, and set

Z[τ] :� Z[Xi1 , . . . ,Xik
] � Z[X]/(X j | v j < τ).

We consider this both as a Z-module, and as a (Z[X]/I)-module. For
each face γ of τ, there is a canonical surjection Z[τ]։ Z[γ].

Next, we set
Ck �

⊕
dim τ�k

Z[τ],

and define a homomorphism dk : Ck → Ck−1 which maps Z[τ] to the
sum of Z[γ] over facets γ ⊆ τ. More precisely, let vi1 , . . . , vik

be the
generators of τ, ordered so that i1 < · · · < ik , and let γ be generated
by vi1 , . . . , v̂ip , . . . , vik

. Then dk is (−1)p times the canonical surjection
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Z[τ] → Z[γ]. This defines a complex resolving the Stanley-Reisner
ring.

Lemma 3.3. We have an exact sequence of Z[X]/I-modules

C• : 0→ Z[X]/I → Cn
dn
−→ Cn−1

dn−1
−−−→ · · ·

d1
−→ C0 → 0.

Proof. Consider Z[X] as a multigraded ring, graded by Nd , so
it decomposes into a direct sum with one graded piece for each
monomial Xm1

1 · · ·X
md

d
. The map dk is a homomorphism of graded

modules over Z[X], so we may analyze the complex C• by graded
pieces.

Fix a monomial Xm1
1 · · ·X

md

d
. Every term of C• vanishes unless

the set of vi with mi > 0 spans a cone γ in Σ. In this case, each Ck

contributes one copy of Z for each τ that contains γ. The resulting
complex is the one computing the reduced homology of a simplicial
spehere in N/Nγ, so it is exact. �

The compositionΛ→ Λ[X] → Z[X]/I takes u ∈ M to
∑
〈u , vi〉Xi .

With this Λ-module structure, it follows that the complex C• is an
exact sequence of Λ-modules.

Proposition 3.4. The Stanley-Reisner ring Z[X]/I � Λ[X]/(I′ + J′)

is free over Λ, of rank s � #(maximal cones).

Proof. Given a k-dimensional cone τ with primitive generators
vi1 , . . . , vik

, choose any vectors zk+1, . . . , zn to complete a basis of N .
Let u1, . . . , un be the dual basis of M. Then Z[τ] � Λ/(uk+1 , . . . , un)

as Λ-modules, so the projective dimension of Ck is pd
Λ

Ck � n − k.
By induction, it follows that

pd
Λ
(ker(Ck → Ck−1)) ≤ n − k ,

and in particular, pd
Λ
Z[X]/I � 0. So Z[X]/I is a projective Λ-

module, and by the (easy) graded version of the Quillen-Suslin the-
orem, Z[X]/I is free.

Finally, consider the beginning of the complex C•:

0→ Z[X]/I → Cn → Cn−1.
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We know Cn is free over Λ on s generator, since Z[σ] � Λ for n-
dimensional cones, and Cn−1 is a torsion Λ-module. It follows that
Z[X]/I is a free Λ-module of rank s. �

Now we complete the proof of the theorem.

Proof of Theorem 3.1. Consider the diagram

0 Z[X]/I Cn Cn−1

H∗
T

X H∗
T

XT ,

dn

ϕ

ι∗

where ϕ maps Z[σ] isomorphically to H∗
T
(pσ), as follows. For each

such maximal cone σ, suppose vi1 , . . . , vin are the primitive vectors
spanning σ, and let u1(σ), . . . , un(σ) be the dual basis for M. Using
Z[σ] � Z[Xi1 , . . . ,Xin ], the map ϕ is given by the isomorphisms

Z[Xi1 , . . . ,Xin ] → Λ

sending Xi j 7→ u j(σ).
The left vertical arrow is the composition

Z[X]/I → Λ[X]/(I′ + J′) → H∗TX,

taking Xi to [Di]
T for each i. We identify this with the homomor-

phism (∗T).
The diagram commutes, because the restriction H∗

T
X → H∗

T
(pσ)

factors through H∗TUσ, and Uσ � C
n with T acting by weights

u1(σ), . . . , un(σ). For any 1 ≤ i ≤ d, if vi ∈ σ, say i � i j , then
[Di]

T restricts to u j(σ). (Indeed, Di ∩ Uσ is defined by the equation
{eu j (σ) � 0}, so its equivariant class restricts to cT

1 (Cu j (σ)) � u j(σ).) On
the other hand, if vi < σ, then Di ∩Uσ � ∅, so [Di]

T 7→ 0 in H∗
T
(pσ).

Since Z[X]/I → Cn is injective, and ϕ is an isomorphism, it
follows that the left vertical arrow is injective. Identifying this map
with (∗T), we have already seen that it is surjective. We conclude that
Z[X]/I � Λ[X]/(I′ + J′) � H∗

T
X.

Using Z � Λ/MΛ, we have

(Λ[X]/(I′ + J′)) ⊗Λ Z � Z[X]/(I + J),
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and similarly H∗TX ⊗ΛZ
∼
−→ H∗X, so the non-equivariant presentation

(∗) follows. �

The complex C• leads quickly to combinatorial results in convex
geometry. For 0 ≤ i ≤ n, let ai be the number of cones of dimension
i in Σ. (So a0 � 1 and an � s.) Considering the Stanley-Reisner ring
as a usual (singly) graded ring, its Hilbert series is defined as

H(Z[X]/I , t) �
∞∑

m�0

rkZ(Z[X]/I)m tm .

Using additivity of Hilbert series with respect to exact sequences,
together with the fact that Z[τ] is a polynomial ring on k variables
whenever dim τ � k, we obtain the following formula.

Corollary 3.5. We have

H(Z[X]/I , t) �
n∑

i�0

(−1)n−i ai

(1 − t)i
�

P(t)

(1 − t)n
.

where p(t) � an − (1 − t)an−1 + (1 − t)2an−2 − · · · + (−1)n(1 − t)n a0.

The ideal J ⊂ Z[X] is generated by elements of degree 1, which
form a regular sequence in Z[X]/I. It follows that P(t) is the Hilbert
series of Z[X]/(I + J).

Corollary 3.6. We have

p(t) �

n∑
i�0

(−1)i(1 − t)i an−i

�

∞∑
m�0

rkZ(Z[X]/(I + J))m tm

�

2n∑
m�0

rkZ(H2mX) tm .

Since HoddX � 0, one obtains the Poincaré polynomial of X by
substituting t � q2 in p. In particular, setting q � −1, so t � 1, the
Euler characteristic of X is an , the number of n-dimensional cones,
as we have already seen.
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Poincaré duality for the complete nonsingular variety X implies

tn p(t−1) � p(t),

and this encodes nontrivial relations among the numbers ai . The
classical case is when X is projective, and Σ is the normal fan to a
simple polytope P. We have

ai � fn−i :� #(i-dimensional faces of P).

The h-numbers of P are defined by writing p(t) �
∑

hk tk , so

hk �

n∑
i�k

(−1)i−k

(
i

k

)
fn−i−1,

where f−1 � 1 by convention. The identities hk � hn−k express the
Dehn-Sommerville relations for P.

4. Other presentations

Using an alternative description of Z[X]/I and the localization
theorems of Chapter 7, one can give another proof of Theorem 3.1.
For any cone τ ⊂ NR, one has the sublattice Nτ ⊆ N spanned by
τ, with corresponding quotient lattice M ։ Mτ. For γ ⊆ τ, there
is a corresponding projection Mτ ։ Mγ. We will write f 7→ f |γ
for the corresponding map Sym∗Mτ → Sym∗Mγ. For any rational
polyhedral fan Σ in N , the ring of piecewise polynomial functions with
respect to Σ is

PP∗(Σ) �
{
( fτ)τ∈Σ

�� fτ ∈ Sym∗ZMτ , and fτ |γ � fγ for all γ ⊆ τ
}
.

When Σ is a complete fan, PP∗(Σ) is the ring of continuous functions
on NR which are given by polynomials in Λ � Sym∗M on each
maximal cone σ. The following exercise idenitifies this ring with
H∗TX(Σ).

Exercise 4.1. If Σ is a nonsingular complete fan, show that there
are canonical isomorphisms

Z[X]/I � PP∗(Σ)

�
{
( fσ)dim σ�n

�� fσ |τ � fσ′ |τ if τ is a facet of σ and σ′
}
.
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By computing the characters on the T-invariant curves V(τ), identify
this ring with the subring of

H∗TXT
�

⊕
dim σ�n

Λ

defined by the GKM conditions. Using Chapter 7, Corollary 4.3,
conclude that Z[X]/I � PP∗(Σ) � H∗

T
X.1

For example, the piecewise polynomial function shown in Figure 2
represents the equivariant top Chern class cT

2 (TP
2) ∈ H∗

T
P2.

u1u2

−u1u2 + u2
2

u2
1 − u1u2

Figure 2. A piecewise polynomial function

There is a dual description of H∗
T

X. For each v ∈ N , we will write
yv ∈ Z[N] for the corresponding element of the group ring; these
form a Z-basis for Z[N], with multiplication given by yv · yv′

� yv+v′.
(The element yv may be regarded as a function on M; note that the
above descriptions of H∗

T
X involved functions on N .) For any rational

polyhedral fan Σ, the deformed group ring Z[N]Σ has the same basis
yv, but multiplication is deformed so that

yv · yv′
�

{
yv+v′ if v , v′ ∈ σ for some cone σ ∈ Σ;

0 otherwise.

Exercise 4.2. If Σ is a nonsingular complete fan, show that there
is an isomorphism

Z[X]/I � Z[N]Σ,

and conclude that H∗
T

X � Z[N]Σ.
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Notes

We use [Ful93] as a general reference for basic facts about toric varieties;
see also the more recent book by Cox, Little, and Schenck, which contains a
short discussion of equivariant cohomology [CLS11].

The results of this chapter generally hold for simplicial fans, where each
k-dimensional cone is spanned by k vectors, if one uses Q coefficients in
place of Z coefficients. The corresponding toric varieties X(Σ) are orbifolds.

The Stanley-Reisner ring was studied by Stanley, Reisner, Hochster, and
others in the 1970s. These authors usually consider simplicial complexes in
general, rather than only nonsingular fans. Stanley applied Hilbert series to
the combinatorics of polytopes and simplicial complexes, obtaining much
finer results than the ones presented here. His book provides a fuller
account of this story [Sta96].

The presentation (∗) for H∗X was proved by Jurkiewicz in the projective
case, and by Danilov in general [Ju80, Da78]. The isomorphism (∗) between
the Stanley-Reisner ring and H∗TX is due to Bifet, De Concini, and Procesi,
and holds for any nonsingular (but possibly not complete) toric variety
[BDP90].

The complex C• is related to the Bredon sequence for equivariant co-
homology (see the notes to Chapter 7). The arguments we give are similar
to those of Danilov, who cites Kushnirenko [Da78, §3]. For general toric
varieties, a version of this complex was studied by Schenck [Sche12].

For a nonsingular toric variety X, Brion realized of H∗
T

X as an algebra
of piecewise polynomial functions [Bri97a] (see also [BriVer97a]). For a
general fan Σ, Payne showed that the ring PP∗(Σ) is isomorphic to the
(operational) equivariant Chow cohomology A∗TX(Σ) [Pa06].

Using rational coefficients, the deformed group ring Q[N]Σ was intro-
duced by Borisov, Chen, and Smith, who computed orbifold cohomology of
toric Deligne-Mumford stacks [BCS04]. A different perspective on the iso-
morphism H∗TX(Σ) � Z[N]Σ, using the arc space of a toric variety, appears
in [AnSt13].

Hints for exercises

1Suppose u � 0 defines the common facet τ � σ ∩ σ′. Then V(τ) has character
u, and the relation fσ |τ � fσ′ |τ is the same as requiring that u divide the difference
fσ − fσ′ .



CHAPTER 9

Schubert calculus on Grassmannians

In Chapter 4, we computed H∗
G

Gr(d ,V) in terms of Schur poly-
nomials, using the tautological bundles on Gr(d ,V). Here we will
study the geometry of this space in more detail. Our main focus is
on Schubert varieties, especially ways of describing and multiplying
their classes in equivariant cohomology.

1. Schubert cells and Schubert varieties

As in Chapter 4, we fix d + e � n, and consider the Grassmannian
Gr(d ,V) � Gr(V, e). Now we also fix a flag

E• : E1 ⊂ E2 ⊂ · · · ⊂ En � V,

with dim Eq � q. Often we will write Eq
� En−q , so subscripts

indicate dimension, and superscripts indicate codimension in V .
Given a partition λ � (e ≥ λ1 ≥ · · · ≥ λd ≥ 0), the Schubert cell

Ω
◦
λ
� Ω

◦
λ
(E•) is the set of subspaces F ⊂ V satisfying the conditions

dim(F ∩ Eq) � k for q ∈ [e + k − λk , e + k − λk+1], k � 0, . . . , d.

Equivalently, given a subset I � {i1 < · · · < id} ⊂ {1, . . . , n}, this is
the same as defining

Ω
◦
I �

{
F
�� dim(F ∩ Eq−1) � d − k for q ∈ (ik , ik+1], k � 0, . . . , d

}
.

(By convention, we set λ0 � e, λd+1 � 0, i0 � 0, id+1 � n + 1.) The
equivalence is by ik � k + λd+1−k. The bĳection between partitions λ
inside the d × e rectangle and d-element subsets I ⊆ {1, . . . , n} can
be seen graphically by recording the vertical steps when walking SW
to NE along the border of λ, as shown in Figure 1.

Let us choose a standard basis e1, . . . , en so that the fixed subspace
Eq is the span of eq+1, . . . , en. The Borel subgroup B− ⊆ GL(V)

133
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d � 4, e � 5, n � 9
λ � (5, 3, 1, 1)
I � {2, 3, 6, 9}

Figure 1. Partitions and k-subsets of {1, . . . , n}

preserving the flag E• gets identified with lower-triangular matrices.
For each partition λ (or subset I), there is a point pλ � pI ∈ Gr(d ,V),
corresponding to the subspace EI ⊆ V spanned by standard basis

vectors {ei | i ∈ I}. The cell Ω◦
λ

can then be described as the B−-orbit
of this point, so

Ω
◦
λ � B− · pλ .

A simple exercise in Gaussian elimination shows that points in Ω◦
λ

are uniquely represented as column spans of matrices in “column
echelon form” as

Ω
◦
λ � Ω

◦
I �



0 0 0 0
1 0 0 0
0 1 0 0
∗ ∗ 0 0
∗ ∗ 0 0
0 0 1 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 1



,

with the pivots appearing in rows I. This shows that Ω◦
λ

is an affine
space of codimension |λ | in Gr(d ,V), that is, Ω◦

λ
� Cde−|λ | . It also

shows that the Schubert cells decompose Gr(d ,V), that is,

Gr(d ,V) �
∐
λ

Ω
◦
λ , union over λ ⊆ d

e

.

The Schubert varieties are

Ωλ � Ωλ(E•) � Ω
◦
λ
⊆ Gr(d ,V).
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They can be described by replacing equalities by inequalities in the
dimension conditions:

Ωλ �

{
F
�� dim(F ∩ Ee+k−λk

) ≥ k for k � 1, . . . , d
}
.

(This is not difficult to see, but it is not obvious either!) It follows that
each Schubert variety decomposes into Schubert cells:

Ωλ �

∐
µ⊇λ

Ω
◦
µ ,

the union over partitions µ in the d × e rectangle which contain λ.
As with Schubert cells, we will often write ΩI � Ωλ, when I is the
d-element subset corresponding to the partition λ.

Not all the inequalities are needed to define a Schubert variety:

Exercise 1.1. Show that the inequalities in the above definition of
Ωλ are equivalent to

Ωλ �

{
F
�� dim(F ∩ Ee+k−λk

) ≥ k for k such that λk > λk+1

}
.

That is, the conditions coming from corners of the Young diagram
suffice to defineΩλ.

For example, if λ � (p , . . . , p , 0, . . . , 0), with p occurring q times
(so the Young diagram is a q× p rectangle), thenΩλ is defined by the
single condition dim(F ∩ Ee+q−p) ≥ q.

2. Schubert classes and the Kempf-Laksov formula

The Schubert varietiesΩλ(E•) are evidently B−-invariant subvari-
eties, and the Schubert cell decomposition implies their classes form
a basis for cohomology.

Proposition 2.1. The classes [Ωλ]B
−

form a basis for H∗B−Gr(d ,V)

over Λ � ΛB− .

Proof. Let Xi ⊆ Gr(d ,V) be the union of allΩλ with |λ | � de − i,
i.e., all Schubert varieties of dimension i. Then Xi r Xi−1 is the
disjoint union of Schubert cells Ω◦

λ
of dimension i, so the statement

follows from the equivariant cell decomposition lemma (Chapter 4,
Proposition 7.1). �
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In Chapter 4, we saw a presentation

H∗B−Gr(d ,V) � ΛB−[c1, . . . , ce]/(sd+1, . . . , sn),

with ck � cB−

k
(Q) and sk � cB−

k
(V − Q). Now that we have a basis of

Schubert classes, a question naturally arises: How does one express
[Ωλ]

B− in terms of the presentation, i.e., as polynomials in the Chern
classes cB−

k
(Q)?

To give such a formula for [Ωλ]B
−
, we introduce some nota-

tion. Given a partition λ � (λ1 ≥ · · · ≥ λd ≥ 0) and elements
c(1), c(2), . . . , c(d), where c(i) is a graded series 1+ c1(i)+ c2(i)+ · · · ,
the multi-Schur determinant is

∆λ(c) � ∆λ(c(1), . . . , c(d)) :� det
(
cλi+ j−i(i)

)
1≤i, j≤d

�

���������

cλ1(1) cλ1+1(1) · · ·
cλ2−1(2) cλ2(2) · · ·

...
. . .

cλd
(d)

���������
.

(To remember this formula, write cλi (i) down the diagonal, and make
the subscripts increase by 1 across rows.) One may truncate zeroes in
λ without changing the determinant ∆λ(c). The Schur determinant
considered in Chapter 4 is the case where c � c(1) � · · · � c(d).

Our first formula for equivariant Schubert classes was proved by
Kempf and Laksov in the context of degeneracy loci. Special cases
were found much earlier by Giambelli.

Theorem 2.2 (Kempf-Laksov). For λ in the d × e rectangle, we have

[Ωλ]
B−

� ∆λ(c(1), . . . , c(d)),

where c(i) � cB−(Q − Ee+i−λi ).

The entries c(i) of the Schur determinant may be replaced by
c′(i) � · · · � c′(k) � cB−(Q − Ee+k−λk

) if λi � · · · � λk > λk+1. This
follows from an easy property of multi-Schur determinants. Suppose
c(i − 1) � c(i) · (1 + a), for some element a of degree 1. If λi−1 � λi,
then

∆λ(. . . , c(i − 1), c(i), . . .) � ∆λ(. . . , c(i), c(i), . . .).
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(The left-hand side comes by adding a times the ith row to the (i−1)st
row of the matrix on the right-hand side, and this operation leaves
the determinant unchanged.)

One can prove the Kempf-Laksov formula by finding a desingu-
larization of the locus Ωλ and computing pushforwards; this was
Kempf and Laksov’s approach. In §4, we will give a different proof
in T-equivariant cohomology (which is the same as B−-equivariant
cohomology) via combinatorics of symmetric functions. In the next
section, we establish some localization formulas which we will need.

Example 2.3. The formula says

[Ω (E•)]
B−

� cB−

1 (Q − Ee).

This is easy to see directly, since

Ω (E•) �
{
F
�� dim(Ee ∩ F) ≥ 1

}
�

{
F
�� rk(Ee → Q) < e

}
�

{
F
�� ∧e Ee →

∧e Q is 0
}
,

so its cohomology class is the first Chern class of the line bundle
Hom(

∧e Ee ,
∧e Q), which is equal to cB−

1 (Q − Ee). (We saw this for
Gr(2,C4) in Example 2.7 of Chapter 5.)

Example 2.4. Other instances of the Kempf-Laksov formula are

[Ω (E•)]
B−

�

���� cB−

2 (Q − Ee−1) cB−

3 (Q − Ee−1)

1 cB−

1 (Q − Ee+1)

����
� c2(1) c1(2) − c3(1)

and

[Ω (E•)]
B−

�

���� cB−

1 (Q − Ee) cB−

2 (Q − Ee)

1 cB−

1 (Q − Ee+1)

����
� c1(1) c1(2) − c2(1),
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or alternatively,

[Ω (E•)]
B−

�

���� cB−

1 (Q − Ee+1) cB−

2 (Q − Ee+1)

1 cB−

1 (Q − Ee+1)

����
� c1(2) c1(2) − c2(2).

3. Tangent spaces and normal spaces

In the rest of this chapter, we study the equivariant geometry
of Gr(d ,Cn) with respect to an action of a torus T by characters
χ1, . . . , χn . Let e1, . . . , en be a weight basis, so z · ei � χ(z) ei for all z ∈

T. As we have seen before (Chapter 5, Example 1.10), Gr(d ,Cn)has an
open cover by T-invariant open sets, one for each I � {i1 < · · · < id} ⊂

{1, . . . , n}.



∗ ∗ ∗ ∗

1 0 0 0
0 1 0 0
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 1 0
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 0 1



In matrix form, these open sets are represented by
n×d matrices so that the submatrix on rows I is the
identity matrix, and the remaining entries are free.
For example, if d � 4, n � 9, and I � {2, 3, 6, 9},
the corresponding open set is shown at left. This
illustrates a natural identification with the de-
dimensional affine space E∨

I
⊗ E{1,...,n}rI , where T

acts by the characters χ j − χi for i ∈ I and j < I.
There is an equivariant isomorphism between this
open affine and the tangent space TpI Gr(d ,Cn),
identifying pI with the origin 0 ∈ TpI Gr(d ,Cn). If

all characters χ1, . . . , χn are distinct, then all characters on each tan-
gent space TpI Gr(d ,Cn) are nonzero, and the fixed locus consists of
the finitely many points pI .

Comparing this with our description of the Schubert cell Ω◦
I
, we

see that the weights of T on TpIΩI are {χ j − χi | i ∈ I , j < I , i < j}. It
follows that the weights of T on the normal space NI to ΩI at pI are
{χ j − χi | i ∈ I , i < I , i > j}. From the self-intersection formula, this
means

(∗) [ΩI]
T |pI � cT

top(NI) �
∏

i∈I , j<I

i> j

(χ j − χi).
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From the cell decomposition, we know

Ωµ ⊆ Ωλ iff µ ⊇ λ (as diagrams)

iff J ≥ I (i.e., jk ≥ ik for all k),

where I is the subset corresponding to the partition λ, and J is the
one corresponding to µ. This means that pµ � p J lies in Ωλ � ΩI iff
µ ⊇ λ iff J ≥ I, so

(∗∗) [ΩI]
T |p J � 0 unless J ≥ I .

Now let us assume the characters χi are all distinct, so the fixed
points are isolated. It turns out that the two conditions (∗) and (∗∗)
uniquely determine the class [ΩI]

T .

Lemma 3.1. If a homogeneous element α ∈ H∗
T

Gr(d ,Cn) satisfies (∗)
and (∗∗), then α � [ΩI]

T .

Proof. We have seen that [ΩI]
T satisfies the conditions, so it is

enough to show that if two classes α and α′ satisfy (∗) and (∗∗), then
they must be the same. Equivalently, we will show that β � α − α′ is
zero.

We know β |p J � 0 unless J ≥ I by (∗∗). Let K ≥ I be a minimal
element such that β |pK , 0. It must be that K > I, since α |pI � α′ |pI

by (∗). The “GKM” divisibility conditions (Chapter 7, Corollary 4.3)
force β |pK to be a multiple of∏

i∈K, j<K

i> j

(χ j − χi),

which is equal to [ΩK]
T |pK . So β |pK has degree at least |ν |, where ν

is the partition corresponding to K. Since K > I, we have |ν | > |λ |,
contradicting the homogeneity of the classes α and α′. �

The conditions (∗) and (∗∗) can be regarded as an interpolation
problem; the lemma says this problem has a unique solution. We will
next tie this to symmetric functions, making it an explicit problem of
polynomial interpolation.
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4. Double Schur polynomials

We consider functions of two sets of variables, x � (x1, x2, . . . , xd)

and y � (y1, y2, . . .). (One can extend the y variables to be doubly
infinite, allowing non-positive indices, but in practice only finitely
many appear.) We define the “double monomial”

(xi |y)
p
� (xi − y1)(xi − y2) · · · (xi − yp).

There are several equivalent definitions of double Schur functions
sλ(x |y), generalizing corresponding definitions of the single Schur
polynomials, which are recovered by setting y � 0.

Bialternants. Generalizing Cauchy’s functions, we set

sλ(x |y) �

��(xi |y)
λ j+d− j

��
1≤i, j≤d��(xi |y)d− j

��
1≤i, j≤d

,

where both determinants are d × d. The numerator is an alternating
function of x, and a pleasant exercise shows that the denominator is
the Vandermonde��(xi |y)

d− j
�� � ���xd− j

i

��� � ∏
i< j

(xi − x j),

so the ratio is a polynomial.

Tableaux. There is a formula in terms of semistandard Young tableaux:

sλ(x |y) �
∑

T∈SSYT(λ)

∏
(i, j)∈λ

(xT (i, j) − yT (i, j)+ j−i ),

the sum over SSYT tableaux T of shape λ with entries in {1, . . . , d}.
For example, if d � 3, there are 8 semistandard Young tableaux of

shape λ � ,

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3 ,



Chapter 9. Schubert calculus on Grassmannians 141

so the double Schur function is

sλ(x |y) � (x1 − y1)(x1 − y2)(x2 − y1) + (x1 − y1)(x1 − y2)(x3 − y2)

+ (x1 − y1)(x2 − y3)(x2 − y1) + (x1 − y1)(x2 − y3)(x3 − y2)

+ (x1 − y1)(x3 − y4)(x2 − y1) + (x1 − y1)(x3 − y4)(x3 − y2)

+ (x2 − y2)(x2 − y3)(x3 − y2) + (x2 − y2)(x3 − y4)(x3 − y2).

Jacobi-Trudi. The Jacobi-Trudi determinantal formula generalizes to

sλ(x |y) �
��hλi+ j−i(x |τ

1− j y)
��
1≤i, j≤d

,

where

hp(x |y) � s(p)(x |y) �
∑

1≤i1≤···≤ip≤d

(xi1−yi1)(xi2−yi2+1) · · · (xip−yip+p−1),

and τ is the shift operator defined by (τ j y)i � yi+ j .

The main fact we need is a vanishing theorem for double Schur
functions. Let yλ

k
� yλd+1−k+k ; or in terms of the corresponding subset

I, yI
k
� yik

.

Lemma 4.1. We have

sλ(y
λ |y) �

∏
i∈I , j<I

i> j

(y j − yi),

where I ⊆ {1, . . . , n} is the subset corresponding to λ, and

sλ(y
µ |y) � 0 if µ + λ.

Exercise 4.2. Prove Lemma 4.1.1

After appropriately identifying the variables, the lemma says that
double Schur functions satisfy conditions (∗) and (∗∗) from §3—that
is, the same interpolation problem solved uniquely by [Ωλ]T ! To
make this precise, let x1, . . . , xd be (equivariant) Chern roots of the
dual tautological bundle S∨ on Gr(d ,Cn), so

cT
k (S
∨) � ek(x1, . . . , xd)
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Then, specializing the y variables by yi � −χi ,

cT
k
(S∨)|pλ � cT

k
(E∨I ) � ek(y

λ
1 , . . . , yλ

d
).

In other words, there is a commuting diagram

cT
k
(S∨) H∗

T
Gr(d ,Cn)

ck Λ[c1, . . . , cd] Λ

ek(x) Λ[x1, . . . , xd].

ι∗pλ

xk 7→ yλ
k

The polynomials sλ(x |y) are symmetric in the x variables, so they lie
in Λ[c1, . . . , cd]. They satisfy (∗) and (∗∗) by Lemma 4.1, so it follows
from Lemma 3.1 that sλ(x |y) 7→ [Ωλ]

T .
Invoking the Jacobi-Trudi formula, we obtain:

Corollary 4.3. Evaluating x1, . . . , xd as equivariant Chern roots of
S∗, and yi � −χi , we have

[Ωλ]
T
� sλ(x |y)

�

��hλi+ j−i(x |τ
1− j y)

��
1≤i, j≤d

.

This proves the Kempf-Laksov formula (Theorem 2.2), once one
knows the entries of the matrices are identical.

Exercise 4.4. With the specializations as in Corollary 4.3, show
that cT

λi+ j−i
(Q − Ee+i−λi ) � hλi+ j−i(x |τ1− j y).2

5. Poincaré duality

We have seen one basis for H∗TGr(d ,Cn), the Schubert classes
σλ � [Ωλ]

T . Our next goal is to describe the Poincaré dual basis. Let
Ẽ• be the opposite flag to E•, so if Ek is spanned by en+1−k , . . . , en, then
Ẽk is spanned by e1, . . . , ek . The flag Ẽ• is fixed by the Borel group B,
which in this basis is the set of upper-triangular matrices in GLn .
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The opposite Schubert cells and varieties are defined as before, but
with respect to the flag Ẽ•:

Ω̃
◦
λ :� Ω◦λ(Ẽ•) and Ω̃λ :� Ωλ(Ẽ•).

These are B-invariant, so also T-invariant. To identify the T-fixed
points contained in Ω̃λ, it will help to introduce some more notation.
Let λ∨ be the complement to λ in the d × e rectangle, also called the
dual partition. In formulas, this is λ∨

k
� e−λd+1−k. Let I∨ ⊆ {1, . . . , n}

be the corresponding d-element subset, so I∨ � {i∨1 < · · · < i∨
d
},

with i∨
k
� n + 1 − id+1−k. This can be seen by reading the border of

λ ⊆ d

e

in the opposite direction, from NE to SW, as illustrated
below.

λ � (5, 3, 1, 1)

I � {2, 3, 6, 9}

λ∨ � (4, 4, 2, 0)

I∨ � {1, 4, 7, 8}

Exercise 5.1. Verify that pI � pλ is the unique T-fixed point in
Ω̃
◦
I∨

� Ω̃
◦
λ∨

, so Ω̃◦
λ∨

� B · pλ.

For example, with d � 4, n � 9, and I � {2, 3, 6, 9}, we have

Ω
◦
I �



0 0 0 0
1 0 0 0
0 1 0 0
∗ ∗ 0 0
∗ ∗ 0 0
0 0 1 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 1



and Ω̃
◦
I∨ �



∗ ∗ ∗ ∗

1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗
0 0 1 0
0 0 0 ∗
0 0 0 ∗
0 0 0 1



,

both inside the T-invariant affine neighborhood of pI . The pivot 1’s
in Ω̃◦

I∨
are in the rows indicated by I∨, but read from bottom to top.

So
codimΩλ � dim Ω̃λ∨ � |λ |,
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while
dimΩλ � codim Ω̃λ∨ � |λ∨ |.

The correspondence λ↔ λ∨ reverses inclusions. Since the oppo-
site Schubert variety decomposes as Ω̃λ �

∐
µ⊇λ Ω̃

◦
µ and pµ∨ ∈ Ω̃

◦
µ,

we see
pµ ∈ Ω̃λ iff µ∨ ⊇ λ iff µ ⊆ λ∨.

Proposition 5.2. Let σλ � [Ωλ]
T and σ̃λ � [Ω̃λ]

T . Then {σ̃λ∨} is the
Poincaré dual basis to {σλ}.

Proof. We must show

ρ∗(σλ · σ̃µ) �

{
1 if µ � λ∨;

0 otherwise.

When µ � λ∨, the varieties Ωλ and Ω̃λ∨ meet transversally in the
single point pλ. In general, the above analysis of fixed points shows
that

(Ωλ ∩ Ω̃µ)
T
�

{
pν | µ

∨ ⊇ ν ⊇ λ
}
.

The fact that Ωλ ∩ Ω̃λ∨ is transverse is apparent from a computation
of tangent spaces—say, by using matrix descriptions of Ω◦

I
and Ω̃◦

I∨
.

One sees as before that TpλΩ̃λ∨ has weights {χ j−χi | i ∈ I , j < I , i > j},
so that

TpλGr(d ,Cn) � TpλΩλ ⊕ TpλΩ̃λ∨ .

This shows ρ∗(σλ · σ̃λ∨) � 1.
If µ , λ∨, there are two possibilities to consider. First, suppose

µ * λ∨, so µ∨ + λ. Then (Ωλ∩Ω̃µ)T � ∅, so the intersection is empty.
(Any nonempty projective variety has a T-fixed point, by Borel’s fixed
point theorem.) So ρ∗(σλ · σ̃µ) � 0 in this case.

On the other hand, suppose µ ( λ∨, so µ∨ ) λ. Then |µ∨ | − |λ | >
0. But this means de − |µ| − |λ | > 0, that is, |µ| + |λ | − de < 0. Since

ρ∗(σλ · σ̃µ) ∈ Λ
2(|µ|+|λ |−de)

T
� 0, we are done. �

We obtain a formula for the class of an opposite Schubert variety
by replacing E• by Ẽ• in the Kempf-Laksov formula.
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Theorem 5.3. In H∗
T

Gr(d ,Cn), we have

[Ω̃λ]
T
� ∆λ (̃c(1), . . . , c̃(s))

� sλ(x | ỹ),

where c̃(k) � cT(Q − Ẽe+k−λk
), x1, . . . , xd are equivariant Chern roots of

S∨, and ỹk � yn+1−k � −χn+1−k .

6. Multiplication

A major goal of equivariant Schubert calculus is to describe the
coefficients cν

λµ
appearing in the expansion

σλ · σµ �

∑
ν

cνλµ σν ,

in H∗
T

Gr(d ,Cn). The same problem can be posed for other flag va-
rieties, but Grassmannians are one of the very few cases where a
complete and satisfying answer is known.

We will prove some basic facts about these coefficients, assuming
throughout that the characters χ1, . . . , χn are distinct. (The general
case can be obtained from this one, by specializing the χi ’s.) Evi-
dently, cν

λµ
is a homogeneous polynomial of degree |λ | + |µ| − |ν |.

Lemma 6.1. The coefficients cν
λµ

satisfy the following properties:

(i) cν
λµ

� 0 unless λ ⊆ ν and µ ⊆ ν.

(ii) c
µ

λµ
� σλ |µ � [Ωλ]

T |pµ .

(iii) cλ
λλ

�

∏
i∈I , j<I

i> j

(χ j − χi).

Proof. For (i), the cell decomposition lemma shows that restric-
tions of classes σα for α + λ form a basis for H∗(X r Ωλ), because
these are classes of the Schubert varieties Ωα not contained in Ωλ.
The class σλ maps to 0 under H∗

T
X → H∗

T
(XrΩλ)—as one can see by

using the long exact sequence of Borel-Moore homology—so σλ · σµ
also maps to 0, for any µ. It follows that σλ · σµ �

∑
ν cν

λµ
σν involves
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only those ν such that ν ⊇ λ. By symmetry, one concludes that ν ⊇ µ,
as well.

For (ii), we restrict the equation defining cν
λµ

to pµ, obtaining

σλ |µ · σµ |µ �

∑
ν

cνλµ σν |µ .

We know σν |µ � 0 unless pµ ∈ Ων , that is, µ ⊇ ν; but by (i), we
also know cν

λµ
� 0 unless µ ⊆ ν. The only term surviving on the

right-hand side is ν � µ, so we find σλ |µ · σµ |µ � c
µ

λµ
σµ |µ. We found

the formula for σµ |µ in §3, and this is not a zerodivisor since all χi are
distinct. Canceling these factors gives the claimed formula for c

µ

λµ
.

Formula (iii) follows from (ii), using the formula for σλ |λ. �

The Chevalley-Pieri formula gives a rule for multiplication by a
divisor class σ . The classical (non-equivariant) version says that in
H∗X,

σ · σλ �

∑
λ+

σλ+ ,

the sum over all partitions λ+ obtained from λ by adding one box.
For example, in H∗Gr(3,C7)we have

σ · σ(3,2) � σ(4,2) + σ(3,3) + σ(3,2,1) .

We will prove a very general version of this formula in Chapter 19.
The reader may enjoy proving the corresponding formula for mul-
tiplying a Schur polynomial by h1 � x1 + x2 + · · · + xd. (As usual,
references are in the Notes.)

To state the equivariant version precisely, we need another for-
mula:

σ |λ �

∑
j<I

χ j −

n∑
i�d+1

χi

�

d∑
j�1

χ j −
∑
i∈I

χi .
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This follows from σ � cT
1 (Q − Ee), using cT

1 (Q)|pλ �

∑
j<I χ j . The

second line makes it clear that the formula is independent of n. Note
that σ |λ , σ |µ if λ , µ.

Theorem 6.2 (Equivariant Chevalley-Pieri). In H∗
T

X, we have

σ · σλ �

∑
λ+

σλ+ +
©«

d∑
j�1

χ j −
∑
i∈I

χi
ª®¬
σλ ,

the sum over λ+ obtained from λ by adding one box.

Proof. The sum is from the nonequivariant case; the equivariant
coefficients must agree by degree. The other term has coefficient
cλ

λ
� σ |λ by Lemma 6.1(iii). No other terms appear, since cν

λ
is

nonzero only for |ν | ≤ |λ | + 1 and ν ⊇ λ, by Lemma 6.1(i). �

Remarkably, the equivariant Chevalley rule determines all struc-
ture constants cν

λµ
for H∗TGr(d ,Cn), and hence also for H∗Gr(d ,Cn).

This is far from true of the non-equivariant rule: H∗Gr(d ,Cn) is not
generated by the divisor class. A general reason for this phenomenon
was given in Chapter 7, §1. Here we will see an algorithmic proof.

First, we need some more formulas.

Lemma 6.3. We have

(σ |λ − σ |µ) c
λ
λµ �

∑
µ+

cλλµ+ ,(i)

the sum over µ+ obtained by adding one box to µ, and

(σ |ν − σ |λ) c
ν
λµ �

∑
λ+

cνλ+µ −
∑
ν−

cν
−

λµ ,(ii)

the sums over λ+ obtained by adding one box to λ, and ν− obtained by
removing one box from ν.

Proof. For (i), using the formula cλ
µλ

� σµ |λ together with com-
mutativity, the left-hand side is (σ |λ − σ |µ)σµ |λ, while the right-
hand side is

∑
σµ+ |λ. So (i) results from restricting the equivariant

Chevalley-Pieri formula to pλ.
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For (ii), we will use associativity. By Chevalley-Pieri,

σ · (σλ · σµ) �
∑
ν

cνλµσ · σν

�

∑
ν+

cνλµσν+ +
∑
ν

cνλµ(σ |ν)σν ,

and

(σ · σλ) · σµ �

∑
λ+

σλ+ · σµ + (σ |λ)σλ · σµ

�

∑
λ+

∑
ν

cνλ+µσν + (σ |λ)
∑
ν

cνλµσν .

One obtains (ii) by equating coefficients of σν . �

Theorem 6.4 (Molev-Sagan). The polynomials cν
λµ

in Λ2(|λ |+|µ|−|ν |)

satisfy and are determined by the following properties:

cλλλ � σλ |λ �

∏
i∈I , j<I

i> j

(χ j − χi),(i)

(σ |λ − σ |µ) c
λ
λµ �

∑
µ+

cλλµ+ ,(ii)

and

(σ |ν − σ |λ) c
ν
λµ �

∑
λ+

cνλ+µ −
∑
ν−

cν
−

λµ .(iii)

Proof. We have seen that (i)–(iii) hold. To prove that they uniquely
characterize the coefficients cν

λµ
, we proceed by induction. Suppose

dν
λµ

are any polynomials satisfying (i)–(iii). We know dλ
λλ

� cλ
λλ

,
since this is the explicit formula (i).

Next, dλ
λµ

� σµ |λ � cλ
λµ

, by induction on |λ | − |µ|: the base case
is where λ � µ, and is done by (i); for λ ) µ, use formula (ii) and
induction. (On the left-hand side of (ii), the factor (σ |λ − σ |µ)
is nonzero for λ , µ. Terms on the right-hand side of (ii) have
|λ | − |µ+ | < |λ | − |µ|.)
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Finally, use (iii) and induction on |ν | − |λ | to get dν
λµ

� cν
λµ

. All
terms on the right-hand side of (iii) have |ν | − |λ+ | < |ν | − |λ | and
|ν− | − |λ | < |ν | − |λ |. This reduces to the base case λ � ν, which was
handled previously. �

Remark. By setting ν � µ in (iii), one obtains

(ii′) (σ |µ − σ |λ) c
µ

λµ
�

∑
λ+

c
µ

λ+µ
,

since the coefficients c
µ−

λµ
vanish. Using commutativity (cν

λµ
� cν

µλ
)

and interchanging λ and µ, one recovers (ii) from (ii′). The conditions
(i), (ii′), and (iii) also characterize cν

λµ
.

7. Grassmann duality

In Chapter 4 we noted the canonical isomorphisms

Gr(d ,V) � Gr(V, e) � Gr(V∨, d) � Gr(e ,V∨),

where d + e � n � dim V , by identifications

[F ⊆ V] ↔ [V ։ V/F] ↔ [V∨ ։ F∨] ↔ [(V/F)∨ ⊆ V∨].

These are equivariant for any group G acting linearly on V , and by
the dual representation on V∨.

To see this in matrices, we fix a basis, so V � Cn � V∨. A
point of Gr(d ,V) is the image of an embedding [Cd ֒→ Cn], so it is
represented as the column span of a full-rank matrix A of size n × d.
A point of Gr(V, e) is an isomorphism class of quotients [Cn ։ Ce],
represented by a full-rank matrix B of size e × n. Dually, a point of
Gr(V∨, d) is a quotient represented by the transposed matrix A†, and
a point of Gr(e ,V∨) is the column span of B† (that is, the row span
of B).

With this notation, the Grassmann duality isomorphism is

γ : Gr(d ,Cn) → Gr(e ,Cn),

F 7→ ker(A†) � im(B†).

The group GLn acts on Gr(d ,Cn) by F 7→ g ·F, which sends A 7→ g ·A

and B 7→ B · g−1. Grassmann duality is therefore equivariant with
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respect to the group automorphism ϕ : GLn → GLn , ϕ(g) � (g†)−1.
If T → GLn is a homomorphism given by characters χ1, . . . , χn,
then the algebra homomorphism H∗

T
Gr(e ,Cn) → H∗

T
Gr(d ,Cn) inter-

twines the automorphism of ΛT � Sym∗M induced by χ 7→ −χ for
all χ ∈ M.

Exercise 7.1. For λ in the d × e rectangle, show that γ(Ωλ) � Ω̃λ′,
where λ′ is the conjugate partition (i.e., its diagram is the transpose
of that of λ).3

Duality exchanges the exact sequences

0→ S→ Cn
Gr → Q→ 0

and
0→ Q∨→ (Cn

Gr)
∨ → S∨→ 0.

Together with Exercise 7.1, this implies a dual Kempf-Laksov formula
for Schubert classes:

Corollary 7.2. Let x1, . . . , xd be equivariant Chern roots of S∨, and
x̃1, . . . , x̃e equivariant Chern roots of Q. For a partition λ in the d × e

rectangle, we have

σλ � sλ(x |y)

� sλ′(x̃ |− ỹ),

and

σ̃λ � sλ(x | ỹ)

� sλ′(x̃ |−y),

where T acts on Gr(d ,Cn) by characters χi � −yi � − ỹn+1−i.

Expressed as multi-Schur determinants in Chern classes of S∨

and Q, these formulas translate into

σλ � ∆λ(c) � ∆λ′(c̃
′)

and

σ̃λ � ∆λ(c̃) � ∆λ′(c
′),



Chapter 9. Schubert calculus on Grassmannians 151

where

c(i) � cT(Q − Ee+i−λi ),

c′(i) � cT(S∨ − E∨d+i−λ′
i
),

c̃(i) � cT(Q − Ẽe+i−λi ), and

c̃′(i) � cT(S∨ − Ẽ∨d+i−λ′
i
).

(Recall that ∆λ(c(E)) � sλ′(x1, . . . , xn) when x1, . . . , xn are Chern
roots of E.)

This lets us prove a refinement of the Cauchy identity used in
Chapter 4, §6.

Corollary 7.3. Let δ : Gr(d ,Cn) → Gr(d ,Cn) × Gr(d ,Cn) be the
diagonal embedding. Then

δ∗(1) �
∑
λ

∆λ(c) × ∆(λ∨)′(c
′).

(The partition (λ∨)′ is what we called the complement to λ in Chap-
ter 4.)

Proof. Use the Kempf-Laksov formulas for Schubert classes, to-
gether with the decomposition

δ∗(1) �
∑
λ

σλ × σ̃λ∨

of the diagonal into Poincaré dual classes. �

The same statement holds, without change, for equivariant Grass-
mann bundles Gr(d ,V) → Y, so long as the vector bundle V → Y

admits opposite flags E• and Ẽ•.
Writing (S∨)(1) and Q(2) for the tautological bundles from the

first and second factors of Gr(d ,Cn) × Gr(d ,Cn), and x1, . . . , xd and
x̃1, . . . , x̃e for their respective Chern roots, the Corollary expresses an
equality

d∏
i�1

e∏
j�1

(xi + x̃ j) �
∑
λ

sλ(x |y) · s(λ∨)′(x̃ |−y)

in H∗
T
(Gr(d ,Cn) × Gr(d ,Cn)), or in H∗

T
(Gr(d ,V) ×Y Gr(d ,V)).
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Exercise 7.4. Let cν
λµ
∈ Λ be the coefficient defined by

σλ · σµ �

∑
ν

cνλµ σν in H∗TGr(d ,Cn),

as before, and consider similar coefficients defined by

σ̃λ · σ̃µ �

∑
ν

c̃νλµ σ̃ν in H∗TGr(d ,Cn),

and

σλ′ · σµ′ �
∑
ν′

cν
′

λ′µ′ σν′ in H∗TGr(e ,Cn).

Show that cν
λµ

maps to c̃ν
λµ

under the substitution χi 7→ χn+1−i , and

cν
λµ

maps to cν
′

λ′µ′
under χi 7→ −χn+1−i .

For example, using σλ � sλ(x |y) and yi � −χi , one computes the
product

σ(2) · σ(3,1) � σ(4,2) + σ(3,3) + (χ1 + χ3 − χ5 − χ6) σ(4,1)

+ (χ1 − χ5) σ(3,2) + (χ1 − χ5)(χ3 − χ5) σ(3,1)

in H∗
T

Gr(2,C6). Compare this with

σ̃(2) · σ̃(3,1) � σ̃(4,2) + σ̃(3,3) + (χ6 + χ4 − χ2 − χ1) σ̃(4,1)

+ (χ6 − χ2) σ̃(3,2) + (χ6 − χ2)(χ4 − χ2) σ̃(3,1)

and

σ(1,1) · σ(2,1,1) � σ(2,2,1,1) + σ(2,2,2) + (χ1 + χ2 − χ4 − χ6) σ(2,1,1,1)

+ (χ2 − χ6) σ(2,2,1) + (χ2 − χ4)(χ2 − χ6) σ(2,1,1)

in H∗
T

Gr(2,C6) and H∗
T

Gr(4,C6), respectively.

8. Littlewood-Richardson rules

The ultimate goal is to find a positive formula for the coefficients
cν
λµ

. Such a formula is often called a Littlewood-Richardson rule. Here
we will state several of these rules, without proof.
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In the nonequivariant case, the meaning of positivity is clear:
cν
λµ

is a nonnegative integer, and this Littlewood-Richardson rule is
classical algebraic combinatorics. With |λ | + |µ| � |ν |, the coefficient
cν
λµ

is number of ways to fill the boxes of the skew diagram ν/λ with
µ1 1’s, µ2 2’s, etc., so that

(a) the filling is weakly increasing along rows;
(b) the filling is strictly increasing down columns; and
(c) when the filling is read from right to left along rows, starting

at the top, at each step one has

#(1’s) ≥ #(2’s) ≥ · · · .

Conditions (a) and (b) say the filling is a semistandard Young
tableau on the shape ν/λ. Condition (c), sometimes called the “Ya-
manouchi word” condition, means that the partition µ grows by
reading the filling (in the indicated order), placing a box in the ith
row when one reads an entry “i”, and each intermediate step is also
a partition.

Example 8.1. Let λ � (2, 1, 1), µ � (3, 2, 1), ν � (4, 3, 2, 1). There
are three fillings of ν/λ satisfying the conditions:

1 1
1 2
2

3

1 1
1 2
3

2

1 1
2 2
3

1

.

So cν
λµ

� 3. The corresponding reading words—1 1 2 1 2 3, 1 1 2 1 3 2,
and 1 1 2 2 3 1—satisfy the Yamanouchi condition.

There are many other versions of the Littlewood-Richardson rule.
Some have equivariant analogues. In this context, a “positive” for-
mula should express the polynomial cν

λµ
as a weighted enumeration

of some combinatorial set, with weights of the form
∏
(χi − χ j) for

i < j. Indeed, the formulas we have seen for special cases have this
property, and a general theorem of Graham guarantees that this is
always possible. We will return to this in Chapter 19.

Here is one version, due to Krieman and Molev (working inde-
pendently). In the statement, reading in column order means that
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entries of a filling of λ are read along columns, from bottom to top,
starting at the left.

Theorem 8.2. The structure constants for multiplication in H∗TGr(d ,Cn)

are given by

cνλµ �

∑
R

∑
T

∏
(i, j)∈λ

(χe+T (i, j)−ρ(i, j)T (i , j) − χe+T (i, j)−( j−i)),

where:

R runs over all sequences

µ � ρ(0) ⊂ ρ(1) ⊂ · · · ⊂ ρ(s) � ν,

such that ρ(i) is obtained by adding one box to ρ(i−1), in row ri (so
s � |ν/µ|).

T runs over “reverse barred ν-bounded tableaux” on the shape λ.
This means:

– T is a filling of the boxes of λ using entries from {1, . . . , d},
weakly decreasing along rows and strictly decreasing down
columns;

– all entries in the jth column of λ are less than or equal to the
number of boxes in the jth column of ν, that is, T (i , j) ≤ ν′

j
;

– s � |ν/µ| of the entries are marked with a bar. When
these entries are read in column order, the resulting word is
r1 r2 · · · rs . Thus each barred entry corresponds to a partition
ρ(i).

The product is over all boxes (i , j) ∈ λ such that T (i , j) is un-
barred. If (i , j) is a box with an unbarred entry, ρ(i , j) � ρ(t) is the
partition corresponding to the previous barred entry (in column
order). If there are no previous barred entries, ρ(i , j) � ρ(0) � µ.

Furthermore, ρ(i , j)T (i, j) > j − i for all unbarred boxes (i , j).
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Example 8.3. For d � 3, n � 6 (so e � 6− 3 � 3) and λ � µ � (2, 1),
ν � (3, 1, 1), there are two sequences R:

R1 : ⊂ ⊂ r1 � 1, r2 � 3

R2 : ⊂ ⊂ r1 � 3, r2 � 1

There is only one tableau for the sequence R1:

3 1

1
χ3+1−3 − χ3+1+1−2 � χ1 − χ3.

(In this case, ρ(1, 2) � (3, 1, 1), so ρ(1, 2)T (1,2) � 3.) For R2, there are
two tableaux:

3 1

1
χ3+1−2 − χ3+1+2−1 � χ2 − χ5 and

3 1

2
χ3+2−1 − χ3+2+2−1 � χ4 − χ6.

(For the first of these, ρ(2, 1) � (2, 1), so ρ(2, 1)T (2,1) � 2. For the
second, ρ(2, 1) � (2, 1), and ρ(2, 1)T (2,1) � 1.) So the rule says cν

λµ
�

χ4 − χ6 + χ2 − χ5 + χ1 − χ3.

Historically, the first positive rule for cν
λµ

was given by Knutson
and Tao, and involves the combinatorics of puzzles. To describe it, we
use another encoding of Schubert classes in Gr(d ,Cn). Recall that a
partition λ corresponds to a d-element subset I ⊆ {1, . . . , n}. The 01-
sequence corresponding to λ has 1’s in positions I, and 0’s elsewhere.
For example, with d � 2 and n � 5, the partition λ � (2, 0) has
I � {1, 4} and 01-sequence 1 0 0 1 0.

To compute cν
λµ

, we label the boundary of an equilateral triangle
by 01-sequences corresponding to three partitions λ, µ, and ν, ori-
ented so that the sequence for λ appears along the NW side (from
SW to NE), the sequence for µ appears along the NE side (from NW
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to SE) and the sequence for ν appears along the S side (from W to E).
A puzzle of type ∆ν

λµ
is a filling of the triangle by the pieces shown

in Figures 2 and 3. All except the equivariant piece may be rotated;
the equivariant piece must appear in its displayed orientation. (See
Figure 5 for an example.)

0 0

0

1 1

1

1

0

1

0

Figure 2. Classical puzzle pieces.

0 1

1 0

Figure 3. The equivariant puzzle piece.

Each equivariant piece contributes a factor χi − χ j , computed
from its position as shown in Figure 4. The weight wt(P) of a puzzle
P is the product of all such factors; it is evidently an element of
Z≥0[χ1 − χ2, . . . , χn−1 − χn].

The puzzle rule for computing cν
λµ

is this:

Theorem 8.4 (Knutson-Tao). We have

cνλµ �

∑
puzzles P

of type ∆ν
λµ

wt(P).

i j

Figure 4. An equivariant piece in position (i , j).
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For example, the puzzle in Figure 5 contributes χ3−χ5 to the coef-
ficient of σ(3,1) in σ(2,1) · σ(2). There are two other puzzles, computing

c
(3,1)
(2,1),(2) � (χ1 − χ2) + (χ2 − χ4) + (χ3 − χ5) � χ1 + χ3 − χ4 − χ5.

0

1

0

1

0

0

1

0

0

1

0 1 0 0 1

0
0

0
0

0

1 0
0

0 1

1

1 0

Figure 5. A puzzle of type ∆01001
01010,10010 and weight χ3 − χ5.

The commutativity property cν
λµ

� cν
µλ

is not immediately obvi-
ous from the puzzle rule—in general, there is no bĳection between
puzzles of types ∆ν

λµ
and ∆ν

µλ
, although the sums of their weights

are equal. On the other hand, Grassmann duality (Exercise 7.4) is ev-
ident: one defines a bĳection between puzzles of type ∆ν

λµ
and those

of type ∆ν
′

µ′λ′
by reflecting a puzzle from left to right, and exchanging

0’s and 1’s.

Exercise 8.5. Using the puzzle rule, for λ corresponding to a
subset I, show that

cλλλ �

∏
i∈I , j<I

i> j

(χ j − χi)

recovering the formula we know for cλ
λλ

� σλ |λ.4

Exercise 8.6. Consider Pn−1
� Gr(1,Cn). The Schubert class yi ∈

H∗
T
Pn−1 corresponds to the 01-sequence with a 1 in position i +1, and

0’s elsewhere. Use the puzzle rule to recover the formula for ck
i j

given
in Chapter 4, §7.

Notes

In the literature dealing with general Lie theory, B−-invariant subvari-
eties are usually called “opposite.” Our conventions are reversed, but have
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the advantage of better stability properties. We will continue this usage
through Chapter 13, and switch to the more standard convention when we
discuss general Lie groups in Chapter 15.

The Kempf-Laksov theorem (Theorem 2.2) was originally stated in the
context of degeneracy loci in Grassmann bundles [KeLa74]. Its appearance
as an equivariant Schubert class represents an early instance of the con-
nection between equivariant geometry and the geometry of fiber bundles,
although it was not seen this way at the time.

Studying rank conditions on matrices of homogeneous polynomials,
Giambelli proved the case of Theorem 2.2 corresponding to a rectangular
partition [Gi04]. We will see more about this in Chapter 11.

In Chapter 4, we saw a basis of Schur determinants ∆λ(cB−(Q)), for λ
inside the d × e rectangle. Here we have studied the basis of Schubert
classes [Ωλ]B

−
, which are expressed (via the Kempf-Laksov formula) as

multi-Schur determinants. What is the transition matrix between these two
bases? The answer, given in [AF-ABCD], involves certain flagged Schur
polynomials, which are special cases of the Schubert polynomials to be studied
in Chapter 10.

The argument for Lemma 3.1 comes from Knutson and Tao [KnTao03].
The same idea was axiomatized and applied to other settings by Guillemin
and Zara [GuZa01] and Tymoczko [Tym08b]. An alternative framework for
finding (unique) solutions to such interpolation problems was developed
systematically by Fehér and Rimányi [FeRi03].

An excellent reference for double Schur polynomials (and their relatives)
is Macdonald’s note [Mac92]. In particular, he proves the equivalence of the
three characterizations of sλ(x |y) we gave. (We mainly use his “Variation
6”.)

Lemma 4.1 is due to Okounkov, who shows that these conditions char-
acterize “shifted” Schur functions [Ok96]; see also [OO97] and [MoSa99].

Proofs of the classical (non-equivariant) case of the Chevalley-Pieri rule,
Theorem 6.2, can be found in many sources, e.g., [Ful-YT, §9.4]. A proof
of the equivariant version appears in [KnTao03, Appendix]. We will see a
complete proof of the analogous formula for general homogeneous spaces
G/P in Chapter 19. The characterization theorem (Theorem 6.4) is due to
Molev and Sagan [MoSa99], and was used extensively by Knutson and Tao
[KnTao03]. It also has an analogue for G/P, as we will see in Chapter 19.
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There are many references for the classical Littlewood-Richardson rule
and its variations; see, for example, [Mac95], [Sta99], [Ful-YT]. The first
complete proof is due to Schützenberger, using a game called jeu de taquin
[Schü77]. An equivariant jeu de taquin rule was given by Thomas and Yong
[ThYo18].

A combinatorial rule for the multiplying double Schur polynomials
sλ(x |y)was given by Molev and Sagan [MoSa99], but their original formula
was not manifestly positive in the variables yi − y j, i > j. Molev later
modified this to the positive formula described here [Mo09].

Knutson and Tao gave the first manifestly positive rule for the equivari-
ant structure constants [KnTao03]. In fact, they computed c̃ν

λµ
, the structure

constants for multiplying in the opposite Schubert basis {σ̃λ}. These are re-
lated to cν

λµ
by the substitution χi 7→ χn+1−i . This is realized by reflecting

puzzles left-to-right, which has the effect of exhanging the equivariant and
non-equivariant rhombi.

Hints for exercises

1Use the bialternant definition. The (d − p , q)-entry of the matrix in the numer-
ator of sλ(y

µ |y) is

(yµp+d−p+1 |y)
λq+d−q

� (yµp+d−p+1 − y1) · · · (yµp+d−p+1 − yλq+d−q).

If µ + λ, then some index k has µk < λk (so also µp < λq for q ≤ k ≤ p). But then
for all q ≤ k ≤ p, we have

1 ≤ µp + d − p + 1 ≤ λq + d − q,

so the above product vanishes, and it follows that the determinant is zero. If µ � λ,
the matrix is triangular because

1 ≤ λp + d − p + 1 ≤ λq + d − q

if p > q, so its determinant is the product

d∏
p�1

λp+d−p∏
s�1

(yλp+d−p+1 − ys).

Dividing by the Vandermonde denominator gives the formula.

2The key identity is

hp(x |τ
1− j y) �

∑
a+b�p

ha(x1, . . . , xd)(−1)beb(y1 , . . . , yd+p− j),
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where ym � 0 for m ≤ 0. (This is easy to prove from the tableau definition of
hp � s(p).) Then compare with the degree p � λi − i + j term of cT(Q − Ee−p+ j) �

cT(Ẽd+p− j − S).

3Let E• and Ẽ• be the standard and opposite flags inCn . Under the identification
V � V∨ by the chosen basis, we have Ei 7→ (V/Ei)

∨ � Ẽn−i.

4See [KnTao03, Proposition 3].



CHAPTER 10

Flag varieties and Schubert polynomials

In this chapter, we will develop flag variety analogues of what we
have just seen for the Grassmannian. The main goal is a “Giambelli”
formula for expressing the equivariant class of a Schubert variety as
a polynomial in Chern classes of universal bundles. These formulas
are comparatively recent: canonical representatives are the Schubert
polynomials introduced by Lascoux and Schützenberger in the 1980s.
This chapter and the next provide a detailed study of the calculations
sketched in Chapter 1, §4.

1. Rank functions and Schubert varieties

We generally use “one-line” notation for permutations w ∈ Sn ,
recording values as w � w(1)w(2) · · · w(n). Let Aw be the permu-
tation matrix having 1’s in positions (w(i), 1) and 0’s elsewhere. (If
ei is the standard basis vector, this convention means Aw · ei � ew(i),
and Auv � Au · Av.)

The rank function rw � (rw(p , q)) associated to w is defined by

rw(p , q) � #{i ≤ p | w(i) ≤ q}

for 1 ≤ p , q ≤ n. That is, rw(p , q) is the rank of the upper-left q × p

submatrix of Aw . The same information is encoded in the dimension
function kw � (kw(p , q)), defined by

kw(p , q) � #{i ≤ p | w(i) > q}

for 1 ≤ p , q ≤ n. The number kw(p , q) is the rank of the lower-left
(n − q) × p submatrix of Aw, so kw(p , q) + rw(p , q) � p for all p , q.
Figure 1 gives a schematic illustration of these ranks of submatrices
of Aw .

161
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rw(p , q)

kw(p , q)n − q

q

p

Figure 1. rw and kw as ranks of submatrices of Aw

For an n-dimensional vector space V , consider the complete flag
variety Fl(V) � Fl(1, . . . , n−1; V)of subspaces F1 ⊂ · · · ⊂ Fn � V . As
in the previous chapter, we fix a standard flag E• and write Eq

� En−q ,
so Eq has dimension q and Eq has codimension q. There are Schubert
cells

Ω
◦
w � Ω

◦
w(E•) �

{
F•

�� rk(Fp → V/Eq) � rw(p , q) for all 1 ≤ p , q ≤ n
}

�

{
F•

�� dim(Fp ∩ Eq) � kw(p , q) for all 1 ≤ p , q ≤ n
}

and Schubert varieties

Ωw � Ωw(E•) �
{
F•

�� rk(Fp → V/Eq) ≤ rw(p , q) for all 1 ≤ p , q ≤ n
}

�

{
F•

�� dim(Fp ∩ Eq) ≥ kw(p , q) for all 1 ≤ p , q ≤ n
}

in Fl(V). We will soon see that Ωw � Ω
◦
w .

First, let us fix conventions for representing flags with matrices.
We choose a standard basis {e1 , . . . , en}, so V � Cn. A full-rank
matrix A ∈ GLn represents a flag F•, where Fp ⊆ V is the span of
the first p columns of A. Since initial column-spans are preserved
by right multiplication by the Borel subgroup B of upper-triangular
matrices, we have Fl(Cn) � GLn/B.

We take the fixed flag E• to be given by coordinate subspaces
Eq � 〈en−q+1 , . . . , en〉 ⊆ C

n. This flag is fixed by B−, so Schubert cells
and varieties are B−-invariant. In fact, as with the Grassmannian,
Schubert cells are B−-orbits, and they decompose the flag variety. For
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each permutation w ∈ Sn , there is a point pw ∈ Fl(Cn), corresponding
to the flag

〈ew(1)〉 ⊂ 〈ew(1) , ew(2)〉 ⊂ · · · ⊂ V,

and represented by the permutation matrix Aw. (So our standard
flag E• corresponds to the permutation n · · · 2 1.)

Exercise. Show that

GLn �

∐
w∈Sn

B− · Aw · B.

(This is the Bruhat decomposition of GLn , an elementary instance of a
general phenomenon for algebraic groups.) Then show that

Ω
◦
w � B− · pw ,

so that Fl(V) �
∐

w∈Sn
Ω◦w . Deduce that the classes of Schubert

varieties [Ωw]
B− form a basis for H∗

B−
Fl(V) over ΛB− .

Given a flagged vector bundle E1 ⊂ · · · ⊂ En � V on a variety
Y, with Eq

� En−q having co-rank q in V , there is a Schubert locus
Ωw(E•) in the flag bundle X � Fl(V) → Y, defined by the conditions

Ωw(E•) �
{
x ∈ X

�� rk(Sp → V/Eq) ≤ rw(p , q) for all 1 ≤ p , q ≤ n
}
,

where S• is the tautological flag of subbundles on Fl(V).
When Y � BT (or an approximation space), V � ET ×T Cn , and

E• is induced from the standard flag in Cn , we have identifications

Fl(V) ET ×T Fl(Cn)

Ωw ET ×T Ωw ,

so [Ωw] � [Ωw]
T in H∗Fl(V) � H∗TFl(Cn).

2. Neighborhoods and tangent weights

Now let us consider a torus T acting on V � Cn with characters
χ1, . . . , χn , inducing an action on Fl(V). The point pw is fixed by
T, and has a T-invariant affine neighborhood U ⊆ Fl(V). Writing
Id � {w(1), . . . , w(d)} for each 1 ≤ d ≤ n, this is the open set defined
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by the nonvanishing of the d × d minors on columns 1, . . . , d and
rows Id, for all d � 1, . . . , n. In terms of the natural projections
πd : Fl(V) → Gr(d ,V), this is

U �

n⋂
d�1

π−1
d Ud ,



∗ ∗ ∗ ∗ 1 0 0
∗ ∗ 1 0 0 0 0
∗ ∗ ∗ ∗ ∗ 1 0
∗ 1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 1
1 0 0 0 0 0 0
∗ ∗ ∗ 1 0 0 0



where, for each d, Ud ⊂ Gr(d ,V) is the
affine open neighborhood of pId

in the Grass-
mannian (see Chapter 9, §1). More directly,
points in U are represented by matrices with
free entries in positions (w(i), j) for i > j.
For w � 6 4 2 7 1 3 5, this neighborhood is
shown at right. The torus acts on the (w(i), j)

entry by the character χw(i)−χw( j). Just as for
Grassmannians, this invariant neighborhood is an affine space, iso-
morphic to C(

n
2), and the tangent space Tpw Fl(V) has torus weights

{χw(i) − χw( j) | i > j}. If all characters χi are distinct, these weights
are nonzero, and the fixed locus is precisely Fl(V)T � {pw | w ∈ Sn}.

The Schubert cell Ω◦w is the B−-orbit of pw . In matrices, this
means free entries appear only to the left and below the 1’s of Aw.
For example, with w � 6 4 2 7 1 3 5, points in the Schubert cell are
represented as

Ω
◦
w �



0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 ∗ 0 ∗ 1 0
0 1 0 0 0 0 0
0 ∗ ∗ 0 ∗ ∗ 1
1 0 0 0 0 0 0
∗ ∗ ∗ 1 0 0 0



.

0 · · · 1
...

1

Comparing with the matrix representation of the affine
open neighborhood of pw , this Schubert cell is obtained
by setting some of the free entries to zero (shown in bold
above). These 0’s appear precisely in positions (w(i), j)

such that i > j and w(i) < w( j), as shown at right.
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This picture lets us easily identify the torus weights on the tangent
and normal spaces:

TpwΩ
◦
w has weights {χw(i) − χw( j) | i > j and w(i) > w( j)};

NpwΩ
◦
w has weights {χw(i) − χw( j) | i > j and w(i) < w( j)}.

The restriction of a Schubert class to a T-fixed point follows:

[Ωw]
T |pw �

∏
i< j

w(i)>w( j)

(χw( j) − χw(i)).

In fact, computing a little more carefully shows that each Schubert
cell is isomorphic (as a variety) to a certain subgroup of B−. Let
U− ⊆ B− be the unipotent subgroup of lower-triangular matrices
with 1’s on the diagonal, and let B be the (opposite) Borel subgroup of
upper-triangular matrices. For w ∈ Sn , let U−(w) � U− ∩AwB−Aw−1 .

Exercise 2.1. Show that the standard T-invariant affine neighbor-
hood is (AwB−A−1

w ) · pw , and that the map

U−(w) → Ω◦w

u 7→ u · pw

is an isomorphism of varieties. Furthermore, there is a free entry in
position (i , j) of U−(w) if and only if i > j and w−1(i) > w−1( j).

For example, if w � 6 4 2 7 1 3 5, we have

U−(w) �



1 0 0 0 0 0 0
0 1 0 0 0 0 0
∗ ∗ 1 0 0 0 0
0 0 0 1 0 0 0
∗ ∗ ∗ ∗ 1 0 0
0 0 0 0 0 1 0
0 ∗ 0 ∗ 0 ∗ 1



.
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3. Invariant curves in the flag variety

We have seen formulas for the tangent weights at T-fixed points.
Next we will describe T-invariant curves. Let τi j ∈ Sn be the trans-
position which swaps i and j. For each w ∈ Sn and i < j, there is an
invariant curve in Fl(Cn) through pw , with tangent weight χw( j)−χw(i)

at this point. The other fixed point is pv , for v � wτi j � τkl w, where
k � w(i) and l � w( j). This is easy to see in matrix coordinates. For
example, take w � 6 4 2 7 1 3 5, and v � wτ24 � τ47w � 6 7 2 4 1 3 5.
The curve connecting these points has matrix representatives in
neighborhoods of pw and pv as shown below.



0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 a 0 1 0 0 0



�



0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 1

a 0 1 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0



.

In the limit a → 0, one sees pw , and as a →∞, one arrives at pv .
Another way to generate these curves can be useful. There is a

subgroup Gk ,l ⊆ GLn , which is an embedding of GL2: one places an
invertible 2 × 2 matrix on rows and columns k , l, 1’s along the other
diagonal entries, and 0’s elsewhere. The subgroup Gk ,l contains the
permutation matrix Aτkl

. For any u ∈ Sn , the intersection Gk ,l∩uBu−1

is isomorphic to upper- or lower-triangular matrices in GL2, so the
T-curve connecting pw and pv is Gk ,l · pw � Gk ,l · pv � P

1.
In the above example, for w � 6 4 2 7 1 3 5, one can generate

the T-curve with character χ7 − χ4 by embedding
[

1 0
a 1

]
on rows and

columns 4, 7; the matrix shown on the left-hand side is obtained left
multiplication on the permutation matrix Aw.

From our description ofΩ◦w in the neighborhood of pw , we see the
curve Gk ,l ·pw meetsΩ◦w either in an affine line (if k � w(i) < l � w( j)),
or only the point pw (if k � w(i) > l � w( j)).

When the tangent weights χw( j) − χw(i) are pairwise non-parallel,
there are finitely many invariant curves through pw (Chapter 7, §2).
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Assuming this holds at every fixed point pw , we have a complete
description of T-curves in Fl(Cn).

To summarize: fix w, and i < j, with k � w(i) and l � w( j), and
v � wτi j � τkl w.

• There is a T-invariant curve Cw,v � Gkl · pw ⊆ Fl(Cn), iso-
morphic to P1 and connecting pw and pv .

• If w(i) < w( j), the intersection Cw,v ∩Ω
◦
w is isomorphic toA1

and dense in Cw,v . Otherwise, Cw,v ∩Ω
◦
w � {pw}.

• If the characters χw( j) − χw(i) are pairwise nonparallel (for all
i < j), then these are all the T-curves through pw.

4. Bruhat order for the symmetric group

Our next goal is to prove that the Schubert variety Ωw ⊆ Fl(V),
defined by rank inequalities rk(Fp → V/Eq) ≤ rw(p , q), is the closure
of the Schubert cell Ω◦w , where equality holds. We will need some
facts about a partial order on Sn .

Definition 4.1. The Bruhat order on Sn is defined as follows. For
permutations v , w, we say v ≥ w if rv(p , q) ≤ rw(p , q) for all 1 ≤
p , q ≤ n.

From the definition, v ≥ w is equivalent to Ωv ⊆ Ωw . There
are many other useful characterizations of Bruhat order. Recall from
Chapter 9, §1, the partial order on p-element subsets of {1, . . . , n}:
for J � { j1 < · · · < jp} and I � {i1 < · · · < ip}, we say J ≥ I if jk ≥ ik

for all 1 ≤ k ≤ p.

Exercise 4.2. Show that v ≥ w if and only if {v(1), . . . , v(p)} ≥
{w(1), . . . , w(p)} for all 1 ≤ p ≤ n.1

This characterization is sometimes called the tableau criterion for
comparing elements in Bruhat order. By writing the sets

{w(1), . . . , w(n)}, {w(1), . . . , w(n − 1)}, . . . , {w(1)}

as columns, one represents w by a semistandard tableau of shape
λ � (n , n − 1, . . . , 1). For instance, one sees 2 3 1 > 1 3 2 by
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comparing two tableaux entry-wise:

1 2 2
2 3
3

1 1 1
2 3
3 .

The inversions of a permutation w are the pairs i < j such that
w(i) > w( j). The length enumerates inversions:

ℓ(w) � #{i < j | w(i) > w( j)}.

There are unique permutations of least and greatest length in Sn . The
identity e is evidently the shortest element, with ℓ(e) � 0. The longest
element is w◦ � n · · · 2 1, with length ℓ(w◦) �

(n
2

)
.

The following lemma shows that Bruhat order is graded by length.
We will write v ⋗ w to mean v > w and ℓ(v) � ℓ(w) + 1. As before,
τi j ∈ Sn is the transposition swapping i and j.

Lemma 4.3. If v > w, then ℓ(v) > ℓ(w). In fact, there is a permutation
w′ such that v ≥ w′ ⋗ w; this w′ has the form w′ � wτi j for some i < j

with w(i) < w( j).

Proof. The first statement follows from the second, by induction
on Bruhat order, so we focus on the second statement.

We will use the tableau criterion of Exercise 4.2. Let i be the
smallest index such that {v(1), . . . , v(i)} , {w(1), . . . , w(i)}—that is,
v(1) � w(1), v(2) � w(2), etc., and v(i) > w(i). Let r � v(i) and
s � w(i), so r > s. Let j > i be the smallest index such that w(i) <

w( j) ≤ r. (From the choice of i, we know i < w−1(r), so j exists with
j ≤ w−1(r).) Let w′ � wτi j , where τi j is the transposition swapping
the positions i and j, so

w′ � w(1) · · ·w(i − 1) w( j) w(i + 1) · · ·w( j − 1) w(i) · · ·w(n).

Now ℓ(w′) � ℓ(w) + 1. Indeed, by the choice of j, there is no k

with i < k < j and w(i) < w(k) < w( j). So w′ has all the inversions
of w, together with exactly one new inversion w′(i) > w′( j).

Finally, we must check that v ≥ w′ > w. If p < i or p ≥ j, we have

{w′(1), . . . , w′(p)} � {w(1), . . . , w(p)}
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so in these cases we know {v(1), . . . , v(p)} ≥ {w′(1), . . . , w′(p)}.
When i ≤ p < j, we have

{w′(1), . . . , w′(p)} �
(
{w(1), . . . , w(p)} r {w(i)}

)
∪ {w( j)};

that is, the set {w′(1), . . . , w′(p)} is obtained from {w(1), . . . , w(p)}
by swapping w( j) for w(i). Since v(i) ≥ w′(i) � w( j) > w(i), we see
{v(1), . . . , v(p)} ≥ {w′(1), . . . , w′(p)} for these p, as well. �

Now we return to Schubert varieties. From the discussion in the
previous section, it follows that Ω◦w—and therefore Ω◦w—has codi-
mension equal to ℓ(w) in Fl(V). From the Bruhat decomposition, it
follows easily that

Ωw �

∐
v≥w

Ω
◦
v ,

since the permutation matrix Av satisfies the conditions definingΩw

if and only if v ≥ w. The Schubert cell Ω◦v is the orbit B− · pv , so
this reduces proving Ωw � Ω

◦
w to another characterization of Bruhat

order.

Proposition 4.4. For v , w ∈ Sn , we have v ≥ w if and only if pv ∈ Ω
◦
w.

In particular,Ωw � Ω
◦
w .

Proof. It is clear from the definitions thatΩw ⊇ Ω
◦
w , and we have

seen that if v � w, then pv < Ωv (since Av violates one of the rank
conditions defining Ωw). The nontrivial part of the statement is the
converse: if v ≥ w, then pv ∈ Ω

◦
w .

We will use descending induction on Bruhat order. The base case
is w � w◦, and the locus Ω◦w◦ ⊆ Fl(V) is already closed, consisting of
just the B−-fixed point: Ω◦w◦ � Ωw◦ � {pw◦}.

It suffices to treat the case v ⋗ w. Indeed, by induction, we know
Ωv � Ω

◦
v �

∐
v′≥vΩ

◦
v′. And by Lemma 4.3, for any v′ > w, one

can find v so that v′ ≥ v ⋗ w. In fact, the lemma says we can find
i < j with w(i) < w( j) so that v � wτi j � τkl w, where k � w(i) and
l � w( j).

From what we have seen in §3, the curve Gk ,l · pw has dense
intersection withΩ◦w (since k � w(i) < l � w( j)). Its other fixed point
is pv, for v � τkl w. So pv is a limit of points in Ω◦w , as claimed. �
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Another characterization of Bruhat order is sometimes useful.
The adjacent transposition τi,i+1 is called a simple transposition and
written si . An expression w � si1 · · · siℓ is reduced if ℓ is minimal
among all such expressions. (It is a basic fact that this minimal ℓ is
equal to ℓ(w).)

Lemma 4.5. Suppose v⋗w, so that v � wτab for some transposition τab

(as in Lemma 4.3) and ℓ(w) � ℓ(v)−1. Let ℓ � ℓ(v), and let v � si1 · · · siℓ

be a reduced expression for v. Then for some 1 ≤ m ≤ ℓ, a minimal
expression w � si1 · · · ŝim · · · siℓ is obtained by omitting one transposition
from the expression for v.

References for the proof are given in the Notes.
For general permutations v , w ∈ Sn , it follows that v ≥ w if and

only if there is a reduced expression v � si1 · · · siℓ so that a subword
gives a reduced expression w � s j1 · · · s jk

.
Summarizing, we have several descriptions of Bruhat order. For

v , w ∈ Sn , the following are equivalent:

(i) v ≥ w.

(ii) rv(p , q) ≤ rw(p , q) for all 1 ≤ p , q ≤ n.

(iii) Ωv ⊆ Ωw .

(iv) pv ∈ Ωw .

(v) {v(1), . . . , v(p)} ≥ {w(1), . . . , w(p)} for all 1 ≤ p ≤ n.

(vi) There is a chain

w � w(0)→ w(1)→ · · · → w(s) � v ,

where each step is of the form u → u · τi j for some transpo-
sition so that ℓ(u · τi j) � ℓ(u) + 1.

(vii) There is a minimal-length expression v � si1 · · · siℓ so that w

is given by the product of a subsequence of si1 , . . . , siℓ .

(viii) w◦v ≤ w◦w.

(ix) vw◦ ≤ ww◦.

(x) v−1 ≥ w−1.
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5. Opposite Schubert varieties and Poincaré duality

We have been using the standard flag E•, which in the standard
basis is given by Eq � 〈en+1−q , . . . , en〉. Just as for Grassmannians, the
opposite Schubert cells and opposite Schubert varieties are defined
with respect to the opposite flag Ẽ•, which has Ẽq � 〈e1, . . . , eq〉:

Ω̃
◦
w � Ω

◦
w(Ẽ•) and Ω̃w � Ωw(Ẽ•).

Since Ẽ• is preserved by the (opposite) Borel group B of upper-
triangular matrices, the opposite Schubert cells and varieties are
B-invariant.

Exercise 5.1. Assume T acts on V � Cn by distinct characters
χ1, . . . , χn . Then pw◦w is the only T-fixed point in Ω̃◦w , and Ω̃◦w �

B · pw◦w .2

For example, the Schubert cell and opposite Schubert cell for
w � 6 4 2 7 1 3 5 (so w◦w � 2 4 6 1 7 5 3) are represented as

Ω
◦
w �



0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 ∗ 0 ∗ 1 0
0 1 0 0 0 0 0
0 ∗ ∗ 0 ∗ ∗ 1
1 0 0 0 0 0 0
∗ ∗ ∗ 1 0 0 0



and Ω̃◦w◦w �



∗ ∗ ∗ ∗ 1 0 0
∗ ∗ 1 0 0 0 0
∗ ∗ 0 ∗ 0 1 0
∗ 1 0 0 0 0 0
∗ 0 0 ∗ 0 0 1
1 0 0 0 0 0 0
0 0 0 1 0 0 0



.

The opposite Schubert varieties also give a cell decomposition of
Fl(V), so their classes form a basis for H∗BFl(V). Furthermore,

Ω̃w �

∐
v≥w

Ω̃
◦
v ,

by the same argument as in the previous section. Equivalently, pw◦v

lies in Ω̃w if and only if v ≥ w in Bruhat order. We also have an
analogous computation of the weights at fixed points:

TpwΩ̃
◦
w◦w has weights {χw(i) − χw( j) | i > j and w(i) < w( j)};

NpwΩ̃
◦
w◦w has weights {χw(i) − χw( j) | i > j and w(i) > w( j)}.
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These computations show that the intersection Ω◦w ∩ Ω̃
◦
w◦w is trans-

verse. As before, we also obtain a simple formula for the restriction
to a fixed point:

[Ω̃w◦w]
T |pw �

∏
i< j

w(i)<w( j)

(χw( j) − χw(i)).

Since both Schubert varieties and opposite Schubert varieties are
T-equivariant, we have two bases for H∗

T
Fl(V). In fact, they are

Poincaré dual.

Proposition 5.2. Let σw � [Ωw]
T and σ̃w � [Ω̃w]

T . Then {σw} and
{σ̃w◦w} form Poincaré dual bases for H∗

T
Fl(V) as a ΛT-module. That is,

ρ∗(σu · σ̃v) � δu,w◦v

in ΛT .

The proof is analogous to that of the corresponding fact for Grass-
mannians (Chapter 9, Proposition 5.2).3

On the other hand, with a more careful argument, we can prove
something stronger. We will need a simple fact about Schubert vari-
eties.

Exercise 5.3. For two flags F• ,G• ∈ Fl(V), show that F• ∈ Ωw(G•)

if and only if G• ∈ Ωw−1(F•).

Proposition 5.4. If u ≤ w◦v, then the intersectionΩu ∩ Ω̃v is reduced
and irreducible of dimension ℓ(w◦v) − ℓ(u). Otherwise, this intersection is
empty.

Proof. Consider a double Schubert variety in Fl(V) × Fl(V), de-
fined by

Ωv �

{
(G• , F•)

�� F• ∈ Ωv(G•)
}

�

{
(G• , F•)

�� G• ∈ Ωv−1(F•)
}
.

The equivalence of the two descriptions follows from Exercise 5.3.
Both projections pri : Ωv → Fl(V) (i � 1, 2) are locally trivial fiber
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bundles, with Schubert varieties as fibers. More precisely, the fibers
are pr−1

1 (G•) � Ωv(G•) and pr−1
2 (F•) � Ωv−1(F•). In particular, Ωv is

reduced and irreducible.
Let Z � Ωv ∩ (Fl(V) ×Ωu), so there is a diagram

Z Ωu

Fl(V) Ωv Fl(V),

f

where the square on the right is a fiber square, and all maps are B−-
equivariant. The second projection makes Z → Ωu a locally trivial
fiber bundle, whose fiber over F• is the Schubert varietyΩv−1(F•). So
Z is also reduced and irreducible, of dimension

dim Z � dimΩu + dimΩv−1

� dim Fl(V) − ℓ(u) + ℓ(w◦v),

using ℓ(v−1) � ℓ(v).
Under the first projection pr1 : Ωv → Fl(V), the fiber over pe is

Ωv(Ẽ•) � Ω̃v . So the fiber of f : Z → Fl(V) is f −1(pe ) � Ωu ∩ Ω̃v.
On the other hand, by B−-equivariance, for every x � b− · pe in the
dense open set B− · pe , the fiber f −1(x) is isomorphic toΩu ∩ Ω̃v. By
analyzing T-fixed points, we have already seen thatΩu∩Ω̃v is empty
if and only if u � w◦v. Assuming u ≤ w◦v, the asserted dimension
follows from the formula for dim Z.

There is a section of f : Z → Fl(V) over the open set B− · pe ,
sending b− · pe to (b− · pe , b− · pv) ∈ f −1(B− · pe). (This is well-
defined!) It follows that f −1(B− · pe) � (B

− · pe) × (Ωu ∩ Ω̃v). Since Z

is reduced and irreducible, and B− · pe is an affine space, we conclude
that Ωu ∩ Ω̃v is reduced and irreducible. �

In fact, the proof shows much more.

Corollary 5.5. Let P be a property of schemes such that

(1) all Schubert varieties have P;
(2) X has P if and only if every nonempty open U ⊆ X has P; and
(3) X has P if and only if X ×An has P.
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Then the intersectionΩu ∩ Ω̃v has P.

For example, this showsΩu ∩ Ω̃v is Cohen-Macaulay, since Schu-
bert varieties have this property.

6. Schubert polynomials

Now we can address the Giambelli problem, expressing the Schu-
bert class σw � [Ωw]

T as a polynomial in Chern classes. In Chapter 4
we saw an isomorphism

H∗TFl(V) � Λ[x1, . . . , xn]/I ,

where xi � −cT
1 (Si/Si−1), the torus acts on V � Cn by characters

χi � −yi , and I is generated by ek(x) − ek(y) for k � 1, . . . , n. We seek
polynomials in Λ[x]which map to Schubert classes.

The answer is given by Schubert polynomials. These are defined
inductively, for each w ∈ Sn , starting from the longest element w◦
and moving down in Bruhat order by passing from w to wsk , where
sk is the simple transposition swapping positions k and k + 1.

The divided difference operator ∂k acts on a polynomial ring R[x] �

R[x1, x2, . . .] by

∂k( f ) �
f (. . . , xk , xk+1, . . .) − f (. . . , xk+1, xk , . . .)

xk − xk+1
�

f − sk f

xk − xk+1
.

Here a permutation w acts on a polynomial f by

(w f )(x1 , x2, . . .) � f (xw−1(1), xw−1(2) , . . .).

If f is homogeneous of degree d, then ∂k( f ) is homogeneous of degree
d − 1.

Definition 6.1. Taking R � Z[y] � Z[y1, . . . , yn], the double Schu-
bert polynomials are defined by

(i) Sw◦(x; y) �
∏

i+ j≤n

(xi − y j);

(ii) Swsk
(x; y) � ∂kSw(x; y) if ℓ(wsk) < ℓ(w).

Setting the y variables to zero defines the single Schubert polynomials,
Sw(x) �Sw(x; 0).
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Since every w ∈ Sn is obtained from w◦ by successive transpo-
sitions sk , this defines all Sw. Concretely, for any w ∈ Sn , writing
w � w◦si1 · · · siℓ with ℓ minimal (so ℓ � ℓ(w◦) − ℓ(w)), we have

Sw � ∂iℓ ◦ · · · ◦ ∂i1Sw◦ .

It follows thatSw is homogeneous of degree ℓ(w). (To obtain such an
expression for w, successively swap adjacent entries of w until one
reaches w◦. For example,

w � 3 5 1 2 4
·s1
−→ 5 3 1 2 4

·s3
−→ 5 3 2 1 4

·s4
−→ 5 3 2 4 1

·s3
−→ 5 3 4 2 1

·s2
−→ 5 4 3 2 1 � w◦

shows that w s1 s3 s4 s3 s2 � w◦, so w � w◦ s2 s3 s4 s3 s1.) In general,
there are many ways to obtain w from w◦ by simple transpositions,
and it is not immediately obvious that this definition of Sw is in-
dependent choices. One can prove it algebraically, by showing that
difference operators satisfy the braid relation ∂k∂k+1∂k � ∂k+1∂k∂k+1.
Later we will see geometric reasons for this and other properties of
Schubert polynomials.

Exercise 6.2. Show that ∂k∂k+1∂k � ∂k+1∂k∂k+1 as operators on
polynomials. Conclude that for any permutation w, choosing a re-
duced expression w � si1 · · · siℓ defines an operator ∂w � ∂i1 ◦ · · · ◦ ∂iℓ

which is independent of the choice of reduced expression.4

Several easy properties of difference operators are particularly
useful in computing:

• ∂k( f ) � 0 if and only if f is symmetric in xk and xk+1; that is,
whenever f � sk f .

• ∂k( f ) is symmetric in xk and xk+1 (so ∂2
k
� 0).

• (Leibniz rule) ∂k( f · g) � ∂k( f ) · g + (sk f ) · ∂k(g).

It follows that if a polynomial f is symmetric in xk and xk+1, it
acts as a scalar with respect to ∂k ; that is, ∂k( f · g) � f · ∂k(g). This
means that if I ⊆ R[x] is any ideal whose generators are symmetric in
xk and xk+1, then ∂k descends to an operator on R[x]/I. In particular,
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all divided difference operators act on H∗
T

Fl(V) � Λ[x1, . . . , xn]/I,
using the presentation from Chapter 4.

Example 6.3. The double Schubert polynomials for n � 3 are as
follows:

S3 2 1 � (x1 − y1)(x1 − y2)(x2 − y1)

S2 3 1 � (x1 − y1)(x2 − y1) S3 1 2 � (x1 − y1)(x1 − y2)

S2 1 3 � x1 − y1 S3 1 2 � x1 + x2 − y1 − y2

S1 2 3 � 1.

∂1 ∂2

∂2 ∂1

∂1 ∂2

We will use divided difference operators to prove the Giambelli
formula. Let E• be the standard flag as before, with quotients V/Eq,
and let Sp ⊂ V be the tautological subbundle on Fl(V). Let

xi � −cT
1 (Si/Si−1) and yi � −cT

1 (E
i−1/Ei),

so yi � −χi , where T acts on V with characters χ1, . . . , χn. (In
Chapter 4, the variables xi had the opposite sign!)

Theorem 6.4. We have σw �Sw(x; y) in H∗
T

Fl(V).

To prove this, we need a basic construction. Let Fl � Fl(V), and
let

Fl (̂k) � Fl(1, . . . , k − 1, k + 1, . . . , n − 1; V)
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be the partial flag variety omitting the k-dimensional subspace. There
is a diagram

Fl ×
Fl(̂k)

Fl

Fl Fl

Fl (̂k).

pr1 pr2

π π

The fiber product parametrizes pairs (F(1)• , F
(2)
• ) of flags such that

F
(1)
i

� F
(2)
i

for all i , k. This identifies the projection pr2 as a P1-
bundle

Fl ×
Fl(̂k)

Fl � P(Sk+1/Sk−1)
pr2
−−→ Fl.

The corresponding tautological subbundle is

L � pr∗1(Sk/Sk−1) ⊆ Sk+1/Sk−1 ,

so cT
1 (L
∨) � pr∗1xk . The homomorphism pr2∗pr∗1 : H∗

T
Fl → H∗

T
Fl

reduces degrees by 2.

Lemma 6.5. Under the isomorphism H∗TFl(V) � Λ[x1, . . . , xn]/I, we
have pr2∗pr∗1 � ∂k .

Proof. We need to compute the pushforward pr2∗. Write any class
α ∈ H∗

T
Fl as α � a + bxk , where a , b are symmetric in xk and xk+1.

(To do this, recall from Chapter 4 that {x i1
1 · · · x

in
n | 0 ≤ i j ≤ n − j} is a

Λ-basis for H∗
T

Fl, as is any permutation of the x-variables. Choosing
a permutation so that k 7→ n − 1 and k + 1 7→ n gives a basis where
α can be written in the desired form.)

Now pr∗1α � a + bcT
1 (L
∨), so by basic properties of Chern classes,

we have pr2∗pr∗1α � b. (See Appendix A, §5.) But this agrees with
∂k(a + bxk). �

This shows that pr2∗pr∗1 acts as ∂k . Next we check that it operates
on Schubert classes just as ∂k operates on Schubert polynomials.
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Lemma 6.6. For w ∈ Sn ,

pr2∗pr∗1σw �

{
σwsk

if ℓ(wsk) < ℓ(w);

0 otherwise.

Proof. First we will show that pr2(pr−1
1 Ω

◦
w) � Ω

◦
w ∪Ω

◦
wsk

, for any
w and k. To do this, it suffices to keep track of B−-orbits, since both
projections are B−-equivariant. The T-fixed points in pr−1

1 (pw) are
(pw , pw) and (pw , pwsk

), because this fiber is naturally identified with
P1

� P(Cew(k) ⊕ Cew(k+1)). (It is illustrative to check this with matrix
representatives.) Projecting by pr2 and taking B−-orbits, we see the
image is Ω◦w ∪Ω

◦
wsk

, as claimed.
Next, we observe that

dim pr−1
1 Ωw � dimΩw + 1 �

{
dimΩwsk

if ℓ(wsk) < ℓ(w);

dimΩwsk
+ 2 otherwise.

.

So dim pr2(pr−1
1 Ωw) < dim pr−1

1 Ωw if ℓ(wsk) > ℓ(w), and we see that
pr2∗pr∗1σw � 0 in this case.

Finally, in the case ℓ(wsk) < ℓ(w), we claim that the projection
pr2 maps the open set B− · (pw , pwsk

) ⊆ pr−1
1 Ωw isomorphically onto

Ω◦wsk
. The explicit description of U−(w) found in Exercise 2.1 implies

that U−(w) ⊆ U−(wsk) if and only if ℓ(wsk) < ℓ(w). So we have
B− · (pw , pwsk

) � U−(wsk) · (pw , pwsk
), and this orbit is a principal

homogeneous space for U−(wsk), as is Ω◦wsk
. Any equivariant map

between principal homogeneous spaces is an isomorphism. It follows
that pr2∗pr∗1σw � σwsk

in this case. �

To complete the proof of the theorem, we must check the formula
in the base case w � w◦. This is the easiest part: Ωw◦ is defined by
conditions

rk(Si → V/Ei) � 0 for all i ⇔ Si/Si−1 → V/Ei is 0 for all i.

That is, Ωw◦ is the zeroes of a section of

n−1⊕
i�1

Hom(Si/Si−1 ,V/E
i) �

⊕
i+ j≤n

(Si/Si−1)
∨ ⊗ E j−1/E j).
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Taking the top Chern class, we obtain

σw◦ �

∏
i+ j≤n

(xi − y j),

as needed. �

Exchanging yi with ỹi � yn+1−i � −χn+1−i , the same argument
shows σ̃w �Sw(x; ỹ) in H∗

T
Fl(V).

7. Multiplying Schubert classes

A positive combinatorial formula for the structure constants cw
uv

for multiplying Schubert classes in Fl(V)—or equivalently, for mul-
tiplying Schubert polynomials—is unknown, in general. However,
there are formulas in special cases, as well as a characterization result
similar to what we saw for Grassmannians.

These structure constants satisfy properties analogous to those
for the Grassmannian. As before, we assume T acts on V � Cn by
distinct characters χ1, . . . , χn.

Lemma 7.1. The coefficients cw
uv satisfy the following properties:

(i) cw
uv � 0 unless u ≤ w and v ≤ w.

(ii) cv
uv � σu |v.

(iii) cu
uu �

∏
i< j

u(i)>u( j)

(χu( j) − χu(i)).

The proof is essentially the same as for the Grassmannian (Chapter 9,
Lemma 6.1).

Next we will see a “Chevalley-Monk” formula for multiplying by
divisor classes. We need a formula for restricting divisors, corre-
sponding to simple transpositions sk .

Exercise 7.2. Show that Ssk
(x; y) � x1 + · · · + xk − y1 − · · · − yk .

Setting yi � −χi , conclude that

σsk
|w �

k∑
i�1

χi −

k∑
i�1

χw(i)
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for each permutation w. In particular, for any w , v, there is a k such
that σsk

|w , σsk
|v.5

To state the formula, we need some notation. Recall that v ⋗ w

if and only if there is a transposition τi j so that v � wτi j and ℓ(v) �
ℓ(w) + 1. We will write v ⋗k w if v � wτi j with i ≤ k < j.

Theorem 7.3 (Equivariant Monk formula). We have

σsk
· σw �

∑
w+⋗k w

σw+ +

(
k∑

i�1

χi −

k∑
i�1

χw(i)

)
σw .

For example, using a vertical bar to indicate the position k, we
compute

σs3 · σ2 1 5 3 4 � σ3 1 5 | 2 4 + σ2 3 5 | 1 4 + (χ3 − χ5)σ2 1 5 3 4

and

σs2 · σ2 1 5 3 4 � σ5 1 | 2 3 4 + σ3 1 | 5 2 4 + σ2 5 | 1 3 4 + σ2 3 | 5 1 4.

In the theorem, the sum over w+ is the classical Monk formula.
Combinatorial and algebraic proofs using Schubert polynomials can
be found in the Notes. (The reader may find it a pleasant challenge—
note that one can work with single Schubert polynomialsSw(x).) The
equivariant coefficient is σsk

|w , and it appears for the same reason as
in the Grassmannian case (Chapter 9, Theorem 6.2).

Finally, we have a characterization result analogous to the one for
Grassmannians.

Theorem 7.4. The coefficients cw
uv are the unique homogeneous poly-

nomials (of degree ℓ(u) + ℓ(v) − ℓ(w)) in Λ which satisfy the following
properties, for all 1 ≤ k < n:

(i) cu
uu � σu |u �

∏
i< j

u(i)>u( j)

(χu( j) − χu(i)),

(ii) (σsk
|u − σsk

|v) c
u
uv �

∑
v+⋗k v

cu
uv+ , and

(iii) (σsk
|w − σsk

|u) c
w
uv �

∑
u+⋗k u

cw
u+v −

∑
w−⋖k w

cw−
uv .
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Again, the proof is almost the same as in the Grassmannian case.
In showing these properties uniquely characterize cw

uv , one needs to
choose k so that the factors (σsk

|w − σsk
|u) are nonzero; this can be

done, thanks to Exercise 7.2.

8. Partial flag varieties

In Chapter 4, we saw presentations and bases for the equivariant
cohomology of partial flag varieties Fl(d,V), where the dimensions
of subspaces are indicated by d � (0 < d1 < · · · < dr < n). Partial
flag varieties have T-equivariant decompositions into Schubert cells,
and their equivariant geometry is similar to what we have seen for
Grassmannians and complete flag varieties. Here we state the facts;
working out examples and proofs make useful exercises.

There is a Young subgroup

Sd � Sd1 × Sd2−d1 × · · · × Sn−dr
⊆ Sn ,

and Schubert varieties in Fl(d,V) are indexed by cosets [w] ∈ Sn/Sd.
Each coset has a minimal representative wmin, characterized by re-
quiring w(i) < w(i + 1) whenever i is not among the dp . Similarly,
there is a maximal representative wmax, with w(i) > w(i + 1) when-
ever i is not among the dp.

For any two cosets [u], [v] ∈ Sn/Sd, we have umin ≤ vmin if and
only if umax ≤ vmax in Bruhat order on Sn . This induces partial order
on Sn/Sd, also called Bruhat order, by

[u] ≤ [v] iff umin ≤ vmin iff umax ≤ vmax.

For each coset [w], and any representative w ∈ [w], there is a
Schubert variety

Ω[w] �

{
F•

�� rk(Fdp
→ V/Eq) ≤ rw(dp , q) for 1 ≤ p ≤ r, 1 ≤ q ≤ n

}
�

{
F•

�� dim(Fdp ∩ Eq) ≥ kw(dp , q) for 1 ≤ p ≤ r, 1 ≤ q ≤ n
}

in Fl(d,V). Its codimension is equal to ℓ(wmin). Schubert cells Ω◦
[w]

are defined similarly, with equalities on ranks and dimensions in
place of inequalities; they are B−-orbits of fixed points p[w].
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Containment among Schubert varieties is described by Bruhat
order on cosets. Equivalently, one has p[v] ∈ Ω[w] iff [v] ≥ [w].

Points in Fl(d,V) can be represented in matrices, so that the space
Fdp

is the span of the first dp columns. Schubert cells can be written by
taking a minimal representative w � wmin and using column echelon
form having the 1’s in the permutation matrix Aw as pivots. For
example, in Fl(1, 4;C6), with w � 2 1 4 6 3 5, the Schubert cell is

Ω
◦
[w]

�



0 1 0 0 0 0
1 0 0 0 0 0
∗ ∗ 0 0 1 0
∗ 0 1 0 0 0
∗ ∗ ∗ 0 0 1
∗ 0 0 1 0 0



.

Since the cells Ω◦
[w]

decompose the partial flag variety, the Schu-

bert classes σ[w] � [Ω[w]]T form a basis for H∗TFl(d,V) over Λ, as [w]
ranges over cosets Sn/Sd, or equivalently, as w ranges over minimal
representatives.

Opposite Schubert cells and varieties are defined in the same way,
using the opposite flag Ẽ• in place of E•. The opposite Schubert cell
Ω̃
◦
[w]

is the B-orbit of p[w◦w]. The fixed points of Ω̃[w◦w] are those p[v]
such that [v] ≤ [w]. In particular,

Ω[u] ∩ Ω̃[w◦w] � ∅ unless [u] ≤ [w].

The opposite Schubert classes σ̃[w◦w] � [Ω̃[w◦w]]
T form the Poincaré

dual basis to the basis of Schubert classes σ[w].
The pullback by the projection π : Fl(V) ։ Fl(d,V) embeds

H∗
T

Fl(d,V) in H∗
T

Fl(V) � Λ[x]/I as the subring of invariants for the
natural action of Sd on the x variables. It follows that π∗σ[w] � σwmin ,
and therefore:

The class σ[w] is represented by the Schubert polynomialSwmin(x; y).

(It is easy to see thatSwmin(x; y) is invariant under Sd, since wminsk >

wmin unless k is among the dp.)
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There are characterizations of the structure constants c
[w]

[u],[v]
sim-

ilar to what we saw in §7, as well as formulas for multiplying by a
divisor class. We will see generalizations to other projective homo-
geneous varieties in later chapters.

9. Stability

A key property of Schubert polynomials is that they are stable rep-
resentatives of Schubert classes, with respect to natural embeddings
of symmetric groups and maps between flag varieties. That is, for
w ∈ Sn , and the standard embedding ι : Sn ֒→ Sm (for m > n), we
have

Sι(w)(x; y) �Sw(x; y).

From the definition of Schubert polynomials, it suffices to prove this
for the longest element w � w

(n)
◦ in Sn , so

ι(w
(n)
◦ ) � n · · · 2 1 n + 1 · · ·m

in Sm . It also suffices to treat the case m � n + 1. This is rather
straightforward algebraically:

Exercise 9.1. Assume m � n + 1, and show

S
ι(w
(n)
◦ )
(x; y) � ∂n · · · ∂2∂1Sw

(n+1)
◦
(x; y)

by direct computation.

A more precise statement comes from the geometry of certain
partial flag varieties. Consider

Fl(n)(Cm) � Fl(1, . . . , n;Cm),

for n ≤ m. For m ≫ 0, and a torus T acting on Cm , there are no
relations in low degree among the Chern classes xi � −cT

1 (Si/Si−1),
so

H∗TFl(n)(Cm) � Λ[x1, . . . , xn] (modulo relations in degree > m − n).

(We saw this for ordinary cohomology when describing the classify-
ing space BB in Chapter 2; the equivariant statement holds for the
same reasons.)
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Let S
(n)
m ⊂ Sm be the subset

S
(n)
m �

{
w ∈ Sm

�� w(i) < w(i + 1) for i ≥ n
}
.

These are minimal representatives for the cosets parametrizing fixed
points and Schubert varieties in Fl(n)(Cm), as we saw in the previous
section. So for each w ∈ S

(n)
m , there is a Schubert variety

Ω[w] �

{
F•

�� dim(Fp ∩ Eq) ≥ kw(p , q) for 1 ≤ p ≤ n , 1 ≤ q ≤ m
}

in Fl(n)(Cm). The classes of these Schubert varieties form a basis for
H∗TFl(n)(Cm).

Schubert varieties and their classes are compatible with standard
embeddings of partial flag varieties. For m ≤ m′, we have an inclu-
sion Cm ⊆ Cm′ as the span of the first m standard basis vectors, and
a corresponding embedding ι : Fl(n)(Cm) ֒→ Fl(n)(Cm′). Echoing this
notation, let ι : Sm ֒→ Sm′ be the standard embedding of symmetric
groups, so ι(w)(k) � k for k > m.

Exercise 9.2. Show that

ι(Fl(n)(Cm)) � Ω̃
[w
(m′)
◦ ·ι(w

(m)
◦ )]

inside Fl(n)(Cm′), where w
(m)
◦ is the longest element in Sm . Also show

that ι−1Ω[ι(w)] � Ω[w] for any w.
Conclude that

ι∗σ[ι(w)] � σ[w] in H∗TFl(n)(Cm),

and ι∗σ[u] � 0 unless [u] ≤ [w(m)◦ ]. For m � n, this says ι∗σ[u] � 0
unless u ∈ Sn .6

Using the standard embeddings of symmetric groups, consider
the group S∞ �

⋃
m Sm (permutations of {1, 2, . . .} which fix all but

finitely many integers), and the subset S
(n)
∞ �

⋃
m S
(n)
m (the elements

w such that w(i) < w(i + 1) whenever i ≥ n). By the above exercise,
one can define σ[w] unambiguously for w ∈ S

(n)
∞ .

In the previous section, we saw that σ[w] � Sw(x; y) for w ∈ S
(n)
m .

If m is large enough relative to the degree of σ[w] so that H∗
T

Fl(n)(Cm)
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has no relations in this degree, thenSw(x; y) is the unique polynomial
representative for σ[w]. (Taking m > ℓ(w) + n suffices.)

These observations are summarized by the following theorem:

Theorem 9.3. For w ∈ S
(n)
∞ , Sw(x; y) is the unique polynomial in

Λ[x1, . . . , xn] mapping to σw ∈ H∗TFl(n)(Cm) � Λ[x1, . . . , xn]/I for all
m ≥ n.

In other words, the Schubert polynomials Sw(x; y) are the unique
polynomials in Λ[x1, . . . , xn] stably representing Schubert classes.
(The theorem follows from three facts: (1) Schubert polynomials
represent Schubert classes; (2) for fixed d and sufficiently large m, the
graded rings H∗

T
Fl(n)(Cm) andΛ[x1, . . . , xn] are isomorphic in degree

at most d; and (3) Schubert polynomials are stable.)
Stability may also be expressed by considering formulas in an

infinite flag manifold, as we will see in Chapter 12.

10. Properties of Schubert polynomials

Schubert polynomials have remarkable algebraic and combinato-
rial properties, many of which can be proved easily with geometry.
We will repeatedly use the fact that identities of polynomials can
be deduced from identities of classes in H∗

T
Fl(n)(Cm) by taking suffi-

ciently large n and m.

10.1. Schubert classes. From the definition,Sw(x , y) is a homo-
geneous polynomial of degree ℓ(w) in Z[x1, . . . , xn , y1, . . . , yn]. Per-
haps its most fundamental property is the one we proved in Theo-
rem 6.4. Let T act on Fl(Cn) by characters χ1, . . . , χn.

For w ∈ Sn , the polynomialSw(x; y)maps to σw � [Ωw]
T under the

evaluation
xi � −cT

1 (Si/Si−1), yi � −χi .

Similarly,Sw(x; ỹ) maps to σ̃w � [Ω̃w]
T under the evaluation

xi � −cT
1 (Si/Si−1), ỹi � −χn+1−i .

Here Si is the tautological bundle on Fl(Cn).
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The classes σw have better stability properties, so from now on
we focus on them and the corresponding polynomialsSw(x; y). (To
recover statements for B-invariant Schubert varieties, one can substi-
tute ỹi � yn+1−i in any formula.)

10.2. Stability. Consider the standard embedding ι : Sn ֒→ Sn′

for any n′ > n, so ι(w)(i) � i for n < i ≤ n′. Another fundamental
property of Schubert polynomials is stability with respect to such
embeddings, as we saw in the previous section:

We haveSι(w)(x; y) �Sw(x; y).

The stability property lets us unambiguously regard a permuta-
tion w ∈ Sn as one in Sm , for any m ≥ n. In fact, let S∞ �

⋃
Sn

be the infinite symmetric group, that is, the group of all bĳections
w : Z>0 → Z>0 such that w(i) � i for all but finitely many i. Let
x � (x1, x2, . . .) and y � (y1, y2, . . .) be infinite sets of variables, and
let Z[x , y] be the polynomial ring in these variables. By stability,
Sw(x; y) is a well-defined element of Z[x , y] for any w ∈ S∞, so we
usually suppress the notation ι(w).

The Schubert class and stability properties characterize Schubert
polynomials, as we saw in Theorem 9.3. That is, Sw is the unique
polynomial which represents σw in H∗

T
Fl(Cm) for all sufficiently large

m.

10.3. Basis. Schubert polynomials form a linear basis for all poly-
nomials:

The set {Sw | w ∈ S∞} is a basis for Z[x , y] as a module over Z[y].

We can be more precise:

Let S
(n)
∞ ⊆ S∞ be the subset of w such that w(i) < w(i + 1) for all

i > n. Then

(1) Sw ∈ Z[y][x1, . . . , xn] iff w ∈ S
(n)
∞ , and

(2) {Sw | w ∈ S
(n)
∞ } is a basis for Z[y][x1, . . . , xn] as a module over

Z[y].

For (1), the condition w ∈ S
(n)
∞ is equivalent to wsk > w for any

k > n, which in turn is equivalent to ∂kSw � 0. This means thatSw



Chapter 10. Flag varieties and Schubert polynomials 187

is symmetric in the variables xn+1, xn+2, . . .. Since only finitely many
variables appear inSw, it is the same to say only x1, . . . , xn appear.

The proof of (2) follows from results of §9. Consider the partial
flag variety Fl(n)(Cm), with the projection π : Fl(Cm) → Fl(n)(Cm), for
m ≫ 0. As w ranges over S

(n)
m , the Schubert classes σ[w] form a basis

for H∗
T

Fl(n)(Cm) over Λ � Z[y1, . . . , ym].
To prove (3), for any fixed ℓ, we can choose m large enough so that

in H∗
T

Fl(n)(Cm) � Λ[x1, . . . , xn]/I there are no relations of degree at
most ℓ in the x variables. Then

{σ[w] | w ∈ S
(n)
m and ℓ(w) ≤ ℓ}

is a basis for Λ[x1, . . . , xn]≤ℓ ⊆ H∗
T

Fl(n)(Cm), and π∗ embeds this
Λ-module in H∗

T
Fl(Cm), mapping σ[w] to σw . So the set of Sw for

w ∈ S
(n)
m and ℓ(w) ≤ ℓ forms a basis for Λ[x1, . . . , xn]≤ℓ. �

Schubert polynomials also form a basis for the ideal I in the pre-
sentation H∗

T
Fl(Cn) � Λ[x1, . . . , xn]/I. For this, we restrict to finitely

many y variables by setting yi � 0 for i > n, so Λ � Z[y1, . . . , yn].

The ideal I has a basis {Sw | w ∈ S
(n)
∞ , w < Sn} as a Λ-module.

Consider the embedding ι : Fl(Cn) ֒→ Fl(n)(Cm) defined by re-
garding Cn

� Ẽn ⊂ C
m as part of the opposite flag Ẽ• in Cm. By

Exercise 9.2, for w ∈ S
(n)
m we have

ι∗σw �

{
σw if w ∈ Sn ;

0 if w < Sn ,

and the claim follows. �

10.4. Multiplication. Schubert polynomials multiply exactly as
Schubert classes in H∗

T
Fl(Cn), when n ≫ 0. More precisely, by the

basis property, we can write

Su ·Sv �

∑
w∈S∞

cw
uvSw ,

for some polynomials cw
uv ∈ Z[y].
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We have
σu · σv �

∑
w∈Sn

cw
uv σw

in H∗
T

Fl(Cn).

That is, the product of Schubert classes in H∗
T

Fl(Cn) is obtained by
multiplying the corresponding Schubert polynomials in Z[x , y] and
discarding termsSw for w < Sn . This follows from the description of
the kernel of Z[x , y] → H∗TFl(Cn). �

10.5. Localization and interpolation. Like double Schur polyno-
mials, the double Schubert polynomials satisfy and are characterized
by interpolation properties.

For w ∈ Sn , the double Schubert polynomialSw specializes as

Sw(yw(1) , . . . , yw(n); y1, . . . , yn) �
∏
i< j

w(i)>w( j)

(yw(i) − yw( j))(∗)

and

Sw(yv(1) , . . . , yv(n); y1, . . . , yn) � 0 if v � w ,(∗∗)

and it is the unique homogeneous polynomial of degree ℓ(w) satisfying
(∗) and (∗∗).

The formulas (∗) and (∗∗) follow by restricting the corresponding
Schubert classes: letting T act on Cn by characters χi � −yi , we have
seen σw |w �

∏
(yw(i) − yw( j)) in §2, and for v � w we have σw |v � 0

since pv < Ωw.
These properties characterize Schubert classes, by the same ar-

gument as for Grassmannians (Chapter 9, Lemma 3.1). So they also
characterize Schubert polynomials. �

10.6. Grassmannian permutations. Consider a partition λ in the
d × (n − d) rectangle, with corresponding subsets I � {i1 < · · · < id}

and J � { j1 < · · · < jn−d} of {1, . . . , n}, as in Chapter 9. We define a
permutation in Sn by

w(λ) � i1 · · · id j1 · · · jn−d .
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This is a Grassmannian permutation, meaning it has a single descent,
w(d) > w(d + 1). (All Grassmannian permutations arise this way, for
some d.)

We have
Sw(λ)(x; y) � sλ(x |y),

where x � (x1, . . . , xd). In particular, Schubert polynomials for
Grassmannian permutations have determinantal expressions.

To prove this, we compare opposite Schubert classes in the Grass-
mannian and flag variety via the projection π : Fl(Cn) → Gr(d ,Cn).
We have π−1Ωλ � Ωw(λ), so π∗σλ � σw(λ). Since Sw(λ)(x; y) � σw(λ)

and sλ(x |y) � σλ (see Chapter 9, Corollary 7.2), the identity of poly-
nomials follows, by taking n large enough so that there are no rela-
tions among the participating variables. �

For example, take n � 3, d � 1, and λ � (2). We have I � {3} and
J � {1, 2}, so w(λ) � 3 1 2. Comparing polynomials, we see

s (x |y) � (x1 − y1)(x1 − y2) �S3 1 2(x; y),

as claimed.

Notes

The “Bruhat order” on the symmetric group was first discussed by
Ehresmann in the context of the (Schubert) cell decomposition of flag va-
rieties and some other homogeneous spaces. Up to re-indexing, he uses
the tableau criterion to describe a partial order on cells [Eh34]. A proof
of Lemma 4.5, in the context of general Coxeter groups, can be found in
[Hum90, §5.10]. Other criteria for Bruhat order can be found in the notes
by Macdonald [Mac91] or the book by Björner and Brenti [BjBr05].

Bernstein-Gelfand-Gelfand and Demazure used divided difference op-
erators to compute the cohomology classes of Schubert varieties, as in
Lemma 6.6 [BGG73, De74]. The operators themselves go back at least
to Newton’s interpolation formulas, and can also be seen in some of Gi-
ambelli’s reduction formulas [Gi04].

Schubert polynomials were introduced by Lascoux and Schützenberger,
first in their “single” versions Sw(x) � Sw(x; 0) as canonical representa-
tives for Schubert classes, with the double Schubert polynomials appearing
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shortly afterwards in the context of interpolation [LasSch82, LasSch85].
The geometric significance of double Schubert polynomials seems to have
been noticed somewhat later [Ful92, FeRi02, FeRi03, KnMi05]. Algebraic
proofs of many of their properties can be found in [Mac91].

The intersectionsΩu∩Ω̃v are called Richardson varieties, and they appear
frequently in Schubert calculus. Irreducibility was proved by Richardson
[Ri92], extending a corresponding result of Deodhar for the intersections
of cells Ω◦u ∩ Ω̃

◦
v [Deo85]. Our proof of Proposition 5.4 is essentially that

of Brion and Lakshmibai, who also observe that Richardson varieties have
local properties of Schubert varieties (as stated in Corollary 5.5) [BriLak03].
The fact that Schubert varieties are Cohen-Macaulay is due to many au-
thors; a particularly elegant argument using Frobenius splitting was given
by Ramanathan [Ra85]. A more detailed study of the local properties of
Richardson varieties can be found in [KnWY13].

Monk’s formula appears in [Monk59]. An algebraic proof using Schu-
bert polynomials is in [Mac91, (4.15′′)], and a combinatorial one was given
by Bergeron and Billey [BeBi93]. Chevalley gave a general formula for mul-
tiplying by a divisor in a generalized flag variety G/P. We will see a proof
of this formula in Chapter 19.

Hints for exercises

1For each p, the number of elements of {v(1), . . . , v(p)} which are ≤ q is equal
to rv(p , q). In fact, it suffices to consider only those p such that w(p) > w(p + 1),
i.e., the descents of w; see [BjBr05, §2.6].

2Note that Ω̃◦w � w◦ ·Ω
◦
w .

3Use the fact that a T-fixed point pw lies in Ωu ∩ Ω̃w◦v if and only if u ≥ w ≥ v

in Bruhat order, along with the transversality of the intersection Ωw ∩ Ω̃w◦w .

4To prove the braid identity, it suffices to consider the case k � 1. Writing
∂k �

1
xk−xk+1

(1 − sk ), one can expand the operator ∂1∂2∂1 as

1
x1 − x2

(1 − s1)
1

x2 − x3
(1 − s2)

1
x1 − x2

(1 − s1)

�
1

(x1 − x2)(x1 − x3)(x2 − x3)

∑
w∈S3

(−1)ℓ(w)w,

and obtain the same expansion for ∂2∂1∂2.



Chapter 10. Flag varieties and Schubert polynomials 191

5There are several easy ways to prove the formula. One is to notice Ωsk is the
locus where rk(Sk → V/Ek) ≤ k − 1, so its class is cT

1
(V/Ek − Sk) (cf. Chapter 9,

§6). Another is algebraic, using the interpolation condition of §10.5. A third is to
compare with Schur polynomials: as noted in §10.6, Ssk (x; y) � s (x1, . . . , xk |y).
Finally, to see σsk |w , σsk |v if w , v, take k to be the first position where w(k) , v(k).

6The opposite Schubert cell Ω̃
[w
(m′)
◦ ·ι(w(n ,m))]

⊆ Fl(n)(Cm′) is the B-orbit of p
[ι(w

(m)
◦ )]

.
In matrices, this is



∗
1

. .
.

1

0

∗ ∗ · · · 1
∗ · · · 1
... . .

.

1

0 0

0 0
1

. . .

1



,

which identifies with the open Schubert cell in Fl(n)(Cm) under the embedding ι.





CHAPTER 11

Degeneracy loci

There is a close connection between degeneracy loci for maps of
vector bundles and equivariant cohomology classes of Schubert vari-
eties. In fact, equivariant classes of Schubert varieties give universal
formulas for the classes of degeneracy loci. In this chapter, we will
make this connection precise. Along the way, we will see how Schu-
bert polynomials arise naturally in the equivariant cohomology of
the space of matrices, and deduce some further properties of these
polynomials from the geometry of degeneracy loci.

1. The Cayley-Giambelli-Thom-Porteous formula

Let E and F be vector spaces of dimensions n and m, respectively,
and set M � Hom(F, E). The group G � GL(E)×GL(F) acts on M, by

((g , h) · ϕ)(v) � g · ϕ(h−1 · v).

Choosing bases, this is M � Mn,m , the space of n × m matrices, with
GL(E) acting by left multiplication (row operations) and GL(F) acting
by right multiplication (column operations). Since M is contractible,
we have

H∗GM � ΛG � ΛGL(E) ⊗ ΛGL(F)

� Z[a1, . . . , an , b1, . . . , bm],

where ai � c
GL(E)
i
(E) and bi � c

GL(F)
i
(F). (See Exercise 2.4 from

Chapter 3.)
The G-orbits in M are precisely the sets

D◦r � {ϕ ∈ M | rk(ϕ) � r},

193
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for r � 0, . . . ,min{m , n}, so the (irreducible) G-invariant subvarieties
are their closures

Dr � D◦r � {ϕ | rk(ϕ) ≤ r}.

The class [Dr]
G is a canonical polynomial inΛG � Z[a , b]. What is it?

The answer is given by the (Cayley-)Giambelli-Thom-Porteous for-
mula:

Proposition 1.1. We have

[Dr]
G
�

��cn−r+ j−i

��
1≤i, j≤m−r

,

where

c �

1 + a1 + a2 + · · ·

1 + b1 + b2 + · · ·
� 1 + (a1 − b1) + (a2 − a1b1 + b2

1 − b2) + · · ·

is the total equivariant Chern class c � cG(E − F).

The right-hand side of the formula is the Schur determinant∆λ (c),
where λ � (m − r)n−r is the (m − r) × (n − r) rectangle.

Proof. This can be deduced from formulas we already know for
the Grassmannian, using a graph construction. With the group G �

GL(E) × GL(F) acting on Gr � Gr(m , E ⊕ F) in the evident way via
the block-diagonal inclusion in GL(E ⊕ F), there is a G-equivariant
map

f : M → Gr , ϕ 7→ Fϕ

which sends each homomorphism ϕ to its graph

Fϕ �

{
(ϕ(v), v)

}
⊆ E ⊕ F.

In fact, f embeds M as an open set in Gr, identifying it with the
tangent space at the point 0 ⊕ F.

LetΩ ⊆ Gr be

Ω �

{
L ⊆ E ⊕ F

�� dim(L ∩ (0 ⊕ F)) ≥ m − r
}
.

This is a Schubert variety Ωλ(E•) with respect to any flag E• such
that Em � 0 ⊕ F, where λ � (n − r, . . . , n − r) is the (m − r) × (n − r)

rectangle, as in the statement of the proposition. Observing that
ker(ϕ) � Fϕ ∩ (0 ⊕ F), we see that ϕ has rank at most r if and only
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if dim(Fϕ ∩ (0 ⊕ F)) ≥ m − r. So Dr � f −1Ω, and since f is an
open embedding, it follows that [Dr]

G
� f ∗[Ω]G. Since F � f ∗Em

and E � f ∗Q, we get our formula for Dr ⊆ M from one we have
seen for Ω ⊆ Gr, namely the determinant ∆λ(cT(Q − Em)) of the
Kempf-Laksov formula (Chapter 9, Theorem 2.2). �

The torus T � (C∗)n×(C∗)m ⊆ G � GL(E)×GL(F), acts on matrices
by (g , h) · A � gAh−1. If x1, . . . , xn and y1, . . . , ym are the standard
characters on T, this action is by the character xi − y j on the (i , j)

entry of a matrix. The formula restricts to

[Dr]
T
� sλ′(x |y),

where λ′ is the transposed partition—that is, the (n − r) × (m − r)

rectangle. (This is Chapter 9, Corollary 7.2, using x in place of x̃ and
y in place of − ỹ.)

Example 1.2. Consider T � C∗ acting on M � Mn,m by scaling all
entries. (Writing z for the identity character of C∗, this is the case
x1 � · · · � xn � z, y1 � · · · � ym � 0.) Then D1 ⊆ M is the cone
over the Segre variety Pn−1 × Pm−1 ⊆ Pnm−1, so [D1]

T
� d · z(m−1)(n−1),

where d is the degree of the Segre variety. The Cayley-Giambelli-
Thom-Porteous formula computes this degree as

degree(Pn−1 × Pm−1) �

����
(

n

n − 1 + j − i

)����
1≤i, j≤m−1

� s(m−1)n−1(1, . . . , 1︸  ︷︷  ︸
n

)

� #

(
SSYT of shape (n − 1) × (m − 1)

with entries 1, . . . , n

)

�

n−1∏
i�1

m−1∏
j�1

m + i − j

i + j − 1
.

For instance, the degree of P1 × Pm−1 is m.
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2. Flagged degeneracy loci

Next we turn to degeneracy loci for maps between flagged vector
spaces. Suppose we have

F1 ⊂ · · · ⊂ Fm � F
ϕ
−→ E � En ։ · · ·։ E1,

where subscripts indicate dimension. Imposing rank conditions on
ϕpq : Fq → Ep defines a subscheme of M � Hom(F, E). Such condi-
tions will be B-invariant, where B � B(E•) × B(F•) ⊆ GL(E) × GL(F)

is the subgroup preserving both flags. Thus, given an n × m “rank
matrix” of integers r � (rpq), we have a B-invariant degeneracy locus

Dr � {ϕ | rk(ϕpq) ≤ rpq for all p , q} ⊆ M.

Two basic questions arise:

(1) Which rank matrices r define irreducible loci Dr?

(2) When Dr is irreducible, what is a formula for its class in
H∗

B
M?

To address these questions, let us fix bases e1, . . . , en for E and
f1, . . . , fm for F, so that Ep is the span of {e1, . . . , ep} and Fq is the
span of { f1, . . . , fq}. Then M � Mn,m is the space of n × m matrices,
and the map ϕpq is represented as the upper-left p × q submatrix of
ϕ:

ϕpqEp

Fq

With respect to these bases, we have B � B−n×B+

m ⊆ GLn×GLm , where
B− and B+ denote lower- and upper-triangular matrices, respectively:
rank conditions on the submatrices ϕpq are preserved by lower-
triangular row operations and upper-triangular column operations.
(To see why B(E•) � B−n , note that ker(E→ Ep) � span{en , . . . , ep+1}.)

We take the maximal torus T � (C∗)n × (C∗)m to be diagonalized
in these bases, and we denote the standard characters for the actions
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on E and F by x1, . . . , xn and y1, . . . , ym , respectively. Since T acts on
M by (g , h) · A � gAh−1, the affine space M has weights xi − y j , for
1 ≤ i ≤ n, 1 ≤ j ≤ m. As before, the class [Dr]

B
� [Dr]

T we seek is a
canonical polynomial in

H∗BM � H∗T M � Z[x1, . . . , xn , y1, . . . , ym].

We will see that the answer is given by the Schubert polynomials
encountered in the previous chapter. (This is how Schubert polyno-
mials could have been discovered in the 1960s!)

3. Irreducibility

A partial permutation matrix is an n × m matrix of 0’s and 1’s, with
at most one 1 in each row and column. Often it is convenient to
represent such a matrix by replacing 1’s by dots and 0’s by blank
spaces. The associated rank rpq of the upper-left p × q submatrix is
then simply the number of dots in this region. Here is an example,
with a partial permutation matrix next to its rank matrix r � (rpq)

(with the 1’s represented by dots in the latter):

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

1

2

2

0

1

2

2

Any n ×m partial permutation can be viewed as an injective map
ŵ : I → {1, . . . ,m} where I ⊆ {1, . . . , n} is the subset of rows which
are occupied: ŵ(i) � j if there is a 1 in position (i , j). This can be
extended canonically to a permutation w ∈ SN , for sufficiently large
N . (The minimal possibility is N � n+m−#(dots).) The permutation
w is the minimal one in Bruhat order such that w(i) � j for i ∈ I, and
w(p) > m for p ∈ {1, . . . , n} r I.

This is done algorithmically in three steps, as follows. Start by
writing the values w(i) � j in position i, for i ∈ I. For the empty
positions {1, . . . , n} r I, fill in values m + 1,m + 2, . . . in increasing
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order. Finally, write any unused values from {1, . . . ,N} in increasing
order, starting at position n + 1.

Continuing the above example, so n � 4 and m � 5, we start with
the partial permutation given by ŵ(2) � 4 and ŵ(3) � 2. Taking
N � 7, we obtain a permutation w � 6 4 2 7 1 3 5. Writing out the
three steps, this is

· 4 2 ·

6 4 2 7

6 4 2 7 1 3 5.

The transposed permutation matrix A†w contains the partial permu-
tation matrix of ŵ as its upper-left n ×m submatrix, as shown below.

In case the construction produces w ∈ SN for N < m + n, one can
always extend to Sm+n by appending values w(i) � i. (For instance,
the above example leads to w � 6 4 2 7 1 3 5 8 9.)

The length of a partial permutation ŵ is

ℓ(ŵ) � #{i < j | i , j ∈ I and ŵ(i) > ŵ( j)}.

If w is a (complete) permutation extending ŵ, then ℓ(ŵ) � ℓ(w) is the
usual length of w.

All feasible rank functions r � (rpq) arise from partial permu-
tations this way. That is, if there exists an n × m matrix A whose
upper-left ranks are given by an array r, then r is the rank func-
tion of some partial permutation. (To see this, find a unique partial
permutation matrix in each B-orbit on M.) In fact, the set

D◦
r
�

{
ϕ

�� rk(ϕpq) � rpq for all p , q
}
⊆ M
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is the orbit of a partial permutation matrix ŵ corresponding to r,
or empty if r does not come from a partial permutation. When r

corresponds to a partial permutation ŵ , the locus D◦
r

has codimension
ℓ(ŵ) in M. For this reason we use the notation

ℓ(r) � ℓ(ŵ) � ℓ(w),

where r is the rank function of a partial permutation ŵ, and w is the
minimal extension of ŵ to a complete permutation.

There is a partial order on n × m rank functions, where r
′ ≤ r if

r′(i , j) ≤ r(i , j) for all i , j. This induces an order on partial permuta-
tions, by declaring ŵ′ ≥ ŵ if the corresponding rank functions satisfy
r
′ ≤ r (note the reversal). Equivalently, ŵ′ ≥ ŵ if the corresponding

complete permutations satisfy w′ ≥ w in usual Bruhat order on Sm+n .
These considerations show that M decomposes into finitely many

B-orbits indexed by partial permutations:

M �

∐
D◦

r
,

and more generally, for any rank function r,

Dr �

∐
r
′≤r

D◦
r
′ ,

noting as before that D◦
r
′

is nonempty if and only if r′ comes from
a partial permutation. This generalizes the Bruhat decomposition of
GLn . In the case n � m and r comes from a permutation w ∈ Sn—so
rpq � rw(p , q) is the rank of the upper-left p × q submatrix of A†w—we
will usually write Dw and D◦w for Dr and D◦

r
. In this notation, the

Bruhat decomposition says GLn �

∐
w∈Sn

D◦w.

Exercise 3.1. The following conditions on rpq (for all p , q) are
necessary and sufficient for a matrix of nonnegative integers r � (rpq)

to be the rank matrix of a partial permutation:1

(1) rpq ≤ min{p , q};
(2) rp+1,q � rpq or rpq + 1;
(3) rp,q+1 � rpq or rpq + 1; and
(4) (rp+1,q+1 + rpq) − (rp+1,q + rp,q+1) � 0 or 1.
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Remark. The first three conditions in the exercise are intuitive:
they say that a p × q submatrix has rank at most min{p , q}, and that
the rank can increase by at most 1 when adding a row or column. Re-
quiring only these three conditions leads to rank matrices associated
to alternating sign matrices.

Now we can identify the irreducible loci.

Proposition 3.2. If r is a rank function on n×m matrices coming from
a partial permutation ŵ, then Dr � D◦

r
. These are precisely the irreducible

loci: Dr is irreducible if and only if r comes from a partial permutation.

Using the fact that M decomposes into D◦
r
, asr ranges over partial-

permutation rank functions, the second statement follows from the
first. The claim Dr � D◦

r
can be proved in the same way as the

analogous claim for Schubert cells and varieties.

Exercise 3.3. Let r be a rank function corresponding to a partial
permutation ŵ. Imitating the argument for Chapter 10, Proposi-
tion 4.4, show that a partial permutation matrix ŵ′ lies in D◦

r
if and

only if ŵ′ ≥ ŵ. Deduce Proposition 3.2.

In the next section, we will see that Dr may be identified with an
open subset of a certain Schubert variety, which gives another proof
of Proposition 3.2.

4. The class of a degeneracy locus

Before writing down the formula for [Dr]
T , we record a duality

property which it must satisfy. When n � m and r comes from a
(complete) permutation w ∈ Sn , we continue to write Dr � Dw ⊆ M.

Lemma 4.1. Assume m � n, and let T � (C∗)n × (C∗)n act on
M � Hom(F, E) as usual. Identifying H∗

T
M with the polynomial ring

Z[x1, . . . , xn; y1, . . . , yn], write [Dw]
T

� Pw(x; y), for each w ∈ Sn .
Then Pw−1(x; y) � Pw(−y;−x).

Proof. We use the “transpose” automorphism τ : M → M, com-
ing from the identification

M � Hom(F, E) � Hom(E∨ , F∨).
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This is equivariant with respect to the automorphism of B−×B+ send-
ing (g , h) 7→ ((h−1)†, (g−1)†). Restricting to the torus, the pullback
homomorphism τ∗ : H∗

T
M → H∗

T
M is given by xi 7→ −yi , yi 7→ −xi .

On the other hand, τ maps A†w to Aw � A†
w−1 , so τ−1(Dw) � Dw−1

and therefore

Pw(−y;−x) � τ∗[Dw]
T
� [Dw−1]T � Pw−1(x; y),

as claimed. �

Next, we use another graph construction to equivariantly embed
M � Hom(F, E) into Fl(V), where V � E ⊕ F with its induced T-
action. The map is given by

ϕ 7→ (Fϕ |F1
⊂ · · · ⊂ Fϕ |Fm

� Fϕ ⊂ E1 + Fϕ ⊂ · · · ⊂ En + Fϕ � V),

where E• and F• are the standard flags, and Fϕ |Fq
is the graph of the

restriction ϕ|Fq . Using the standard basis e1, . . . , en , f1, . . . , fm, this
map is represented in matrices by

ϕ 7→



ϕ
1

. . .

1
1

. . .

1

0


(So the first column is (ϕ( f1), f1), the second is (ϕ( f2), f2), etc.)

It is easy to identify the image of this graph embedding. Let
vn,m ∈ Sn+m be the permutation

vn,m � [n + 1, . . . , n + m , 1, . . . ,m].

(So ϕ � 0 maps to the permutation matrix Avn ,m .) Then the embed-
ding is a T-equivariant isomorphism

M � Ω̃◦

onto the opposite Schubert cell Ω̃◦ � Ω̃◦w◦vn ,m
containing the fixed

point pvn ,m .
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Using the isomorphism M � Ω̃◦, we find a useful realization of
the degeneracy locus Dr.

Lemma 4.2. Let r be the rank function coming from an n × m partial
permutation ŵ, and let w ∈ Sn+m be the corresponding permutation. Under
the identification M � Ω̃◦ ⊆ Fl(V), we have Dr � Ωw−1 ∩ Ω̃◦.

Proof. Let E• be the flag in V corresponding to the ordered basis
{en , . . . , e1, fm , . . . , f1}, indexed so that Ep ⊆ V has codimension p.
So if p ≤ n, then Ep

� ker(E ։ Ep) ⊕ F. This means Fϕ |Fq
∩ Ep

�

kerϕpq for 1 ≤ p ≤ n and 1 ≤ q ≤ m.
The Schubert variety Ωw−1 is defined as the locus of flags G•

satisfying conditions

rk(Gq → V/Ep) ≤ rw−1(q , p) � rw(p , q)

for all p , q. Our choice of w—as the minimal permutation so that
rw(p , q) � rpq whenever p ≤ n and q ≤ m—means that all the above
conditions on rk(Gq → V/Ep) follow from those where p ≤ n and
q ≤ m. Restricting to M � Ω̃◦, these conditions become

rk(Fq → Ep) ≤ rpq ,

as claimed. �

Together with two results from Chapter 10 (Proposition 5.4 and
Corollary 5.5), Lemma 4.2 implies that Dr is irreducible and Cohen-
Macaulay, of codimension ℓ(w) � ℓ(ŵ) in M.

Theorem 4.3. Let r be the rank matrix of an n ×m partial permutation
ŵ, which extends to a permutation w ∈ Sn+m . Then

[Dr]
T
�Sw(x; y)

in H∗
T

M � Z[x1, . . . , xn; y1, . . . , ym], where xi � cT
1 (ker(Ei ։ Ei−1))

and y j � cT
1 (F j/F j−1), so the weight of T on the (i , j) entry of M is xi − y j .

Proof. Let ι : M ֒→ Fl(V) be the graph embedding, identify-
ing M � Ω̃◦ as above, where Ω̃◦ � Ω̃◦w◦vn ,m

. By Lemma 4.2, Dr �

Ωw−1 ∩ Ω̃◦. Since Ω̃◦ is an affine space containing the fixed point
pvn ,m , the pullback ι∗ : H∗

T
Fl(V) → H∗

T
M is the same as the restriction
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homomorphism H∗
T

Fl(V) → H∗
T
(pvn ,m ). So [Dr]

T
� ι∗[Ωw−1]T . In

H∗
T

Fl(V), let zi � −cT
1 (Si/Si−1) and write t1, . . . , tn+m for the charac-

ters −x1, . . . ,−xn ,−y1, . . . ,−ym. We have

[Dr]
T
�Sw−1(z; t)|vn ,m

�Sw−1(tn+1 , . . . , tn+m , t1, . . . , tn; t1, . . . , tn+m)

�Sw−1(−y ,−x;−x ,−y).

The theorem then follows from an algebraic identity of Schubert
polynomials, which we will prove using geometry.

Consider the case where n � m and r is the rank function of a
permutation w ∈ Sn , so Dr � Dw . Regarding w as an element of S2n

by the standard embedding Sn ֒→ S2n, the above argument shows

[Dw]
T
�Sw−1(z; t)|vn ,n ,

By the stability property of Schubert polynomials,Sw−1(z; t) depends
only on z1, . . . , zn and t1, . . . , tn, since w−1 ∈ Sn . So this specialization
is

Sw−1(z; t)|vn ,n �Sw−1(−y1, . . . ,−yn;−x1, . . . ,−xn).

Applying Lemma 4.1, we have

Sw−1(−y;−x) �Sw(x; y),

and the theorem is proved in this case.
Now we turn back to the general case. When w(i) < w(i + 1)

for all i ≥ n, the polynomial Sw(x; y) depends only on the vari-
ables x1, . . . , xn (Chapter 10, §10.3). From the identity Sw(x; y) �

Sw−1(−y;−x), it follows that Sw(x; y) depends only on y1, . . . , ym if
w−1(i) < w−1(i + 1) for all i ≥ m. Both of these conditions hold
when w comes from an n × m partial permutation. Applying these
conclusions to the above formula [Dr]

T
� Sw−1(−y ,−x;−x ,−y), we

obtain
[Dr]

T
�Sw(x1, . . . , xn; y1, . . . , ym),

as claimed. �
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In the course of the proof, we identified several useful properties
of Schubert polynomials:

Corollary 4.4. (1) For any permutation w, there is a duality
identity,

Sw−1(x; y) �Sw(−y;−x).

(2) Double Schubert polynomials may be computed recursively by di-
vided difference operators ∂y

k
acting on the y-variables:

∂
y

k
Sw(x; y) �

{
−Ssk w(x; y) if skw < w;

0 otherwise.

(3) We have

Sw(x; y) ∈ Z[x1, . . . , xn; y1, . . . , ym]

if and only if w(i) < w(i + 1) and w−1( j) < w−1( j + 1) for all
i ≥ n and all j ≥ m.

5. Essential sets

If r is a rank function coming from an n × m partial permutation
matrix, the nm rank conditions rk(Fq → Ep) ≤ rpq defining Dr are
highly redundant. A more efficient list of conditions is given by the
essential set.

First, we need to construct the diagram of a (partial) permutation.
This is the collection of boxes which remain after crossing out all
boxes to the right or below a dot in the matrix. It is not hard to see
that ℓ(ŵ) is the number of boxes in the diagram. Here is an example,
continuing the one above. The crossed-out boxes are shaded, so the
diagram consists of the unshaded boxes; we have ℓ(ŵ) � 12.

0
0

0 1 2

The essential set is the set of conditions coming from boxes (p , q) in
the southeast corners of the diagram. In our running example, the
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essential set consists of the five conditions

rk(F5 → E1) ≤ 0, rk(F3 → E2) ≤ 0,

rk(F1 → E4) ≤ 0, rk(F3 → E4) ≤ 1,

rk(F5 → E4) ≤ 2.

These suffice to define Dr. That is, each condition rk(Fq → Ep) ≤ r

means that all the size r + 1 minors of the upper-left p × q submatrix
vanish; as (p , q) ranges over the essential set, the determinantal ideal
generated by these minors defines Dr as a subscheme of the affine
space M.

By construction, if w ∈ SN is the permutation associated to ŵ,
its diagram—and hence its essential set—is the same as that of ŵ.
Continuing with w � 6 4 2 7 1 3 5, here is an example.

0
0

0 1 2

Proofs of these facts about essential sets and the schemes Dr can
be found in the references listed at the end of the chapter. Lemma 4.2
is one useful consequence—it follows from the observation that the
essential set of w is that same as that of the partial permutation matrix
it comes from.

Exercise. For a permutation ŵ � w, verify the above claim that
the number of boxes in the diagram of w is equal to the number of
inversions, ℓ(w) � #{i < j | w(i) > w( j)}. Observing that the matrix,
and hence the diagram, of w−1 is obtained by transposing that of w,
conclude that ℓ(w−1) � ℓ(w).

6. Degeneracy loci for maps of vector bundles

The degeneracy locus Dr ⊆ M, described above for maps of vector
spaces, globalizes to the degeneracy of maps of vector bundles on a
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variety X. This is the setting for the main theorems of this chapter,
and it leads to a central theme of this book.

Here is the setup. We have a morphism ϕ : F → E of vector
bundles on a nonsingular variety X, along with complete flags of
sub- and quotient bundles, so

F1 ⊂ · · · ⊂ Fm � F
ϕ
−→ E � En ։ · · ·։ E1,

with subscripts indicating ranks, as before; we often abbreviate this
by writing ϕ : F• → E•. Given a rank function r � (rpq), the degen-
eracy locus

Dr(ϕ) �
{
x ∈ X

�� rk(Fq

ϕpq

−−→ Ep) ≤ rpq for all p , q
}

is defined scheme-theoretically by the evident determinantal equa-
tions.

From now on, we will assume r comes from an n × m partial
permutation, which extends minimally to a permutation w ∈ Sn+m ,
so the matrix locus Dr ⊆ M is irreducible. Recall that ℓ(r) � ℓ(w)

denotes the length, which is also the codimension of Dr in the space
of n × m matrices M.

A key feature of our degeneracy locus formulas is that they
produce classes which are supported on the locus, regardless of
any genericity assumption on codimension. A cohomology class
α ∈ HkX is said to be supported on a subvariety Y ⊆ X if it lies in the
image of the canonical homomorphism

H2 dim X−kY � Hk(X,X r Y) → HkX.

Here is the first main theorem.

Theorem 6.1. Let ϕ : F• → E• be as above. There is a unique class
Dr ∈ H2ℓ(r)X with the following properties.

(1) Whenever Dr(ϕ) ⊆ X has codimension equal to ℓ(r), we have
Dr � [Dr(ϕ)].

(2) Given f : X′ → X, with pullback morphism ϕ′ : F′• → E′•, the
corresponding class D′

r
∈ H2ℓ(r)X′ satisfies D′

r
� f ∗Dr. (The

class Dr is “stable under pullbacks”.)
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Furthermore, for any ϕ, the class Dr is supported on Dr(ϕ).

Two aspects of this theorem are worth emphasizing. First, the class
Dr is independent of the particular morphism ϕ; it depends only on
the vector bundles E• and F•. Second, the fact that Dr is supported
on Dr(ϕ) is often significant—for example, this means that the locus
Dr(ϕ) is nonempty whenever the class Dr is nonzero.

The second main theorem gives a formula for the class Dr.

Theorem 6.2. With notation as in Theorem 6.1, we have

Dr �Sw(x; y),

where w ∈ Sn+m is the permutation associated to the rank matrix r, and the
variables are evaluated as xi � c1(ker(Ei ։ Ei−1)) and y j � c1(F j/F j−1).

We quote a basic fact from intersection theory.

Lemma 6.3. Let f : X → Y be a morphism of nonsingular varieties.
Let W ⊆ Y be a Cohen-Macaulay subvariety of codimension c, and let
Z � f −1W ⊆ X be the (scheme-theoretic) inverse image.

(1) If Z ⊆ X also has codimension c, then it is Cohen-Macaulay and

[Z] � f ∗[W]

in H2cX.

(2) In general, we have codimX Z ≤ c, and the class f ∗[W] ∈ H2cX

lies in the image of

H2dZ � H2c(X,X r Z) → H2cX,

where d � dim X − c.

Now we can prove the first theorem.

Proof of Theorem 6.1. Consider the bundle Hom � Hom(F, E)
on X, along with the tautological homomorphism Φ : F• → E• of
bundles pulled back to Hom, and the corresponding degeneracy
locus Dr(Φ) ⊆ Hom. Over a point of X, the fibers are isomorphic
to the matrix loci Dr ⊆ M considered in §2. In particular, Dr(Φ)

is irreducible and Cohen-Macaulay, of codimension ℓ(r) in Hom.
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Replacing X by Hom, we must haveDr � [Dr(Φ)] in H∗Hom, by the
first property of Dr.

The morphism ϕ : F• → E• of bundles on X corresponds to a
section sϕ : X → Hom, with Dr(ϕ) � s−1

ϕ Dr(Φ). Since Hom → X

is a vector bundle, the pullback homomorphism s∗ϕ is a canonical
isomorphism H∗Hom � H∗X. So by the second property, we must
have Dr � s∗ϕ[Dr(Φ)] � [Dr(Φ)] in H∗X � H∗Hom. (If Dr(ϕ) ⊆ X

has codimension ℓ(r), then s∗ϕ[Dr(Φ)] � [Dr(ϕ)] by Lemma 6.3, so
the two properties are compatible.)

This shows that the class Dr is determined by its properties, and
constructs the class as s∗ϕ[Dr(Φ)]. By functoriality of pullbacks, it
also shows that Dr comes from H∗(X,X r Dr(ϕ)), as claimed. �

To prove the second theorem, we will reduce to the equivariant
class of Dr ⊆ M, considered above. Combined with Lemma 6.3, the
next lemma shows that these equivariant classes are universal cases
of Dr. It is proved in Appendix E.

Lemma 6.4. Let E be a vector bundle of rank n on a variety X. Then
there is an approximation space B � BN GLn , together with morphisms
p : X′ → X and f : X′ → B such that p∗ : H∗X → H∗X′ is injective and
p∗E � f ∗E, where E → B is the universal vector bundle.

If E has a complete flag of sub- or quotient bundles E•, then the above
holds with B replaced by an approximation space for B ⊆ GLn , a Borel
subgroup of upper or lower triangular matrices, and with E replaced by E•,
the universal flag on B.

Proof of Theorem 6.2. We apply Lemma 6.4 to the flagged bun-
dles E• and F•, with B � B− × B+. Replacing X by X′ if necessary, we
obtain a morphism X → BN B by which Hom is pulled back from a
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universal bundle. That is, we have a diagram

Dr(Φ) E ×B Dr

Hom E ×B M

X B.

g

f

Writing E′• and F′• for the flagged vector spaces which define Dr ⊆ M,
the universal bundles on B are E• � E×B E′• and F• � E×B F′•. These
have Chern classes

x′i � cT
1 (ker(E′i ։ E′i−1)) � c1(ker(Ei ։ Ei−1))

and

y′j � cT
1 (F
′
j/F
′
j−1) � c1(Fj/Fj−1),

so under the pullback map f ∗ : H∗
T
(pt) → H∗X, which is the same as

g∗ : H∗T M → H∗Hom, we haveSw(x
′; y′) 7→Sw(x; y).

The locally trivial fiber bundle E×B Dr → B has Cohen-Macaulay
fibers Dr, so the variety E ×B Dr is also Cohen-Macaulay. Therefore
we may apply Lemma 6.3 to conclude that [Dr(Φ)] � g∗[E ×B Dr] in
H∗Hom.

Since [E ×B Dr] � [Dr]
B
� [Dr]

T , the theorem follows from the
formula for [Dr]

T (Theorem 4.3). �

The theorems immediately imply their equivariant analogues.
This is most often used for torus actions, but in fact the statement
is the same for any (linear algebraic) group G. In the equivariant
setting, the main results can be summarized as follows.

Corollary 6.5. Suppose G acts on a nonsingular variety X, with a
G-equivariant homomorphism of flagged vector bundles ϕ : F• → E•, and
consider the degeneracy locus Dr(ϕ), a G-invariant subscheme of X.

(1) There is a class DG
r
∈ H

2ℓ(r)
G

X with the properties specified in
Theorem 6.1.



210 §6. Degeneracy loci for maps of vector bundles

(2) Let xi � cG
1 (ker(Ei → Ei−1)) and y j � cG

1 (F j/F j−1) in H∗
G

X.
Then

DG
r
�Sw(x; y).

(3) For every ϕ, the locus Dr(ϕ) is either empty, or has codimension
at most ℓ(r) in X. If its codimension is equal to ℓ(r), then it is
Cohen-Macaulay.

(4) With variables x and y as above, if Sw(x; y) is nonzero in H∗
G

X,
then for every ϕ, the locus Dr(ϕ) is nonempty.

(Taking a principal bundleE→ B for G, one applies Theorems 6.1
and 6.2 to the case where X is replaced by E ×G X, and the vector
bundles E and F are replaced by E ×G E and E ×G F, respectively.)

Example 6.6. Let V be a G-equivariant vector bundle on Y, and
suppose there is a complete flag of subbundles E•, indexed by codi-
mension. Let us write E′• for the quotient flag, so Ep � V/Ep. Con-
sider the flag bundle X � Fl(V) → Y, with tautological subbundles
Fq � Sq . Then we have

Drw(S• → E′•) � Ωw−1(E•) ⊆ X,

where rw is the rank function corresponding to a permutation w.
(Comparing with Chapter 10, §1, we have swapped p and q, and
used rw(p , q) � rw−1(q , p).)

In the particular case where Y � B is an approximation space for
T, the vector bundle is V � E ×T Cn , and E• is the standard flag, we
have X � E ×T Fl(Cn) and

Drw (S• → E′•) � E ×
T
Ωw−1 .

Evaluating the variables as xi 7→ cT
1 (ker(E′

i
։ E′

i−1)) � cT
1 (E

i−1/Ei)

and yi 7→ −cT
1 ((Si/Si−1)

∗), the identity between the corresponding
formulas

[Ωw−1]T �Sw−1(−y;−x) and [Drw (S•→ E′•)] �Sw(x; y)

is an instance of the duality property of Schubert polynomials (Corol-
lary 4.4(i)).
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7. Universal properties of Schubert polynomials

For the rest of the chapter, we only consider degeneracy loci as-
sociated to a permutation, writing Dr � Dw. The key results of
the previous section may be understood as a universal property of
Schubert polynomials. Here we spell this out in two (equivalent)
ways.

First, continuing our earlier setup, we have a map of flagged vector
bundles on X,

F1 ֒→ · · · ֒→ Fn

ϕ
−→ En ։ · · ·։ E1,

and a degeneracy locus Dw(ϕ) � Dw(F• → E•) ⊆ X defined by
placing conditions on the ranks of the maps ϕpq : Fq → Ep . In this
situation, the universal property is a consequence of results from §6.

Proposition 7.1. The Schubert polynomialSw(x; y) is the unique poly-
nomial in Z[x; y] which maps to Dw ∈ H2ℓ(w)X under the evaluation

xi 7→ c1(ker(Ei ։ Ei−1)), y j 7→ c1(F j/F j−1),

for all degeneracy loci Dw(F• → E•) as above.

(The formula holds by Theorem 6.2, and uniqueness follows from the
case where X is an approximation to ET ×T M, because H∗X agrees
with Z[x , y] in relevant degrees.)

In the second situation, we have a vector bundle V on X, along
with two flags of subbundles

F1 ⊂ F2 ⊂ · · · ⊂ V ⊃ E1 ⊃ E2 ⊃ · · · ,

where Fp has rank p, and Eq has co-rank q in V , so E′q � V/Eq has rank
q. Here a locus is defined by placing conditions on the intersections
Fp ∩ Eq . Specifically,

Dw(F• ∩ E•) :�
{
x ∈ X

�� dim(Fp ∩ Eq) ≥ kw(p , q) for all p , q
}
.

By a construction analogous to the proof of Theorem 6.1, one has
Dw(F• ∩ E•) � f −1(E ×B−

Ωw) for a map f : X → E ×B− Fl(Cn), and
this defines the scheme structure. (As explained before, it may be
necessary to replace X by an affine bundle.)
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Setting E′q � V/Eq, this reduces to an instance of the first situation.
As in Example 6.6, we have

Dw(F• ∩ E•) � Dw−1(F• → E′•),

using the compositions Fp ֒→ V ։ E′q .

Proposition 7.2. The Schubert polynomialSw(x; y) is the unique poly-
nomial in Z[x; y] which maps to Dw−1 under

xi 7→ −c1(Fi/Fi−1), y j 7→ −c1(E
j−1/E j),

for all degeneracy loci Dw(F• ∩ E•) as above.

(Use the identitySw−1(−y;−x) �Sw(x; y).)

Conversely, the locus Dw(ϕ : F•→ E•) is an instance of the second
situation, via a graph construction. This is similar to the proof of
Theorem 4.3. Set V � En ⊕ Fn , and use flags of subbundles F′• and
(E′)•, where F′p ⊆ En ⊕ Fn is the graph of ϕ|Fp and (E′)q is the kernel
of V ։ Eq ⊕ 0. Then Dw(ϕ) � Dw−1(F′• ∩ (E

′)•).

As in §6, these results extend directly to the equivariant situation,
where a linear algebraic group G acts on X, with an equivariant mor-
phism of equivariant vector bundles ϕ : F• → E• in the first setting
(Proposition 7.1), or equivariant subbundles F• , E• of V in the second
setting (Proposition 7.2). The equivariant class Dw lives in H

2ℓ(w)
G

X,
and the formulas are given by evaluating Schubert polynomials at
the corresponding G-equivariant Chern classes.

8. Further properties of Schubert polynomials

Many other properties of Schubert polynomials can be deduced
from the geometry of degeneracy loci. Here we give a few more
examples.

Duality. We have already seen one form of duality for Schubert
polynomials:

(1) Sw−1(−y;−x) �Sw(x; y).



Chapter 11. Degeneracy loci 213

As shown in Lemma 4.1, this identity follows by applying the trans-
pose isomorphism τ : Hom(F, E)

∼
−→ Hom(E∨ , F∨). This is equivari-

ant with respect to the homomorphism

GL(E) × GL(F) → GL(F∨) × GL(E∨), (g , h) 7→ ((h†)−1, (g†)−1),

and it maps the locus Dw to Dw−1 .

In terms of general degeneracy loci for vector bundles F•
ϕ
−→ E•

on a variety X, the reason for identity (1) is even simpler. Since
rw(p , q) � rw−1(q , p), the conditions

rk(Fq → Ep) ≤ rw(p , q) and rk(E∨p → F∨q ) ≤ rw−1(q , p)

are equivalent, so Dw(F• → E•) � Dw−1(E∨• → F∨• ) as subschemes of
X. The effect of exchanging F• with E∨• and E• with F∨• is to swap xi

and −yi , establishing the identity.
There is another form of duality, coming from the exchange of

flags of vector bundles on a variety X,

F1 ⊂ · · · ⊂ Fn � V � En ։ · · ·։ E1,

with the flags

E′1 ⊂ · · · ⊂ E′n � V � F′n ։ · · ·։ F′1,

where E′p � ker(V ։ En−p) and F′q � V/Fn−q .
Combinatorially, this is related to the involution on permutations

which takes w ∈ Sn to w′ � w◦ww◦. This is w read “opposite
and backwards”, so w′(i) � n + 1 − w(n + 1 − i). For example,
(2 1 6 3 5 4)′ � 3 2 4 1 6 5.

Exercise 8.1. With notation as above, let Dw � Dw(F• → E•) and
D′w � Dw(E

′
• → F′•). Then D′w � D(w′)−1 ⊆ X.2

Example 8.2. Fix a flag E• in a vector space V , with Eq
� En−q . Re-

call that the Schubert varietyΩw(E•) ⊆ Fl(V) is defined by conditions
rk(Fp → V/Eq) ≤ rw(p , q) for all 1 ≤ p , q ≤ n. Writing F′p � V/Fn−p

for the quotient flag as above, we have

Ωw(E•) �
{
F′•

�� rk(Eq → F′p) ≤ rw′(p , q) for all 1 ≤ p , q ≤ n
}
.
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Now let

xi � c1(ker(Ei → Ei−1)) yi � c1(Fi/Fi−1),

x′i � c1(E
′
i/E
′
i−1) y′i � c1(ker(F′i → F′i−1)),

so x′
i
� xn+1−i and y′

i
� yn+1−i . Since En � V � Fn—that is, the

flags E• and F• are in the same vector bundle—there are necessarily
relations between the x and y variables:

ek(x1, . . . , xn) � ek(y1, . . . , yn) � ck(V).

So identities proved using this geometry are valid modulo the ideal
generated by differences ek(x) − ek(y) of elementary symmetric poly-
nomials (for 1 ≤ k ≤ n). Let I ⊆ Z[x; y] be this ideal.

Exchanging E• ↔ F′• and F• ↔ E′• swaps xi with y′
i
� yn+1−i , so

Exercise 8.1 implies

Sw(x; y) ≡Sw◦w−1w◦(y
′; x′) (mod I).

Applying the previous duality identity (1), we obtain

Sw◦ww◦(−xn , . . . ,−x1;−yn , . . . ,−y1)

�Sw◦w−1w◦(yn , . . . , y1; xn , . . . , x1)

≡Sw(x; y) (mod I).(2)

For example, we know Ssk
(x; y) � x1 + · · · + xk − y1 − · · · − yk .

Since w◦sk w◦ � sn−k , this Schubert polynomial is congruent to

Ssn−k
(−xn , . . . ,−x1;−yn , . . . ,−y1) � −xn − · · · − xk+1 + yn + · · · + yk+1

modulo I. (Since Ssk
(x; y) � Ssn−k

(−x′;−y′) + e1(x) − e1(y), this is
easy to see directly.) Similarly, for n � 3 and w � 2 3 1, we have
w◦ww◦ � 3 1 2, and the polynomials

S2 3 1(x1, x2, x3; y1, y2, y3) � (x1 − y1)(x2 − y1)

and

S3 1 2(−x3,−x2,−x1;−y3,−y2,−y1) � (−x3 + y3)(−x1 + y2)

are congruent modulo I.
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Example 8.3. This duality generalizes one we saw for Grassman-
nians. For an n-dimensional vector space V , there is a canonical
isomorphism Fl(V)

∼
−→ Fl(V∨), defined by sending a flag F• in V to

the flag (V/Fn−1)
∨ ⊂ · · · ⊂ (V/F1)

∨ ⊂ V∨. This isomorphism is equi-
variant for any G acting linearly on V and by the dual representation
on V∨.

Now fix a basis e1, . . . , en for V , with dual basis e∗1, . . . , e
∗
n. Then

e∗
i
7→ ei determines an isomorphism V∨ → V . This is equivariant

with respect to the involution g 7→ (g†)−1 of GL(V). Composing with
the above isomorphism of flag varieties, one obtains an involution
Fl(V) → Fl(V), defined by sending F• to the flag

(V/Fn−1)
∨ ⊂ · · · ⊂ (V/F1)

∨ ⊂ V∨ � V.

This involution of Fl(V) is equivariant with respect to g 7→ (g†)−1.
Taking the standard flag in V , so Eq is spanned by eq+1, . . . , en,

this involution takes E• to the opposite flag Ẽ•, where Ẽq is spanned
by e1, . . . , en−q . Similarly, it sends the quotient flag, E′q � V/Eq, to the

opposite quotient flag, Ẽ′q � V/Ẽq.
The involution on Fl(V) acts on Schubert varieties by sending

Ωw � Dw−1(S•→ E′•) to Ω̃w′ � D(w′)−1(S•→ Ẽ′•).

So under pullback, the substitution xi 7→ −xn+1−i, yi 7→ −yn+1−i

sends the equivariant class σw � [Ωw]
T to σ̃w′ � [Ω̃w′]

T .

One consequence is this. Recall the coefficients cw
uv ∈ ΛT defined

by
σu · σv �

∑
w

cw
uvσw

in H∗TFl(Cn).

Corollary 8.4. The substitution yi 7→ −yn+1−i sends cw
uv to cw′

u′v′.

This generalizes the substitution which relates cν
λµ

to cν
′

λ′µ′
(Chap-

ter 9, Exercise 7.4).

Exercise 8.5. For n � d+e, let λ be a partition in the d×e rectangle,
and let λ′ be its conjugate partition (in the e × d rectangle). Show
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that the corresponding Grassmannian permutations are related by
w(λ′) � w(λ)′.

Cauchy formula. The Cauchy formula for Schubert polynomials is
a very useful identity:

Sw(x; y) �
∑

vu�w

Su(x; t)Sv(t; y)

�

∑
v−1u�w

Su(x; t)Sv(−y;−t),(3)

where the notation vu � w means vu � w and ℓ(u) + ℓ(v) � ℓ(w).
No t variables appear on the left-hand side—so the right-hand side
is also independent of t!

As usual, by choosing n ≫ 0, this is equivalent to a formula in
cohomology. Let Fl � Fl(Cn), and consider the locus

Ωw � Dw(S
(2)
• → Q

(1)
• ) ⊆ Fl × Fl ,

where S(2)• is the tautological subspace flag pulled back by the second
projection pr2, and Q(1)• is the tautological quotient flag pulled back
by the first projection pr1. This is a “double Schubert variety” of the
same type used in Chapter 10, Proposition 5.4. In particular, the fiber
of pr1 over the opposite quotient flag Ẽ′• is

pr−1
1 (Ẽ

′
•) � Dw(S• → Ẽ′•) � Ω̃w−1 .

Using Exercise 8.1, the fiber of the second projection is

pr−1
2 (E•) � Dw(E• → Q•) � D(w′)−1(S• → E′•) � Ωw′ ,

where w′ � w◦ww◦. The formula (3) becomes

[Ωw]
T
�

∑
v−1u�w

[Ωu′]
T × [Ω̃v]

T(4)

in H∗
T
(Fl × Fl), with respect to the diagonal action of the torus. (Here

Ωw and Ω̃w are the usual Schubert varieties and opposite Schubert
varieties in Fl, and in the degeneracy locus formula, the variables
are specialized as xi � cT

1 (ker(Q(1)
i
։ Q

(1)
i−1)), yi � cT

1 (S
(2)
i
/S
(2)
i−1), and

ti � cT
1 (Ei/Ei−1).)
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Proof. The general case of Equation (3) can be deduced easily
from the case w � w◦ by applying difference operators. On the other
hand, Ωw◦ ⊆ Fl × Fl is the diagonal, and the case w � w◦ of (4)
becomes

[Ωw◦]
T
�

∑
u

[Ωw◦u]
T × [Ω̃u]

T ,

which is precisely the (equivariant) Künneth decomposition. (See
Chapter 3, §7, and Chapter 4, §6.) �

More products of Schubert polynomials. One can consider more
general products of Schubert polynomials, of the form

Su(x; s) ·Sv(x; t) �
∑

w

cw
uv(s , t)Sw(x; t),

where cw
uv(s , t) is homogeneous of degree ℓ(u) + ℓ(v) − ℓ(w) in vari-

ables s � (s1, s2, . . .) and t � (t1 , t2, . . .). These polynomials specialize
to the equivariant coefficients cw

uv � cw
uv(t , t). They also satisfy a van-

ishing property:

We have cw
uv(s , t) � 0 unless v ≤ w in Bruhat order.

(Note that cw
uv(s , t) need not vanish when u � w!)

Proof. On a variety X, consider a vector bundle E of rank n ≫ 0,
equipped with two general flags of subbundles S1 ⊂ · · · ⊂ Sn � E

and T1 ⊂ · · · ⊂ Tn � E. Let si � c1(Si/Si−1) and ti � c1(Ti/Ti−1).
Consider the flag bundle Fl � Fl(E) → X, with tautological quotient
flag Q•, and xi � c1(ker(Qi → Qi−1)). Then the degeneracy locus
formula gives

Su(x; s) � [Du(S• → Q•)] and Sv(x; t) � [Dv(T•→ Q•)].

The classes Sw(x; t) form a basis for H∗Fl over H∗X, so one can
write

Su(x; s)Sv(x; t) �
∑

w

cw
uv(s , t)Sw(x; t)

modulo relations among these variables—but as usual, by taking n

sufficiently large we may assume there are no relations in relevant
degrees, so this is an identity of polynomials.
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The class Su(x; s) ·Sv(x; t) is supported on Dv � Dv(T• → Q•),
so it comes from a refined class in H∗(Fl, Fl r Dv). Since H∗(Fl r Dv)

has a basis of classes [Dw(T• → Q•)], ranging over w such that
v � w, the vanishing follows from the exact sequence for the pair
(Fl, Fl r Dv). �

Notes

The case of Proposition 1.1 where m � n + 1 and r � n − 1 was treated
by Cayley [Cay49]. Salmon and Roberts gave the answer for n ×m matrices
of sub-maximal rank; see [Sal52, pp. 285–300]. The general case of the
proposition was proved by Giambelli [Gi04].

The diagram of a permutation is sometimes called the Rothe diagram. It
was invented in 1800 by Rothe, who used it to show ℓ(w) � ℓ(w−1), as in the
Exercise from §5 [R1800]. The essential set was defined in [Ful92].

The loci Dw are often called matrix Schubert varieties, and were studied
systematically in [Ful92], where the degeneracy locus formula (Theorem6.2)
was proved. The connection with equivariant cohomology was made by
Fehér and Rimányi [FeRi02, FeRi03] and Knutson and Miller [KnMi05].

Theorem 6.1 appears in [Ful92, Theorem 8.2].
Lemma 6.3 is proved in [FulPra98, Appendix A]. The version stated

there weakens the hypothesis that X be nonsingular, requiring only that
X be Cohen-Macaulay. The fact that the matrix Schubert varieties Dw are
Cohen-Macaulay appears first in [Ful92], where it is deduced from the
corresponding fact about Schubert varieties in the flag variety. The role
of the Cohen-Macaulay condition was emphasized by Kempf and Laksov
[KeLa74]; the application of degeneracy locus formulas to nonemptiness
was used by Kleiman and Laksov to establish the existence of Brill-Noether
special divisors on curves [KlLa74]. Further history and applications may
be found in [FulPra98].

The Cauchy formula for double Schubert polynomials (3) appears in
[FoKi96a, Theorem 8.1]. One can give a direct proof of the geometric
Cauchy formula (4) by a transversality argument; see [An07a].

For the Grassmannian—so u � w(λ), etc.—the coefficients cν
λµ
(s , t)were

studied by Molev and Sagan [MoSa99].
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Hints for exercises

1One recovers the partial permutation matrix A � (apq) from r by setting apq �

(rpq + rp−1,q−1) − (rp ,q−1 + rp−1,q), with the convention rp0 � r0q � r00 � 0.

2Check that rw′(n − p , n − q) � n − p − q + rw(p , q).





CHAPTER 12

Infinite-dimensional flag varieties

In the last chapter, we saw how Schubert polynomials arise nat-
urally from degeneracy loci. There we had incidence conditions
between subbundles of given ranks or co-ranks in an ambient vector
bundle V . Another way of setting up the degeneracy locus problem
is to impose conditions on subbundles whose ranks are near half the
rank of V . This arises from a different notion of stability, and leads to
a richer theory of Schubert polynomials, which will provide a helpful
link to the symplectic story in the next chapter. As a warmup, we
start by rephrasing the stability property from Chapter 10 in terms
of classes in infinite-dimensional flag varieties.

1. Stability revisited

In Chapter 10, we saw that Schubert polynomials are character-
ized by a certain type of stability. Infinite flag manifolds provide an
elegant framework for expressing this property. The variety Fl(C∞)

parametrizes all flags of finite-dimensional subspaces of C∞:

Fl(C∞) �
{
(F1 ⊂ F2 ⊂ · · · ⊂ C

∞)
�� dim Fi � i

}
.

By now, we are used to working with infinite-dimensional spaces via
finite-dimensional approximations, and this case will be similar.

To start, we consider the partial flag varieties

Fl(n)(Cm) � Fl(1, . . . , n;Cm),

for n ≤ m. There are two evident systems of maps among these
varieties. We will construct Fl(C∞) as a certain limit, and see that
Schubert polynomials are uniquely characterized by stability with
respect to these maps.

221
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First, we have the standard embeddings: for m ≤ m′, we have
the inclusion Cm ⊆ Cm′ as the span of the first m standard basis
vectors, and a corresponding embedding ι : Fl(n)(Cm) ֒→ Fl(n)(Cm′).
Second, we have the canonical projections π : Fl(n

′)(Cm) → Fl(n)(Cm),
for n′ ≥ n.

The union over the embeddings ι : Fl(n)(Cm) ֒→ Fl(n)(Cm′) is

Fl(n)(C∞) �
{
(F1 ⊂ · · · ⊂ Fn ⊂ C

∞)
�� dim Fi � i

}
.

(These embeddings were used in Chapter 10, §9, and as noted there,
the union is a model for the classifying space BB.) The projec-
tions π are compatible with this union, so we obtain projections
π : Fl(n

′)(C∞) → Fl(n)(C∞). The infinite flag variety Fl(C∞) is the
inverse limit of the spaces Fl(n)(C∞)with respect to these projections.
Thus Fl(C∞) is the inverse limit of a direct limit of finite-dimensional
varieties—a “pro-ind-variety”.

Next we consider group actions. A torus T acts on Fl(n)(Cm) via
actions on Cm for all m, by characters y1, y2, . . .. One may regard
these as an infinite sequence of distinct characters of an arbitrary
torus, or take them to be a basis of characters for the infinite torus
T �

∏
i≥1 C

∗. In the latter case, one has Λ � ΛT � Z[y1, y2, . . .], the
polynomial ring in countably many independent variables. In fact,
BT �

∏
k≥1 P

∞ is the countable product of projective spaces. (See
Appendix A, §8 for a computation of this cohomology ring.)

The embeddings ι : Fl(n)(Cm) ֒→ Fl(n)(Cm′) are equivariant with
respect to the inclusion of GLm in the parabolic subgroup of GLm′

which preserves Cm ⊆ Cm′. So they are equivariant with respect to
inclusions of Borel subgroups B, but not with respect to B−.

The projections π : Fl(n
′)(Cm) → Fl(n)(Cm), on the other hand, are

equivariant with respect to GLm .
All maps are equivariant with respect to T, and we may compute

the equivariant cohomology via limits. Naively, the cohomology of
a direct limit of spaces should be the inverse limit of cohomology
rings; the cohomology of an inverse limit should the direct limit of
cohomology rings. (Such limits are taken in the category of graded
rings. Justification for these naive expectations may be found in
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Appendix A, §8.) First we compute

H∗TFl(n)(C∞) � lim
←−−

m

H∗TFl(n)(Cm)

� Λ[x1, . . . , xn].

Then we have

H∗TFl(C∞) � lim
−−→

n

H∗TFl(n)(C∞)

� Λ[x1, x2, . . .]

� Λ[x],

the polynomial ring over in countably many variables x with coeffi-
cients in Λ. As usual, any finite computation in these rings may be
carried out by taking m and n finite but sufficiently large.

In Chapter 10, §9, we saw Ω[w] ⊆ Fl(n)(Cm), indexed by w ∈ S
(n)
m .

Schubert varieties in Fl(C∞) are indexed by permutations in S∞, and
are defined similarly, by

Ωw �

{
F•

�� dim(Fp ∩ Eq) ≥ kw(p , q) for all p , q > 0
}
,

where Eq ⊂ C∞ is the codimension q subspace where the first q

coordinates vanish.
In Chapter 10, Exercise 9.2, we saw that the embeddings ι al-

low one to define Schubert classes in H∗
T

Fl(n)(C∞) � Λ[x1, . . . , xn].
The following exercise establishes the analogous compatibility with
respect to the projections π.

Exercise. For w ∈ S
(n)
m , and n ≤ n′ ≤ m, show that π−1

Ω[w] �

Ω[w] ⊆ Fl(n
′)(Cm), so

π∗σ[w] � σ[w] in H∗TFl(n
′)(Cm).

In particular, taking n′ � m, we have π∗σ[w] � σw in H∗
T

Fl(Cm).1

By stability with respect to the system of inclusions (Chapter 10,
Exercise 9.2), for each w ∈ S

(n)
∞ �

⋃
m S
(n)
m , there is a stable Schubert

class σw in H∗
T

Fl(n)(C∞) � Λ[x1, . . . , xn]. By stability with respect to
the system of projections (the exercise above), for any permutation
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w ∈ S∞ there is a stable Schubert class σw in H∗
T

Fl(C∞) � Λ[x]. Such
classes are therefore uniquely represented by a polynomial in Λ[x],
and this determines the Schubert polynomials.

2. Infinite Grassmannians and flag varieties

Consider a vector space C2m
� Cm

− ⊕ C
m
+

, with standard basis
e−m , . . . , e−1, e1, . . . , em, so thatCm

− is the span of the negative standard
basis vectors and Cm

+
is the span of the positive ones. An embedding

C2m ֒→ C2m+2 is defined in the evident way, by identifying C2m+2

with Ce−m−1 ⊕ C
2m ⊕ Cem+1.

There are corresponding embeddings of Grassmannians, defined
by

Gr(m ,C2m) ֒→ Gr(m + 1,C2m+2),

(F ⊂ C2m) 7→ (Ce−m−1 ⊕ F ⊂ C2m+2).

Taking the union, we obtain an infinite Grassmannian,

Gr∞ �

⋃
m

Gr(m ,C2m).

This infinite Grassmannian parametrizes subspaces of both infinite
dimension and infinite codimension in a countable-dimensional vec-
tor space, and some care is required in its interpretation. The vec-
tor space is C∞− ⊕ C

∞
+

, where C∞− � span{e−1 , e−2, . . .} and C∞
+

�

span{e1, e2, . . .}, and one can use this splitting to give a more in-
trinsic description of Gr∞, which is sometimes also called the Sato
Grassmannian. (See the Notes for details and references.)

For our purposes, it is usually simplest to regard any statement
about Gr∞ as shorthand for one which takes place on Gr(m ,C2m) for
all sufficiently large m and compatibly with respect to these embed-
dings.

As in §1, an infinite torus T+ acts on C∞
+

. There are similar ac-
tions of T− on C∞− and of T � T− × T+ on C∞− ⊕ C

∞
+

. In the basis
{. . . , e−2, e−1, e1, e2, . . .} for C∞− ⊕ C

∞
+

, we will write

. . . , b2, b1, y1, y2, . . .
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for the characters of this T action. That is, for i ≥ 1, T acts on ei by
the character yi and on e−i by the character bi . So T acts on Gr∞, and
we wish to compute its equivariant cohomology in terms of certain
Chern classes.

The cohomology rings H∗
T

Gr(m ,C2m) were computed in Chap-
ter 4, but here we want a presentation which is compatible with our
embeddings of Grassmannians. This is straightforward, using the
presentations we already know.

Exercise 2.1. Show that sending

ci 7→ cT
i (C

m
− − S)

defines a surjective homomorphism Λ[c1, . . . , cm] → H∗
T

Gr(m ,C2m),
with kernel generated by relations

m∑
i�0

ci · ek−i(y1, . . . , ym) � 0

for k � m + 1, . . . , 2m.2

The total Chern class cT(Cm+1
− −S) restricts to cT(Cm

− −S) under the
embedding Gr(m ,C2m) ֒→ Gr(m + 1,C2m+2), so the exercise gives a
stable presentation. It follows that the cohomology ring of the infinite
Grassmannian is

H∗TGr∞ � lim
←−−

H∗TGr(m ,C2m) � Λ[c1, c2, . . .],

where c restricts to cT(Cm
− −S) on each finite-dimensional Grassman-

nian Gr(m ,C2m). (See Appendix A, §8.)
The polynomial ring Λ[c] � Λ[c1, c2, . . .] may be regarded as a

ring of symmetric functions in new variables a1, a2, . . ., with coeffi-
cients in Λ � Z[. . . , b2, b1, y1, y2, . . .]. A natural way to do this is by
writing

c � cT(C∞− − S) �
∏
i≥1

1 + bi

1 − ai
,

so the ai are Chern roots for S∨. Viewed this way, each ck is a super-
symmetric function in the a and b variables. By definition, a function
f (a; b) in two sets of variables is super-symmetric if it is separately
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symmetric in a and in b, and satisfies a cancellation property: the
evaluation f (a; b)|a1�−b1�t is independent of t.

Exercise 2.2. For a commutative ring R, show that the homomor-
phism

R[c1, . . . , cn] → R[h1, . . . , hm , e1, . . . , ep]

defined by
ck 7→ hk + hk−1 e1 + · · · + h1 ek−1 + ek

is injective whenever n ≤ m + p.

Exercise 2.3. Let Symm(x) denote the ring of symmetric functions
in infinitely many variables x � (x1, x2, . . .), with coefficients in a
ring R, so Symm(x) � R[h1, h2, . . .], where hk � hk(x) is the complete
homogeneous symmetric function. Consider the homomorphism

Symm(x) → Symm(a) ⊗R Symm(b)

defined by sending hk(x) to

ck(a |b) � hk(a) + hk−1(a) e1(b) + hk−2(a) e2(b) + · · · + ek(b),

where hk(a) and ek(b) are the complete homogeneous and elementary
symmetric functions in a and b variables, respectively. Show that this
is an isomorphism onto the subring of super-symmetric functions,
so the elements ck are algebraically independent generators of this
subring.3

Analogously to §1, the infinite flag variety is a limit of partial flag
varieties,

Fl∞ � lim
←−−

n

⋃
m

Fl(m ,m + 1, . . . ,m + n;C2m).

The projections Fl(m ,m + 1, . . . ,m + n;C2m) → Gr(m ,C2m) are com-
patible, making Fl∞→ Gr∞ a fiber bundle with fibers isomorphic to
Fl(C∞). The stable way to index flags in Fl(m ,m + 1, . . . ,m + n;C2m)

(or equivalently, in Fl∞) is by writing

F � F0 ⊂ F1 ⊂ F2 ⊂ · · · ,
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so that at any finite stage, dim Fi � m + i. We use the same indexing
for tautological bundles S• on Fl(m ,m + 1, . . . ,m + n;C2m) (or Fl∞),
so

S � S0 ⊂ S1 ⊂ S2 ⊂ · · · .

The computation of the equivariant cohomology of Fl∞ is similar
to that of the infinite Grassmannian: we have

H∗TFl∞ � lim
−−→

n

(
lim
←−−

m

H∗TFl(m ,m + 1, . . . ,m + n;C2m)

)

� Λ[c1, c2, . . .][x1, x2, . . .],

where on any finite partial flag variety Fl(m ,m + 1, . . . ,m + n;C2m),
the variable ck restricts to cT

k
(Cm
− −S) and xi restricts to cT

1 ((Si/Si−1)
∗).

3. Schubert varieties and Schubert polynomials

Schubert varieties in Fl∞ are defined with respect to the descend-
ing flag of subspaces Eq

� span{ei | i > q}, for q � 0, 1, 2, . . ., by
setting

Ω
∞
w �

{
F•

�� dim(Fp ∩ Eq) ≥ kw(p , q) for all p ≥ 1, q ≥ 0
}

for each permutation w ∈ S∞, where as usual

kw(p , q) � #{i ≤ p | w(i) > q}.

These are compatible with restrictions to each finite flag variety.
In fact, each Ω∞w comes from an ordinary Schubert variety Ωv in
Fl(m ,m + 1, . . . ,m + n;C2m). The distinction arises when consider-
ing stability.

In Chapter 10, §9, we saw that Schubert varieties satisfy a stability
property with respect to the inclusion ι : Sn ֒→ Sn+m , defined by
ι(w)(p) � p if k > n. There is another natural embedding, defined by

ι′(w)(p) �

{
p if 1 ≤ p ≤ m;

w(p − m) + m if i > m .
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This is written w 7→ 1m × w, so in permutation matrices, we have

A1m×w �

[
idm 0
0 Aw

]
.

Using this notation, we can say more precisely howΩ∞w is determined
by Schubert varieties in the finite-dimensional flag variety.

Lemma 3.1. The conditions definingΩ∞w are the same as those defining
Ω1m×w in the finite-dimensional flag variety Fl(C2m).

Proof. Let us examine the diagram of 1m × w, as shown below.

•
•
•
•

m

diagram
of w

The essential set of 1m × w lies in the lower-right corner, and—up
to a shift in indexing—coincides with that of w. In particular, using
this indexing shift, the conditions dim(Fp ∩ Eq) ≥ kw(p , q) define
Ω1m×w ⊆ Fl(C2m). �

For instance, with w � 2 3 1 and m � 3, so 1m ×w � 1 2 3 5 6 4, the
Schubert variety is the closure of a cell

Ω
◦
1m×w �



1 0 0 0 0 0
∗ 1 0 0 0 0
∗ ∗ 1 0 0 0
∗ ∗ ∗ 0 0 1
∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ 1 0



.

When writing matrix representatives like this, we use standard basis
vectors e−m , . . . , e−1, e1, . . . , em, and the first m + p columns span Fp.
In our example, the essential condition is dim(F2 ∩ E1) ≥ 2.
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By stability, the Schubert variety Ω∞w determines a class σ∞w in
H∗TFl∞. Indeed, the projection and inclusion maps

πn : Fl∞ →
⋃
m

Fl(m , . . . ,m + n;C2m)

and

ιm : Fl(m , . . . ,m + n;C2m) ֒→
⋃
m′

Fl(m′, . . . ,m′ + n;C2m′),

along with the subvarietiesΩ1m×w ⊆ Fl(m , . . . ,m+n;C2m), satisfy the
properties needed to define such a class, as described in Appendix A,
§8. That is, if w ∈ Sn , there is a class σ∞,nw in the cohomology of⋃

m′ Fl(m′, . . . ,m′ + n;C2m′), such that ι∗mσ
∞,n
w � σ1m×w for all m; and

then σ∞w is defined to be π∗nσ
∞,n
w .

Definition 3.2. The (enriched) Schubert polynomial is the polyno-
mial

Sw(c; x; y) ∈ ΛT[c; x] � Z[c; x; y; b]

corresponding to the class σ∞w under the identification of H∗
T

Fl∞with
ΛT[c; x] given in §2.

Recall that the torus acts by characters bi on e−i and yi on ei , and
the isomorphism ΛT[c; x] � H∗

T
Fl∞ sends xi 7→ cT

1 ((Si/Si−1)
∗) and

ck 7→ cT
k
(Cm
− − S) (stably, for any m).

Knowing howΩ∞w restricts to each finite-dimensional flag variety
will let us relate the polynomial Sw(c; x; y) to the ordinary (Lascoux-
Schützenberger) double Schubert polynomialSw(x; y). First we need
another stability property of the latter polynomials.

Lemma 3.3. For v ∈ S∞, we have

Sv(b1, . . . , bm , x1, x2, . . . ; b1, . . . , bm , y1, y2, . . .)

�

{
Sw(x1, x2, . . . ; y1, y2, . . .) if v � 1m × w for some w ∈ S∞;

0 otherwise.

Proof. We may assume v ∈ Sm+n for some n, and then w ∈ Sn

in the first case of the asserted formula. Consider a morphism of

flagged vector bundles F•
ϕ
−→ E• on a variety X, along with general
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line bundles L1, . . . , Lm , all chosen so that there are no relations
among xi � c1(ker(Ei → Ei−1)), yi � c1(Fi/Fi−1), and bi � c1(Li).
Assuming the situation is sufficiently generic, the degeneracy locus
formula of Chapter 11 says [Dw(ϕ)] �Sw(x; y). Let Hi � L1⊕ · · ·⊕Li .
Then the homomorphism id ⊕ ϕ : Hm ⊕ Fn → Hm ⊕ En determines a
map of flags (H ⊕ F)• → (H ⊕ E)•. (More precisely, (H ⊕ F)• is the
flag defined by

(H ⊕ F)i �

{
Hi ⊕ 0 if i ≤ m;

Hm ⊕ Fi−m if i > m ,

and (H ⊕ E)• is defined analogously.) The locus Dv(id ⊕ ϕ) is empty
if v(i) , i for some i ≤ m, since this forces the composition

Hm ֒→ Hm ⊕ Fn → Hm ⊕ En ։ Hm

to have rank strictly less than m, when it should be the identity. So
the locus is nonempty only if v � 1m × w for some w ∈ Sn . In this
case, we have D1m×w(id ⊕ ϕ) � Dw(ϕ), as one sees by examining the
diagram of 1m × w, as in the proof of Lemma 3.1 above. �

The next theorem explains how Sw specializes toSw .

Theorem 3.4. Under the evaluation

c 7→ c(m) :�
m∏

i�1

1 + bi

1 − ai
,

we have

Sw(c
(m); x; y)

�S1m×w(a1, . . . , am , x1, x2, . . . ;−b1, . . . ,−bm ,−y1,−y2, . . .).

Proof. Assume w ∈ Sn . From the definitions,

Sw(c; x; y) � σ∞w :� π∗nσ
∞,n
w in ΛT[c; x] � H∗TFl∞,

and ι∗mσ
∞,n
w � σ1m×w in H∗

T
Fl(m , . . . ,m + n;C2m), where

πn : Fl∞ →
⋃
m

Fl(m , . . . ,m + n;C2m)
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and

ιm : Fl(m , . . . ,m + n;C2m) ֒→
⋃
m′

Fl(m′, . . . ,m′ + n;C2m′)

are the projections and inclusions. The homomorphism π∗n is injec-
tive. The homomorphism ι∗m sends c to cT(Cm

− − S), which evaluates
as asserted, when a1, . . . , am are Chern roots of S∗ and b1, . . . , bm are
the characters on Cm

− . For any permutation v, we have seen that
σv � Sv(z; t), where −z1, . . . ,−zi are Chern roots of the rank i tau-
tological subbundle, and the t variables are appropriate characters
(Chapter 10, §6). Evaluating the z and t variables in the present
situation, this says σ1m×w �S1m×w(a , x;−b,−y).

This argument shows that Sw(c
(m); x; y) � S1m×w(a , x;−b,−y)

modulo the ideal defining H∗
T

Fl(m , . . . ,m + n;C2m). When m is
sufficiently large (relative to ℓ(w), the degree of these polynomials),
there are no relations among the variables in relevant degrees, so this
is an identity of polynomials. The identity for general m follows from
this together with Lemma 3.3. �

Evaluating at c � 1 recovers the ordinary Schubert polynomials:

Sw(1; x; y) �Sw(x;−y).

(This follows from the m � 0 case of the theorem, or from Lemma 3.3.)
Since the ordinary Schubert polynomials Sw(x; y) form a basis for
Z[x , y] over Z[y] (Chapter 10, §10.3), it follows that the enriched
Schubert polynomials also form a basis.

Corollary 3.5. The polynomials Sw(c; x; y), for w ∈ S∞, form a basis
for Z[c , x , y] over Z[c , y].

Theorem 3.4 characterizes the polynomial Sw(c; x; y), because one
can find a sufficiently large m so that there are no relations among
the c

(m)
k

in any given degree. To write out the polynomial Sw(c; x; y),
first observe that for any 1 ≤ i ≤ m, both (1m ×w) · si and si · (1m ×w)

are greater than (1m × w) in Bruhat order, so

∂iS1m×w � ∂
y

i
S1m×w � 0
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for 1 ≤ i ≤ m. It follows that the polynomial

S1m×w(a1 , . . . , am , x1, x2, . . . ; b1, . . . , bm , y1, y2, . . .)

is separately symmetric in the a and b variables. Lemma 3.3 then
shows it is super-symmetric in a and b. It follows that this Schubert
polynomial may be written as a polynomial in the variables c(m), x,
and y, since the elements c

(m)

k
generate the ring of super-symmetric

polynomials (Exercise 2.3). In fact, using Exercise 2.2, such an ex-
pression is determined by evaluating at any m with 2m ≥ ℓ(w).

Example 3.6. For w � 2 3 1, we have

S2 3 1(c; x; y) � (x1 + y1)(x2 + y1) + (x1 + x2 + y1)c1 + c2
1 − c2.

This can be checked by evaluating at m � 1, since there are no
relations among c

(1)
1 and c

(1)
2 . One computes

S1 2 4 5 3 � (x1 + y1)(x2 + y1) + (x1 + x2 + y1)(a1 + b1)

+ a1 b1 + b2
1 ,

which agrees with the asserted formula for S2 3 1(c
(1); x; y).

4. Degeneracy loci

The general degeneracy locus setting is this. On a nonsingular
variety X, we have a vector bundle V of rank 2m, with two flags of
subbundles E• and F•, arranged so that

F � F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ V ⊃ E � E0 ⊃ E1 ⊃ · · · ,

with rk F � rk E � m. For a permutation w, we define a degeneracy
locus in X by

D∞w (F• ∩ E•) �
{
x ∈ X

�� dim(Fp ∩ Eq) ≥ kw(p , q) for all p , q
}
.

Its class is computed by evaluating the polynomials Sw(c; x; y).

Proposition 4.1. There is a canonical class D∞w ∈ H2ℓ(w)X, supported
on D∞w (F• ∩ E•), compatible with pullbacks, and equal to [D∞w (F• ∩ E•)]

when the locus has expected codimension ℓ(w) in X.
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The polynomial Sw(c; x; y) is the unique polynomial in Z[c; x; y]which
maps to D∞w under the evaluation

ck 7→ ck(V − E − F), xi 7→ −c1(Fi/Fi−1), yi 7→ c1(E
i−1/Ei)

for all degeneracy loci D∞w (F• ∩ E•) ⊆ X as above.

Proof. The Schubert varieties Ω1m×w ⊆ Fl(C2m) are instances of
D∞w (F• ∩ E•), by taking F• to be the tautological flag on X � Fl(C2m)

and E• to be the standard fixed flag (both appropriately re-indexed
so that the m-dimensional pieces are F0 and E0, respectively). To
prove the second statement of the proposition, it suffices to consider
this case, and in Theorem 3.4 we have already seen that Sw(c; x; y)

are characterized this way.
The general construction ofD∞w similarly reduces to that ofD1m×w,

just as in Lemma 3.1. Possibly after replacing X by an affine bundle,
F• and E• determine a morphism f : X → E×B− Fl(m , . . . ,m+n;C2m)

such that D∞w (F• ∩ E•) � f −1(E ×B− Ω1m×w). (See Chapter 11, §6, and
Appendix E.) The class is then defined by D∞w � f ∗[Ω1m×w]

B− . �

The characterization of Sw(c; x; y) provided by Theorem 3.4 also
shows that these polynomials are related by divided difference oper-
ators:

∂iSw(c; x; y) �

{
Swsi (c; x; y) if wsi < w;

0 if wsi > w ,

and

∂
y

i
Sw(c; x; y) �

{
Ssi w(c; x; y) if siw < w;

0 if siw > w.

These operators are linear over Z[c], that is, they treat the c variables
as scalars.

On the other hand, the permutations w
(n)
◦ � [n , . . . , 2, 1] are not

stable with respect to the embedding ι′. We do not have a simple
product formula for S

w
(n)
◦
(c; x; y), although there are explicit deter-

minantal formulas. Here is one such formula, based on the Kempf-
Laksov formula (Chapter 9, Theorem 2.2).
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Theorem 4.2. For w
(n)
◦ � [n , . . . , 2, 1] ∈ S∞, we have

S
w
(n)
◦
(c; x; y) � ∆(n−1,... ,2,1)(c(1), . . . , c(n − 1))

� det
(
cn−2i+ j(i)

)
1≤i, j≤n−1

where the entries are

c(p) � c · c(E/En−p − Fp/F) � c ·
©«

p∏
i�1

n−p∏
j�1

1 + y j

1 − xi

ª®¬
.

Proof. Using a “diagonal trick”, the problem can be reduced to
a Grassmannian degeneracy locus. Let us fix a sufficiently large
m, along with a vector bundle V of rank 2m and general flags of
subbundles E• and F• on a variety X. Continuing the notational
conventions we have used in this chapter, this means Fp has rank
m + p and Eq has rank m − q.

We consider the locus

D∞
w
(n)
◦

(F• ∩ E•) � D
1m×w

(n)
◦
(F• ∩ E•)

in X. The essential conditions for this locus are

dim(Fp ∩ En−p) ≥ p , p � 1, . . . , n − 1.

Equivalently, the locus is defined by the conditions

dim(Fp ⊕ En−p ∩ ∆V) ≥ p , p � 1, . . . , n − 1,

on intersections inside the bundle V ⊕ V , where ∆V ⊂ V ⊕ V is the
diagonal subbundle. This is now pulled back from a Schubert locus
Ω(n−1,... ,2,1)(G•) in the Grassmann bundle Gr(2m ,V ⊕ V), using

G• : · · · ⊂ F1 ⊕ En−1 ⊂ · · · Fn ⊕ E0 ⊂ · · · ⊂ V ⊕ V

as the reference flag. The assertion then follows from the Kempf-
Laksov formula (Chapter 9, Theorem 2.2): the quotient bundle Q
restricts to (V ⊕ V)/∆V � V , so the entries c(p) � c(Q − G2m+2p−n)
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become

c(Q − G2m+2p−n) � c(V − (Fp + En−p))

� c(V − (F + Fp/F + E − E/En−p))

� c(V − E − F) · c(E/En−p − Fp/F),

as claimed. �

Exercise 4.3. Write out the formula for S3 2 1(c; x; y).4

The Schubert polynomials Sw(c; x; y) satisfy analogues of many of
the properties ofSw(x; y)which we have seen in the last two chapters.
Some of them are stated in the Notes below.

Notes

Various treatments of stability for Schubert polynomials appear in the
literature. The geometry is often explained in terms of embeddings Fl(Cn) ⊂

Fl(Cn+1) ⊂ · · · , with respect to standard inclusions Cn ⊂ Cn+1 (as the span
of the first n basis vectors). The union of such a chain is an ind-variety,
Fl′ �

⋃
n Fl(Cn), which parametrizes complete flags F•which are eventually

standard—that is, Fn � Cn for all n ≫ 0. This is naturally a subspace of
Fl(C∞), and the pullback homomorphism of cohomology rings associated
to the embedding Fl′ ֒→ Fl(C∞) is an inclusion

Λ[x1, x2, . . .] ֒→ Λ[[x1, x2, . . .]]gr.

Here H∗
T

Fl′ � Λ[[x]]gr is the graded formal series ring, where expressions
involving infinite sums of bounded total degree are allowed, like x1+x2+· · · .
This is the graded inverse limit of the rings Λ[x1, . . . , xn] (see Appendix A,
§8). So the claim that Schubert polynomials belong to the polynomial
subalgebra Λ[x] ⊆ Λ[[x]]gr is equivalent to the assertion that the Schubert
classes in H∗TFl′ appear by restriction from H∗T Fl(C∞).

The stability property (with respect to the embeddings defining Fl′) was
highlighted by Fomin and Kirillov [FoKi96b], and was taken as a definition
of Schubert polynomials by Billey and Haiman [BiHa95]. We will see
versions of the Billey-Haiman polynomials for symplectic flag varieties in
Chapter 13.

The Sato Grassmannian appears in connection with loop groups, and
parametrizes solutions to certain hierarchies of differential equations. A
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general reference for this point of view is the book by Pressley and Segal
[PrSe86].

Lemma 3.3 appears in [BuRi04, Corollary 2.5], with a more combinato-
rial proof.

Lam, Lee, and Shimozono launched an extensive study of the polyno-
mials Sw(c; x; y), and showed that they exhibit many remarkable properties
in addition to the ones mentioned here [LLS21]. These authors call them
“back-stable” Schubert polynomials, building on ideas of Buch and Knut-
son. They use the characterization from Theorem 3.4 as a definition, and
label the variables a1 , a2, . . . and b1, b2, . . . by nonpositive indices, writing
x0, x−1, . . . and y0, y−1, . . ., respectively. The version we present here is
based on [AnFul21a], a variation on [LLS21].

Pawlowski gave a different geometric interpretation of the polynomials
Sw(c; x; y), in terms of graph Schubert varieties [Paw19]. In fact, the graph
construction provided one motivation for the “back-stable Schubert poly-
nomials”; see [KLS13, §7].

Using a variation on the diagonal method used in proving Theorem 4.2,
one can deduce formulas for degeneracy loci labelled by vexillary permuta-
tions. This idea was exploited in [AnFul12].

The polynomials Sw(c; x; y) may be defined more generally to allow w

to be a permutation of the integers, fixing all but finitely many; this group
is denoted SZ. This is the setting in [LLS21] (and in [AnFul21a]). For such
w ∈ SZ, these Schubert polynomials also depend on nonpositive variables
x0, x−1, x−2, . . ., and they form a basis for Λ[c , x] over Λ. They are related
by divided difference operators ∂i for i ∈ Z, which act by the usual formula
on the x variables, treating the c and y variables as constants—except for
∂0, which acts by ∂0(ck) � ck−1 + x1ck−2 + · · · + xk−1

1 .
We mention a few properties of these polynomials, without proof. The

reader may try to deduce them using Theorem 3.4(or consult the references).
They satisfy an extended interpolation property. For v in SZ, we spe-

cialize the x variables as usual, writing

x 7→ −yv
� (−yv(i))i∈Z .

The c variables specialize by

c 7→ cv :�
∏
i≤0

v(i)>0

1 + yi

1 + yv(i)
.
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(If one writes c �

∏
i≤0

1+yi

1−xi
, this is compatible with the specialization of x

variables.) Then Sw(c; x; y) satisfy and are characterized by

Sw(c
v ;−yv; y) �




∏
i< j : w(i)>w( j)

(yw( j) − yw(i)) if v � w;

0 if v � w ,

(1)

for permutations v , w ∈ SZ. Although it is not written in precisely this
form, this property is implicit in [LLS21].

When v ∈ S∞, so it permutes only the positive integers, we have cv
� 1,

and this special case of (1) says

Sw(1;−yv ; y) �




∏
i< j : w(i)>w( j)

(yw( j) − yw(i)) if v � w;

0 if v � w ,

(2)

for permutations v , w ∈ S∞. This gives another proof that Sw(1; x; y) �

Sw(x;−y). (However, the conditions of (2) for v , w ∈ S∞ do not suffice to
determine Sw(c; x; y).)

There is a duality formula for Sw(c; x; y), extending the one we saw in
Chapter 11, §8. Let c � 1 + c1 + c2 + · · · be defined by the relations

ck + ck−1c1 + · · · + ck � 0

for k > 0, so c � (1 + c1 + c2 + c3 + · · · )
−1. Then

(3) Sw(c; x; y) � Sw−1(c; y; x).

There is also an upgraded version of the Cauchy formula from Chap-
ter 11, §8: we have

(4) Sw(c; x; y) �
∑

vu�w

Su(c
′; x; t) · Sv(c

′′;−t , y),

for series c , c′, c′′ such that c � c′ · c′′, where vu � w means vu � w and
ℓ(v) + ℓ(u) � ℓ(w), as before.

As m → ∞, the Schubert polynomials S1m×w(a1 , . . . , am , 0, 0, . . .) sta-
bilize to a symmetric function Fw , known as a Stanley symmetric function.
Theorem 3.4 shows that the Stanley function is obtained by specializing
variables in Sw(c; x; y): we have

Fw � Sw(c; 0; 0),

with the c variables evaluated as complete homogeneous symmetric func-
tions in the a variables. Combining this with the Cauchy formula (4), we
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obtain

Sw(c; x; y) �
∑

zuv�w

Sv(1; x; 0) · Su(c; 0, 0) · Sz(1; 0, y)

�

∑
z−1uv�w

Sv(x) · Fu(c) ·Sz(y).(5)

Stanley symmetric functions are also known as stable Schubert polynomi-
als, because of their characterization as stable limits of S1m×w . They were
introduced by Stanley, who defined Fw as a certain generating function of
reduced expressions for w [Sta84]. There are several other combinatorial
formulas for them; one “Littlewood-Richardson” type formula for the Schur
expansion of a Stanley function was given by Fomin and Greene [FoGr98].
Using this, (5) leads to an explicit expression for Sw(c; x; y).

The geometry corresponding to the Schubert polynomials for w ∈ SZ is
that of an infinite flag variety Fl±∞ which parametrizes flags

· · · ⊂ F−2 ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ F2 ⊂ · · ·

extending infinitely in both directions from F � F0. The algebra and geome-
try are similar for the divided difference operators which compute Schubert
polynomials for the symplectic flag variety, as we will see in the next chapter.

Hints for exercises

1For w ∈ S
(n)
m , one can check that the conditions on dim(Fp ∩ Eq) for p > n

are redundant. Alternatively, the projection π is smooth and B−-equivariant, so
π−1Ω[w] must be a Schubert variety. To see which one, note that w is the unique
minimal element of {v ∈ Sm | v(i) � w(i) for i � 1, . . . , n} (in Bruhat order), and
the T-fixed points of π−1(p[w]) are indexed by this set.

2Using cT (Cm
− − S) � cT (Q − Cm

+
), the relations simply say that cT(Q − Cm

+
) ·

cT(Cm
+
) � cT(Q) vanishes in degrees greater than m. To see that the classes ci

generate, it suffices to consider the case where T is trivial, and this case was
handled in Chapter 4.

3The element c � 1+ c1 + c2 + · · · is equal to
∏

i≥1
1+bi

1−ai
, so the ck are algebraically

independent and super-symmetric. So it suffices to show that the projection

Symm(a) ⊗R Symm(b) → Symm(x), a 7→ x , b 7→ 0,

is injective when restricted the subring of super-symmetric functions. Using bases
of complete homogeneous and elementary symmetric functions, this projection is
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identified with the homomorphism R[h1 , h2 , . . . , e1 , e2 , . . .] → R[h1 , h2 , . . .] which
sends e 7→ 0. To show that no nonzero super-symmetric function lies in the ideal
(e1, e2 , . . .) ⊆ R[h , e], one can argue as follows.

Consider the homomorphism

σ : R[h , e] → R[τ, τ′, h , e]

defined by hk 7→ hk +τhk−1+τ
2hk−2+ · · ·+τ

k and ek 7→ ek +τ
′ek−1. Then f ∈ R[h , e]

is super-symmetric if and only if σ( f ) is independent of τ, τ′. (By writing τ � t− a1

and τ′ � −t − b1, this identifies σ with the evaluation at a1 � t, b1 � −t.) One
checks furthermore that σ is injective. (This is not true with finite variable sets!)

Now suppose f �

∑
i≥1 fi ei for some f1 , f2 , . . . ∈ R[h , e]. Then

σ( f ) �
∑
i≥1

σ( fi) σ(ei)

� σ( f1) τ
′
+

∑
i≥1

(σ( fi) + σ( fi+1) τ
′)ei ,

so σ( f1) � 0 and hence f1 � 0. Continuing in this way, one sees all fi � 0, so f � 0,
as claimed.

See also [MNR81, Ste85]. Many authors differ in conventions for super-
symmetric functions: the more common convention is related to ours by replacing
bi with −bi .

4The answer is

S3 2 1(c; x; y) � c2c1 − c3 + c2(x1 + x2 + y1) + (c
2
1 − c2)(x1 + y1 + y2)

+ c1(x1 + y1 + y2)(x1 + x2 + y1) + (x1 + y1)(x2 + y1)(x1 + y2).

The examples given after Theorem 2.2 of Chapter 9 may be helpful.





CHAPTER 13

Symplectic flag varieties

We have seen that formulas for degeneracy loci are closely con-
nected with flag varieties and the groups GLn and SLn , of Lie type A.
Degeneracy loci for symmetric morphisms, or varieties of isotropic
subspaces with repsect to a symplectic form, are correspondingly
related to the symplectic group Sp2n , of Lie type C. In this chapter,
we will see type C analogues of the basic facts about flag varieties.
The next chapter takes up the problem of describing Schubert poly-
nomials for such varieties.

Much of this story proceeds in parallel with the type A case, and
much of it generalizes to arbitrary Lie type.

1. Degeneracy loci for symmetric maps

A linear map ϕ : E∨→ E is symmetric if it is equal to its dual:

ϕ � ϕ∨ as maps E∨→ E∨∨ � E.

This is the same as saying ϕ lies in the subspace Sym2 E ⊆ E ⊗ E �

Hom(E∨ , E). The group GL(E) acts on Sym2 E in the standard way,
by g(v · w) � (gv) · (gw). Choosing a basis, so E � Cn, a symmetric
map ϕ is given by a symmetric matrix A, and GLn acts on symmetric
matrices by

g · A � gAg†.

Let SMn ⊆ Mn,n be the space of symmetric matrices, with this action
of GLn . The identification E � Cn induces Sym2 E � SMn .

Consider the locus Dr of symmetric maps of rank at most r. This
is a GL(E)-invariant subvariety of Sym2 E, and in fact, these loci
are precisely the GL(E)-invariant subvarieties. (Any symmetric bi-
linear form can be diagonalized, so the GL(E)-orbits are precisely
D◦r � {A | rk(A) � r}, and in this setting it is easy to see Dr � D◦r .) As

241
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before, the basic question arises: what is the polynomial correspond-
ing to [Dr]

GL(E) in ΛGL(E) � Z[a1, . . . , an]?

Exercise. Compute [D0]
GL(E)

� c
GL(E)
top (Sym2 E) as a polynomial in

a1, . . . , an .1

An answer to the general question was given by Giambelli in 1906:

[Dr]
GL(E)

� 2n−r
∆(n−r,... ,2,1)(a) in ΛGL(E) � Z[a1, . . . , an],

where ai � c
GL(E)
i
(E). Equivalently, [Dr]

T
� 2n−r s(n−r,... ,2,1)(t1 , . . . , tn)

inΛT � Z[t1, . . . , tn]. As the exercise illustrates, however, this is not a
special case of the degeneracy locus formula for general maps in any
natural way. For example, the codimensions are wrong: D0 � {0}
has codimension n2 in Mn,n , but codimension

(n+1
2

)
in SMn .

We will see variations on these formulas. As motivation for
what follows, let us start by sketching an argument analogous to the
one which proved the Cayley-Giambelli-Thom-Porteous formula in
Chapter 11 (Proposition 1.1). The idea there was to replace ϕ : F→ E

by a full-rank homomorphism F → E⊕F, namely the graph Fϕ , and to
interpret the conditions rk(ϕ) ≤ r, or equivalently dim ker(ϕ) ≥ n−r,
as dim(Fϕ ∩(0⊕ F)) ≥ n− r, defining a Schubert variety in the Grass-
mannian Gr(m , E ⊕ F).

Here we proceed similarly: ϕ : E∨ → E corresponds to a graph
E∨ϕ ⊆ E⊕E∨. There is a canonical symplectic form on E⊕E∨, given by
ω(v ⊕ f , w ⊕ g) � f (w) − g(v). The condition that ϕ be symmetric is
equivalent to requiring that the graph E∨ϕ be isotropic with respect to
this form. The subspace 0⊕E∨ is also isotropic, and as before there is
a natural identification ker(ϕ) � E∨ϕ ∩ (0 ⊕ E∨). We will return to this
construction, and the proof of Giambelli’s formula, in Chapter 14, §3.

Thus we are led to consider Schubert varieties in spaces of isotropic
flags. We will begin with a quick review of the linear algebra of sym-
plectic vector spaces.

2. Isotropic subspaces

We have a 2n-dimensional vector space V , equipped with a sym-
plectic form—that is, a skew-symmetric nondegenerate bilinear form
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ω :
∧2 V → C. All such forms are equivalent, up to change of basis.

We write the standard basis for V as

en , . . . , e1, e1, . . . , en ,

regarding the barred integers as negative numbers, so that ı � −i and
ı � i. As a convenient symplectic form with respect to this basis, we
choose

ω �

n∑
i�1

e∗
ı
∧ e∗i

so for i , j > 0,

ω(eı , e j) � −ω(e j , eı) � δi j , and ω(ei , e j) � ω(eı , e ) � 0.

This form has Gram matrix

©«

1
...

1
−1

...

−1

ª®®®®®®®®®¬

.

The symplectic form induces an isomorphism V
∼
−→ V∨, by sending

v 7→ ω(v , ·), and these choices identify the dual basis as e∗
i
� eı for all

i.
For a subspace F ⊆ V , the orthogonal space F⊥ ⊆ V is

F⊥ �

{
v ∈ V

��ω(u , v) � 0 for all u ∈ F
}
.

An elementary fact is that V/F⊥ � F∨ under the isomorphism V �

V∨, so dim F⊥ � dim V − dim F. A subspace is isotropic if F ⊂ F⊥, or
equivalently, if ω |F ≡ 0. It follows that dim F ≤ n for any isotropic
subspace F. For any vector v ∈ V , we have ω(v , v) � 0 (since ω is
skew-symmetric), so every 1-dimensional subspace of V is isotropic.

A maximal isotropic subspace F ⊂ V is often called Lagrangian;
such spaces have dim F � n. A (complete) isotropic flag in V is a chain

F• : Fn ⊂ · · · ⊂ F1 � F ⊂ V
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of isotropic subspaces, with dim Fp � n + 1 − p for all p, so F � F1

is Lagrangian. An isotropic flag can also be specified by choosing
a Lagrangian subspace F ⊂ V and an ordinary complete flag in F.
Our “backwards” indexing is motivated by the distinguished role of
Lagrangian subspaces, and in fact is necessary for stability properties,
as we will see.

A subspace F ⊆ V is co-isotropic if F ⊇ F⊥. Any complete isotropic
flag F• extends canonically to an ordinary complete flag in V , by
appending co-isotropic spaces Fp � F⊥

p+1, to obtain

Fn ⊂ · · · ⊂ F1 ⊂ F1 ⊂ · · · ⊂ Fn � V.

These co-isotropic spaces have dimension dim Fp � n + p.
The standard basis leads to a standard isotropic flag E•, with Eq �

span{en , . . . , eq} for q > 0. It extends to the standard complete flag
by setting

Eq � E⊥q+1 � span{en , . . . , e1, e1, . . . , eq}

for q > 0. The standard Lagrangian subspace is

E � E1 � span{en , . . . , e1}.

The symplectic group is the subgroup Sp(V, ω) ⊆ GL(V)preserving
the form ω. When using the standard basis and standard symplectic
form, we usually write this as Sp2n ⊆ GL2n. The subgroup B ⊆ Sp2n

of upper-triangular matrices is a Borel subgroup; it is the subgroup
fixing the opposite isotropic flag Ẽ•, defined by Ẽq � span{en , . . . , eq}

for q > 0.
With respect to the standard basis and form ω, the symplectic

group Sp2n consists of block matrices(
X Y

Z W

)

such that

(XDY†)† � XDY†,

(ZDW†)† � ZDW†, and

XDW† − YDZ† � D ,
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where D is the n×n matrix with 1’s on the anti-diagonal and 0’s else-
where. These give quadratic equations defining Sp2n as a subgroup
of GL2n .

The Lagrangian Grassmannian LG(V)parametrizes Lagrangian sub-
spaces in V , and it embeds as a closed subvariety in the ordinary
Grassmannian LG(V) ֒→ Gr(n ,V). By Witt’s theorem, the symplec-
tic group acts transitively on Lagrangian subspaces, so there is an
identification LG(V) � Sp2n/P, where P is the parabolic subgroup
which fixes the Lagrangian subspace Ẽ1 � span{en , . . . , e1}.

Similarly, the isotropic flag variety Flω(V) parametrizes complete
isotropic flags in V . From the definition, it embeds as a closed sub-
variety of the partial flag variety Fl(n)(V) � Fl(1, . . . , n; V). But as
we saw, each isotropic flag canonically extends to a complete one, so
we obtain an embedding Flω(V) ֒→ Fl(V). There is an identification
Flω(V) � Sp2n/B, using Witt’s theorem again.

3. Symplectic flag bundles

The notions of symplectic form, flag variety, and Lagrangian
Grassmannian globalize immediately to the setting where V is a
G-equivariant vector bundle on a variety Y with G-action. Here ω
is a G-equivariant section of

∧2 V∨, locally of the form described in
the previous section. We will give constructions of the isotropic flag
variety parallel to the descriptions of ordinary flag varieties we saw
in Chapter 4. As before, it is useful—and no more complicated—to
carry this out for flag bundles.

Let G be a linear algebraic group acting on a variety Y, and let V be
a G-equivariant vector bundle of rank 2n, equipped with a symplectic
form ω :

∧2 V → CY with values in the trivial line bundle. We
assume ω is G-invariant; that is, ω(g · u , g · v) � ω(u , v) for all g ∈ G.
The isotropic flag bundle ρ : Flω(V) → Y parametrizes complete
isotropic flags of subspaces: a point in the fiber ρ−1(y) is an isotropic
flag F• in the vector space V(y).

The isotropic flag bundle can be constructed as a tower of projec-
tive bundles. One starts with X1 � P(V) → Y, a projective bundle
with fibers P2n−1; this has a tautological line bundle Sn ⊆ V , as well
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as its orthogonal complement S⊥n , of rank 2n − 1. The next step is
X2 � P(S⊥n /Sn) → X1, a bundle with fibers P2n−3; this has tautological
bundles Sn ⊂ Sn−1 ⊂ S

⊥
n−1 ⊂ S

⊥
n . Continuing in this way, one obtains

Flω(V) � Xn � P(S⊥2 /S2) → Xn−1 → · · · → Y,

so the successive fibers in the tower are projective spaces of dimen-
sions 2n − 1, 2n − 3, . . . , 3, 1, and all these maps are G-equivariant.
So the isotropic flag bundle is projective, of relative dimension

dim Flω(V) − dim Y � (2n − 1) + (2n − 3) + · · · + 1 � n2,

and H∗
G

Flω(V) is free of rank

2n · (2n − 2) · · · 2 � 2n · n!

as a module over H∗
G

Y.
As in Chapter 4, we also obtain a presentation and a basis for

the equivariant cohomology ring. Let xi � cG
1 (Si/Si+1), and write

ek � ek(x1, . . . , xn) � cG
k
(S), where S � S1 ⊂ V is the tautological

Lagrangian subbundle.

Proposition 3.1. We have

H∗GFlω(V) � (H
∗
GY)[x1, . . . , xn]/

(
ek(x

2
1 , . . . , x

2
n) − cG

2k
(V)

)
1≤k≤n ,

where ek is the elementary symmetric polynomial.
A basis for H∗

G
Flω(V) as a module over H∗

G
Y is{

xm1
1 · · · x

mn
n

�� 0 ≤ mi ≤ 2i − 1
}
.

Proof. The argument is parallel to one we saw in Chapter 4
(Proposition 4.1). As in that situation, the basis for H∗

G
Flω(V) comes

from its description as a tower of projective bundles. To see that
the relations hold, note that V/S � S∨, so the Whitney sum formula
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gives

cG(V) � cG(S) · cG(S∨)

�

n∏
i�1

(1 + xi)

n∏
i�1

(1 − xi)

� 1 + e1(x
2
1 , . . . , x

2
n) + · · · + en(x

2
1 , . . . , x

2
n);

that is, cG
2k
(V) � ek(x

2
1 , . . . , x

2
n). �

Exercise 3.2. Complete the proof, by imitating the argument of
Chapter 4, Proposition 4.1.2

Exercise 3.3. For a strict partition λ � (λ1 > · · · > λs > 0) write
eλ � eλ1 · · · eλs . Show that another basis for H∗

G
Flω(V) as a module

over H∗
G

Y is given by{
xa1

1 · · · x
an
n · eλ

�� 0 ≤ ai ≤ n − i , λ a strict partition, λ1 ≤ n
}
,

where ek � ek(x1, . . . , xn) � cG
k
(S).3

4. Lagrangian Grassmannians

In presenting the cohomology of the ordinary Grassmannian in
Chapter 4, we found bases of Schur determinants. We will see an
analogous basis of Schur Q-polynomials for the cohomology of the
Lagrangian Grassmannian. These polynomials are defined as cer-
tain Pfaffians. Here we set up notation and quickly review the main
facts, referring to Appendix C for details and references.

Given a series of formal variables c � 1+ c1+ c2+ · · · , and integers
p , q ≥ 0, we set

Cpq � cp cq + 2
q∑

i�1

(−1)i cp+i cq−i(∗)

� cp cq − 2 cp+1 cq−1 + 2 cp+2 cq−2 − · · · + (−1)q2 cp+q .

The variables generate a universal ring

Γ � Z[c1, c2, . . .]/(Cpp)p>0 ,
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where the elements cp have degree p, and the relations are given by
Cpp � c2

p − 2 cp+1 cp−1 + 2 cp+2 cp−2 − · · · as above. When the context
is clear, we sometimes recycle notation and write c also for its image
in Γ.

Bases for Γ are naturally indexed by strict partitions, that is, parti-
tions λ � (λ1 > · · · > λs > 0) with distinct parts. One basis is given
by monomials in c:

Γ �

⊕
λ

Z · cλ1 · · · cλs ,

the sum ranging over all strict partitions (cf. Exercise 3.3 above).
A second basis is given by the Q-polynomials. Given a strict

partition λ with s parts, let mi j � Cλi ,λ j for i < j, and form the
corresponding s × s skew-symmetric matrix Mλ(c) � (mi j). The
Q-polynomial Qλ(c) is defined to be the Pfaffian of this matrix,

Qλ(c) � Pf(Mλ(c)),

ensuring that λ has an even number of parts by appending 0 if
needed. (As before, we sometimes write Qλ(c) for its image in Γ.)
Then

Γ �

⊕
λ

Z · Qλ(c),

with the sum again over strict partitions.
For n > 0, there is a finitely generated quotient ring

Γ
(n)

� Γ/(cn+1, cn+2, . . .)

� Z[c1, . . . , cn]/(Cpp)1≤p≤n .

This has bases of monomials cλ1 · · · cλs and Q-polynomials Qλ(c), as
λ ranges over strict partitions such that λ1 ≤ n. In particular, Γ(n) has
rank 2n as a Z-module. (See Appendix C, §2.3.)

Now we turn to the geometry. Continuing the setting from the
previous section, we have a variety Y, a G-equivariant vector bundle
V of rank 2n, and a G-invariant symplectic form ω :

∧2 V → CY.
The Lagrangian Grassmannian bundle LG(V) → Y parametrizes
maximal isotropic subspaces in the fibers of V . More precisely, it



Chapter 13. Symplectic flag varieties 249

represents the functor which assigns to a morphism Z→ Y the set of
all Lagrangian subbundles F ⊆ VZ (where VZ is the pullback of V).

There is a natural open cover of LG(V), similar to the one we saw
for Gr(n ,V) in Chapter 4. Suppose V splits so that V � A ⊕ B with A

a Lagrangian subbundle (and then B � A∨), and that the symplectic
form is “standard”: it is given by the formula

ω(a ⊕ f , a′ ⊕ f ′) � f (a′) − f ′(a).

There is an open subset U ⊆ LG(V), defined as before by the condi-
tion that the composition F ֒→ V ։ A be an isomorphism. The open
set U is naturally identified with the vector bundle Sym2 A∨ → Y,
where we regard Sym2 A∨ ⊆ Hom(A,A∨) and the map is given by

(F ⊂ V) 7→ (A � F ֒→ V ։ B � A∨).

Indeed, the subbundle F is isotropic if and only if the homomorphism
ϕ : A → A∨ defined this way is symmetric. (As before, the inverse
map sends ϕ to its graph.)

Any vector bundle splits locally on Y, and furthermore every sym-
plectic form is locally isomorphic to the standard one, so these open
sets U give an affine covering of LG(V), showing that ρ : LG(V) → Y

is smooth of relative dimension
(n+1

2

)
� rk Sym2 A∨. (The closed

embedding LG(V) ֒→ Gr(n ,V) shows that LG(V) → Y is also pro-
jective.)

There is a natural projection

π : Flω(V) → LG(V),

sending an isotropic flag F• to its maximal subspace F1 � F. The fiber
of π over a Lagrangian subspace F is the complete flag variety Fl(F)

in the n-dimensional space F. That is,

Flω(V) � Fl(S) → LG(V),

where (as before) S � S1 ⊂ V is the tautological Lagrangian sub-
bundle on LG(V). The relative dimension of Flω(V) → Y is n2

�(n
2

)
+

(n+1
2

)
, equal to the sum of the dimensions of the ordinary flag

variety and the Lagrangian Grassmannian.
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Proposition 4.1. The homomorphism cp 7→ cG
p (S
∨) defines an isomor-

phism

H∗GLG(V) � (H∗GY)[c1, . . . , cn]/(Cpp − (−1)p cG
2p(V))1≤p≤n ,

where Cpp is given by (∗) (at the beginning of this section).
As a module over H∗

G
Y, H∗

G
LG(V) has a basis of squarefree monomials

cλ1 · · · cλs ,

for n ≥ λ1 > · · · > λs > 0. Another basis is given by the polynomials
Qλ(c), as λ ranges over the same set of strict partitions.

Proof. As in Proposition 3.1, the relations come from the Whitney
formula, this time writing

cG(V) � cG(S) · cG(S∨)

� (1 − c1 + c2 − · · · )(1 + c1 + c2 + · · · )

� 1 + (−c2
1 + 2 c2) + (c

2
2 − 2 c3 c1 + 2 c4) + · · ·

� 1 +

∑
p>0

(−1)pCpp .

We need to see that the cp’s generate, and that the claimed sets are
bases. This is similar to Proposition 5.1 in Chapter 4. On one hand,
we know Flω(V) → LG(V) is a flag bundle, so H∗

G
Flω(V) is free

over H∗
G

LG(V) of rank n!. On the other hand, we already saw that
H∗

G
Flω(V) is free over H∗

G
Y, of rank 2n n!. It follows that H∗

G
LG(V) is

a projective module over H∗
G

Y, of rank 2n .
Now consider the H∗

G
Y-subalgebra R ⊆ H∗

G
LG(V) generated by

c1, . . . , cn. By Exercise 3.3, we know that H∗
G

Flω(V) has a basis over
R consisting of n! monomials xa1

1 · · · x
an
n , with 0 ≤ ai ≤ n − i. Since

these also form a basis for H∗
G

Flω(V) over H∗
G

LG(V), it follows that
R � H∗

G
LG(V).

The claims about bases may be checked in the case where Y is a
point and G is trivial, by graded Nakayama. Here the relations define
Γ(n), and we know that the squarefree monomials and Q-polynomials
form bases for this ring. �
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Corollary 4.2. Suppose there is a G-equivariant Lagrangian subbun-
dle E ⊆ V on Y. Then there is a surjective homomorphism of H∗

G
Y-algebras

(H∗GY) ⊗ Γ→ H∗GLG(V), c 7→ cG(V − S − E),

with kernel generated by elements
n∑

i�0

ck−i cG
i (E)

for all k > n.
Squarefree monomials cλ1 · · · cλs form a basis for H∗

G
LG(V) as a module

over H∗
G

Y, as λ ranges over strict partitions with λ1 ≤ n. The Pfaffians
Qλ(c) form another basis.

Proof. The second claim—about bases for H∗
G

LG(V)—can be
checked in the case where Y is a point and G is trivial, and this
is the same as in Proposition 4.1.

The relations Cpp � 0 again come from the Whitney formula.
Writing c∗ � 1 − c1 + c2 − c3 + · · · , we have

c � cG(V − S − E) � cG(S∨ − E) � cG(E∨ − S)

and

c∗ � cG(V∨ − S∨ − E∨) � cG(S − E∨) � cG(E − S∨),

so c · c∗ � 1. The fact that squarefree monomials in cp form a basis
implies in particular that these elements generate the algebra. �

5. Cohomology rings

In many applications, one has a maximal isotropic subbundle on
the base, so Corollary 4.2 applies. For the rest of this chapter, we
will focus on the case where Y is a point, and G � T is a torus acting
linearly on V � C2n. In this context, we will prefer the presentation
given by Corollary 4.2.

Using the identification of Flω(V) → LG(V) with the (ordi-
nary) flag bundle Fl(S) → LG(V), we obtain another presentation
of H∗

T
Flω(V). Let us fix a standard basis en , . . . , e1, e1, . . . , en for
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V � C2n. Suppose T acts by characters −χn , . . . ,−χ1, χ1, . . . , χn, so
the standard Lagrangian subspace E ⊆ V has characters χ1, . . . , χn.

Corollary 5.1. We have isomorphisms

H∗TLG(V) � (ΛT ⊗ Γ)/I

and
H∗TFlω(V) � (ΛT ⊗ Γ)[x1, . . . , xn]/J,

where c 7→ cT(V − S − E) and xi 7→ cT
1 (Si/Si+1), the ideal I is generated

by relations
n∑

i�0

ck−i · ei(χ1, . . . , χn) � 0 for k > n ,

and J is generated by relations
n∑

i�0

ck−i · ei(χ1, . . . , χn) � ek(−x1, . . . ,−xn) for k > 0.

The squarefree monomials cλ1 · · · cλs form a basis for H∗TLG(V) over ΛT ,
as λ ranges over strict partitions with λ1 ≤ n. Similarly, the monomials
xm1

1 · · · x
mn
n form a basis for H∗TFlω(V) over ΛT , for 0 ≤ mi ≤ 2i − 1.

The presentation for H∗
T

LG(V) is a special case of Corollary 4.2,
and the one for H∗TFlω(V) follows. The claims about bases follow by
the same reasoning as in Corollary 4.2 and Proposition 3.1.

There are natural embeddingsC2m ֒→ C2m+2 ֒→ · · · , correspond-
ing to the inclusions of standard bases. These induce embeddings of
Lagrangian Grassmannians

LG(C2m) ֒→ LG(C2m+2), (F ⊆ C2m) 7→ (Cem+1 ⊕ F ⊆ C2m+2),

as well as similar embeddings of isotropic partial flags

Flω(m − n , . . . ,m;C2m) ֒→ Flω(m + 1 − n , . . . ,m + 1;C2m+2).

In analogy with the stability discussed in Chapter 12, we can take
limits as m and n tend to infinity, forming the infinite Lagrangian
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Grassmannian
LG∞ �

⋃
m

LG(C2m)

and the infinite isotropic flag variety

Fl∞ω � lim
←−−

n

⋃
m

Flω(m − n , . . . ,m;C2m).

Their cohomology rings are the corresponding limits of the finite-
dimensional rings.

Corollary 5.2. The equivariant cohomology rings of LG∞ and Fl∞ω
are

H∗TLG∞ � ΛT ⊗ Γ � Γ[y1, y2, . . .].

and
H∗TFl∞ω � ΛT ⊗ Γ[x] � Γ[x1, x2, . . . ; y1, y2, . . .].

Demanding stability with respect to these embeddings dictates
many of our choices in the next chapter.

Notes

Giambelli gave a determinantal formula for [Dr] which we now rec-
ognize as a Schur determinant; he refers to earlier formulas of Segre and
Schubert [Gi06]. As usual for that era, his setting is that of a (symmetric
or skew) matrix of homogeneous polynomials of specified degrees. This
very naturally translates into the equivariant calculation described at the
beginning of the chapter.

Partly motivated by applications to the Brill-Noether theory (see [Ber87,

DCP95]), the 1980s saw a renewal of interest in formulas for symmetric and
skew-symmetric degeneracy loci. Several determinantal formulas were
found for special cases [JLP81, HaTu84, Ful96b]. Pragacz seems to have
been the first to realize that Schur’s Q-polynomials and the corresponding
Pfaffian formulas are better suited to the problem [Pra88, Pra91, PraRa97].

The facts about the symplectic group and isotropic subspaces reviewed
in §2 can be found in basic algebra textbooks; see, for instance, [Jac85, §6].

The identity

Pf

(
xi − x j

xi + x j

)
�

∏
i< j

xi − x j

xi + x j
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is due to Schur, who also defined the polynomials Qλ(x) [Schu11, §§35–
36]. Nimmo gave a formula for Qλ(x) as a ratio of two Pfaffians [Nim90];
a related formula appears in [JLP81]. Many variations on these poly-
nomials can be found in Macdonald’s book. In particular, the identity
Q(k ,k−1,...,1)(x) � 2k s(k ,k−1,...,1)(x) follows from [Mac95, III.8, Ex. 3(b)].

Hints for exercises

1The answer is the Schur determinant 2n∆(n ,n−1,...,1)(a). Use the diagonal torus
T ⊆ GL(E), acting on SMn with weights ti + t j , to obtain

[D0]
T
� 2n t1 · · · tn

∏
i< j

(ti + t j).

Then use the bialternant form of the Schur function to show t1 · · · tn
∏

i< j(ti + t j) �

s(n ,n−1,...,1)(t1, . . . , tn). The a’s are elementary symmetric polynomials in the t’s, so
the claim follows from the (dual) Jacobi-Trudi formula for the Schur polynomial.
See [Mac95, §III.8, Ex. 2].

2It suffices to show the monomials xm1

1
· · · xmn

n span the algebra

A � Z[x1 , . . . , xn]/(e1(x
2), . . . , en(x

2)).

Here we use the relation
∏n

i�1(1−x2
i
u2) � 1 in A[u], which shows that for 1 ≤ ℓ ≤ n,

∑
k≥0

hk(x
2
ℓ , . . . , x

2
n)u

2k
�

n∏
i�ℓ

1

1 − x2
i
u2

�

ℓ−1∏
i�1

(1 − x2
i u2)

has degree 2ℓ − 2, and therefore hℓ(x
2
ℓ , . . . , x

2
n) � 0 in A. This gives a relation

expressing x2ℓ
ℓ

in terms of other monomials, completing the proof by descending
induction on ℓ.

3In lexicographic order, the initial monomial of eλ is xλ � xλ1

1
· · · xλs

s , so the
initial monomial of xa eλ is xa+λ. The exponents a + λ take all values such that
0 ≤ ai + λi ≤ 2n − 2i + 1. Now use Proposition 3.1, with the change of variables
xi 7→ xn+1−i .



CHAPTER 14

Symplectic Schubert polynomials

In the last chapter, we computed cohomology rings of the La-
grangian Grassmannian and isotropic flag variety. Here we will
study the equivariant geometry of these spaces and their Schubert
varieties, by analogy with what we saw for the ordinary Grassman-
nians and flag varieties in Chapters 9 and 10. In particular, we find
Schubert polynomials representing equivariant Schubert classes.

1. Schubert varieties

Continuing notation from the previous chapter, we consider a
vector space V � C2n, with basis en , . . . , e1, e1, . . . , en. We have a torus
T � (C∗)n , with its standard basis of characters y1, . . . , yn, acting on
V by characters yn , . . . , y1, y1, . . . , yn, where yı � −yi . (The yi may
be specialized to arbitrary characters χi , as usual, so long as all 2n

characters ±χi are distinct.) The symplectic form ω � −
∑

e∗
ı
∧ e∗

i
is

T-invariant, so T acts on the Lagrangian Grassmannian LG(V) and
symplectic flag variety Flω(V).

1.1. Strict partitions and signed permutations. In Chapter 13,
§4, we saw that bases for H∗LG(V) are indexed by strict partitions λ
such that λ1 ≤ n. These are often represented by their shifted Young
diagrams; for example, λ � (5, 2, 1) corresponds to the diagram

.

The length of a strict partition is the number s � ℓ(λ) of nonzero
parts, or nonempty rows in its diagram.

There is a bĳection between strict partitions with λ1 ≤ n, and
subsets I � {i1 < · · · < in} ⊆ {n , . . . , 1, 1, . . . , n} such that for each
i � {1, . . . , n}, exactly one of ı or i belongs to I. To go from I to

255
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λ, one records the positive entries, written in decreasing order. For
example, with n � 5, the subset I � {5, 2, 1, 3, 4} corresponds to the
strict partition λ � (4, 3).

The group of signed permutations Wn is the subgroup of permuta-
tions of {n , . . . , 1, 1, . . . , n} which commute with sign changes:

Wn � {w | w(ı) � w(i)}.

By identifying S2n with permutations of {n , . . . , 1, 1, . . . , n}, this
gives a natural embedding of Wn in S2n . An element w ∈ Wn is
written in “one-line” notation by specifying its values on positive in-
tegers: w � w(1) w(2) · · ·w(n). For example, the signed permutation
w � 5 4 1 2 3 in W5 corresponds to the permutation 3 2 1 4 5 5 4 1 2 3
in S10.

The group Wn is generated by simple transpositions s0 , s1, . . . , sn−1,
acting in one-line notation by

w si � w(1) · · ·w(i + 1)w(i) · · ·w(n)

for i > 0, and
w s0 � w(1)w(2) · · ·w(n).

The defining relations among these generators are s2
i
� 1 for all

i, si s j � s j si if |i − j | > 1, si si+1 si � si+1 si si+1 for i > 0, and
s0 s1 s0 s1 � s1 s0 s1 s0.

The length of a signed permutation is

ℓ(w) � #{i < j | w(i) > w( j)} + #{i ≤ j | w(i) + w( j) < 0}.

For example, w � 5 4 1 2 3 has length ℓ(w) � 6 + 7 � 13. The
length of w is equal to the length of the shortest expression for w in
terms of simple transpositions; that is, ℓ(w) is the smallest ℓ such that
w � si1 · · · siℓ .

The longest element of Wn is

w◦ � 1 2 · · · n .

It has length ℓ(w◦) � n2, and acts by negating signs:

(w◦w)(i) � (ww◦)(i) � w(i)
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for any w ∈ Wn .
Any strict partition λ determines a Grassmannian signed permuta-

tion w � w(λ), with ℓ(w(λ)) � |λ |. If I � {i1 < · · · < in} is the subset
corresponding to λ, then w(λ) � ın · · · ı1 in one-line notation. For
example, if λ � (4, 3), so I � {5, 2, 1, 3, 4}, then w(λ) � 4 3 1 2 5.

Via the embedding Wn ֒→ S2n, any signed permutation w de-
termines a permutation matrix Aw ∈ Sp2n ⊆ GL2n . If rows and
columns are labelled by {n , . . . , 1, 1, . . . , n}, this is the matrix with
1’s in positions (w(i), i) and 0’s elsewhere. For example,

A2 3 1 �



0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0



.

Let λ be a strict partition with λ1 ≤ n, regarded as a subset of
{1, . . . , n}. The dual λ∨ is the complementary subset in {1, . . . , n}.
For example, if n � 5 and λ � (4, 3) then λ∨ � (5, 2, 1). Using this
notation, the corresponding Grassmannian signed permutation is

w(λ) � λ1 · · · λs λ
∨
n−s · · · λ

∨
1 .

Equivalently, λ∨ is the complement to λ when its
shifted diagram is drawn inside the “staircase shape”
(n , . . . , 2, 1), as shown at right.

To summarize our running example, for n � 5 the
following are in correspondence:

• the strict partition λ � (4, 3);
• the n-element subset I � {5, 2, 1, 3, 4};
• the Grassmannian signed permutation w � 4 3 1 2 5.

1.2. Fixed points. First we identify the fixed points in the La-
grangian Grassmannian. The embedding LG(V) ֒→ Gr(n ,V) is
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equivariant, so the fixed points of LG(V) must be among the co-
ordinate subspaces

EI � span{ei1 , . . . , ein} ⊆ V,

for I ⊂ {n , . . . , 1, 1, . . . , n}. The subspace EI is isotropic if and only
if exactly one of ı or i belongs to I, for each i � {1, . . . , n}. So fixed
points are indexed by such I. They are also in bĳection with the 2n

strict partitions λ having λ1 ≤ n, as described in §1.1.
Writing pλ for the fixed point corresponding to the coordinate

subspace EI under this bĳection, we have LG(V)T � {pλ}. (So
#LG(V)T � rk H∗LG(V) � 2n, as expected.) In particular, the stan-
dard Lagrangian subspace is E � E{1,...,n}, corresponding to the fixed
point p(n,... ,2,1).



a d f

1 0 0
0 1 0
b e y

c x z

0 0 1



There is a T-invariant affine open neighborhood
around each fixed point pI in LG(V). This is a subva-
riety of the corresponding neighborhood in Gr(n ,V),
determined by isotropicity conditions. For example,
with n � 3 and I � {2, 1, 3}, the neighborhood is rep-
resented by matrices as shown at right, where x � b,
y � −d, and z � −a. The horizontal line is a visual aid
to indicate the midpoint.



1 0 0 0 0
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ •

0 1 0 0 0
0 0 1 0 0
∗ ∗ ∗ • •

∗ ∗ • • •

0 0 0 1 0
0 0 0 0 1
∗ • • • •



In general, starting with I, the matrix repre-
sentatives for points in these affine open neigh-
borhoods are written as follows. One writes a
matrix just as for Gr(n ,V), so the submatrix on
rows I is the identity matrix; the 1’s in this sub-
matrix are “pivots”. Entries which are opposite
and (strictly) to the right of a pivot are dependent
on the other entries, because of the isotropicity
requirement; other entries are free. We indicate
the free entries with ∗’s, as usual, and dependent
entries with •’s. For n � 5 and I � {5, 2, 1, 3, 4},
the neighborhood is shown at left.

In the notation of Chapter 13, §4, this neighborhood of pλ is the
open set corresponding to the splitting V � EI ⊕ E∨

I
, where E∨

I
is the
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span of {eı1 , . . . , eın}, and it follows that this open set is equivariantly
isomorphic to Sym2 E∨I . Since the weights of T acting on EI are
{yi | i ∈ I}, this lets us compute the tangent weights at the fixed point
pλ: the space

TpλLG(V) � Sym2 E∨I

has weights {−yi − y j | i ≤ j ∈ I}. Working this out explicitly for the
above example, in matrix coordinates, the action is given by

z ·



1 0 0 0 0
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ •

0 1 0 0 0
0 0 1 0 0
∗ ∗ ∗ • •

∗ ∗ • • •

0 0 0 1 0
0 0 0 0 1
∗ • • • •



�



z−1
5 0 0 0 0

z−1
4 ∗ z−1

4 ∗ z−1
4 ∗ z−1

4 ∗ z−1
4 ∗

z−1
3 ∗ z−1

3 ∗ z−1
3 ∗ z−1

3 ∗ z−1
3 •

0 z−1
2 0 0 0

0 0 z−1
1 0 0

z1∗ z1∗ z1∗ z1• z1•

z2∗ z2∗ z2• z2• z2•

0 0 0 z3 0
0 0 0 0 z4

z5∗ z5• z5• z5• z5•



�



1 0 0 0 0
z5
z4
∗ z2

z4
∗ z1

z4
∗ 1

z3z4
∗ 1

z2
4
∗

z5
z3
∗ z2

z3
∗ z1

z3
∗ 1

z2
3
∗ •

0 1 0 0 0
0 0 1 0 0

z1z5∗ z1z2∗ z2
1∗ • •

z2z5∗ z2
2∗ • • •

0 0 0 1 0
0 0 0 0 1

z2
5∗ • • • •



.
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Now we turn to the isotropic flag variety. Using the description
of Flω(V) as a flag bundle over LG(V), each T-fixed point of Flω(V)

must be a fixed point of Fl(EI ), for some I. Such points are indexed
by permutations of I; this data is the same as that of a signed permu-
tation. In general, given w ∈ Wn, the corresponding T-fixed point pw

is the isotropic flag

wE• : wEn ⊂ · · · ⊂
wE1 ⊂ V,

where wEq � 〈e
w(n)

, . . . , e
w(q)
〉. (Note the negative signs!) In particu-

lar, our standard flag is E• �
w◦E•.



a f y

b g 1
1 0 0
c x z

d h i

e 1 0



As before, there is a T-invariant affine neighbor-
hood around each fixed point pw . This is repre-
sented in matrices by writing a 2n × n matrix with
pivot 1’s in positions (w(i), i) for n ≤ i ≤ 1, and
0’s to the right of these pivots. For example, for
w � 2 3 1 this neighborhood is as shown at left,
where x � −a − bh + dg + e f , y � gi − h, and
z � −bi + d + e gi − eh.



∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ •

∗ • • • •

∗ 1 0 0 0
∗ ∗ 1 0 0
∗ ∗ ∗ • •

∗ ∗ • • •

1 0 0 0 0
∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ ∗



Continuing the notation we used for La-
grangian Grassmannians, free entries are denoted
by ∗ and dependent entries by •. So for w �

5 4 1 2 3, the neighborhood is written as at right.
In general, the free entries are in positions (w(i), j),
for n ≤ j ≤ 1 and j < i ≤ . The torus acts on
the (w(i), j) entry by the character yw(i) − yw( j).

One sees that Uw � C
n2

, and that Tpw Flω(V) has
weights yw(i) − yw( j), for j < 0 and j < i ≤ .

1.3. Schubert cells and Schubert varieties.

For a signed permutation w ∈ Wn, there is a dimension function
similar to the one for ordinary permutations: for 1 ≤ p ≤ n and
q ∈ {n , . . . , 1, 1, . . . , n}, we define

kw(p , q) � #
{

i ≥ p | w(i) ≤ q
}

� #
{

i ≤ p | w(i) ≥ q
}
.
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This can also be described in terms of ranks of permutation matrices.
With the above conventions, so Aw is the 2n × n matrix with 1’s in
positions (w(i), i), for n ≤ i ≤ 1, the number kw(p , q) is the rank of
the southwest submatrix of Aw whose northeast corner is at position
(q , p). For example, with w � 5 4 1 2 3, we have kw(2, 3) � 2 and
kw(3, 2) � 3.

Using these dimension functions and the standard flag E•, the
Schubert cells Ω◦w � Ω◦w(E•) and Schubert varieties Ωw � Ωw(E•) in
Flω(V) are defined by

Ω
◦
w �

{
F•

�� dim(Fp ∩ Eq) � kw(p , q) for all 1 ≤ p ≤ n , n ≤ q ≤ n
}

and

Ωw �

{
F•

�� dim(Fp ∩ Eq) ≥ kw(p , q) for all 1 ≤ p ≤ n , n ≤ q ≤ n
}
.

(Recall that the standard flag has Eq � span{eq , . . . , en}.)
Opposite Schubert cells and varieties are defined in the same way,

using the opposite flag Ẽ• in place of the standard flag. (Recall that
the opposite flag is defined by Ẽq � span{en , . . . , eq}.) This flag
is preserved by the Borel group B � w◦B

−w◦. With our choice of
symplectic form, B consists of upper-triangular matrices in Sp2n, and
B− consists of lower-triangular matrices.

Schubert cells are B−-orbits, and opposite Schubert cells are B-
orbits:

Ω
◦
w � B− · pw and Ω̃

◦
w � B · pw◦w .

They may also be written in matrix form, using the same conventions
as for the affine open sets discussed above. For w � 5 4 1 2 3, so
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w◦w � 5 4 1 2 3, we have

Ω
◦
w �



0 0 0 0 1
0 0 0 0 •
0 0 0 0 •
0 1 0 0 0
0 ∗ 1 0 0
0 ∗ ∗ 0 •
0 ∗ • 0 •
1 0 0 0 0
∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ ∗



and Ω̃
◦
w◦w �



∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ 0
∗ • • • 0
∗ 1 0 0 0
∗ 0 1 0 0
∗ 0 0 • 0
∗ 0 0 • 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 0



.

As this example suggests, the cells Ω◦w and Ω̃◦w◦w intersect transver-
sally, meeting in the fixed point pw.

Exercise 1.1. Show that Ω◦w � C
n2−ℓ(w), so that Ωw ⊆ Flω(V) has

codimension ℓ(w). Show that the tangent and normal weights toΩw

at pw are as follows:

TpwΩ
◦
w has weights

{
yw(i) − yw( j)

�� j < i ≤  and w(i) > w( j)
}
;

NpwΩ
◦
w has weights

{
yw(i) − yw( j)

�� j < i ≤  and w(i) < w( j)
}

Do the same for TpwΩ̃
◦
w◦w and NpwΩ̃

◦
w◦w. Conclude that the intersec-

tion Ω◦w ∩ Ω̃
◦
w◦w � {pw} is indeed transverse.

As for ordinary flag varieties, each Schubert cell in Flω(V) is
a principal homogeneous space for a certain subgroup of B−. For
w ∈ Wn , let U−(w) � U− ∩ AwB−Aw−1 .

Exercise 1.2. Show that the T-invariant affine open neighborhood
of pw is (AwB−A−1

w ) · pw, and that the map

U−(w) → Ω◦w

u 7→ u · pw

is an isomorphism. Also show that U−(w) ⊆ U−(wsk) if and only if
ℓ(wsk) < ℓ(w).1
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1.4. Bruhat order and Poincaré duality. Containment among
Schubert varieties is described by the Bruhat order on Wn. For v , w ∈

Wn, this partial order is defined by declaring v ≥ w if kv(p , q) ≥

kw(p , q) for all 1 ≤ p ≤ n and n ≤ q ≤ n. This condition is equivalent
toΩv ⊆ Ωw .

Exercise 1.3. Let Wn ֒→ S2n be the natural embedding, by re-
garding w ∈ Wn as a permutation of {n , . . . , 1, 1, . . . , n}. Show that
v ≥ w in Wn if and only if v ≥ w in S2n ; that is, Bruhat order on Wn

is induced as a sub-poset from Bruhat order on S2n.

As for ordinary flag varieties, Schubert varieties are closures of
Schubert cells: Ωw � Ω

◦
w ⊆ Flω(V). This can be proved by imitating

the argument of Proposition 4.4 from Chapter 10. Similarly, one has

Ωw �

∐
v≥w

Ω
◦
v .

In particular, the Schubert cells decompose the symplectic flag vari-
ety, so the classes σw � [Ωw]

T form a basis for H∗
T

Flω(V) over Λ. The

same is true for opposite Schubert cells, so the classes σ̃w � [Ω̃w]
T

form another basis.
From this, one also sees

pv ∈ Ωw iff v ≥ w and pv ∈ Ω̃w◦w iff v ≤ w.

So the T-fixed points inΩw ∩ Ω̃w◦u are those pv such that w ≤ v ≤ u.
It follows that that the bases σw and σ̃w◦w are Poincaré dual:

Proposition 1.4. Let ρ : Flω(V) → pt. We have

ρ∗(σu · σ̃w◦v) � δu,v

in ΛT .

This is proved by the same argument as for ordinary flag varieties
and Grassmannians, using the computation of tangent weights in
Exercise 1.1 to check transversality.

1.5. Stability. Let Fl
(n)
ω (C

2m) � Flω(m−n , . . . ,m;C2m) be the par-
tial isotropic flag variety. At the end of Chapter 13, §5, we saw
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embeddings

ι : Flω(m − n , . . . ,m;C2m) ֒→ Flω(m
′ − n , . . . ,m′;C2m′),

for m ≤ m′, and projections

π : Flω(m − n′, . . . ,m;C2m) → Flω(m − n , . . . ,m;C2m),

for n′ ≥ n.
For m ≤ m′, there is a corresponding inclusion ι : Wm ֒→ Wm′,

defined in one-line notation by

ι(w)(k) �

{
w(k) for k ≤ m;

k for k > m .

We generally regard Wm as a subgroup of Wm′ by this embedding,
and write W∞ �

⋃
m Wm .

For n ≤ m, we consider the subset

W
(n)
m �

{
w ∈ Wm

�� 0 < w(i) < w(i + 1) for i > n
}
.

Schubert varietiesΩ[w] ⊆ Flω(m − n , . . . ,m;C2m) are defined just

as for the complete flag variety Flω(C
2m): for w ∈ W

(n)
m , we have

Ω[w] �

{
F•

�� dim(Fp ∩ Eq) ≥ kw(p , q) for 1 ≤ p ≤ n , m ≤ q ≤ m
}
.

The corresponding Schubert cells decompose the partial flag variety,
as w ranges over W

(n)
m , so the classes σ[w] � [Ω[w]]T form a basis. The

Schubert varieties Ω[w] are stable with respect to the embeddings ι
and projections π.

The situation is entirely analogous to the type A setting (see Chap-
ter 12). The exercises below show that for each w ∈ W∞, there is a
well-defined stable Schubert class σw ∈ H∗

T
Fl∞ω , and it follows that

these classes form a basis for H∗
T

Fl∞ω as a module over ΛT .

Exercise 1.5. For m′ ≥ m, show that ι identifies Fl
(n)
ω (C

2m) with
the opposite Schubert variety Ω̃

[w
(m′)
◦ ·ι(w

(m)
◦ )]
⊆ Fl

(n)
ω (C

2m′), and for

w ∈ W
(n)
m , show ι−1Ω[ι(w)] � Ω[w]. Conclude that ι∗σ[u] � 0 unless

u � ι(w) for some w ∈ Wm , and

ι∗σ[ι(w)] � σ[w] in H∗TFl
(n)
ω (C

2m).
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Exercise 1.6. For w ∈ W
(n)
m and n′ ≥ n, show π−1Ω[w] � Ω[w] in

Fl
(n′)
ω (C

2m), and therefore

π∗σ[w] � σ[w] in H∗TFl
(n′)
ω (C

2m).

2. Double Q-polynomials and Lagrangian Schubert classes

We have seen that double Schur polynomials sλ(x |y) represent
equivariant Schubert classes in the Grassmannian. Here we will
describe the analogous polynomials representing Schubert classes in
the Lagrangian Grassmannian.

As usual, we have V � C2n, with symplectic form and standard
isotropic flag E•. The Schubert varieties in LG(V) are defined by

Ωλ � Ωλ(E•) �
{
F
�� dim(F ∩ Eλk

) ≥ k for 1 ≤ k ≤ s
}
,

for a strict partition λ � (n ≥ λ1 > · · · > λs > 0). This is the closure
of a Schubert cell Ω◦

λ
, which is the B−-orbit of the fixed point pλ:

Ω
◦
λ � B− · pλ .

We will sometimes use the notation ΩI � Ωλ and pI � pλ, where I is
the n-element subset of {n , . . . , 1, 1, . . . , n} which corresponds to λ.

Opposite Schubert varieties and cells are defined analogously,
with respect to the opposite flag Ẽ•. Here Ω̃◦

λ
� B · pλ∨ , and pµ ∈ Ω̃λ

if and only if µ ⊆ λ∨. (Recall that λ∨ is the complement to λ inside
the staircase (n , . . . , 2, 1).)

A partial order on strict partitions is defined just as for usual
partitions, by containment of shifted Young diagrams: λ ⊆ µ iff
λk ≤ µk for all k � 1, . . . , s. The corresponding order on n-element
subsets I is also as before: I ≤ J iff ik ≤ jk for all k � 1, . . . , n.

In Chapter 9, we saw two important cases of restriction formulas
for Schubert classes. The analogous formulas for the Lagrangian
Grassmannian are as follows.
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Exercise 2.1. Show that pµ ∈ Ωλ if and only if µ ⊇ λ. Then, with
I , J the sets corresponding to λ, µ, compute

σI |I �
∏
i, j∈I

i≥ j>ı

(−yi − y j)(∗)

and

(∗∗) σI |J � 0 unless J ≥ I .

Equivalently,

σλ |λ �

s∏
k�1

©«
∏

1≤ℓ≤λk

ℓ∈λ

(−yλk
− yℓ)

∏
1≤ℓ<λk

ℓ<λ

(−yλk
+ yℓ)

ª®®®¬
and

σλ |µ � 0 if µ + λ.

Write down similar formulas for restrictions of opposite Schubert
classes, σ̃λ |µ.

In the symplectic setting, double Q-polynomials play the role anal-
ogous to that of double Schur polynomials for ordinary Grassman-
nians. Like sλ(x |y), the polynomials Qλ(c |y) have several equivalent
descriptions. We will use a “multi-Schur Pfaffian” formula which is
analogous to the Jacobi-Trudi determinantal formula for Schur poly-
nomials. More details are in Appendix C, §3.

Given a strict partition λ � (λ1 > · · · > λs > 0) and series
c(1), . . . , c(s), set

mi j � cλi (i) cλ j ( j) + 2

λ j∑
a�1

(−1)a cλi+a(i) cλ j−a( j)

for i < j, and let Mλ(c) � (mi j) be the corresponding skew-symmetric
matrix. The multi-Schur Pfaffian is the Pfaffian of this matrix:

Pfλ(c(1), . . . , c(s)) :� Pf(Mλ(c)).
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To define the double Q-polynomial, we fix c � 1 + c1 + c2 + · · · and
set c(i) � c · (1 + y1) · · · (1 + yλi−1). Then

Qλ(c |y) � Pfλ(c(1), . . . , c(s)).

When the c variables are taken to be the generators of the ring Γ, the
double Q-polynomials belong to the ring Γ[y], and they form a basis
for this ring as a module over Z[y].

The key fact about double Q-polynomials is that they solve the
same interpolation problem which characterizes Schubert classes.
For any strict partition µ, we write c 7→ cµ for the specialization
which sets c equal to

cµ �

∏
i∈µ

1 − yi

1 + yi
.

Then

(†) Qλ(c
λ |y) �

s∏
k�1

©«
∏

1≤ℓ≤λk

ℓ∈λ

(−yℓ − yλk
)

∏
1≤ℓ<λk

ℓ<λ

(yℓ − yλk
)
ª®®®¬

and

(‡) Qλ(c
µ |y) � 0 if µ + λ.

Furthermore, the properties (†) and (‡) characterize Qλ(c |y) as an
element of Γ[y]. (This is the main theorem of Appendix C, §3.)

Let yi be the characters of T acting on E ⊆ V . From Chapter 13,
Corollary 5.1, we have a presentation

H∗TLG(V) � (ΛT ⊗ Γ)/I ,

where I is generated by
∑n

i�0 ck−i · ei(y) for k > n. For any µ, we have

cT(V − S − E)|µ � cT(E∨J − E) �
∏
i∈µ

1 − yi

1 + yi
,

where J ⊂ {n , . . . , 1, 1, . . . , n} is the n-element subset correspond-
ing to µ. So the specialization c 7→ yµ agrees with the restriction
homomorphism H∗

T
LG(V) → H∗

T
(pµ) � ΛT . This leads to the main

theorem of this section.
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Theorem 2.2. Setting c � cT(V − S − E), we have

σλ � Qλ(c |y)

in H∗TLG(V) � (ΛT ⊗ Γ)/I.

Proof. Comparing the formulas (∗) and (∗∗) of Exercise 2.1 for re-
stricting σλ, and the properties (†) and (‡) of Qλ(c |y), both sides solve
the same interpolation problem. The claim follows, as in Chapter 9
(Lemma 3.1 and Corollary 4.3). �

The opposite Schubert variety Ω̃ is defined by replacing E• with
the opposite flag Ẽ•. This has the effect of replacing yi by −yi, and
c � cT(V − S − E) by c̃ � cT(V − S − E∨).

Corollary 2.3. We have σ̃λ � Qλ (̃c |−y).

Remark. In Chapter 9, the x variables of the double Schur poly-
nomials sλ(x |y) were evaluated as equivariant Chern roots of the
dual tautological bundle. The parallel polynomial here is obtained
by evaluating Qλ(c |y) at

c � cT(V − S − E) � cT(S∨ − E) �

n∏
i�1

1 − xi

1 + yi
,

so the xi are equivariant Chern roots of S. With this notation, restric-
tion to pµ is given by further specializing the x variables by

xi 7→

{
yi if i ∈ µ;

−yi if i < µ.

(These are the torus weights on the space EJ corresponding to pµ .) See
Appendix C for more discussion on these and related polynomials
in x variables.

3. Symplectic degeneracy loci

As in Chapters 11 and 12, the formula for equivariant Schubert
classes implies a formula for general degeneracy loci. Suppose V is
a vector bundle on a variety X, with a complete isotropic flag E• and
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a maximal isotropic subbundle F ⊆ V . For a strict partition λ, there
is a degeneracy locus

Dλ(F ∩ E•) �
{
x ∈ X

�� dim(F ∩ Eλk
) ≥ k for 1 ≤ k ≤ s

}
,

and a class Dλ ∈ H2|λ |X, stable under pullbacks and equal to the
class of Dλ(F ∩ E•) when the latter has codimension |λ | in X.

Corollary 3.1. In H2|λ |X, we have

Dλ � Pfλ(c(1), . . . , c(s)),

where c(k) � c(V − F − Eλk
) for each 1 ≤ k ≤ s.

Example 3.2. The Corollary gives a formula for the class of the
locus Dr ⊆ Sym2 E � SMn of symmetric maps with rank at most r,
considered in Chapter 13, §1.

Consider V � E ⊕ E∨ as a vector bundle on Sym2 E, with its
canonical symplectic form ω defined by

ω(v ⊕ f , w ⊕ g) � f (w) − g(v).

A morphism ϕ : E∨ → E is symmetric if and only if its graph E∨ϕ ⊆

E ⊕ E∨ is isotropic with respect to ω. Over Sym2 E, there is the
universal homomorphism Φ : E∨ → E, whose graph is a maximal
isotropic subbundle, E∨

Φ
⊆ V . The subbundle 0⊕ E∨ is also isotropic,

and the locus defined by

dim(E∨
Φ
∩ (0 ⊕ E∨)) ≥ n − r

is precisely the locus Dr ⊆ Sym2 E.
Let Gi � 0 ⊕ E∨

i
, where E∨

i
⊆ E∨ is any T-invariant subspace of

codimension i − 1. In particular, G1 � 0 ⊕ E∨, so Dr � Dλ(E
∨
Φ
∩ G•),

where λ � (n − r, . . . , 2, 1). The formula from Corollary 3.1 is

[Dr]
T
� Pf(n−r,... ,2,1)(c(1), . . . , c(n − r)),

where c(k) � cT(V − E∨
Φ
− Gn−r−k+1) � cT(E − E∨

n−r−k+1). Writing
yi � −cT

1 (E
∨
i
/E∨

i+1) and c � cT(E − E∨), this is

c(k) � c ·

n−r−k∏
i�1

(1 − yi).



270 §3. Symplectic degeneracy loci

Using

c(k)n−r−k+1 �

n−r−k∑
i�0

(−1)i cn−r−k+1−i · ei(y1, . . . , yn−r−k)

the Pfaffian of Mλ(c) is equal to that of Mλ(c), by multilinearity. So

[Dr]
T
� Qλ(c).

Since y1, . . . , yn are the equivariant Chern roots of E, we have

c �

n∏
i�1

1 + yi

1 − yi
,

so Qλ(c) � Qλ(y1, . . . , yn) is the classical Schur Q-polynomial. One
deduces Giambelli’s formula for [Dr]

T from the algebraic identity
Q(n−r,... ,2,1)(y1, . . . , yn) � 2n−r s(n−r,... ,2,1)(y1, . . . , yn). (See Appendix C,
§2.4.)

Example 3.3. The same formula arises by restricting a Lagrangian
Schubert class to a fixed point. Consider the 2n-dimensional vector
space V � E ⊕ E∨ as in the previous example, and let U ⊆ LG(V) be
the standard affine open neighborhood of 0 ⊕ E∨ ⊆ V , as described
in Chapter 13, §4, so U � Sym2 E � SMn . (Compared with §1.2, the
positions of E and E∨ are swapped.)

The degeneracy locus Dr ⊆ SMn � U is the intersection of U with
a Schubert variety,

Dr � U ∩Ω(n−r,... ,2,1).

Since U is an affine space (in fact, an opposite Schubert cell), restrict-
ing a Schubert class to U is the same as restricting to the fixed point
corresponding to E∨, which is p(n,... ,2,1). So

[Dr]
T
� σ(n−r,... ,2,1) |(n,... ,2,1).

Using σλ � Qλ(c |y), with c � cT(V−S−E∨), this recovers Giambelli’s
formula as before, since c |(n,... ,2,1) � cT(E − E∨) �

∏ 1+yi

1−yi
.
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4. Type C Schubert polynomials

Finally we turn to the problem of finding Schubert polynomials
for the isotropic flag variety. The goal is the same as before: we wish
to express σw � [Ωw]

T as a polynomial in Chern classes. More pre-
cisely, using the presentation H∗

T
Flω(V) � (ΛT ⊗ Γ)[x1, . . . , xn]/J, we

seek Schubert polynomials SC
w(c; x , y) ∈ Γ[x , y]mapping to σw under

appropriate evaluations of the variables. As noted in §1.5, there are
stable Schubert classes in H∗

T
Fl∞ω � Γ[x , y], so such polynomials exist.

The problem is to find formulas for them.
The necessity of working in Γ[x; y], rather than Z[x; y], comes

from our stability requirement. For instance, the formula for

Ω1 �

{
F•

�� dim(F1 ∩ E1) ≥ 1
}

in H∗
T

Flω(C
2n) is

σ1 � −x1 − · · · − xn − y1 − · · · − yn .

In terms of x and y, this is not stable as n →∞, but it can be written
as

σ1 � c1,

where c � cT(V − S − E), and this is the version we prefer.
The general approach is very similar to what we have already

seen in type A. We will define the Schubert polynomials inductively
for each w ∈ Wn , starting with w

(n)
◦ � 1 · · · n.

As before, the basic tools are divided difference operators ∂k , for
k ≥ 0, acting on the ring Γ[x , y], with the y variables appearing
as scalars. For k > 0, the operator ∂k is defined exactly as in type
A, acting only on the x variables. To define the operator ∂0, we
first say how the simple transposition s0 acts. This is the algebra
homomorphism determined by

s0 · x1 � −x1 and s0 · cp � cp + 2x1cp−1 + · · · + 2x
p

1 .

(The second formula is equivalent to s0 · c �
1+x1
1−x1
· c, which is com-

patible with the first formula and the specialization c �

∏ 1−xi

1+yi
. This

also satisfies the relations defining Γ, so s0 is indeed a well-defined
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algebra homomorphism.) Then we define

∂0 f �

f − s0 f

−2x1

for any f ∈ Γ[x , y]. In particular, ∂0cp � cp−1 + x1cp−2 + · · · + x
p−1
1 .

The operator ∂0 obeys the same Leibniz-type rule as the other
difference operators. That is,

∂k( f · g) � (∂k f ) · g + (sk f ) · (∂k g)

for all f , g ∈ Γ[x , y] and all k ≥ 0.
The type C double Schubert polynomials are defined as follows, for

w ∈ Wn . First, the polynomial for w
(n)
◦ has an explicit formula as a

multi-Schur Pfaffian:

(1) SC

w
(n)
◦

(c; x; y) � Pf(2n−1,2n−3,... ,3,1)(c(1), . . . , c(n)),

where

c(k) � c ·

n−k∏
i�1

(1 + xi)

n−k∏
i�1

(1 + yi).

The other polynomials are determined inductively by

(2) SC
wsk
(c; x; y) � ∂kSC

w(c; x; y)

whenever ℓ(wsk) < ℓ(w). Setting y � 0, one has single Schubert
polynomials

SC
w(c; x) � SC

w(c; x; 0)

in Γ[x].
The double Schubert polynomials for W2 are shown in Figure 1.

Here we are using the additive basis Qλ � Qλ(c) for Γ, so in particular
Q(p) � cp.
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SC

1 2
� Q3 1 + (x1 + y1)Q2 1

SC

1 2
� Q3 + (x1 + y1)Q2 + x1 y1 Q1 SC

2 1
� Q2 1

SC

2 1
� Q2 + y1 Q1 SC

2 1
� Q2 + x1 Q1

SC
2 1 � Q1 + x1 + y1 SC

1 2
� Q1

SC
1 2 � 1.

∂0 ∂1

∂1 ∂0

∂0 ∂1

∂1 ∂0

Figure 1. Schubert polynomials for W2.

Theorem 4.1. Evaluating the variables as

c � cT(V − S − E), xi � cT
1 (Si/Si+1), and yi � cT

1 (Ei/Ei+1),

we have
σw � SC

w(c; x; y)

in H∗
T

Flω(V).

The proof of the theorem takes up the remainder of this section.
As in Chapter 10, we realize difference operators geometrically by
pullback and pushforward along P1-bundles. For V � C2n as usual,
we write Flω � Flω(V) for the symplectic flag variety, and for k ≥ 0,

Flω (̂k) � Flω(. . . , n − k − 1, n − k + 1, . . . , n;C2n)

denotes the partial flag variety omitting the (n − k)-dimensional
isotropic subspace. So Fl (̂0) parametrizes flags in which all but the
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maximal isotropic space appear. In the diagram

Flω ×Flω (̂k)
Flω

Flω Flω

Flω (̂k),

pr1 pr2

π π

the fiber product parametrizes pairs of isotropic flags (F(1)• , F
(2)
• ) such

that F
(1)
i

� F
(2)
i

for all i , k + 1. When k > 0, this identifies pr2 as
the P1-bundle P(Sk/Sk+2) → Fl. When k � 0, the projection pr2 is
identified with the P1-bundle

P(S⊥2 /S2) → Flω ,

whose tautological line bundle is

L � pr∗1(S1/S2) ⊆ S
⊥
2 /S2.

As for ordinary flag varieties, we will consider the homomorphisms
pr2∗pr∗1 : H∗TFlω(V) → H∗TFlω(V). In general, the k > 0 case is similar
to what we saw in Chapter 10, so we will focus on k � 0.

Lemma 4.2. Under the isomorphism H∗
T

Flω(V) � (Λ ⊗ Γ)[x]/J, we
have pr2∗pr∗1 � ∂k .

Proof. For k > 0, this is the same as for ordinary flag varieties
(Chapter 10, Lemma 6.5). For k � 0, we compute pr2∗. Using Chap-
ter 13, Corollary 5.1, any class α ∈ H∗

T
Flω can be written as α � a+bx1,

where a and b do not involve c or x1. Now pr∗1α � a + b cT
1 (L), so

by basic properties of Chern classes, we have pr2∗pr∗1α � −b. Since
∂0(x1) � −1, this agrees with ∂0(a + bx1). �

Lemma 4.3. For w ∈ Wn ,

pr2∗pr∗1σw �

{
σwsk

if ℓ(wsk) < ℓ(w);

0 otherwise.

The proof of this lemma goes exactly as before (Chapter 10,
Lemma 6.6), and we leave it as an exercise.2
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To complete the proof of Theorem 4.1, we need a formula for σ
w
(n)
◦

.

Proposition 4.4. For w
(n)
◦ � 1 2 · · · n ∈ W∞, and Flω(V) � Flω(C

2m)

with m ≥ n, we have

σ
w
(n)
◦

� Pf(2n−1,...,3,1)(c(1), . . . , c(n))

in H∗TFlω(V), where c(k) � c(V − En+1−k − Sn+1−k).

Proof. The argument is the same as the one we used in Chapter 12,
Theorem 4.2: reduce to a Lagrangian Grassmannian degeneracy lo-
cus, and apply Corollary 3.1.

Consider the vector bundle V ⊕V on Flω(V), with the symplectic
form ω′ defined by

ω′(v1 ⊕ w1, v2 ⊕ w2) � ω(v1, v2) − ω(w1 , w2).

Then the flag

G• : En ⊕ Sn ⊂ En−1 ⊕ Sn−1 ⊂ · · · ⊂ E1 ⊕ S1 ⊂ V ⊕ V

is isotropic with respect to the form ω′, as is the diagonal subbundle
∆V ⊆ V ⊕ V . Using notation from §3, the Lagrangian degeneracy
locus D(2n−1,... ,3,1)(∆V ,G•) ⊆ Flω(V) is defined by the conditions

dim(∆V ∩ (En+1−k ⊕ Sn+1−k)) ≥ k

for 1 ≤ k ≤ n. The equivalent conditions

dim(En+1−k ∩ Fn+1−k) ≥ k

define Ω
w
(n)
◦

, so D(2n−1,...,3,1)(∆V ,G•) � Ωw
(n)
◦

. It follows that this

degeneracy locus is irreducible of codimension ℓ(w(n)◦ ) � (2n − 1) +
· · · + 3 + 1 � n2, and therefore

σ
w
(n)
◦

� D(2n−1,...,3,1) .

Applying Corollary 3.1 proves the proposition, since

c(V ⊕ V − ∆V − En+1−k − Sn+1−k) � c(V − En+1−k − Sn+1−k),

as claimed. �
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5. Properties of type C Schubert polynomials

The type C Schubert polynomials SC
w(c; x; y) satisfy properties

analogous to those of the type A polynomials Sw and Sw (Chapters
10 and 12). To conclude this chapter, we mention some of these
properties. Our treatment is brief; much more can be found in the
references.

5.1. Basis. The classes of Schubert varieties in Flω(V) form a basis
for the cohomology, and as noted in §1.5, it follows that the classes
form a basis in the infinite-dimensional limit.

As w ranges over W∞, the Schubert polynomials SC
w(c; x; y) form a

basis for Γ[x , y] over Z[y].

Let V be a 2n-dimensional vector space with symplectic form ω.
The Schubert polynomials also form a basis for the ideal J in the
presentation Γ[x , y]/J

∼
−→ H∗

T
Flω(V) from Chapter 13, Corollary 5.1.

The ideal J has basis {SC
w(c; x; y) | w ∈ W∞, w < Wn} as a module

over Z[y].

The proof is the same as in type A, using Exercise 1.5.

5.2. Multiplication. The polynomials SC
w(c; x; y) multiply in the

same way as Schubert classes. Since they form a basis, we can write

SC
u · S

C
v �

∑
w∈W∞

cw
uv SC

w

for polynomials cw
uv ∈ Z[y].

We have
σu · σv �

∑
w∈Wn

cw
uv σw

in H∗
T

Flω(V).

5.3. Localization and interpolation. The polynomials SC
w(c; x; y)

satisfy and are characterized by an interpolation property, as in type
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A. For any w ∈ W∞, the c variables specialize as

cw
�

∏
i>0

1 + yw(i)

1 + yi
�

∏
i>0

w(i)<0

1 + yw(i)

1 − yw(i)
,

recalling that yı � −yi . For instance, c5 4 1 2 3
�
(1−y3)(1−y4)

(1+y3)(1+y4)
. The x

variables specialize as x 7→ −yw , by xi 7→ −yw(i) for all i.

For w ∈ W∞, the type C Schubert polynomial SC
w specializes as

(3) SC
w(c

w ;−yw; y) �
∏

j<i≤ 

w(i)<w( j)

(yw(i) − yw( j))

and

(4) SC
w(c

v;−yv ; y) � 0 if v � w ,

and it is the unique polynomial in Γ[x , y] of degree ℓ(w) with these
properties.

This can be proved by comparing with the corresponding restric-
tions of Schubert classes. Just as in type A (see Chapter 9, Lemma 3.1),
the classes σw are characterized by their restrictions to fixed points:

σw |w �

∏
j<i≤ 

w(i)<w( j)

(yw(i) − yw( j))(5)

and

σw |v � 0 if v � w.(6)

These formulas follow from the computations of tangent weights in
Exercise 1.1.

Now setting c � cT(V − S − E) and xi � cT
1 (Si/Si+1), we have

SC
w(c; x; y) � σw in Γ[x , y] � H∗

T
Flω(V). Restricting to the fixed point

pv sends xi to cT
1 (

vEi/
vEi+1) � −yv(i), and from c �

∏
i>0

1−xi

1+yi
, we

have c 7→ cv. (See §1.2.) So SC
w(c; x; y)|pv � SC

w(c
v ;−yv ; y), and the

restriction formulas follow from Equations (5) and (6). �
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5.4. Comparison with type A. Ordinary permutations form a
subgroup of signed permutations, and for w ∈ S∞ ⊆ W∞, the type A
(Lascoux-Schützenberger) Schubert polynomial is a specialization of
SC

w(c; x; y).

For w ∈ W∞, we have

SC
w(1; x; y) �

{
Sw(x ,−y) if w ∈ S∞;

0 if w < S∞.

Using the interpolation characterization ofSw and comparing the
restriction formulas above with those in Chapter 10, §10.5, one sees
SC

w(1; x; y) � Sw(x ,−y) when w ∈ S∞. (Note that cw
� 1 for any

w ∈ S∞.)
Next consider the embedding f : Fl(Cn) ֒→ Flω(C

2n) by regard-
ing Cn

� span{en , . . . , e1}. This identifies Fl(Cn) with the (opposite)
Schubert variety Ω̃n···2 1 ⊆ Flω(C

2n), so f −1Ωw � ∅ and f ∗σw � 0 if
w < Sn (see §1.4). On the other hand, the series c pulls back to f ∗c � 1,
and by taking n large enough, one can arrange that there are no rela-
tions among the x and y variables, so f ∗SC

w(c; x; y) � SC
w(1; x; y). �

5.5. Grassmannian signed permutations. For each strict parti-
tion λ, there is a Grassmannian signed permutation w(λ) (§1.1).

The Schubert polynomial for a Grassmannian signed permutation is
equal to the corresponding double Q-polynomial:

SC
w(λ)
(c; x; y) � Qλ(c |y).

Writing π : Flω(V) → LG(V) for the projection, this follows by
observing π−1

Ωλ � Ωw(λ), for example by comparing fixed points or
the defining rank conditions. �

Notes

Ivanov extended Nimmo’s ratio formula for Qλ(x) to a similar formula
for the multi-parameter versions Qλ(x |y), and proved identities relating
the several different versions of these polynomials described in §2 [Iva05].
Ikeda etablished the equivariant Giambelli formula for Lagrangian Grass-
mannians, using Ivanov’s double Q-polynomials [Ike07]. Our proof of
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Theorem 2.2 uses a different interpretation of the variables and appears to
be new.

As in type A, the rank conditions definingΩw in the isotropic flag variety
are often redundant. An essential set of conditions can be determined
using a variation on the Rothe diagram for signed permutations [An18].
Alternative descriptions of Bruhat order for Wn and related groups can be
found in [BjBr05, §8].

There is an analogous story for Schubert varieties and degeneracy loci
in the presence of a nondegenerate quadratic form on V . These correspond
to Lie types B (when dim V � 2n + 1) and D (when dim V � 2n). As in
other types, Schubert cells Ω◦w are Borel orbits, but in general one should
define the Schubert varieties as the closures of these cells,Ωw :� Ω◦w , rather
than directly by rank inequalities. (In type D, the locus naively defined by
conditions dim(Ep∩Fq) ≥ k may be larger. This is related to the fact that the
corresponding Bruhat order is not induced as a sub-poset of the symmetric
group. See [FulPra98, BKT15] for examples.)

Starting in the 1990s, many authors sought representatives of Schu-
bert classes in other classical types which are appropriately analogous to
the Lascoux-Schützenberger Schubert polynomials. Fomin and Kirillov
[FoKi96b] showed that stability cannot be achieved in Z[x]. Billey and
Haiman [BiHa95], meanwhile, gave formulas in Γ[x]. Different possibil-
ities were investigated by several others, e.g., [Ful96a, Ful96b, LasPra98,

KrTam02]. The Billey-Haiman polynomials turn out to satisfy the most
straightforward extensions of the properties of type A Schubert polynomi-
als; in our notation, they are equal to SC

w(c; x; 0).
The double Schubert polynomials SC

w(c; x; y)were introduced by Ikeda,
Mihalcea, and Naruse as representatives for Schubert classes in H∗

T
Flω(V)

(as well as versions in types B and D) [IMN11]. These authors established
basic properties of these polynomials, including those listed in §5 above.
Following Kazarian [Kaz00], they also interpreted the c variables to obtain
Chern class formulas for symplectic degeneracy loci. More refined formulas
and different arguments were given in [AnFul12, AnFul18].

While the formulas given in §4 for the operators ∂k suffice to define
them on Γ[x , y], when computing Schubert polynomials it is useful to know
a direct formula for ∂0Qλ(c):

∂0Qλ(c) �
∑
µ

x
b(λ/µ)
1 (2x1)

k(λ/µ)Qµ(c),
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where the sum is over all strict partitions µ obtained from λ by removing
a border strip; b(λ/µ) is the number of lines separating boxes in such a
strip; and k(λ/µ) is the number of connected components of the strip.
This formula follows from [BiHa95, Corollary 4.5], and a refined version is
proved in [AnFul21b].

Grassmannians of non-maximal isotropic subspaces are somewhat more
complicated than Lagrangian Grassmannians. Formulas for Schubert classes
in these spaces were given by Buch, Kresch, and Tamvakis [BKT17, BKT15].
Equivariant formulas, applications to degeneracy loci, and combinatorial
refinements appear in [IkeMat15, Tam16a, Tam16b, TamWil16, AnFul18].

As we have emphasized in our notation, the type C Schubert polynomi-
als SC

w(c; x; y) are closely related to the “infinite” type A Schubert polynomi-
als SA

w(c; x; y) of the previous Chapter. In fact, using the interpolation char-
acterization of the type A polynomials (Chapter 12, Notes), one can prove
that for w ∈ S∞, the natural surjection Z[c , x , y]։ Γ[x , y] sends SA

w(c; x; y)

to SC
w(c; x; y). (This refines the assertion of §5.4 that SC

w(1; x; y) �Sw(x;−y).)
A geometric proof is given in [AnFul21a].

Other properties of the type A polynomials also hold in type C. There
is a duality formula SC

w(c; x; y) � SC
w−1(c; y; x), and a Cauchy formula

SC
w(c; x; y) �

∑
vu�w

SC
u (c
′; x; t) · SC

v (c
′′;−t , y),

where c � c′·c′′ and all three series satisfy the relations defining Γ. The anal-
ogous Stanley functions Fw � SC

w(c; x; y) ∈ Γ were introduced in [BiHa95].
Using the Cauchy formula one can express SC

w(c; x; y) in terms of these type
C Stanley functions and the type A (single) Schubert polynomialsSu .

More discussion of the algebra and geometry of classical-type Schu-
bert polynomials, including types B and D, will appear in the forthcoming
[AF-ABCD].

Hints for exercises

1Work out the type A case (Chapter 10, Exercise 2.1), and keep track of the
conditions imposed by the symplectic group.

2Use Exercise 1.2 to adapt the argument from Chapter 10.



CHAPTER 15

Homogeneous varieties

A homogeneous variety is one on which an algebraic group acts
transitively. We have studied the Grassmannian and flag variety,
which are homogeneous for SLn (or GLn), as well as the Lagrangian
Grassmannian and isotropic flag variety, which are homogeneous for
the symplectic group Sp2n . Naturally generalizing and unifying these
examples are the projective homogeneous varieties for a complex
semisimple (or reductive) Lie group G.

The remaining chapters deal with the equivariant cohomology of
these spaces; as we will see, they play a central role in the general
story of G-spaces. In this chapter, we first review the basic structure
of semisimple groups and their flag varieties. We will state most facts
without proofs. For the reader encountering this language for the
first time, a useful exercise is to work out every statement explicitly for
the cases SLn or Sp2n , which we have seen in the previous chapters.

1. Linear algebraic groups

Let G be a complex semisimple linear algebraic group, with a Borel
subgroup (i.e., maximal connected solvable subgroup) and maximal
torus, G ⊃ B ⊃ T. Let g ⊃ b ⊃ t be the corresponding Lie algebras.
There is a unique maximal unipotent group U ⊆ B, so that B � U · T

(and in fact this is a semidirect product). The basic example is that
of G � SLn , with B � Bn the subgroup of upper-triangular matrices,
T � Tn the diagonal torus, and U � Un the group of upper-triangular
matrices with 1’s on the diagonal.

The class of reductive groups is slightly larger, and with a few tech-
nical changes, most of our discussion of semisimple groups applies
equally well to reductive groups. The main example of a reductive
group is GLn , along with its Borel subgroup Bn of upper-triangular

281
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matrices and diagonal torus Tn . Any semisimple or reductive group
G embeds as a closed subgroup G ⊆ GLn , so that B � G ∩ Bn and
T � G ∩ Tn.

Every linear algebraic group G has a maximal normal unipotent
group, its unipotent radical Ru(G), so that G/Ru(G) is reductive. The
main examples are Ru(B) � U for a Borel subgroup, but we will see
others when dealing with parabolic subgroups.

To streamline the presentation, we focus on the semisimple case
from now on.

1.1. Roots and weights. The weight lattice of T is the character
group M � Hom(T,C∗). The set of roots R ⊂ M consists of the
nonzero weights of T acting on g be the adjoint action. This gives a
decomposition

g � t ⊕
⊕
β∈R

gβ ,

where gβ is the weight space for β, and t is the 0-weight space. It is a
basic fact that each gβ is one-dimensional.

The positive roots R+ are the nonzero weights for the action of T

on b, so
b � t ⊕

⊕
β∈R+

gβ .

This parititions the set of roots as R � R+
∐

R−, where the negative
roots are R− � −R+

� {α ∈ R | − α ∈ R+}. There is an opposite Borel
subgroup B− whose Lie algebra b− has weights in R−.

The roots span the real vector space MR � M ⊗Z R. There is a
unique basis of simple roots ∆ ⊆ R+ such that every positive root is
a nonnegative combination of simple roots. The integral span of the
roots is the root lattice Mrt ⊆ M.

Letting M∨ � Hom(M,Z) be the dual lattice, the natural pairing
is denoted 〈 , 〉 : M ×M∨ → Z. For each root β, there is a coroot β∨

in M∨, such that 〈α, β∨〉 is an integer for all roots α ∈ R, 〈β, β∨〉 � 2,
and the reflection sβ defined on M by

sβ(λ) � λ − 〈λ, β
∨〉β
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preserves R. Note that sβ(β) � −β. (In fact, the coroots are uniquely
determined by these properties.)

The coroots α∨ associated to simple roots α form a basis for M∨
R

.
The fundamental weights ̟α are the dual basis for MR, so if α and β

are simple roots we have 〈̟α , β∨〉 � δαβ . These span the fundamental
weight lattice Mwt ⊆ MR. In general, one has Mrt ⊆ M ⊆ Mwt.

Each root β ∈ R corresponds to a one-dimensional root subgroup
Uβ ⊆ G, isomorphic to the additive group C, with Lie algebra gβ ⊆ g.
There is a T-equivariant isomorphism

C � gβ
∼
−→ Uβ ,

with T acting on gβ by the character β, and on Uβ by conjugation.
There is also a T-equivariant isomorphism∏

β∈R+

Uβ
∼
−→ U ⊆ B,

so U � AN is isomorphic to affine space (as varieties, not groups),
with N � #R+. There is a similar isomorphism for the opposite
unipotent group U−, using the negative roots R−.

Example 1.1. Let G � SLn , with the standard Borel B and torus T.
Let t1, . . . , tn be the characters which pick out the diagonal entries,
so the weight lattice M is generated by the ti’s, modulo the relation
t1+ · · ·+ tn � 0. The roots are R � {ti− t j | i , j}, the positive roots are
R+

� {ti−t j | i < j}, and the simple roots are∆ � {t1−t2, . . . , tn−1−tn}.
For β � ti − t j , the corresponding root subgroup Uβ is the set of
matrices with 1’s along the diagonal and a free entry in position
(i , j).

Exercise 1.2. For G � SLn as above, the root lattice Mrt ⊂ M has
index n, and M/Mrt � Z/nZ. Write down the fundamental weights
in terms of the characters ti .

Exercise 1.3. For G � Sp2n and the diagonal torus as in Chapter 13,
work out the roots. What is M/Mrt in this case?1
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Different semisimple groups may have isomorphic Lie algebras.
For any given semisimple Lie algebra, there are always two distin-
guished semisimple groups: the simply connected group, whose max-
imal torus has weight lattice M � Mwt, and the adjoint group, which
has M � Mrt. As noted above, the weight lattice of the maximal torus
is always an intermediate lattice, so the simply connected and adjoint
groups are the extreme cases.

Example 1.4. The groups SLn and PGLn have isomorphic Lie
algebras; SLn is the simply connected group, and PGLn is the adjoint
group.

The simply connected and adjoint groups coincide if Mrt � Mwt.
This happens, for example, in the root system of type G2.

1.2. The Weyl group. The Weyl group is W � N(T)/T, where
N(T) is the normalizer of T in G. This is a finite group, and it acts on
M by

(w · λ)(t) � λ( Ûw−1t Ûw),

for any lift Ûw ∈ N(T). (An easy calculation shows this is independent
of the choice of lift.) This action preserves the set of roots.

For each root β, the reflection sβ belongs to the Weyl group. The
simple reflections sα (associated to simple roots) generate W . A reduced
expression for w ∈ W is an expression w � sα1 · · · sαℓ , where α1, . . . , αℓ
are simple roots and ℓ � ℓ(w) is minimal among all such expressions.
The sequence α1, . . . , αℓ is sometimes called a reduced word.

The number ℓ(w) is called the length of w. It may be characterized
as

ℓ(w) � #(w(R−) ∩ R+).

There is a unique longest element w◦ ∈ W , with w◦(R
−) � R+, so

ℓ(w◦) � #R+.
A root β is an inversion of w if β ∈ R+ and w(β) ∈ R−. That is, the

inversions of w are the roots in R+ ∩ w−1(R−). Since

w(R−) ∩ R+
� −w(R+ ∩ w−1(R−)),
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ℓ(w) is equal to the number of inversions of w. (One also sees that
ℓ(w) � ℓ(w−1), but this is evident from the definition of length.)

Example 1.5. For SLn , the Weyl group is the symmetric group
Sn . The simple reflection associated to the root ti − ti+1 is the simple
transposition si . A positive root β � ti − t j has w(β) ∈ R− if and only
if i < j and w(i) > w( j). (So the general notion of inversion recovers
the one for Sn defined in Chapter 10.) The longest element is the
permutation w◦ � n · · · 2 1.

A choice of reduced word induces a useful ordering of the roots:

Lemma 1.6. Given a reduced word α1, . . . , αℓ for w, we have

w(R−) ∩ R+
� {β1 , . . . , βℓ},

with
βi � sα1 · · · sαi−1(αi),

so β1 � α1, β2 � sα1(α2), etc.

The action of W on M induces an action on the dual lattice M∨,
preserving the coroots. The natural pairing is W-invariant:

〈w(α), w(β∨)〉 � 〈α, β∨〉

for any root α and coroot β∨.

Remark 1.7. Since W is finite, one can choose an invariant inner
product ( , ) on the vector space MR and use this to identify MRwith
M∨
R

. With respect to such an identification, one has

β∨ �

2β
(β, β)

for any root β. In particular, writing β �

∑
α∈∆ nαβ · α in terms of

simple roots, we obtain

〈̟α , β
∨〉 � nαβ ·

(α, α)

(β, β)
.
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Basic facts about the action of W on root systems show these formulas
are independent of the choice of invariant inner product. The W-
invariant inner product can be helpful for intuition, but we will not
need to reason with it.

1.3. Bruhat decomposition. For any ordering of the set w(R−) ∩

R+
� {β1 , . . . , βℓ}, the multiplication map

Uβ1 × · · · ×Uβℓ → G

defines an isomorphism (of varieties) onto the subgroup

U(w) :� U ∩ ÛwU− Ûw−1,

where U ⊆ B and U− ⊆ B− are maximal unipotent groups. This
isomorphism is T-equivariant, where T acts by conjugation on each
factor.

Lemma 1.8. Writing C(w) � B ÛwB ⊆ G, the map (u , b) 7→ u Ûwb is an
isomorphism

U(w) × B
∼
−→ C(w).

In particular, C(w) �
∏

Uβi × B � Aℓ × B.

The above lemma is the key ingredient in Bruhat decomposition.

Proposition 1.9 (Bruhat decomposition). We have

G �

∐
w∈W

C(w),

with each C(w) a locally closed subvariety of G.

For u , v , w ∈ W , the notation uv � w denotes a length-additive
product, so uv � w and ℓ(u) + ℓ(v) � ℓ(w).

Lemma 1.10. If uv � w, then C(u) · C(v) � C(w). For a simple root
α, if ℓ(sαv) < ℓ(v), then C(sα) · C(v) � C(sαv) ∪ C(v). Similarly, if
ℓ(vsα) < ℓ(v), then C(v) · C(sα) � C(v) ∪ C(vsα).
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2. Flag varieties

The quotient space G/B is a smooth projective variety of dimen-
sion

dim G/B � N � #R+
� ℓ(w◦).

It is called the (generalized) flag variety of G. For each w ∈ W , there is a
point pw � ÛwB ∈ G/B. The torus T acts on G/B by left multiplication,
and the points pw are precisely the T-fixed points.

We quickly review the geometry of G/B, which naturally gener-
alizes that of SLn/B � Fl(Cn) and Sp2n/B � Flω(C

2n). As usual, we
invite the reader to unpack each statement for these cases.

2.1. Schubert varieties. The Borel subgroups B and B− also act
on G/B by left multiplication. The orbit

X(w)◦ � B · pw � B ÛwB/B

is called a Schubert cell, and the orbit

Y(w)◦ � B− · pw � B− ÛwB/B

is an opposite Schubert cell. Since B− � Ûw◦B Ûw
−1
◦ , these are related by

Y(w)◦ � w◦ · X(w◦w)
◦.

The Bruhat decomposition gives T-equivariant isomorphisms

Aℓ(w) �
∏

β∈w(R−)∩R+

Uβ
∼
−→ X(w)◦(1)

(u1 , . . . , uℓ) 7→ u1 · · · uℓ · pw ,

and similarly

AN−ℓ(w)
�

∏
β∈w(R−)∩R−

Uβ
∼
−→ Y(w)◦(2)

(u1, . . . , uN−ℓ) 7→ u1 · · · uN−ℓ · pw .

In each case, the origin in the affine space maps to pw in the cell.
The orbit closures

X(w) � X(w)◦ and Y(w) � Y(w)◦
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are called Schubert varieties and opposite Schubert varieties, respectively.
From the definitions, X(w) is B-invariant, of dimension ℓ(w), and
Y(w) is B−-invariant, of codimension ℓ(w).

Remark. Our terminology for Schubert varieties versus opposite
Schubert varieties in G/B conforms to standard usage, but conflicts
with what we used in previous chapters. In our earlier notation, for
G � SLn or G � Sp2n , the (opposite) Schubert cells are

X(w)◦ � Ω̃◦w◦w and Y(w)◦ � Ω◦w ,

and similarly for the closures of these cells.

2.2. Partial order. The Chevalley-Bruhat order on W describes con-
tainment of Schubert varieties. It is defined by

v ≤ w iff X(v) ⊆ X(w).

Multiplication by w◦ reverses this partial order, and it follows that
v ≤ w iff Y(v) ⊇ Y(w). It also follows that

X(w) �
∐
v≤w

X(v)◦ and Y(w) �
∐
v≥w

Y(v)◦.

In the cases W � Sn or W � Wn, this agrees with the Bruhat order
we saw in Chapters 10 and 13. As before, there are many equivalent
characterizations. Here are some.

Lemma 2.1. For v , w ∈ W , the following are equivalent.

(1) v ≤ w;
(2) X(v) ⊆ X(w);
(3) pv ∈ X(w);
(4) Y(w) ⊆ Y(v);
(5) p(w) ∈ Y(v);
(6) w◦w ≤ w◦v;
(7) v−1 ≤ w−1;
(8) there is a reduced word (α1, . . . , αℓ) for w and a subword (αi1 , . . . , αik

)

such that sαi1
· · · sαik

� v;
(9) there is a reduced word (α1, . . . , αℓ) for w and a subword (αi1 , . . . , αik

)

which is a reduced word for v.
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The nontrivial equivalence is (1) ⇔ (9); the rest are straightfor-
ward from the others and what we have seen.

2.3. Bases for cohomology. The Schubert varieties and opposite
Schubert varieties determine bases for the equivariant cohomology
of G/B, for the same reasons we have seen for Fl(V) and Flω(V).

Setting Fp �

⋃
ℓ(w)≤p X(w) defines a filtration

∅ ⊂ F0 ⊂ · · · ⊂ FN � G/B

by closed B-invariant subsets, and the Bruhat decomposition shows
that each Fp r Fp−1 is a disjoint union of affine spaces of dimension
p. Using the cell-decomposition lemma (Chapter 4, Proposition 7.1),
it follows that the classes [X(w)]B form a basis for H∗

B
(G/B) over

ΛB � ΛT . For the same reason, the classes [Y(w)]B
−

form a (different)
basis for H∗

B−
(G/B).

The subvarieties X(w) and Y(w) are T-invariant, so the classes

x(w) � [X(w)]T and y(w) � [Y(w)]T

form two distinct bases for H∗
T
(G/B) over ΛT . From our dimension

conventions, x(w) ∈ H
2N−2ℓ(w)
T

(G/B) and y(w) ∈ H
2ℓ(w)
T
(G/B).

2.4. Tangent spaces and Poincaré duality. The tangent space to
G/B at the base point pe � ÛeB is

Tpe G/B � g/b �
⊕
β∈R−

gβ .

Left multiplication by Ûw defines an automorphism of G/B taking pe

to pw , and twists the T-action so that

Tpw G/B �

⊕
β∈w(R−)

gβ .

The isomorphisms of (1) and (2) are T-equivariant, which implies
the following:
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Lemma 2.2. The T-fixed point pw is a nonsingular point of X(w) and
of Y(w), and there are canonical T-equivariant isomorphisms

Tpw X(w) � Tpw X(w)◦ �
⊕

β∈w(R−)∩R+

gβ

and
Tpw Y(w) � Tpw Y(w)◦ �

⊕
β∈w(R−)∩R−

gβ .

In particular, since w(R−) � (w(R−)∩R+) ∐ (w(R−)∩R−), the varieties
X(w) and Y(w) intersect transversally at the point pw.

It follows that the bases {x(w)} and {y(w)} are Poincaré dual.

Proposition 2.3. Writing ρ : G/B → pt as before, for v , w ∈ W , we
have

ρ∗(x(v) · y(w)) � δv,w

in H∗T(pt) � ΛT .

The proof follows the same pattern we have seen before.

3. Parabolic subgroups and partial flag varieties

A closed subgroup P with G ⊇ P ⊇ B is called a (standard) parabolic
subgroup. These are in bĳection with subsets of the simple roots ∆. A
standard parabolic P corresponds to the subset

∆P � {α ∈ ∆ | g−α ⊆ p}

where p is the Lie algebra of P. Conversely, given a subset J ⊂ ∆, the
parabolic PJ is generated by B together with the root subgroups U−β
for all β ∈ R+ which are in the linear span of J. The set of such β is
written R+

P
⊆ R+.

The extreme cases are P∅ � B and P∆ � G. Excluding these, a
minimal parabolic corresponds to a set consisting of a single simple
root, Pα � P{α}; and a maximal parabolic corresponds to a set which
omits a single simple root, Pα̂ � P∆r{α}.



Chapter 15. Homogeneous varieties 291

The Lie algebra of P decomposes as

p � b ⊕
⊕
β∈R+

P

g−β

� t ⊕
⊕
β∈R+

P

(g−β ⊕ gβ) ⊕
⊕

β∈R+rR+

P

gβ .

The unipotent radical UP � Ru(P) has Lie algebra uP �

⊕
β∈R+rR+

P
gβ,

and there is an equivariant isomorphism

UP �

∏
β∈R+rR+

P

Uβ ,

for any ordering of the roots in R+ r R+

P . Writing R−P � −R+

P, there is
an opposite unipotent group U−

P
, with

U−P �

∏
β∈R−rR−P

Uβ ,

with Lie algebra u−
P
.

There is an associated Weyl group WP � NP(T)/T, equal to the
subgroup of W generated by the simple reflections sα for α ∈ ∆P.
Every coset [w] in W/WP has a unique representative wmin ∈ W of
minimal length, characterized by the property that wmin(α) ∈ R+ for
each α ∈ ∆P. Similarly, there is a unique representative wmax ∈ W of
maximal length, characterized by wmax(α) ∈ R− for each α ∈ ∆P.
The element wmin is the minimal representative of [w], and wmax is the
maximal representative. Writing wP

◦ for the longest element of WP , we
have wmax � wminwP

◦ , and

ℓ(wmax) − ℓ(wmin) � ℓ(wP
◦ ) � #R+

P .

For a parabolic subgroup P ⊆ G, the homogeneous variety G/P

is called a partial flag variety for G. It is projective, and this property
characterizes parabolic subgroups. Just as for G/B, the groups T,
B, and B− act on G/P by left multiplication. For each [w] ∈ W/WP,
there is a point p[w] � ÛwP ∈ G/P, and these are precisely the T-fixed
points of G/P.
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There is a canonical isomorphism

T[e]G/P � g/p � u−P �

⊕
β∈R−rR−P

gβ .

In particular, dim G/P � NP � #(R−rR−
P
) � #(R+rR+

P
). Multiplying

by any coset representative for [w] ∈ W/WP, we have

T[w]G/P �

⊕
β∈w(R−rR−

P
)

gβ .

(The subgroup WP preserves the roots R−P, so the set w(R− r R−P)

depends only on the coset [w] ∈ W/WP.) A refinement of Bruhat
decomposition shows that there is a T-equivariant isomorphism

ANP �

∏
β∈w(R−rR−

P
)

Uβ
∼
−→ V[w](3)

(u1 , . . . , uNP) 7→ u1 · · · uNP · p[w],

where V[w] ⊆ G/P is an open neighborhood of p[w]. In fact, this

establishes an equivariant isomorphism ÛwU−
P
Ûw−1 ∼−→ V[w].

Example 3.1. For G � SLn and the simple root αd � td − td+1,
consider the maximal parabolic P � Pα̂d

. In block matrices, one has

UP �

[
Id ∗

0 In−d

]
and U−P �

[
Id 0
∗ In−d

]
,

where Ik is the k × k identity matrix. Both UP and U−P are isomorphic
toAd(n−d). The flag variety is G/P � Gr(d ,Cn). (Compare Chapter 3,
Example 3.7.)

Schubert cells and varieties are defined as before. For each coset
[w] ∈ W/WP, the orbit

X[w]◦ � B · p[w]

is a Schubert cell, and

Y[w]◦ � B− · p[w]
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is an opposite Schubert cell. The Schubert varieties and opposite
Schubert varieties are the respective orbit closures:

X[w] � X[w]◦ and Y[w] � Y[w]◦.

From the characterizations of wmin and wmax, one sees

wmin(R− r R−P) ∩ R+
� wmin(R−) ∩ R+

and

wmax(R− r R−P) ∩ R− � wmax(R−) ∩ R−.

So choosing any representative w of the coset [w], we have

#
(
w(R− r R−P) ∩ R+

)
� ℓ(wmin)

and

#
(
w(R− r R−P) ∩ R−

)
� N − ℓ(wmax) � NP − ℓ(w

min),

using R+
� (R+ r R+

P
) ∐ R+

P
to see the last equality.

There are equivariant isomorphisms

Aℓ(w
min)
�

∏
β∈w(R−rR−

P
)∩R+

Uβ
∼
−→ X[w]◦(4)

and

ANP−ℓ(w
min)
�

∏
β∈w(R−rR−P)∩R−

Uβ
∼
−→ Y[w]◦,(5)

so
dim X[w] � codim Y[w] � ℓ(wmin).

As for G/B, the Schubert cells decompose the flag variety G/P, and
their classes

x[w] � [X[w]]T and y[w] � [Y[w]]T

form two bases for H∗T(G/P), as [w] ranges over W/WP. We have

x[w] ∈ H
2NP−2ℓ(wmin)
T

(G/P) and y[w] ∈ H
2ℓ(wmin)
T

(G/P).
The isomorphisms (4) and (5) lead to a description of tangent

spaces, as before.
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Lemma 3.2. The T-fixed point p[w] is a nonsingular point of X[w] and
of Y[w], and there are canonical T-equivariant isomorphisms

Tp[w]X[w] � Tp[w]X[w]
◦
�

⊕
β∈w(R−rR−P)∩R+

gβ

and
Tp[w]Y[w] � Tp[w]Y[w]

◦
�

⊕
β∈w(R−rR−

P
)∩R−

gβ .

In particular, the varieties X[w] and Y[w] intersect transversally at the
point p[w].

Let π � πP be the projection G/B→ G/P; this is proper, smooth,
and G-equivariant. It determines an isomorphism of Schubert cells
X(wmin)◦→ X[w]◦, so by basic properties of Gysin homomorphisms,
we have

(6) π∗(x(w
min)) � x[w]

in H∗
T

G/P. Similarly, we have an isomorphism Y(wmax)◦ → Y[w]◦,
so

(7) π∗(y(w
max)) � y[w].

On the other hand, we have π−1X[w] � X(wmax) (as one sees by
tracking T-fixed points), so

(8) π∗x[w] � x(wmax).

Similarly, π−1Y[w] � Y(wmin), and

(9) π∗y[w] � y(wmin).

From these considerations, one can establish Poincaré duality
for G/P. It can be deduced from G/B using functoriality: writing
ρP : G/P → pt and ρ : G/B→ pt, we have

ρP
∗ (x[v] · y[w]) � ρ

P
∗ (x[v] · π∗y(w

max))

� ρP
∗ π∗(π

∗x[v] · y(wmax))

� ρ∗(x(v
max) · y(wmax))

� δ[v],[w].
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Another proof of Poincaré duality can be given by analyzing the
induced partial order on W/WP.

Exercise 3.3. Show that p[v] ∈ X[w] if and only if vmin ≤ wmin in
W , and similarly p[v] ∈ Y[w] if and only if vmax ≥ wmax. Using this,
imitate earlier arguments to show that the bases {x[w]} and {y[w]}
are Poincaré dual.

Exercise 3.4. For any [v], [w] ∈ W/WP, show that vmin ≤ wmin if
and only if vmax ≤ wmax.2

Example 3.5. Consider G � SLn and the maximal parabolic omit-
ting the dth simple root, so P � Pα̂d

and G/P � Gr(d ,Cn). The Weyl
groups are W � Sn and WP � Sd × Sn−d . For w � w1 w2 · · ·wn, the
minimal coset representative of [w] is obtained by sorting {w1 , . . . , wd}

and {wd+1, . . . , wn} into increasing order. Similarly, the maximal
coset representative is obtained by sorting these sets into decreasing
order.

For instance, with n � 9, d � 4 and w � 3 2 9 6 1 8 5 7 4, we have

wmin
� 2 3 6 9 1 4 5 7 8

and

wmax
� 9 6 3 2 8 7 5 4 1.

Comparing with notation from Chapters 9 and 10, the parti-
tion λ � (5, 3, 1, 1) corresponds to the subset I � {2, 3, 6, 9}, and
wmin

� w(λ) is the corresponding Grassmannian permutation. The
complementary partition is λ∨ � (4, 4, 2, 0), and its Grassmannian
permutation is w(λ∨) � 1 4 7 8 2 3 5 6 9 � w◦w

max. We have

X[w] � Ω̃λ∨ and Y[w] � Ωλ .

Example 3.6. For G � SLn again, and the minimal parabolic
P � Pαd

, we have G/P � Fl(1, . . . , d̂ , . . . , n − 1;Cn), the partial flag
variety which omits the d-dimensional space. The Weyl group WP is
generated by the single reflection sd, so for w � w1 · · ·wn ∈ Sn , we
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have

wmin
�

{
w if wd < wd+1;

wsd if wd > wd+1,

and vice versa for wmax.

4. Invariant curves

The T-invariant curves in G/P can be described explicitly, using
a small application of Bruhat decomposition. We will need a general
lemma about reflections.

Lemma 4.1. Let γ be a root, and β � w(γ) for some w ∈ W . Then

sβ � w sγ w−1 and Uβ � ÛwUγ Ûw
−1.

We have seen that the tangent weights at a T-fixed point p[w] are
w(R− r R−P). Since the weights are distinct, it follows from general
equivariant geometry that there are finitely many invariant curves
through p[w], one for each β ∈ w(R− r R−P) (Chapter 7, §2). For each
such root β, there is a reductive group

Gβ � CG(ker(β)◦),

the centralizer of the identity component of ker(β : T → C∗). (So
Gβ � G−β.) It has Lie algebra

Lie(Gβ) � t ⊕ gβ ⊕ g−β ,

and its semisimple part is isomorphic to SL2 or PGL2.

Proposition 4.2. The T-invariant curves in G/P through p[w] are the
orbits

Gβ · p[w] � P
1

for β ∈ w(R− r R−
P
). Such a curve contains two T-fixed points, p[w] and

p[sβw]. Its tangent weights at these fixed points are β and −β, respectively.

Proof. Let E ⊆ G/P be an invariant curve containing p[w], and
let V[w] ⊆ G/P be the T-invariant affine open neighborhood of p[w],
described above in §3, Equation (3). Then E ∩ V[w] � Uβ · p[w], for
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some β ∈ w(R− r R−
P
). Since TU−β ⊂ Gβ is a Borel subgroup, Bruhat

decomposition for Gβ gives

Gβ � UβTU−β ∐ Uβ ÛsβTU−β .

Let γ � w−1(β) ∈ R− r R−P , so β � w(γ). By Lemma 4.1, we have
U−β � ÛwU−γ Ûw

−1, so U−β fixes p[w]. Similarly, Uβ � U−sβ(β) � U−sβw(γ)

fixes p[sβw] � Ûsβ · p[w]. From the decomposition of Gβ, we see

Gβ · p[w] � Uβ · p[w] ∐ {p[sβw]},

so E � Gβ · p[w] � Gβ/(TU−β) and the proposition follows. �

A refinement of the proposition describes invariant curves in
Schubert varieties. Let X[v] ⊆ G/P be a Schubert variety, and let
[w] ∈ W/WP be such that wmin ≤ vmin, so p[w] ∈ X[v].

Corollary 4.3. The T-invariant curves in X[v] through p[w] are the
orbits Gβ · p[w] such that β ∈ w(R− r R−P) and (sβw)min ≤ vmin.

Proof. Since p[sβw] ∈ X[v] if and only if (sβw)min ≤ vmin, the
condition is clearly necessary for Gβ · p[w] ⊆ X[v]. If (sβw)min ≤ wmin,
then this curve lies in X[w] ⊆ X[v], since β is a tangent weight for
Tp[w]X[w]. Similarly, if wmin ≤ (sβw)min ≤ vmin, then the curve lies in
X[sβw] ⊆ X[v], since −β is a tangent weight for Tp[sβw]

X[sβw]. �

Exercise 4.4. Let α ∈ ∆ be a simple root. For the corresponding
minimal parabolic subgroup Pα and projection π : G/B → G/Pα,
show that the fiber π−1(p[w]) is the T-invariant curve Gβ · pw ⊆ G/B,
where β � w(−α). In particular, the fixed points are {pw , pwsα}, since
sβw � wsα by Lemma 4.1. The tangent weights to this curve at pw

and pwsα are β � −w(α) and −β � w(α), respectively.

5. Compact groups

Every complex semisimple Lie group G contains a maximal com-
pact subgroup K ⊂ G, which is unique up to conjugacy. Conversely,
G is the complexification of K, sometimes written G � KC. For exam-
ple, we have the special unitary group SU(n) ⊂ SLn , the compact
symplectic group Sp(n) ⊂ Sp2n, and the real orthogonal groups
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SO(n) ⊂ SOn. This also holds for reductive groups. For exam-
ple, one has the unitary group U(n) ⊂ GLn , and the compact torus
(S1)n ⊂ (C∗)n .

A basic fact is that K is a deformation retract of G, and conse-
quently

H∗KX � H∗GX

for any space X on which G acts. In Chapter 1, we saw a simple
instance of this, for S1 ⊂ C∗.

For a semisimple (or reductive) G with maximal compact sub-
group K, we obtain a maximal compact torus S ⊂ K by choosing a
maximal torus and Borel subgroup T ⊂ B ⊂ G:

S � T ∩ K � B ∩ K.

In fact, S ⊂ T is maximal, i.e., if T � (C∗)n then S � (S1)n .
The inclusions determine a canonical homeomorphism

K/S
∼
−→ G/B,

and we use this to endow K/S with a complex algebraic structure.
We have NK(S) � NG(T) ∩ K, so the Weyl group is isomorphic

to NK(S)/S. This identification yields a natural right action of W on
K/S � G/B, defined by

(kS) · w � k ÛwS

for any representative Ûw ∈ NK(S). This action is not algebraic or
holomorphic: if ℓ(w) is odd, the automorphism reverses orientation.

On the other hand, using the identification K/S � G/B, the inclu-
sion K/S ֒→ G/T determines a section of the projection G/T → G/B.
This section is not algebraic, or even holomorphic. But there is a natu-
ral (algebraic) right action of W � NG(T)/T on G/T, and restricting to
the non-holomorphically embedded K/S ⊂ G/T recovers the above
non-holomorphic action of W on G/B.

Example 5.1. For G � GLn , reducing to the compact subgroup
K � U(n) corresponds to choosing a Hermitian metric on Cn . The
identification Fl(Cn) � GLn/B � U(n)/(S1)n realizes the flag variety
as the space of decompositions of Cn into n perpendicular lines,
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spanned by unit vectors. The right action of W � Sn permutes these
lines.

From this description, one sees that Fl(Cn) � U(n)/(S1)n embeds
(non-holomorphically!) in (Pn−1)n , sending each column of a matrix
in U(n) to the line it spans inCn . The action of Sn on Fl(n) is then the
restriction of the natural action on (Pn−1)n , permuting the n factors.

Any reductive G embeds in GLn , inducing compatible embed-
dings G/B � K/S ֒→ Fl(Cn) and W ֒→ Sn . The above construction
then gives another realization of the right action of W on G/B as the
restriction of an algebraic action via a non-holomorphic embedding,
this time in (Pn−1)n rather than G/T.

Example 5.2. Using the compact symplectic group Sp(n) ⊂ Sp2n,
we can complete the computation of ΛSp(n) � ΛSp2n begun in Chap-
ter 2, §5. To do this, we give another construction of the approxima-
tion spaces.

The symplectic group can be described as a quaternionic unitary
group, that is,

Sp(n) �
{
A ∈ Mn,n(H)

�� A · A
†
� In

}
,

where H is the algebra of quaternions (over R), and A
†

is the quater-
nionic conjugate transpose. For m ≥ n, let

EmSp(n) � Emb(Hn ,Hm)

be the space of H-linear embeddings, with H acting by right multi-
plication on Hn and Hm, and Sp(n) acting by left multiplication on
these spaces. The right action of Sp(n) on EmSp(n) is defined in the
usual way, by (g · ϕ)(v) � ϕ(g−1v), and the quotient space is

BmSp(n) � GrH(n ,H
m),

the quaternionic Grassmannian. The cellular structure of this space is
the same as that of the complex Grassmannian Gr(n ,Cm), but with
the dimension of each cell doubled, since cells C|λ | are replaced by
H|λ |. In the limit as m →∞, we have

ΛSp(n) � H∗BSp(n) � Z[c2, c4, . . . , c2n],
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a polynomial ring on n generators c2k in degree 4k.
The embeddings Sp(n) ⊂ U(2n) give compatible embeddings

GrH(n ,Hm) ֒→ Gr(2n ,C2m), and the corresponding homomorphism
on cohomology

ΛU(2n) � Z[c1, c2, . . . , c2n] → ΛSp(n) � Z[c2, . . . , c2n]

is given by ci 7→ ci for i even, and ci 7→ 0 for i odd.

6. Borel presentation

Using cohomology withQ coefficients, there are uniform descrip-
tions of H∗(G/B) and H∗

T
(G/B), due to Borel. In this section all coho-

mology is taken with Q coefficients. For instance, we will write write
ΛG � H∗(BG;Q).

Let G be a semisimple or reductive group, with Borel subgroup
B and maximal torus T; let K ⊃ S be corresponding compact groups,
as in the previous section. Suppose X is a space with left G-action.
There is a canonical isomorphism

H∗TX � H∗G(G/B × X),

with G acting diagonally on G/B×X (Chapter 3, Example 4.4). Using
compact groups, this is H∗

S
X � H∗

K
(K/S × X). The Weyl group acts

on K/S×X via its right action on K/S (and a trivial action on X), and
this induces a left action of W on H∗

T
X � H∗

S
X. The main goal of this

section is to investigate the W-invariant subring (H∗
T

X)W .
The projection G/B × X → X is G-equivariant, the pullback by

this projection coincides with the change-of-groups homomorphism
H∗

G
X→ H∗

T
X. Since W acts trivially on X, we see that the change-of-

groups map factors through W-invariants:

H∗GX→ (H∗T X)W ⊆ H∗TX.

The main theorem is that the first map is an isomorphism.

Theorem 6.1 (Borel). For any G-space X, there is a canonical isomor-
phism

H∗GX � (H∗T X)W .
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Similarly, H∗
K

X � (H∗
S
X)W for any K-space.

To prove the theorem, we will use a basic fact from topology.

Proposition 6.2. Let W be a finite group acting freely (on the right) on
a topological space Y. There is a canonical isomorphism

H∗(Y/W) � (H∗Y)W ,

using Q coefficients. �

Proof of Theorem 6.1. First we consider the right action of W on
K/S. This is free, with quotient K/NK(S), so by Proposition 6.2, we
have

H∗(K/NK(S)) � H∗(K/S)W .

Furthermore, the map K/S → K/NK(S) is a covering space, with
covering group W , so the Euler characteristics are related by

χ(K/NK(S)) �
1

#W
χ(K/S).

Since K/S � G/B has a decomposition into Schubert cells, its Euler
characteristic is equal to #W . It follows that χ(K/NK(S)) � 1, and
that

H∗(K/NK(S)) � Q.

That is, K/NK(S) is Q-acyclic—it has the rational cohomology of a
point.

Next consider the quotient map

EK ×NK(S) X → EK ×K X,

a fiber bundle with fiber K/NK(S). Since K/NK(S) is acyclic, the
Leray-Hirsch theorem says the corresponding pullback map on co-
homology is an isomorphism, and we have

H∗KX � H∗(EK ×K X)
∼
−→ H∗(EK ×NK(S) X).

Finally, the map

EK ×S X→ EK ×NK(S) X
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is a covering space, with group W , so applying Proposition 6.2 again,
we have

H∗(EK ×NK(S) X) � H∗(EK ×S X)W � (H∗SX)W .

Combining these isomorphisms establishes the theorem. �

Taking X � pt, we obtain a description of ΛG.

Corollary 6.3. For any reductive group G with Weyl group W and
maximal torus T, we have ΛG � (ΛT)

W .

For example, taking G � GLn , this says

ΛGLn � Q[c1, . . . , cn] � Q[t1, . . . , tn]
Sn

� (ΛT)
Sn ,

as we have seen before.

Next we will deduce presentations for the cohomology rings of
G/B. The first will be given in terms of equivariant line bundles,
which will play a significant role in what follows.

Any character λ ∈ M � Hom(T,C∗) extends to a character of
B � T · U , by λ(t · u) � λ(t). Let Cλ be the corresponding one-
dimensional representation of B. Then

Lλ :� G ×B Cλ

is a G-equivariant line bundle on G/B. There is a ring homomor-
phism

b : ΛT → H∗T(G/B),

defined by b(λ) � cT
1 (Lλ) for λ ∈ M.

In fact, the homomorphism b is simply a change-of-groups homo-
morphism. Using the canonical identifications ΛT � ΛB � H∗

G
(G/B)

(see Chapter 3, Example 4.3) and H∗
T
(G/B) � H∗

B
(G/B), we can write

b : H∗G(G/B) → H∗B(G/B)

as cG
1 (Lλ) 7→ cB

1 (Lλ).

Corollary 6.4. Let Λ � ΛT . The homomorphism b : Λ→ H∗
T
(G/B)

descends to a canonical isomorphism

Λ/ΛW
+

∼
−→ H∗(G/B),
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where ΛW
+

is the positive-degree part of ΛW .

Proof. Consider the fiber bundle

EG ×G G/B→ BG,

with fiber G/B. The base and fiber have no odd cohomology (over
Q), so the associated spectral sequence degenerates. The homomor-
phism H∗

G
(G/B) → H∗(G/B) comes from restriction to a fiber, and

degeneration of the spectral sequence implies

H∗G(G/B)/H
∗(BG)+ � H∗(G/B).

We have H∗
G
(G/B) � ΛB � Λ, and H∗BG � ΛW (by Corollary 6.3

above), so the left-hand side is Λ/ΛW
+

.
It remains to observe that restriction to a fiber is the same as com-

posing b with the forgetful homomorphism H∗
T
(G/B) → H∗(G/B).

Indeed, considering the diagram

G/B EG ×B G/B EG ×G G/B

pt BB BG,

the line bundle E ×G Lλ on EG ×G G/B pulls back to EG ×B Lλ on
EG ×B G/B, and then restricts to Lλ on the fiber G/B. �

Proposition 6.5. For any G-space X, there is a canonical isomorphism

H∗TX � Λ ⊗ΛW H∗GX,

where Λ � ΛT .

Proof. Consider the fiber bundle EG×B X → EG×G X, with fiber
G/B, and let

H∗BX � H∗(EG ×B X) → H∗(G/B)

be restriction to a fiber. This is surjective, because the composition
Λ � ΛB → H∗

B
X → H∗(G/B) is surjective, as we have just seen.



304 Notes

Take elements xw ∈ Λ which lift a basis of H∗(G/B) � Λ/ΛW
+

,
and let xw ∈ H∗

B
X be their images under Λ → H∗

B
X. By the Leray-

Hirsch theorem, H∗
T

X � H∗
B

X is free over H∗
G

X with basis given by
the elements xw. �

Taking X � G/B and using H∗
G
(G/B) � Λ, we obtain a description

of the equivariant cohomology of G/B.

Corollary 6.6. We have H∗
T
(G/B) � Λ ⊗ΛW Λ.

In the next chapter, we will see some consequences of the sym-
metry manifested in this description of H∗

T
(G/B).

Exercise 6.7. Show that the action of W on ΛT � H∗
G
(G/B), as

described at the beginning of this section, is the same as the one
induced by the natural action of W on the weight lattice of T.3

Example 6.8. For G � GLn , so G/B � Fl(Cn), we have seen

H∗Fl(Cn) � Q[x]/(e1(x), . . . , en(x))

and

H∗TFl(Cn) � Q[x; y]/(e1(x) − e1(y), . . . , en(x) − en(y)),

where the variables are x � (x1, . . . , xn) and y � (y1, . . . , yn) (Chap-
ter 4, Proposition 4.1).

Exercise 6.9. For G � Sp2n, consider the group of signed permu-
tations Wn acting on Λ � Q[t1, . . . , tn]. Show that the invariant ring
is generated by the elementary symmetric functions in the squares
of the t variables: e1(t

2
1 , . . . , t

2
n), . . . , en(t

2
1 , . . . , t

2
n). This recovers the

presentation for H∗Flω(C
2n) given in Chapter 13, Proposition 3.1.

Notes

General references for linear algebraic groups are the books by Borel
[Bor91], Humphreys [Hum81], and Springer [Spr98]. For Weyl groups and
Coxeter groups, standard references are Bourbaki [Bour81] and Humphreys
[Hum90]. More detail about Schubert varieties appears in [Jan03, §13].
The Bruhat decomposition is described in [Bor91, §14.12], [Hum81, §28.3],
[Jan03, §13.2], or [Spr98, §8.3]. Lemma 1.10 is proved in [Spr98, 8.3.7].



Chapter 15. Homogeneous varieties 305

A proof of the nontrivial equivalence in the characterization of Bruhat
order (Lemma 2.1) is given in [Jan03, §13.7]. Other equivalent conditions
are in [Hum90, §§5.9–5.10].

Lemma 4.1 appears in [Hum81, §26.3].
A general reference for compact and complex Lie groups is [He01, Chap-

ter VI]. In particular, the fact that K ⊂ G is a deformation retract may be
found in [He01, §VI.2].

Although Borel did not use the language of equivariant cohomology at
the time, Theorem 6.1 comes from [Bor53, Proposition 27.3].

Proposition 6.2 can be found in [Hat02, Proposition 3G.1]; see also
[Gro57, 5.2.3, Corollaire]. One consequence is that H∗

W
(pt,Q) � Q for any

finite group W . (Take Y � EW in the proposition.)
The homomorphism b : Λ → H∗(G/B) was studied extensively in the

1958 Chevalley seminar, using Z coefficients. Serre calls a group G special
if every principal G-bundle which is locally trivial in the étale topology is
also locally trivial in the Zariski topology. Grothendieck shows that special
groups are precisely the connected linear algebraic groups for which b is
surjective (overZ); furthermore, among semisimple groups, the only special
groups are direct products of copies of SLn and Sp2n [Gro58, Théorème 3].

The presentations of H∗Fl(Cn) and H∗Flω(C
2n) (from Example 6.8 and

Exercise 6.9) are valid with Z coefficients; since SLn and Sp2n are special
groups, this is not a coincidence, and these are essentially the only examples.

Hints for exercises

1Writing the characters of the diagonal torus as−tn , . . . ,−t1, t1, . . . , tn , the roots
are

R � {±ti ± t j | i , j} ∐ {±2t1, . . . ,±2tn}.

These generate an index 2 sublattice of M (which has basis t1, . . . , tn). So M/Mrt �

Z/2Z. The positive roots are

R+
� {ti − t j | i < j} ∐ {−ti − t j | i ≤ j}.

2Since wmax � wminwP
◦ , this follows from the subword characterization of

Bruhat order in Lemma 2.1.

3Under the automorphism kS 7→ k ÛwS of G/B � K/S, the line bundle Lλ pulls
back to Lw·λ, as one can check by examining the fiber over the identity point.





CHAPTER 16

The algebra of divided difference operators

When studying Schubert polynomials for the ordinary and sym-
plectic flag varieties, we saw algebras of divided difference operators
acting on equivariant cohomology. Similar operators act on the co-
homology of any G/B, compatibly with localization as well as with
the presentations we saw in the last chapter. These operators give
an explicit, algorithmic means of computing in H∗

T
(G/B), although

in practice one often requires a more efficient method.
The general divided difference operators—and variants we will

see in this chapter—have been used by many authors as an algebraic
model for H∗

T
(G/B), often including the infinite-dimensional Kac-

Moody flag varieties. Here, only considering finite-dimensional flag
varieties, we will see geometric constructions which simplify the
algebraic arguments.

We work with the usual data from the last chapter: a semisimple
(or reductive) group G, with maximal torus T and Borel subgroup B,
with simple roots ∆ and Weyl group W . We write Λ � ΛT .

1. Push-pull operators

For a subset of simple roots J ⊆ ∆, with corresponding standard
parabolic subgroup P � PJ , let πJ be the projection G/B→ G/P. We
will consider the Λ-linear map DJ : H∗

T
(G/B) → H∗

T
(G/B) defined by

DJ � π
∗
J ◦ πJ ∗.

This lowers degree by twice the relative dimension of the morphism
πJ : G/B→ G/P, that is, by 2 · #R+

P
.

For a coset [w] ∈ W/WP, recall that wmin (respectively, wmax) is
the unique representive in W of minimal (resp., maximal) length.

307
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Lemma 1.1. Let w ∈ W be a representative for the coset [w] ∈ W/WP.
We have

DJ(x(w)) �

{
x(wmax) if w � wmin;

0 if w , wmin,

and

DJ(y(w)) �

{
y(wmin) if w � wmax;

0 if w , wmax.

Proof. For any w, we have

πJ(X(w)) � X[w] and πJ(Y(w)) � Y[w]

in G/P. If w , wmin, then dim X(w) > dim X[w] so the pushforward
is zero; and similarly dim Y(w) > dim Y[w] if w , wmax. The formu-
las DJ(x(w

min)) � x(wmax) and DJ(y(w
max)) � y(wmin) follow from

Chapter 15, Equations (6)–(9). �

Our main interest is in the operators associated to one simple root.
We will write πα � π{α} and Dα � D{α} for this case. Here P � Pα is
a minimal parabolic, and WP � {e , sα}. So each coset in W/WP has
two representatives, w and wsα, whose lengths differ by 1. In this
case, the lemma takes the following form:

Dα(x(w)) �

{
x(wsα) if ℓ(wsα) > ℓ(w);

0 otherwise;
(1)

and

Dα(y(w)) �

{
y(wsα) if ℓ(wsα) < ℓ(w);

0 otherwise.
(2)

Equation (2) generalizes the analogous formulas we have seen
for Schubert classes in the ordinary and symplectic flag varieties
(Chapter 10, Lemma 6.6 and Chapter 14, Lemma 4.3).

For any sequence of simple roots α1, . . . , αℓ, the composition

Dα1 ◦ · · · ◦Dαℓ : H∗T(G/B) → H∗−2ℓ
T (G/B)

takes x(w) to x(wsαℓ · · · sα1) if ℓ(wsαℓ · · · sα1) � ℓ(w) + ℓ, and sends
x(w) to 0 otherwise. The effect on y(w)’s is similar: the operator takes
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y(w) to y(wsαℓ · · · sα1) if ℓ(wsαℓ · · · sα1) � ℓ(w) − ℓ, and sends y(w) to
0 otherwise.

For any v ∈ W , we may choose any reduced word (α1 , . . . , αℓ)

and define
Dv :� Dα1 ◦ · · · ◦Dαℓ ,

so from the considerations of the previous paragraph it follows that

Dv(x(w)) �

{
x(wv−1) if ℓ(wv−1) � ℓ(w) + ℓ(v−1);

0 otherwise;

and similarly for Dv(y(w)). Since the elements x(w) form a basis for
H∗

T
(G/B) overΛ, this shows that Dv is well-defined and independent

of the choice of reduced word for v. (If v � sα1 · · · sαℓ is not a reduced
expression, i.e., ℓ(v) < ℓ, then the operator Dα1 ◦· · ·◦Dαℓ is identically
zero.) This also shows

Du ◦Dv �

{
Duv if ℓ(uv) � ℓ(u) + ℓ(v);

0 otherwise.

The algebra of Λ-linear endorphisms of H∗
T
(G/B) generated by these

operators is called the nil-Hecke algebra.
The operators Dv may also be constructed via a correspondence.

Let Z(v−1) ⊆ G/B × G/B be the G-orbit closure

Z(v−1) � G · (pe , pv−1) � G · (pv , pe)

where G acts diagonally. (For G � SLn , this is the “double Schubert
variety” Ωv−1 considered in Chapter 10, §5.) Let pr1 and pr2 be the
projections Z(v−1) → G/B.

Proposition 1.2. We have Dv � pr2∗ ◦ pr∗1.

Proof. We temporarily denote the operators pr2∗ ◦ pr∗1 by D′v .
First consider a simple root α. Then we have Z(α) � Z(sα) is the

fiber product G/B×G/Pα G/B, and the claim follows from the diagram
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of P1-bundles

Z(α)

G/B G/B

G/Pα ,

pr1 pr2

πα πα

since π∗απα∗ � pr2∗pr∗1. So D′α � Dα.
For the general case, we use induction on length. Supposing

ℓ(sαv) � ℓ(v) + 1, we consider the fiber product Z̃(v−1sα) sitting in
the diagram

Z̃(v−1sα)

Z(v−1) Z(α)

G/B G/B G/B.

The projection pr13 : Z̃(v−1sα) → G/B ×G/B (onto the first and third
factors) is birational onto its image, which is Z(v−1sα), and it follows
that D′sαv � D′α ◦ D′v. On the other hand, if ℓ(sαv) � ℓ(v) − 1, then
pr13(Z̃(v

−1sα)) � Z(v−1), so the dimension drops and D′α ◦ D′v � 0 in
this case. So these operators satisfy the same relations as the Dv , and
therefore D′v � Dv for all v. �

Example 1.3. For G � SLn , so G/B � Fl(Cn), and a simple root
α � tk − tk+1, the action of Dα on H∗

T
Fl(Cn) agrees with that of ∂k

(Chapter 10, §6).

Exercise 1.4. Suppose α is a simple root and u , v ∈ W are such
that ℓ(usα) > ℓ(u) and ℓ(vsα) < ℓ(v). Show that

Dα(y(u) · y(v)) � y(u) · y(vsα).

In particular, Dα(y(u) · y(sα)) � y(u) if ℓ(usα) > ℓ(u).1
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Remark. For a minimal parabolic Pα, there is a distinguished
homomorphism SL2 → Pα, whose image has Lie algebra

g−α ⊕ [g−α , gα] ⊕ gα ⊆ p.

The standard 2-dimensional representation C2 of SL2 determines a
rank 2 vector bundle Vα on G/Pα. (Without changing the flag variety,
one may assume G is simply connected, which implies SL2 ֒→ Pα,
and the SL2-representation C2 extends to Pα. Then Vα � G ×Pα C2.)
The map πα : G/B→ G/Pα is the P1-bundle P(Vα) → G/Pα.

2. Restriction to fixed points

The localization homomorphism

H∗T(G/B) → H∗T(G/B)
T
�

⊕
w∈W

H∗T(pw)

is injective, since H∗
T
(G/B) is free over Λ (Chapter 5, Theorem 1.8).

We wish to extend the operators Dα to the ring H∗
T

XT .
It will be useful to identify H∗

T
XT with the ring F(W,Λ) of Λ-

valued functions on the Weyl group. In this notation, the localization
homomorphism is

x 7→ ψx ,

where ψx is the function ψx(w) � x |w. It will also be useful to
further extend to the fraction field Q ofΛ, and consider the Q-algebra
F(W,Q) of Q-valued functions on W . Since Λ is a domain, we have
F(W,Λ) ⊂ F(W,Q).

One reason to prefer the function notation is that it immediately
suggests natural W-actions. Here we will use the action induced by
right multiplication on itself: for v ∈ W and ψ ∈ F(W,Q), we have

(v · ψ)(w) � ψ(wv).

(In §5 we will see another natural action.)
There is a Q-linear map Aα : F(W,Q) → F(W,Q) for each simple

root α, defined by the formula

(Aαψ)(w) �
ψ(wsα) − ψ(w)

w(α)
.
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In terms of the W-action on F(W,Q), this is Aαψ �
1

w(α)

(
sα · ψ − ψ

)
.

Exercise 2.1. Show that the operators Aα satisfy a Leibniz-type
formula:

Aα(ψ · ξ) � Aα(ψ) · ξ + (sα · ψ) ·Aα(ξ)

for any ψ, ξ ∈ F(W,Q).

Proposition 2.2. The diagram

H∗
T

X F(W,Q)

H∗
T

X F(W,Q)

Dα Aα

commutes.

Proof. For π � πα : G/B→ G/Pα, we compute π∗ by localization,
using the integration formula (Chapter 5, Example 2.3). The fiber
over p[w] ∈ G/Pα is the T-invariant curve E � Gw(α) · p(w), with fixed
points pw and pwsα (Chapter 15, Exercise 4.4). The tangent weights
are −w(α) and w(α), respectively. For any x ∈ H∗

T
(G/B), then, we

have

π∗(x)|[w] �
x |w
−w(α)

+

x |wsα

w(α)

�

x |wsα − x |w

w(α)
.

The pullback map π∗ : H∗
T
(G/P)T → H∗

T
(G/B)T is determined by

H∗T(p[w]) → H∗T(pw) ⊕ H∗T(pwsα )

y 7→ (y , y).

It follows that

Dα(x)|w � π∗π∗(x)|w �

x |wsα − x |w

w(α)
� (Aαψx)(w),

as claimed. �

The inclusion H∗
T

X ֒→ F(W,Q) becomes an isomorphism after
tensoring with Q, and the proposition says the operators Aα are the
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ones induced by Dα on H∗
T
(G/B) ⊗Λ Q. It follows that they satisfy

similar properties. For a sequence of simple roots (α1 , . . . , αℓ), the
composition Aα1 ◦ · · · ◦Aαℓ depends only on v � sα1 · · · sαℓ if ℓ(v) � ℓ
(i.e., if the word is reduced), and vanishes otherwise. Writing

Av � Aα1 ◦ · · · ◦Aαℓ

for any reduced word (α1 , . . . , αℓ), we have

Au ◦Av �

{
Auv if ℓ(uv) � ℓ(u) + ℓ(v);

0 otherwise.

The W-action on F(W,Q) preserves the subalgebra H∗
T
(G/B). This

is the content of the following proposition.

Proposition 2.3. There is a unique leftΛ-linear action of W on H∗
T
(G/B),

preserving grading and satisfying

sα · x � Dα(x · y(sα)) −Dα(x) · y(sα)

for all x ∈ H∗
T
(G/B) and all simple roots α. This action also satisfies and is

determined by the formula

ψv·x � v · ψx

for all v ∈ W and x ∈ H∗
T
(G/B), where x 7→ ψx is the inclusion

H∗T(G/B) ֒→ F(W,Q).

Proof. By the Leibniz rule for Aα, for any x ∈ H∗
T
(G/B) we have

Aα(ψx · ψy(sα)) � Aα(ψx) · ψy(sα) + (sα · ψx) ·Aα(ψy(sα)).

By the previous proposition, we have Aα(ψx) � ψDα(x) for any x

in H∗
T
(G/B). In particular, Aα(ψy(sα)) � 1, so the above equation

becomes
sα · ψx � Aα(ψxψy(sα)) −Aα(ψx)ψy(sα).

The functions ψx and ψy(sα) lie in the subalgebra H∗
T
(G/B) ⊆ F(W,Q),

so this implies the claimed relation, and proves that W preserves this
subalgebra. The same calculations also show ψsα ·x � sα · ψx , which
suffices to prove the second statement. �
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It follows that the operators Dα satisfy the same Leibniz-type
formula as the Aα:

Dα(x · y) � Dα(x) · y + (sα · x)Dα(y)

for any x , y ∈ H∗T(G/B).

We will use the operators Aα to recursively compute localizations
of Schubert classes. There is a simple formula for certain restrictions,
generalizing what we have seen for Schubert classes in ordinary and
symplectic flag varieties. It follows immediately from the descrip-
tions of tangent weights (Chapter 15, Lemma 3.2).

Lemma 2.4. For [v] ∈ W/WP, we have

x[v]|[v] �
∏

β∈v(R−rR−
P
)∩R−

β

and

y[v]|[v] �
∏

β∈v(R−rR−
P
)∩R+

β.

Focusing on G/B, we will write ψv ∈ F(W,Λ) for the function
given by

ψv(w) � y(v)|w ,

so ψv is the image of y(v) under the inclusion H∗
T
(G/B) ֒→ F(Q ,Λ).

We use the same notation for the corresponding function in F(W,Q).

Proposition 2.5. The functions ψv satisfy and are uniquely character-
ized by the following properties:

(i) ψv(w) � 0 unless v ≤ w.

(ii) ψv(v) �
∏

β∈v(R−)∩R+

β.

(iii) Aαψv �

{
ψvsα if ℓ(vsα) < ℓ(v);

0 if ℓ(vsα) > ℓ(v).

The proof is straightforward from what we already know.



Chapter 16. The algebra of divided difference operators 315

Proof. Property (i) holds since y(v)|w � 0 if pw < Y(v). Prop-
erty (ii) comes from Lemma 2.4. Property (iii) comes from the corre-
sponding formula for Dαy(v) (Equation (2) above).

To see that these properties characterize ψv , first note that Prop-
erty (i) says ψw◦ has only one nonzero value, which is specified by
Property (ii). Any v ∈ W may be written as v � w◦sαℓ · · · sα1 with
ℓ(v) � ℓ(w◦) − ℓ, so ψv may be computed from ψw◦ using Prop-
erty (iii). �

The proposition makes it possible to calculate any restriction of
a Schubert class, by starting with w◦ and working inductively in
Bruhat order. In practice, however, one often wants a more direct
way of computing. In Chapter 18 we will see an explicit formula for
every value ψv(w). Here we give a different formula, for the simple
case of a divisor.

Recall that for each simple root α there is a fundamental weight
̟α, characterized by 〈̟α , β∨〉 � δαβ .

Lemma 2.6. The Schubert divisors restrict as follows:

y(sα)|w � ̟α − w(̟α)

and

x(w◦sα)|w � w◦(̟α) − w(̟α).

(If G is not simply connected, so M ( Mwt, then ̟α may not lie in
M, but the differences on the right-hand sides always lie in the root
lattice Mrt ⊆ M.)

Proof. We will prove the first formula; the second is similar. Let
us temporarily write ψα for ψsα . We know

(∗) ψα(e) � 0,

by Property (i) (that is, pe < Y(sα)). For any simple root β , α, we
have Aβψα � 0 by Property (iii), so

(∗∗) ψα(wsβ) � ψα(w).
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Similarly, Aαψα � ψe � 1, so

(∗∗∗) ψα(wsα) � ψα(w) + w(α).

The function ψα : W → Λ is uniquely determined by (∗), (∗∗), and
(∗∗∗). (By (∗∗) and (∗∗∗), the difference of two such functions would
take the same values at w and wsβ for every simple root β, so it must
be constant; by (∗), the constant is zero.)

On the other hand, the function fα(w) � ̟α − w(̟α) clearly
satisfies (∗), and it satisfies (∗∗) and (∗∗∗) since

fα(wsβ) � ̟α − wsβ(̟α)

� ̟α − w(̟α − δαββ)

� fα(w) + δαβw(β).

It follows that fα � ψα, as claimed. �

3. Difference operators and line bundles

In Chapter 15, §6, we saw G-equivariant line bundles

Lλ � G ×B Cλ

for each character λ ∈ M, inducing a homomorphism

b : Λ � Sym∗M → H∗T(G/B)

of graded rings. (There we used Q coefficients, but the definition of
b is the same for Z coefficients.) And W acts on Λ, induced by its
action on the character group M.

Exercise 3.1. Show that the fiber of Lλ at the T-fixed point pw

is the representation Cw(λ), so cT
1 (Lλ)|w � w(λ). Conclude that the

homomorphism b : Λ→ H∗
T
(G/B) is injective.2

Exercise 3.2. Show that

cT
1 (Lλ) �

∑
α∈∆

−〈λ, α∨〉y(sα) + λ

for any λ ∈ M.3
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We have seen operators Dα on H∗
T
(G/B) and Aα on F(W,Q). The

“classical” divided difference operators on Λ are defined by

∂α( f ) �
sα( f ) − f

α

for each simple root α.

Exercise 3.3. The operators ∂α also satisfy a Leibniz rule:

∂α( f · g) � ∂α( f ) · g + (sα f ) · ∂α(g)

for any f , g ∈ Λ.

Proposition 3.4. For any f ∈ Λ, we have Dαb( f ) � b(∂α f ). That is,
the diagram

Λ H∗
T
(G/B) F(W,Q)

Λ H∗
T
(G/B) F(W,Q)

∂α

b

Dα Aα

b

commutes.

Proof. It suffices to show that the outer rectangle commutes,
since we already know the right square does (Proposition 2.2). That
is, writing b′ : Λ → F(W,Q) for the composition, we must show
Aαb′( f ) � b′(∂α f ) for any f ∈ Λ.

First consider the case f � λ ∈ M. By Exercise 3.1, the corre-
sponding function b′(λ) ∈ F(W,Q) is w 7→ w(λ). The operator Aα

takes this to the constant function sending w to

wsα(λ) − w(λ)

w(α)
� −〈λ, α∨〉.

On the other hand,

∂α(λ) �
sα(λ) − λ

α
� −〈λ, α∨〉,

so the claim is true in this case.
For the general case, we use induction on degree: since all maps

are additive, it suffices to prove that knowing the asserted formula
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for λ and f implies it for λ f . For this, we apply the Leibniz formulas

∂α(λ f ) � ∂α(λ) f + sα(λ) ∂α( f )

and

Aα(λψ) � Aα(λ)ψ + sα(λ)Aα(ψ),

together with the fact that b′ respects the action of W : for v ∈ W and
f ∈ Λ, one computes v · b′( f ) � b′(v · f ). �

It follows that the operators ∂α satisfy the same properties as Dα

and Aα. For a sequence of simple roots (α1, . . . , αℓ), the composition
∂α1 ◦ · · · ◦ ∂αℓ depends only on v � sα1 · · · sαℓ if ℓ(v) � ℓ (i.e., if the
word is reduced), and vanishes otherwise. Writing

∂v � ∂α1 ◦ · · · ◦ ∂αℓ

for any reduced word (α1 , . . . , αℓ), we have

∂u ◦ ∂v �

{
∂uv if ℓ(uv) � ℓ(u) + ℓ(v);

0 otherwise.

Example 3.5. In terms of the W-action on H∗
T
(G/B) described in

the last section, we have

Dα(x) �
sα · x − x

b(α)
.

In particular, taking x � x(sα) and using Dα(x(e)) � x(sα), we see

sα · x(e) � −x(e).

Since x(e) is the class of a point, this means that sα cannot come from
any holomorphic action on G/B.

4. The right W-action

In Proposition 2.3, we have seen one way in which W acts on
H∗

T
(G/B), equivariantly for the inclusion H∗

T
(G/B) ֒→ F(W,Q) and

the homomorphism b : Λ → H∗T(G/B). This action is by Λ-algebra
automorphisms of H∗

T
(G/B), but as noted in Example 3.5, it does not

come from an algebraic action of W on G/B.
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In fact, this W-action is the same as the one induced by the action
on G/B � K/S discussed in Chapter 15, §6. We can see this alge-
braically, using the projection G/T → G/B. This is a G-equivariant
fiber bundle with fibers isomorphic to B/T � U � AN , so the pull-
back maps

H∗G(G/B) → H∗G(G/T) and H∗T(G/B) → H∗T(G/T)

are isomorphisms. The Weyl group W � N(T)/T acts naturally on
G/T by right multiplication, so gT · Ûw � g ÛwT. (Choosing a lift
Ûw ∈ NK(S) ⊂ NG(T), this evidently restricts to the right action of W

on K/S from Chapter 15.) The right action of W commutes with the
left action of G, so it induces left actions onΛ � H∗

G
(G/B) � H∗

G
(G/T)

and H∗
T
(G/B) � H∗

T
(G/T).

Another way of realizing the same action will be useful. For
w ∈ W , let Bw

� ÛwB Ûw−1 ⊆ G. This is the stabilizer of the point
pw ∈ G/B. There is a canonical G-equivariant isomorphism Φw

fitting into a commuting diagram

(3)

G/T G/T

G/B G/Bw ,

·w−1

∼

Φw

defined by Φw(gB) � g Ûw−1Bw .

Lemma 4.1. The diagram

H∗
T
(G/Bw) F(W,Q)

H∗
T
(G/B) F(W,Q)

(Φw)∗ w·

commutes, where the right vertical arrow is ψ 7→ w · ψ, with the W-action
as in §2.

Proof. For v ∈ W , let pw
v � vBw ∈ G/Bw be the corresponding

T-fixed point in G/Bw . It suffices to consider the fixed-point classes
[pw

v ]
T ∈ H∗

T
(G/Bw), since their images in F(W,Q) form a Q-linear
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basis. On one hand, we have

(Φw)∗[pw
v ]

T
� [(Φw)−1(pw

v )]
T
� [pvw]

T .

On the other hand, letting ψpw
v
∈ F(W,Q) be the function given by

ψpw
v
(u) � [pw

v ]
T |u, one computes w · ψpw

v
� ψpvw . �

Proposition 4.2. The W-action on H∗T(G/B) induced by the right
action on G/T is the same as the action defined in Proposition 2.3. The
W-action on Λ � H∗

G
(G/B) is the usual one induced by the action on M.

Proof. The first statement follows from Lemma 4.1, using the
diagram (3). The second statement is Chapter 15, Exercise 6.7. �

5. Left-handed actions and operators

We will see another W-action on H∗
T
(G/B), along with corre-

sponding operators D̃α and Ãα. In the next section, we use a geomet-
ric construction to realize the symmetry between the two W-actions,
and these two sets of operators.

This W-action comes from left multiplication of N(T) ⊂ G on
G/B. For w ∈ W , let

τw : H∗T(G/B) → H∗T(G/B)

be the pullback homomorphism corresponding to the automorphism
gB 7→ Ûw−1 gB of G/B. (As usual, this is independent of the choice of
representative Ûw ∈ N(T).) This automorphism of G/B is equivariant
with respect to the automorphism t 7→ Ûw−1t Ûw of T. So τw is not a
Λ-algebra automorphism; it intertwines the natural action of W on
Λ. That is, for f ∈ Λ and x ∈ H∗

T
(G/B),

(4) τw( f · x) � w( f ) · τw(x),

where W acts on Λ � Sym∗M via its usual action on M.
We will call this the left-handed action of W on H∗

T
(G/B), to dis-

tinguish it from the one defined by Proposition 2.3, which we call
the right-handed action. The terminology will be justified in the next
section, by Theorem 6.3.
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The left-handed action on H∗
T
(G/B) extends to an action of W on

F(W,Q), as follows. For ψ ∈ F(W,Q) and w ∈ W , define τwψ by

(τwψ)(v) � w(ψ(w−1v))

for each v ∈ W . So τw intertwines the Q-algebra structure of F(W,Q)

by the same twist (4), and preserves F(W,Λ) ⊆ F(W,Q).

Exercise 5.1. Verify that the diagram

H∗T(G/B) F(W,Q)

H∗
T
(G/B) F(W,Q)

τw τw

commutes, so the action of τw on F(W,Q) extends the one on H∗
T
(G/B).4

For a simple root α, we saw formulas for the operators Dα and
Aα in terms of the right-handed W-action. Operators D̃α and Ãα are
defined analogously, using the left-handed action. Given elements
x ∈ H∗

T
(G/B) and ψ ∈ F(W,Q), let

D̃α(x) �
τα(x) − x

α

and

Ãα(ψ) �
τα(ψ) − ψ

α
,

where we write τα for τsα .
The analogue of Proposition 3.4 holds, with b : Λ → H∗

T
(G/B)

replaced by ρ∗ : Λ→ H∗T(G/B), where ρ : G/B → pt (so ρ∗ gives the
usual Λ-algebra structure).

Proposition 5.2. The diagram

Λ H∗
T
(G/B) F(W,Q)

Λ H∗
T
(G/B) F(W,Q)

∂α

ρ∗

D̃α Ãα
ρ∗

commutes.
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The proof is similar to that of Proposition 3.4, and we leave it as
an exercise.5

The left-handed operators behave similarly to the right-handed
operators. The action on Schubert bases is given by

D̃α(x(w)) �

{
x(sαw) if ℓ(sαw) > ℓ(w);

0 otherwise;
(5)

and

D̃α(y(w)) �

{
y(sαw) if ℓ(sαw) < ℓ(w);

0 otherwise.
(6)

It follows that the compositions D̃α1 ◦ · · · ◦ D̃αℓ and Ãα1 ◦ · · · ◦ Ãαℓ

are zero when the word (α1, . . . , αℓ) is not reduced, and they depend
only on v � sα1 · · · sαℓ when this is a reduced expression. These facts
may be proved directly, but we will deduce them from a geometric
construction which illustrates the symmetry between left- and right-
handed operators.

Example 5.3. Consider G � SLn , so G/B � Fl(Cn), and a sim-
ple root α � tk − tk+1. Using the identification y(w) � [Ωw]

T and
comparing (6) with Chapter 11, Corollary 4.4, it follows that −D̃α

corresponds to the “y-variable” divided difference operator ∂y

k
.

6. The convolution algebra

We have canonical isomorphisms

H∗G(G/B) � H∗B(pt) � Λ

and
H∗G(G/B × G/B) � H∗B(G/B) � H∗T(G/B),

where G acts diagonally on G/B. In particular, the identification with
H∗

G
(G/B×G/B) offers a more symmetric picture of H∗T(G/B), and also

lets us exploit a general algebraic structure on the cohomology of a
product.
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Definition 6.1. Let X be a nonsingular compact variety with an
action of a linear algebraic group G, so G acts diagonally on X × X.
The convolution product on H∗

G
(X × X) is defined by

x ⋆ y � pr13∗(pr∗12x · pr∗23 y)

for x , y ∈ H∗
G
(X × X), where the maps pri j : X × X × X → X × X are

the projections.

The convolution product is not commutative, but it is associative
and compatible with the ΛG-algebra structure. (For c ∈ Λ

p

G
and

x ∈ H
q

G
(X × X), we have c · (x ⋆ y) � (c · x)⋆ y � (−1)pq x ⋆ (c · y).)

Exercise 6.2. Let ω be the involution which exchanges factors of
X × X, that is, ω(a , b) � (b , a). Show that

ω∗(ω∗(x)⋆ y) � (−1)pqω∗(y)⋆ x

for x ∈ H
p

G
(X × X) and y ∈ H

q

G
(X × X).6

For X � G/B, the convolution algebra gives a symmetric descrip-
tion of the left- and right-handed actions and operations.

Theorem 6.3.

(a) Let pri : G/B × G/B → G/B and ρ : G/B → pt be the projec-
tions, and let b : Λ→ H∗T(G/B) be the homomorphism defined by
b(λ) � cT

1 (Lλ). Under the usual identifications Λ � H∗
G
(G/B)

and H∗
T
(G/B) � H∗

G
(G/B × G/B), we have

ρ∗ � pr∗1 and b � pr∗2

as homomorphisms Λ→ H∗T(G/B).

(b) For w ∈ W and x ∈ H∗
T
(G/B), write τw(x) and w · x for the

left- and right-handed actions, respectively. Let W × W act on
G/T × G/T by right multiplication, and for w , v ∈ W write
(w× v)(x) for the induced action on H∗

G
(G/T ×G/T). Identifying

H∗
T
(G/B) � H∗

G
(G/T × G/T), we have

τw(x) � (w × 1)(x) and w · x � (1 × w)(x).
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(c) Let Z(α) � G · (pe , psα ) ⊆ G/B × G/B, and let z(α) � [Z(α)]G

in H∗
G
(G/B × G/B). We have

D̃α(x) � z(α)⋆ x and Dα(x) � x ⋆ z(α)

for x ∈ H∗
T
(G/B).

Part (b) says the left-handed action of W on H∗
T
(G/B) comes from

the first factor of W ×W , and the right-handed action comes from
the second factor. Part (c) says the actions of D̃α and Dα on H∗

T
(G/B)

are given by left and right convolution with z(α), respectively.

Proof. The G-equivariant isomorphism G ×B G/B � G/B × G/B

establishes part (a).
For (b), one uses the commutative diagram

E ×G (G/T × G/T) E ×T (G/T)

E ×G (G/T × G/T) E ×T (G/T)

∼

∼

given by

[e , g1, g2] [e g1, g−1
1 g2]

[e , g1 Ûw , g2] [e g1 Ûw , Ûw
−1 g−1

1 g2]

to see τw(x) � (1 × w)(x). A similar diagram describes the right-
handed W-action.

In (c), it follows from Proposition 1.2 that Dα(x) � x ⋆ z(α). For
the left-handed operator D̃α , we use the involution ω to exchange
factors of G/B × G/B. From (a), we have

ω∗(b( f )) � ρ∗( f )

for any f ∈ Λ. From (b) we have

ω(w · ω∗(x)) � τw(x)
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for any x ∈ H∗
T
(G/B) and w ∈ W . We compute:

(ω∗ ◦Dα ◦ ω
∗)(x) � ω∗

(
sα · (ω

∗x) − ω∗x

b(α)

)

�

ω∗(sα · (ω∗x)) − ω∗(ω∗x)

ω∗(b(α))

�

τα(x) − x

α

� D̃α(x).

So it suffices to observe

ω∗(ω∗(x)⋆ z(α)) � z(α)⋆ x ,

which follows from Exercise 6.2 together with ω∗z(α) � z(α). �

Exercise 6.4. For w ∈ W , let z(w) � [Z(w)]G in H∗
G
(G/B × G/B).

Show that z(w) � x(w) under the identification of H∗
G
(G/B × G/B)

with H∗T(G/B). Conclude that ω∗x(w) � x(w−1).

It follows that the convolution algebra has the same structure as
the nil-Hecke algebra of difference operators.

Corollary 6.5. Using H∗T(G/B) � H∗
G
(G/B ×G/B), the convolution

algebra structure is determined by

(∗) x(u)⋆ x(v) �

{
x(uv) if ℓ(uv) � ℓ(u) + ℓ(v);

0 otherwise;

and

(∗∗) ( f · x)⋆ ( f ′ · x′) � ( f · b( f ′) · x)⋆ x′

for f , f ′ ∈ Λ and x , x′ ∈ H∗
T
(G/B).

Proof. The classes x(w) form a basis for H∗
T
(G/B) over Λ, so the

formulas (∗) and (∗∗) characterize the product. To see that (∗) holds,
use Theorem 6.3(c) together with Exercise 6.4 and induction on ℓ(v).
To see (∗∗) holds, write

( f · x)⋆ ( f ′ · x′) � ( f · x)⋆ (ρ∗( f ′)x′)

and apply Theorem 6.3(a). �
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The formulas for D̃α in (5) and (6) are immediate consequences,
as is the fact that D̃v � D̃α1 ◦ · · · ◦ D̃αℓ is independent of the choice of
reduced word for v: we have

D̃v(x) � x(v)⋆ x and Dv(x) � x ⋆ x(v−1)

for any v ∈ W and x ∈ H∗
T
(G/B).

Remark. The nil-Hecke algebra acts as operators on H∗
T

X, for any
left G-space X. One can see this by identifying

H∗TX � H∗G(G/B × X).

Then for any z ∈ H∗
G
(G/B×G/B) and x ∈ H∗TX, one has a convolution

action defined by

z ⋆ x � pr13∗(pr∗12(z) · pr∗23(x)),

where pri j are the projections from G/B × G/B × X.
In particular, for each simple root α there are left-handed differ-

ence operators D̃α acting on H∗
T

X by D̃α(x) � z(α)⋆ x.

Notes

The operators Dα were introduced in the 1970s by Bernstein-Gelfand-
Gelfand and Demazure to study the ordinary cohomology, Chow groups,
and K-theory of G/B [BGG73, De74]. Variations were studied further in
the 1980s by Arabia and Kostant-Kumar, [Ara86, Ara89, KoKu86]. The term
“nil-Hecke ring” was coined by Kostant and Kumar. It is also sometimes
called the nil-Coxeter algebra; see, e.g., [FoSt94].

One can define operators Lw : H∗T(G/B) → Λ by Lw(x) � ρ∗(x · x(w)).
Equivalently (via Poincaré duality), this operator picks out the coefficient
of y(w) in the expansion of x, that is,

x �

∑
w∈W

Lw(x) · y(w).

Arabia considers these operators when x lies in the subalgebra H∗
G
(G/B),

which is included in H∗T(G/B) via the homomorphism b. Using the identi-
fications H∗

T
(G/B) � H∗

G
(G/B × G/B), x(w) � z(w), b � pr∗2, and ρ∗ � pr1∗,

we have
Lw(x) � pr1∗(pr∗2x · z(w))
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By applying the involution ω, the same formula defines Dw(x), for any x in
H∗T(G/B) (Proposition 1.2). For x ∈ H∗

G
(G/B), it follows from Proposition 3.4

that Lw � ∂w as endomorphisms of H∗
G
(G/B) � Λ. A different proof of this

formula is given in [Ara86].
The functions ψv are often denoted ξv, especially in the literature stem-

ming from [KoKu86]. They were studied in detail by Billey [Bi99].
The left- and right-handed actions of W on H∗

T
(G/B) are sometimes

simply called left and right actions; as group actions they are both left
actions. They were used by Knutson to obtain recurrence formulas for
multiplying Schubert classes in H∗T(G/B) [Kn03]. They are also referred
to as the “dot” and “star” actions by Tymoczko [Tym08a], and by others
following her (e.g. [BrosCh18]).

Subtler versions of convolution algebras have many applications in rep-
resentation theory. For instance, they are used extensively in the book by
Chriss and Ginzburg [ChrGi97].

Hints for exercises

1Apply the projection formula, using y(u) � π∗α y[u], y[v] � πα∗y(v), and
π∗αy[v] � y(vsα).

2The first statement is an easy calculation: for t ∈ T and z ∈ Cλ,

t · [ Ûw, z] � [t Ûw , z] � [ Ûw( Ûw−1t Ûw), z] � [ Ûw , λ( Ûw−1t Ûw)z] � [ Ûw , w(λ)(t)z].

The composition Λ→ H∗
T
(G/B) ֒→ F(W,Λ) is injective, since it sends any f ∈ Λ to

the function ψ f defined by ψ f (w) � w( f ).

3Since the fundamental weights are a basis, it suffices to do this for λ � ̟α .
Then one sees cT

1 (L̟α ) � ̟α − y(sα) by restricting both sides to pw , using the
formula for y(sα)|w from Lemma 2.6.

4The fixed-point classes [pv]
T ∈ H∗T(G/B) restrict to a Q-basis for F(W,Q), so

it suffices to work with these classes. The corresponding function ψpv is given by
ψpv (v) �

∏
v(R−) β and ψpv (u) � 0 for u , v. One checks τw([pv]

T) � [pwv]
T , so the

claim is that
τw · ψpv � ψpwv ,

which is a straightforward calculation.

5Using Exercise 5.1, the right square commutes, so it suffices to show the outer
square commutes. For f ∈ Λ, let ψ f ∈ F(W,Q) be the constant function. Then one
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computes

(Ãαψ f )(v) �
(ταψ f )(v) − ψ f (v)

α

�

sα(ψ f (s
−1
α v)) − ψ f (v)

α

�

sα( f ) − f

α

which is ψ∂α( f ), as claimed.

6Use pr12 � ω ◦ pr13 ◦ ω13, where ω13 exchanges the first and third factors of
X ×X ×X. Since ω is an involution, we have ω∗ � ω∗ on cohomology, and one can
compute

ω∗(ω∗(x)⋆ y) � ω∗pr13∗(pr∗12ω
∗(x) · pr∗23(y))

� (ω ◦ pr13)∗(ω
∗
13pr∗23(x) · ω

∗
13pr∗12ω

∗(y))

� (ω ◦ pr13 ◦ ω13)∗(pr∗23(x) · pr∗12ω
∗(y))

� pr13∗(pr∗23(x) · pr∗12ω
∗(y))

� (−1)pqpr13∗(pr∗12ω
∗(y) · pr∗23(x))

� (−1)pqω∗(y)⋆ x.



CHAPTER 17

Equivariant homology

We have focused on cohomology, but in fact the perspective we
emphasize—using finite-dimensional approximation spaces—is well
suited to homology, and in particular, equivariant Borel-Moore ho-
mology and equivariant Chow groups. Here we introduce these
constructions, as well as the related Segre classes and equivariant
multiplicities. In the next chapter, we will apply properties of equi-
variant multiplicities to study singularities of Schubert varieties.

In this chapter, G is a complex linear algebraic group. When
discussing localization and equivariant multiplicities, we will restrict
attention to tori.

1. Equivariant Borel-Moore homology and Chow groups

Let E → B be a map of nonsingular algebraic varieties which
is principal G-bundle, with H̃ iE � 0 for i < N , so these serve as
a finite-dimensional approximation spaces for defining equivariant
cohomology. In Chapter 3, we also saw relative groups for a G-
invariant subspace Y ⊆ X, defined by H i

G
(X, Y) � H i(E×G X,E×G Y)

for i < N . These have long exact sequences

· · · → H i
G(X, Y) → H i

G(X) → H i
G(Y) → H i+1

G (X, Y) → · · ·

coming from the corresponding sequence of the pair (E×G X,E×G Y).
The homology groups most useful for algebraic varieties are the

Borel-Moore homology groups, which we denote by H iX. When X

is embedded as a closed subspace of an oriented manifold M of (real)
dimension n, there are canonical isomorphisms

H iX � Hn−i(M,M r X).

329
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Borel-Moore groups are covariant for proper maps X → Y. For
certain maps f : X → Y, there are Gysin pullback homomorphisms
f ∗ : H iY → H i+d X, where d � dimR X − dimR Y. For example, these
exist if f is an open embedding, or more generally if it is a smooth
morphism. When X is a compact algebraic variety, Borel-Moore
homology agrees with singular homology. More about Borel-Moore
homology may be found in Appendix A, §2.

Now suppose a G-space X can be embedded equivariantly as a
closed invariant subspace of an oriented n-dimensional G-manifold.
One expects the equivariant Borel-Moore homology groups of X to
satisfy

(1) H
G

i (X) � Hn−i
G (M,M r X).

This means

H
G

i (X) � Hn−i
(
E ×G M, (E ×G M) r (E ×G X)

)
when n − i < N , so i > n − N . The space E ×G M is an oriented
manifold of dimension n + dimRB � n + dimR E − dimR G, and it
contains E×G X as a closed subspace. So the group on the right-hand
side of the above expression is Hn+dimR B−(n−i)(E×

G X). This suggests
the general definition, where we do not require X to be equivariantly
embedded in a manifold.

Definition 1.1. Let X be an algebraic variety with (left) G-action,
and let E→ B be an approximation space as above. The equivariant
Borel-Moore homology groups are defined as

(2) H
G

i (X) � H i+dimR B(E ×
G X),

whenever i > −N .

These groups are typically nonzero for i < 0. For instance, we
have

H
G

i (pt) � H−i
G (pt)

More generally, when X is a nonsingular variety of (complex) dimen-
sion n, there are canonical isomorphisms

H
G

i (X) � H2n−i
G (X)
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for all i.
To compare groups for approximations E → B and E′ → B′,

one uses Gysin pullback maps for smooth projections. Assume that
H̃ iE � H̃ iE′ � 0 for i < N . Writing b � dimRB and b′ � dimR B′, the
maps

H i+b(E ×
G X) → H i+b+b′+dimR G((E × E

′) ×G X) ← H i+b′(E
′ ×G X)

are isomorphisms for i > −N . To determine an element of H
G

i (X), one
must give elements of each of these groups, which map to one another
via these Gysin homomorphisms. For example, a k-dimensional G-
invariant closed subvariety Z of a complex variety X determines a
fundamental class

[Z]G � [E ×G Z]G in H
G

2k(X) � H2k+dimR B(E ×
G X).

The functorial properties of equivariant Borel-Moore groups are
similar to those of the non-equivariant ones. A G-equivariant proper
morphism f : X → Y determines pushforward homomorphisms

f∗ : H
G

i (X) → H
G

i (Y). There are cap product actions

H i
G(X) ⊗ H

G

j (X) → H
G

j−i(X),

with the usual projection formula.
An advantage of working with Borel-Moore homology groups

is that they fit into long exact sequences. The same is true in the
equivariant setting. If Z ⊆ X is a closed G-invariant subspace, with
complement U � X r Z, there is a long exact sequence

· · · → H
G

i (Z) → H
G

i (X) → H
G

i (U) → H
G

i−1(Z) → · · · .

(Using approximation spaces, this comes from the corresponding
sequence for the closed subspace E ×G Z ⊆ E ×G X.)

Borel-Moore groups are not homotopy invariant. For example,
with G acting on an n-dimensional vector space V via a representa-
tion, one has

H
G

i (V) � H
G

i−2n(pt) � H2n−i
G (pt)
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for all i. (Using approximation spaces, this corresponds to the Thom
isomorphism for the vector bundleE×G V → B.) Via the cap product,

this makes H
G

i (V) into a free module over ΛG, generated by the class
[V]G.

The same ideas are used to define equivariant Chow groups, in the
context of algebraic geometry over any ground field. One sets

(3) AG
i (X) � Ai+b(E ×

G X),

where b � dimB � dimE − dim G, and the groups on the right are
ordinary Chow groups. Here one takes a representation V of G, with
E ⊂ V a Zariski-open subset on which G acts freely. The definition
(3) is independent of E when codim(V r E, V) is sufficiently large.
Indeed, for fixed i, the Gysin maps (smooth pullback)

Ai+b(E ×
G X) → Ai+b+b′+dim G((E × E

′) ×G X) ← Ai+b′(E
′ ×G X)

are isomorphisms when codim(V rE, V) and codim(V ′rE′, V ′) are
large enough.

As before, a G-invariant k-dimensional closed subvariety Z ⊆ X

determines a class [Z]G ∈ AG
k
(X). Equivariant Chow groups are

functorial for proper equivariant maps f : X → Y.
We have AG

i
(X) � 0 for i > dim(X). For complex varieties,

H
G

i (X) � 0 for i > 2 dim(X), and there are cycle class homomor-
phisms

AG
i (X) → H

G

2i(X),

with the usual properties of the non-equivariant cycle class maps.
There is a cell decomposition lemma:

Proposition 1.2. Suppose there is a filtration by G-invariant closed
subsets

∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xm � X,

such that each Xp r Xp−1 �

∐
j Up, j , with Up, j � C

n(p). Then the classes

[Up, j]
G form a basis for H

G

∗ (X) as a ΛG-module.
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This generalizes what we have seen for equivariant cohomology
(Chapter 4, Proposition 7.1). The proof is similar, and also establishes
the analogous fact for equivariant Chow groups AG

∗ (X).

2. Segre classes

The usual construction of Segre classes extends directly to the

equivariant setting. This class naturally lies in the product
∏

H
G

i (X)

(or
∏

AG
i
(X)), which may be viewed as a completion of the direct sum

H
G

∗ (X) (respectively, AG
∗ (X)). We will use notation for Borel-Moore

groups, but everything in this section applies to Chow groups, as
well.

First we review some basic notions about cones. Let X be a
scheme, and S• �

⊕
Sk a graded sheaf of OX-algebras. We will

always assume S0 � OX, and that S1 is coherent and generates S• as
an OX-algebra. The scheme

C � SpecS•→ X

is a cone over X. There is a natural “zero” section X → C, defined by
the quotient S•→ S0 � OX.

For any cone C � SpecS•, we define a cone C ⊕ 1 � SpecS•[z],
where S•[z] is graded so that the degree k piece is

(S•[z])k � Sk ⊕ Sk−1 · z ⊕ Sk−2 · z
2 ⊕ · · · ⊕ S0 · z

k .

The projective cone associated to C is P(C) � ProjS•, and the projective
completion of C isP(C⊕1). Thus C is an open subset ofP(C⊕1), and the
section X → C ⊆ P(C ⊕ 1) corresponds to the “line” 0 ⊕ 1 ֒→ C ⊕ 1.
As with any Proj, these projective cones come with universal line
bundles O(1).

Suppose G acts on X and on S•, preserving the grading. This
makes C → X a G-equivariant cone. The action extends to C ⊕ 1, by
letting G act trivially on the extra factor. We therefore obtain actions
on P(C) and P(C ⊕ 1), compatible with inclusions and projections,
and making O(1) an equivariant line bundle.
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Definition 2.1. Let p : P(C ⊕ 1) → X be the projection. The equi-
variant Segre class of C is the class

sG(C) � p∗

(∑
i≥0

cG
1 (O(1))

i
a [P(C ⊕ 1)]G

)

in
∏

H
G

2k(X), where O(1) is the univeral line bundle on P(C ⊕ 1).

When X has pure dimension n, one writes sG
k
(C) for the compo-

nent of sG(C) in H
G

2n−2k(X). In general, sG
k
(C) is nonzero for arbitrarily

large k.
Equivariant Segre classes may also be defined in terms of ordinary

ones, as shown in the following exercise.

Exercise 2.2. Assume X is an algebraic variety of (pure) dimension
n. Show that the classes

sk(E ×
G C) ∈ H2n−2k+dimR B(E ×

G X)

are compatible with the Gysin pullbacks for different choices ofE×B,

and therefore they determine an element of H
G

2n−2k(X). Show that
this class is equal to the class sG

k
(C) defined above.1

Basic properties of equivariant Segre classes of cones follow from
the corresponding ones for non-equivariant Segre classes. For exam-
ple, suppose E is a G-equivariant vector bundle on a variety X, and
C→ X is an equivariant cone. Writing C ⊕ E for the cone C ×X E, we
have

(4) sG(C ⊕ E) � cG(E)−1
a sG(C)

in
∏

H
G

i (X). In particular,

sG(E) � cG(E)−1
a [X]G

and

sG(C ⊕ 1) � sG(C).
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Example 2.3. Consider the case X � pt. Let C � V be a vector
space, with a torus T acting by characters χ1, . . . , χn. Then

(5) sT(V) �
1

cT(V)
�

1
(1 + χ1) · · · (1 + χn)

in the completed ring
∏

Hk
G
(pt) �

∏
H

G

k (pt). Using the definition
and a localization computation on Pn , this becomes a nontrivial iden-
tity:

(6)
n+1∑
k�1

∑
i≥0

(−χk)
i∏

j,k(χ j − χk)
�

1∏n
k�1(1 + χk)

,

where χn+1 � 0.

When X ⊆ Y is a G-invariant subvariety (or subscheme), with
ideal sheaf I ⊆ OY, the normal cone

CXY � Spec

(⊕
i≥0

I i/I i+1

)

is naturally a G-equivariant cone on X. The equivariant Segre class of
X in Y is defined as

sG(X, Y) � sG(CXY).

Basic properties of this class follow from the non-euqivariant case.
For example, let f : Y′ → Y be a G-equivariant morphism, inducing
a fiber square

X′ Y′

X Y,

g f

so X′ � f −1X. If f is proper and surjective, then

(7) g∗s
G(X′, Y′) � d · sG(X, Y),

where d is the degree of Y′→ Y (so d � 0 if dim Y′ > dim Y). If f is
a smooth morphism, then

(8) g∗sG(X, Y) � sG(X′, Y′).

(This holds more generally when f is flat.)
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3. Localization

There are general localization theorems for the inclusion of the
fixed point set. These are most useful for torus actions. We will focus
on that case here, and prove a simple version which is sufficient for
our purposes.

Let T be a torus acting on a variety (or pure-dimensional scheme)
X. The fixed locus XT ⊆ X is closed, so the inclusion ι : XT ֒→ X

induces a homomorphism

ι∗ : H
T

∗ (X
T) → H

T

∗ (X).

Theorem 3.1. Let S ⊂ Λ be the multiplicative set generated by all
nonzero characters in M. Then

S−1ι∗ : S−1H
T

∗ (X
T) → S−1H

T

∗ (X)

is an isomorphism of S−1
Λ-modules.

Proof. Applying the long exact sequence for the closed subset
XT ⊆ X, we have

· · · → H
T

∗ (X
T) → H

T

∗ (X) → H
T

∗ (X r XT) → H
T

∗−1(X
T) → · · · ,

so it is equivalent to show that S−1H
T

∗ (X) � 0 whenever XT
� ∅.

To prove this, we can use induction on dim X and the long exact
sequence again to reduce to the case where X is nonsingular. Since

S−1H
T

∗ (X) � S−1H2 dim X−∗
G (X),

this case follows from the localization theorems we have already seen
(Chapter 7, Theorem 1.1). �

As before, in special situations one can be more specific about
which characters are inverted. We will use a construction based on
specialization to the normal cone. For G acting on X, with invariant
subvariety Y, this leads to a specialization map

σ : H
G

∗ (X) → H
G

∗ (CYX),
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which is a homomorphism of ΛG-modules, with

σ([X]G) � [CYX]G

and

σ([Y]G) � [Y]G ,

where [Y]G ∈ H
G

∗ (CYX) is the class of the zero section. The construc-
tion and basic properties are reviewed in Appendix B.

In our setting, we have a torus T acting on X. Let p ∈ XT be
a fixed point, with corresponding maximal ideal m ⊆ OX,x , so the
Zariski tangent space TpX � (m/m2)∨ is a representation of T, and
the tangent cone CpX � Spec

(⊕
i≥0m

i/mi+1
)

is a closed T-invariant
subscheme CpX ⊆ TpX.

A fixed point p ∈ XT is nondegenerate if the top Chern class
cT

top(TpX) is nonzero; equivalently, all weights for the torus action
on TpX are nonzero. Any nondegenerate fixed point is isolated. (If
p is contained in a positive-dimensional fixed subvariety of X, then
TpX contains a copy of the trivial representation.) The converse is
not true in general, although it does hold when X is nonsingular, as
we saw in Chapter 5, Lemma 1.5.

Example 3.2. Consider T acting on P3 via characters 0, 0, χ,−χ,
for some nonzero character χ. Let X � {x2

2 − x3x4} ⊆ P
3, so X

is T-invariant. The fixed point p � [1, 0, 0, 0] is isolated in X, but
degenerate, since T acts on TpX by characters 0, χ,−χ.

Proposition 3.3. If XT consists of finitely many nondegenerate points,
the homomorphism

ι∗ : H
T

∗ (X
T) → H

T

∗ (X)

is injective, and becomes an isomorphism after localizing at any multiplica-
tive set S ⊆ Λ which contains cT

top(TpX) for all p ∈ XT .

Proof. The argument for injectivity is similar to the one we gave
in Chapter 5, Theorem 1.8. Writing N � #XT , consider the maps

Λ
⊕N

� H
T

∗ (X
T)

ι∗
−→ H

T

∗ (X)
σ
−→

⊕
p∈XT

H
T

∗ (Cp X) →
⊕
p∈XT

H
T

∗ (TpX) � Λ⊕N .
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The composition σ ◦ ι∗ is diagonal. For p ∈ XT , with dim TpX � m,

the image of [p]T ∈ H
T

0 (X
T) in H

T

0 (TpX) � H2m
T
(pt) is the top Chern

class cT
m(TpX). Since each of these Chern classes is assumed to be

nonzero, the composed map Λ⊕N → Λ⊕N is injective, and it follows
that ι∗ is, too.

To see S−1ι∗ is an isomorphism when S contains each cT
top(TpX),

one can again argue as in Chapter 5, Theorem 1.8, since we already

know rk H
T

∗ X � #XT by Theorem 3.1. �

Exercise 3.4. Let T � C∗ act on P1 with character t, where t is
coordinate on T, and let X be the nodal curve obtained by identifying
the points 0 and ∞. (This was considered in Chapter 3, Exercise 5.1
and Chapter 7, Exercise 3.6.)

(i) Show that H
T

∗ (X) is a free Λ-module with generator [X]T in

H
T

2 (X).

(ii) Let p ∈ X be the node. The tangent cone CpX � L1 ∪ L2

is a union of two lines; show that H
T

∗ (CpX) is generated by
the elements [L1]

T and [L2]
T over Λ � Z[t], with the relation

t · ([L1]
T − [L2]

T) � 0.

(iii) Show that the composition

Λ � H
T

∗ (p)
ι∗
−→ H

T

∗ (X)
σ
−→ H

T

∗ (CpX) → H
T

∗ (TpX) � Λ

sends 1 to −t2.

4. Equivariant multiplicities

Some classes appearing in localization theorems provide a useful
measure of singularities. As in Proposition 3.3, in this section we will
consider a nondegenerate fixed point p ∈ XT . Let n � dim X and
m � dim TpX, so m ≥ n, with equality if and only if p is a nonsingular
point.

There is a local class ηpX ∈ Λ, defined by

ηpX � [CpX]T
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in H
T

2n(TpX) � H2m−2n
T

(TpX) � H2m−2n
T

(pt). From the definition,
ηpX � 1 if and only if p is nonsingular. (The local class is defined for
any fixed point, but it may be zero if the fixed point is degenerate.)

For any class α ∈
∏

i H i
T
(pt), we will write {α}k for the component

of α lying in Λ2k
� H2k

T
(pt).

Proposition 4.1. Suppose X is a T-invariant subvariety of an N-
dimensional variety V , of codimension k � N − n. Assume the point
p ∈ X ⊆ V is nonsingular in V . Writing ιp : {p} ֒→ V for the inclusion,
we have

ι∗p([X]
T) � cT

N−m(TpV/TpX) · ηT
p X � {cT(TpV) a sT(p ,X)}k ,

in H2k
T (p) � H

T

−2k(p), where m � dim TpX.

Proof. This comes from general intersection theory, where one
computes a pullback by deformation to the normal cone. The class
of CpX ⊆ TpV in H∗

T
(TpV) � Λ is

[CpX]T � cT
N−m(TpV/TpX) · ηT

p X,

using the self-intersection formula for CpX ⊆ TpX ⊆ TpV . Now we
apply the “basic construction” of intersection theory to the situation

E ×T {p} E ×T X

E ×T {p} E ×T V,

noting that the inclusion E×T {p} ֒→ E×T V is a regular embedding
(since {p} ֒→ V is), and the normal cone to E ×T {p} in E ×T X is
canonically identified with E ×T CpX. �

Remark 4.2. The same proposition holds more generally, for the
inclusion ι : Y ֒→ V of a nonsingular invariant subvariety. We have

ι∗([X]T) � [CX∩Y X]T

in H2k
T
(NY/V ) � H2k

T
(Y). One can also work with any linear algebraic

group G in place of the torus T, using the same arguments.

Now we come to the main notion of this section.
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Definition 4.3. Let p ∈ XT be a nondegenerate fixed point. The
equivariant multiplicity of p in X is the element

εT
p (X) �

ηT
p (X)

cT
m(TpX)

of S−1
Λ, for any homogeneous multiplicative set S ⊆ Λ containing

cT
m(TpX).

The main properties of equivariant multiplicities are summarized
as follows.

Proposition 4.4. Let p ∈ X be a nondegenerate fixed point.

(i) The equivariant multiplicity εT
p (X) is a homogeneous element of

degree−dim X in S−1Λ, and it lies in the subringΛ[1/cT
m(TpX)].

(ii) The point p is nonsingular if and only if εT
p (X) � 1/cT

m(TpX).

(iii) When X is an invariant subvariety of codimension k in an N-
dimensional vector space V , we have

εT
p (X) �

{cT(V) a sT(p ,X)}k

cT
N
(V)

.

(iv) For the inclusion {p} ֒→ X, the fundamental class of X specializes
as

[X]T 7→ εT
p (X) a [p]

T ,

under the composition

H
T

∗ (X)
σ
−→ H

T

∗ (CpX) → H
T

∗ (TpX) � H2m−∗
T (pt).

(v) Assume all fixed points of X are nondegenerate. We have

[X]T �

∑
p∈XT

εT
p (X) a [p]

T

under the localization isomorphism S−1H
T

∗ (X) � S−1H
T

∗ (X
T).
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(vi) Let f : X′ → X be an equivariant proper surjective morphism of
degree d, and assume all fixed points of X and X′ are nondegenerate.
Then

d · εT
p (X) �

∑
p′∈ f −1(p)T

εT
p′(X

′).

Proof. Most of these are very easy. Properties (i) and (ii) are
immediate from the definition, and (iii) is a special case of Proposi-
tion 4.1.

To prove (iv), we may replace X by CpX, since σ([X]T) � [CpX]T

and εT
p (X) � ε

T
p (CpX). Now (iv) follows from (iii), using V � TpX.

To prove (v), recall that the classes [p]T form a basis for S−1H
T

∗ X

over S−1
Λ, by the localization theorem. Now apply (iv), using the

fact that [p]T maps to [p]T under the composition

S−1H
T

∗ (p) → S−1H
T

∗ (X) → S−1H
T

∗ (CpX) → S−1H
T

∗ (TpX),

as in the proof of Proposition 3.3.
For (vi), we have f∗[X

′]T � d · [X]T , and the diagram

H
T

∗ (X
′T) H

T

∗ (X
′)

H
T

∗ (X
T) H

T

∗ (X)

f∗

commutes. The statement follows from (v), applied to X and X′. �

When X is equivariantly embedded in an N-dimensional nonsin-
gular variety V , with [X]T ∈ H2N−2n

T (V), one can characterize the
equivariant multiplicity of p ∈ X in terms of the restriction homo-
morphism, by

(9) εT
p (X) �

[X]T |p

cT
N
(TpV)

.

(Use [X]T |p � ι∗p[X]
T
� cT

N
(TpV) · εT

p (X), from Proposition 4.1.) This
leads to a characterization of εT

p (X) as the coefficient of [p]T in [X]T .
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Corollary 4.5. For an invariant subvariety X of a nonsingular variety
V , we have

[X]T �

∑
p∈VT

εT
p (X) [p]

T

in H∗
T

V .

The local class ηpX is a polynomial in Λ, homogeneous of degree
m − n. Similarly, when X ⊆ V , the restriction [X]T |p is a polynomial
of degree N−n. The former is intrinsic to X, while the latter depends
on an embeddingin V ; however the two polynomials differ only by
the factor cT

N−m
(TpV/TpX), as we have seen.

In Chapter 18, we will use equivariant multiplicities to prove a
nonsingularity criterion for Schubert varieties. However, it is not
always easy to identify singular points from the shape of εT

p (X).

Exercise 4.6. Let T act on P2 via distinct characters χ1, χ2, χ3, with
χ3 � 2χ1 + χ2. The cuspidal curve X � {x2

1x2− x3
3 � 0} is T-invariant.

Show that

εT
p1
(X) �

1
χ3 − χ1

and εT
p2
(X) �

1
χ1 − χ2

,

although p1 � [1, 0, 0] is nonsingular in X, and p2 � [0, 1, 0] is sin-
uglar. Verify that

[X]T � εT
p1
(X) [p1]

T
+ εT

p2
(X) [p2]

T

in H∗
T
(P2).2

Notes

As noted in Chapter 2, equivariant Chow groups were defined by Edidin
and Graham; these authors also defined equivariant Borel-Moore groups
[EdGr98, §2.8]. These groups were further studied by Brion [Bri00].

In Chapter 2 we also noted that the space E ×G X need not exist as a
scheme; the general theory of equivariant Chow groups requires algebraic
spaces, as in [EdGr98]. For a complex variety X,E×G X is always a complex-
analytic space, and the construction of Borel-Moore groups for such spaces
presents no special difficulties (see Appendix A).

Variations on equivariant multiplicities appear under various names in
several areas of mathematics. For T acting linearly on an N-dimensional
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vector space V , an equivariant coherent sheaf corresponds to a graded R-
module F, where R � C[x1, . . . , xN]. When the isotypic components Fχ

(where T acts by the character χ) are all finite-dimensional, the generating
function ∑

χ

(dimC Fχ) eχ

can be written as a rational function in variables eχ1 , . . . , eχN , and one ob-
tains a polynomial by extracting the leading term of the numerator. In
representation theory, polynomials arising this way are known as charac-
ter polynomials, Joseph polynomials, or equivariant Hilbert polynomials [Jos84,

BBM89, ChrGi97]. In commutative algebra, this is often called a mul-
tidegree, especially when F � R/I is the coordinate ring of an invariant
subvariety X ⊆ V ; in this case, it agrees with what we have called the local
class, ηpX [MiSt05, §8]. These polynomials are cases of Rossmann’s equi-
variant multiplicity, which is defined for an equivariant coherent sheaf on a
complex manifold [Ro89].

Our version more closely follows a construction by Brion, who defined
equivariant multiplicities in Chow groups [Bri97b, §4]. A version of Ross-
mann’s multiplicity for Chow groups is described in [Ny93, §5.2].

The “basic construction” used in Proposition 4.1 is standard in intersec-
tion theory [Ful-IT, §6].

Hints for exercises

1If C is a cone on Y, and Y′ → Y is a morphism, there is a pullback is a cone
C′→ Y′. This comes with a morphism f : P(C′) → P(C), and the universal bundles
are related by OP(C′)(1) � f ∗OP(C)(1). Apply this to the cones (E×E′)×G C→ E×G C.

2Writing ζ � cT
1 (O(1)), we have [X]T � 3ζ + 3χ3, since X is defined by the

vanishing of an equivariant section of O(3) ⊗ C3χ3 , so ι∗pi
[X]T � −3χi + 3χ3.





CHAPTER 18

Bott-Samelson varieties and Schubert varieties

Schubert varieties in G/P admit explicit equivariant desingular-
izations by Bott-Samelson varieties. These are certain towers of P1-
bundles, and their cohomology rings are relatively easy to compute.

In this chapter, we use the Bott-Samelson desingularization to
obtain a positive formula for restricting a Schubert class to a fixed
point. This, in turn, leads to a criterion for a point of a Schubert
variety to be nonsingular.

1. Definitions, fixed points, and tangent spaces

Let G ⊃ B ⊃ T be as usual: G is a semisimple (or reductive) group,
with Borel subgroup B and maximal torus T. For each simple root
α, we have a minimal parabolic subgroup Pα, and the corresponding
projection of flag varieties is aP1-bundle, G/B→ G/Pα. These spaces
occur frequently in this chapter, so we will write

X � G/B and Xα � G/Pα

from now on.
For any sequence of simple roots α � (α1, . . . , αd), we have a big

Bott-Samelson variety Z(α) � Z(α1 , . . . , αd), defined by

Z(α) � X ×Xα1
X ×Xα2

· · · ×Xαd
X.

Since each projection X → Xαi is a P1-bundle, Z(α) is a tower of P1-
bundles over X. In particular, it is a nonsingular projective variety
of dimension dim X + d. The group G acts diagonally on Z(α),
equivariantly for each projection pri : Z(α) → X. (We index these
projections from left to right by 0 ≤ i ≤ d.)

Example 1.1. For G � SLn , so X � Fl(Cn), a Bott-Samelson variety
can be described as a sequence of flags, with the ith differing from

345
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the (i − 1)st only in position j, if αi � t j − t j+1. That is,

Z(α) �

{
(F
(0)
• , . . . , F

(d)
• )

��� E
(i)
k

� E
(i−1)
k

for all k , j,

where αi � t j − t j+1

}
.

When n � 3, these can be represented as configurations of points and
lines in P2. For instance, suppose α � t1 − t2 and β � t2 − t3. Then a
general point of Z(α, β, α, β) looks like a quintuple of flags:

( , , , , ) .

So from left to right, consecutive flags differ by moving the point,
then the line, then the point, and finally the line again.

The T-fixed points of Z(α) are easily described. An α-chain (or
simply chain) of elements of W is a sequence

v � (v0, v1, . . . , vd)

such that for each i, either vi � vi−1 or vi � vi−1 · sαi .

Exercise 1.2. Show that the T-fixed points of Z(α) are the 2d · |W |

points
Z(α)T �

{
pv � (pv0 , pv1 , . . . , pvd

)
}

where each v is an α-chain.

The (small) Bott-Samelson variety is the fiber X(α) � pr−1
0 (pe), that

is,
X(α) � {pe} ×Xα1

X ×Xα2
· · · ×Xαd

X.

The projection X(α1 , . . . , αd) → X(α1, . . . , αd−1) is a P1-bundle, so
X(α) is a nonsingular projective variety of dimension d. Since pe is
fixed by B, the Bott-Samelson variety X(α) comes with an action of B

(but not G, in general).
The Bott-Samelson variety X(α) has 2d T-fixed points pv, for

chains v � (e , v1, . . . , vd). We will index these in two ways: us-
ing the chain v, and using the subset I � {i1 < · · · < iℓ} ⊆ {1, . . . , d}
defined by

I �
{
i
�� vi � vi−1 · sαi

}
.
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We often use the notation interchangeably, writing pv � pI . Some-
times we write I � Iv and v � vI to indicate the bĳection between
chains and subsets.

For each subset I ⊆ {1, . . . , d}, there is a B-invariant subvariety
X(I) ⊆ X(α), defined by

X(I) �
{
(x1, . . . , xd) ∈ X(α)

�� x j � x j−1 for j < I
}
.

In fact, this is canonically isomorphic to another Bott-Samelson va-
riety. Each subset I � {i1 < · · · < iℓ} corresponds to a subword
α(I) � (αi1 , . . . , αiℓ ), and we have

X(I) � X(α(I)).

(Use a diagonal embedding of Xℓ+1 in Xd+1.) Containment among
these subvarieties corresponds to containment of subsets:

X(J) ⊆ X(I) iff J ⊆ I .

For example, X({1, . . . , d}) � X(α), and X(∅) is the point p∅.
Each X(I) is the closure of a locally closed set X(I)◦, consisting of

the points where xi , xi−1 for i ∈ I. In fact, these are cells.

Lemma 1.3. We have X(I)◦ � Aℓ, where ℓ � #I.

Proof. It suffices to consider I � {1, . . . , d}. Here one has the
P1-bundle X(α1 , . . . , αd) → X(α1, . . . , αd−1). The complement of the
locus where xd−1 � xd is an A1-bundle over X(α1, . . . , αd−1), so the
claim follows by induction on d. �

The subvarieties X(I) therefore determine a cell decomposition of
X(α), and their classes x(I) � [X(I)]T form a basis for H∗

T
X(α), as I

varies over subsets of {1, . . . , d}. It also follows that

p J ∈ X(I) iff J ⊆ I .

We will need a description of the tangent spaces.

Lemma 1.4. Let v � (e , v1, . . . , vd) be an α-chain. The torus weights
on Tpv X(α) are {−v1(α1), . . . ,−vd(αd)}.

More generally, for K ⊆ I, with corresponding chains vK and vI , the
weights on TpK X(I) are −vK

i
(αi) for i ∈ I.
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Proof. We will find the weights at any fixed point of the big Bott-
Samelson variety . For a chain v � (v0, v1, . . . , vd), consider the point
p � pv ∈ Z(α). The tangent space to Z(α) at p is the fiber product of
vector spaces

Tp0 X ×
Tp[1]Xα1

Tp1X ×
Tp[2]Xα2

· · · ×
Tp[d]

Xαd

Tpd
X,

where we have written pi � pvi ∈ X and p[i] � p[vi] ∈ Xαi to
economize on subscripts. (Note [vi] � [vi−1] for each i, since v is
an α-chain.) We have seen descriptions of each of these spaces in
Chapter 15. The weights are v0(R

−), from the first factor, together
with weights −vi(αi) for 1 ≤ i ≤ d, since g−vi(αi ) is the kernel of
Tpi X → Tp[i]Xαi .

When v0 � e, the variety X(α) is the fiber over pe in the first factor,
so the weights R− � v0(R

−) are omitted, proving the first claim. The
second claim follows from the first, using X(I) � X(αi1 , . . . , αiℓ ). �

2. Desingularizations of Schubert varieties

Let f : X(α) → X be the projection onto the last factor; that is,
f is the restriction of prd : Z(α) → X. For each I ⊆ {1, . . . , d}, with
corresponding α-chain v � (e , v1, . . . , vd), we have f (pI) � pvd

. The
subset I corresponds to the subword (αi1 , . . . , αiℓ ) of α, and

vd � sαi1
· · · sαiℓ

.

Since f is proper and B-equivariant, f (X(I)) contains the Schubert
variety X(vd) ⊆ X. However, if (αi1 , . . . , αiℓ ) is not a reduced word
for vd, the image of f may be larger.

Lemma 2.1. Let α � (α1 , . . . , αd) be a sequence of simple roots. The set
of products sαi1

· · · sαiℓ
over subwords contains a unique maximum element

w(α) ∈ W in Bruhat order, and

f (X(α)) � X(w(α)).

We have w(α) � sα1 · · · sαd
if and only if the word α is reduced.
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Proof. Since X(α) is irreducible, the image of the B-equivariant
morphism f : X(α) → X must be some Schubert variety X(w). It
follows that w � w(α) satisfies the asserted properties. �

In fact, the maximal element w(α) can be easily computed. Let
“∗” be the associative product on W defined by

w ∗ sα �

{
wsα if ℓ(wsα) > ℓ(w);

w otherwise.

This product is called the Demazure product.

Exercise 2.2. Show that w(α) � sα1 ∗· · ·∗sαd
, i.e., it is the Demazure

product of reflections from α.1

Lemma 2.3. The map f : X(α) → X(w) is birational if and only if α is
a reduced word for w � w(α).

Proof. If α is not a reduced word, then w(α) is the product of
reflections for a proper subword, so it has length ℓ(w(α)) < d. In this
case, f cannot be birational by dimension.

If α is reduced, then w � w(α) � sα1 · · · sαd
, and f (p{1,...,d}) � pw.

The map f : X(α)◦ → X(w)◦ is B-equivariant, and therefore also
equivariant for the subgroup U(w) � ÛwU Ûw−1 ∩ U . Since the map
u 7→ u · pw defines an isomorphism U(w)

∼
−→ X(w)◦, it follows that

f : X(α)◦→ X(w)◦ is an isomorphism. �

For a reduced word α, one can also establish the birationality of
f : X(α) → X(w) by examining tangent weights. The tangent space
to X(α) at p � p{1,...,d} has weights

α1, sα1(α2), . . . , sα1 · · · sαd−1(αd),

using Lemma 1.4, for vi � sα1 · · · sαi . These are precisely the weights
on Tpw X(w) (see Chapter 15, Lemma 2.2).

Given a Schubert variety X(w) ⊆ G/B, one obtains a B-equivariant
desingularization f : X(α) → X(w) by choosing a reduced word for
w. For a parabolic subgroup P, the projection G/B → G/P maps
X(wmin) birationally onto X[w], so we obtain desingularizations of
these varieties, too.
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Corollary 2.4. For a Schubert variety X[w] ⊆ G/B, and any re-
duced word α for wmin, one obtains a desingularization X(α) → X[w] by
composing f with the projection G/B→ G/P. �

These statements have evident analogues for the subvarieties
X(I) ⊆ X(α). If I is a subset, with subword α(I), we will write
w(I) � w(α(I)) for the corresponding Demazure product.

Corollary 2.5. Let I be a subset, and let v � (v1, . . . , vd) be the
corresponding chain. The following are equivalent:

(i) The map X(I) → X(w(I)) is birational.

(ii) w(I) � vd.

(iii) ℓ(vd) � #I.

(iv) The subword α(I) is a reduced word for vd. �

Example 2.6. Let α � (α, α), for some simple root α. Then X(α)

is isomorphic to P1 × P1. The Demazure product is sα ∗ sα � sα, and
the map f : X(α, α) → X(sα) is identified with the second projection
P1 × P1 → P1. The subvarieties X(I) � X(v) are

X({1, 2}) � X(sα , e) � X(α),

X({1}) � X(sα , sα) � δ(P
1) (the diagonal in P1 × P1),

X({2}) � X(e , sα) � {pe} × P
1, and

X(∅) � X(e , e) � {(pe , pe)}.

While X(α) always has finitely many fixed points, it often has
infinitely many invariant curves—even when α is a reduced word.

Exercise 2.7. The following are equivalent, for a sequence of sim-
ple roots α � (α1, . . . , αd):

(a) X(α) has finitely many T-curves.

(b) The roots α1, . . . , αd are distinct.

(c) X(α) is a toric variety for the quotient of T whose character
lattice has basis α1, . . . , αd.

(d) The map f : X(α) → X(w) is an isomorphism.
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(Use the description of weights on tangent spaces.)2

Another construction of the Bott-Samelson variety X(α) is some-
times useful.

Proposition 2.8. For a word α � (α1 , . . . , αd), there is an isomorphism

Pα1 ×
B Pα2 ×

B · · · ×B Pαd
/B→ X(α),

given by [p1, . . . , pd] 7→ (eB, p1B, p1p2B, . . . , p1 · · · pdB). This is B-
equivariant, where B acts via left multiplication on Pα1 . The subvarieties
X(I) ⊆ X(α) are identified with

X(I) � {[p1, . . . , pd] | piB � eB for i < I},

and the point pI corresponds to [ε1, . . . , εd], where εi � Ûe for i ∈ I, and
ε j � Ûsα j for j < I.

Exercise 2.9. Prove the proposition.3

Remark 2.10. Bott-Samelson varieties appear in the geometric
construction of divided difference operators described in Chapter 16,
§1. Let α be a reduced word for w. The big Bott-Samelson variety
Z(α)maps birationally to the double Schubert variety

Z(w) � G · (pe , pw) ⊆ X × X

via the projection pr0 × prd. Using Chapter 16, Proposition 1.2, the
operator Dw−1 on H∗

T
X is identified with prd∗pr∗0.

On the other hand, these projections factor as iterated P1-bundles,
and the diagram

Z(α1) Z(α2) · · · Z(αd)

X X · · · X

shows that Dw−1 � Dαℓ ◦ · · · ◦ Dα1 is independent of the choice of
reduced word. One can also see this by restricting the diagram

Z(α)

X X

pr0 prd
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to the fiber pr−1
0 (pe ), obtaining

X(α)

pe X(w).

f

Since f is birational, we have

Dw−1(x(e)) � prd∗pr∗0(x(e)) � f∗[X(α)]
T
� [X(w)]T � x(w).

3. Poincaré duality and restriction to fixed points

We have seen that the classes x(I) � [X(I)]T form aΛ-module basis
for H∗

T
X(α). Next we will study their restrictions to fixed points, and

determine the Poincaré dual basis.
Lemma 1.4 leads directly to a description of weights at the fixed

points of X(I) ⊆ X(α). Suppose K ⊆ I, so pK ∈ X(I), and let vK and
vI be the corresponding chains. The weights on TpK X(I) are −vK

i
(αi)

for i ∈ I. This, in turn, gives a formula for restricting the classes
x(I) � [X(I)]T . For any x ∈ H∗

T
X(α), its restriction to the fixed point

pI is denoted x |I .

Corollary 3.1. We have

x(I)|K �

{∏
j<I vK

j
(−α j) if K ⊆ I;

0 otherwise,

Let {y(I)} be the Poincaré dual basis to {x(I)}, meaning that
ρ∗(x(I) · y(J)) � δI ,J in Λ, where ρ : X(α) → pt is the projection.
As we saw in Chapter 4, §6, such a basis always exists. It is natural to
look for invariant subvarieties Y(I) representing these Poincaré dual
classes. However, no such algebraic subvarieties exist!
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Example 3.2. Consider the variety X(α, α) � P1 × P1 from Exam-
ple 2.6. The basis {x(I)} consists of the equivariant classes of

x(∅) � [(pe , pe)]
T ,

x({1}) � [δ(P1)]T ,

x({2}) � [{pe} × P
1]T , and

x({1, 2}) � [P1 × P1]T .

Even non-equivariantly, the Poincaré dual basis cannot be repre-
sented by algebraic subvarieties: the class y({2}) must have zero
intersection with the diagonal class x({1}), and no algebraic curve in
P1 × P1 can do this.

Another way of phrasing the conclusion of Example 3.2 is this: we
seek a curve Y({2}) ⊆ P1 × P1 which consists of pairs (L, L′) of lines
in C2 such that L , L′—but the complement of the diagonal is affine,
so it contains no complete curves. In fact, this observation indicates
a solution. Using the standard Hermitian metric on C2, we may
consider pairs of perpendicular lines (L, L′); in terms of a coordinate
z on P1, this is the set of pairs (z ,−1/z). This set is a non-algebraic
submanifold Y({2}) ⊆ P1×P1, which we orient by projecting onto the
first factor. (Projection onto the second factor would give the opposite
orientation, as the coordinate description shows.) Fixing the metric
amounts to reducing GL2 to the maximal compact subgroup U(2),
and identifying P1

� GL2/B with U(2)/(T ∩U(2)).
The general situation is similar: we construct (non-algebraic) sub-

manifolds Y(I) ⊆ X(α) whose classes represent the Poincaré dual
classes y(I). Let K ⊆ G be a maximal compact subgroup, with
maximal compact torus S � T ∩ K, so we have a diffeomorphism
K/S � G/B, and the Weyl group W � NK(S)/S acts on the right. For
I ⊆ {1, . . . , d}, we define

Y(I) � {(e , x1, . . . , xd) ∈ X(α) | xi � xi−1 · sαi for i ∈ I}.

This is a C∞ submanifold, of real codimension 2 ·#I in X(α), invariant
for the action of the compact torus S. Containment among these



354 §3. Poincaré duality and restriction to fixed points

submanifolds reverses containment of subsets:

Y(K) ⊆ Y(I) iff pK ∈ Y(I) iff K ⊇ I .

Lemma 3.3. Giving each Y(I) an appropriate orientation (to be specified
in the proof), the classes y(I) � [Y(I)]S form the Poincaré dual basis to x(I).

For K ⊃ I, with corresponding α-chains vK and vI , the normal space to
Y(I) ⊆ X(α) at the fixed point pK has characters −vK

i
(αi), for i ∈ I.

Proof. To compute the tangent spaces of Y(I), and to orient it,
we work from the left, using induction on d. For d � 1, we have
Y({1}) � { ÛsαB} (a point), and Y(∅) � X(α) � P1, so these are
already oriented. Proceeding inductively, consider the projection
X(α1, . . . , αd) → X(α1, . . . , αd−1). If d ∈ I, this induces an isomor-
phism Y(I) → Y(I r {d}). Otherwise, if d < I, it induces a P1-bundle,
so there is a fiber square

Y(I) X(α1, . . . , αd)

Y(I) X(α1, . . . , αd−1),

where we have written I � I as a subset of {1, . . . , d − 1}. By the
inductive assumption, we have an orientation of Y(I). The canonical
orientation of the P1 fiber then induces an orientation of Y(I).

This construction also identifies the tangent spaces: assume d < I,
and for K ⊇ I, write p � pK and p for the image of this point in Y(I).
The kernel of

TpY(I) → TpY(I)

is gβ, where β � −vK
d
(αd).

It follows that Y(I) meets X(I) transversally in the point pI . In-
deed, we have weight decompositions of the tangent spaces as

TpI X(I) �
⊕

i<I

g−vI
i
(αi )
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and

TpI Y(I) �
⊕

i∈I

g−vI
i
(αi )
.

So these are complementary subspaces of TpI X(α). By considering
fixed points, we see X(I) ∩ Y(J) � ∅ unless J ⊆ I, and it follows that
the classes x(I) and y(J) form Poincaré dual bases. �

This description of tangent spaces proves a formula for restricting
the classes y(I).

Corollary 3.4. We have

y(I)|K �

{∏
i∈I vK

i
(−αi) if K ⊇ I;

0 otherwise.

A more algebraic proof of Corollary 3.4 uses the localization for-
mula. The dual classes y(I) are uniquely determined by

(1)
∑

pK∈X(J)

y(I)|K

cT
top(TpK X(J))

� δI ,J ,

for every subset J ⊆ {1, . . . , d}. We know pK ∈ X(J) iff K ⊆ J, and
in this case cT

top(TpK X(J)) �
∏

j∈J(−vK
j
(α j)). To prove the claimed

formula for y(I)|K , it remains to establish the identity

(2)
∑

K:I⊆K⊆ J

1∏
j∈JrI (−vK

j
(α j))

� δI ,J .

This is clear if I � J, or if I * J. When I ( J, the terms cancel in
pairs, as follows. Suppose j is the largest index in J r I; then for each
K = j, there is K′ � K ∪ { j}, and the corresponding terms cancel.
(Indeed, sα j (α j) � −α j , so vK′

j
(α j) � −vK

j
(α) and the other factors in

the product are equal.)

Remark 3.5. The identification X � G/B � K/S leads to a third
description of the Bott-Samelson varieties. Each Kα � K ∩ Pα is a
maximal compact subgroup of the minimal parabolic Pα, and the
evident map

Kα1 ×
S Kα2 ×

S · · · ×S Kαd
/S→ Pα1 ×

B Kα2 ×
B · · · ×B Kαd

/B
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is a diffeomorphism. The submanifolds Y(I) ⊆ X(α) are easy to
identify from this point of view:

Y(I) �
{
[k1, . . . , kd]

�� kiS � Ûsαi S for i ∈ I
}
.

For the corresponding projection f : X(α) → X, one sees

f (Y({1, . . . , k})) � sα1 · · · sαk
· X(sαk+1 ∗ · · · ∗ sαd

)

and
f (Y({k + 1, . . . , d})) � X(sα1 ∗ · · · ∗ sαk

) · sαk+1 · · · sαd
,

where w · X(v) and X(v) · w denote the translations of Schubert
varieties by the left and right W-actions.

4. A presentation for the cohomology ring

Multiplication in the basis y(I) is particularly easy. To simplify
the notation, we will write pi � p{i}, pi j � p{i, j}, yi � y({i}), and
yi j � y({i , j}).

If I ∩ J � ∅, then Y(I) and Y(J)meet transversally in Y(I ∪ J), so

(3) y(I) · y(J) � y(I ∪ J) if I ∩ J � ∅.

In particular, yi ·y j � yi j if i , j, and y(I) � yi1 · · · yiℓ if I � {i1 , . . . , iℓ}.
To determine the structure of H∗

T
X(α), it suffices to give a formula for

y2
i
.

Proposition 4.1. We have

(4) y2
i �

∑
j<i

(−〈αi , α
∨
j 〉) yi j + αi yi ,

where 〈α, β∨〉 is the pairing between roots and coroots.

Proof. By considering degrees and support, we have

(5) y2
i �

∑
j,i

ci j yi j + λi yi ,

for some ci j ∈ Z and λi ∈ M. (Since p j < Y({i}) for j , i, we have
yi |p j � 0, so the classes y j do not appear. Similarly, p∅ < Y({i}), so
there is no “constant” term of degree 2 in Λ.) So we must determine
these coefficients.
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Using the restriction formula from Corollary 3.4, we have

yi |pi � −v′i(αi) � αi ,

where the chain corresponding to {i} is v′ � (e , . . . , e , sαi , . . . , sαi ).
Since pi < Y({i , j}) for j , i, restricting Equation (5) to this point
gives

(αi)
2
� λi αi ,

and it follows that λi � αi .
Similarly, we have

yi |pi j �

{
αi if i < j;

sα j (αi) if i > j.

(When i < j, the chain v′ corresponding to {i , j} has v′
i
� sαi , so

yi |pi j � −sαi (αi) � αi . For i > j, the chain has v′
i
� sα j sαi , so

yi |pi j � −sα j sαi (αi) � sα j (αi).) Likewise,

yi j |pi j �

{
αi sαi (α j) if i < j;

α j sα j (αi) if i > j.

(For i < j, we have v′
j
� sαi sα j , and v′

i
� sαi as noted before, so

Corollary 3.4 gives yi j |pi j � αi · sαi (α j). If i > j, swap the roles of i

and j.)
By substituting λi � αi and restricting (5) to pi j , we obtain

α2
i � ci j α j sα j (αi) + α

2
i ,

for i < j, so ci j � 0 in this case. Doing the same for i > j, we obtain

sα j (αi)
2
� ci j α j sα j (αi) + αi sα j (αi),

so sα j (αi) � ci j α j + αi . Since sα j (αi) � αi − 〈αi , α
∨
j
〉 α j , the claim

follows. �

As a consequence, we obtain a presentation for equivariant coho-
mology.
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Corollary 4.2. The map ηi 7→ yi defines an isomorphism

H∗TX(α) � Λ[η1, . . . , ηd]/
©«
η2

i +

∑
j<i

〈αi , α
∨
j 〉 ηiη j − αi ηi

ª®¬1≤i≤d

.

Similar formulas determine multiplication in the x(I) basis for
H∗

T
X(α).

Exercise 4.3. Writing βi � sα1 · · · sαi−1(αi), show that

x2
i �

∑
j<i

(−〈βi , β
∨
j 〉) xi j − βi xi ,

where xi � x({1, . . . , d} r {i}) and xi j � x({1, . . . , d} r {i , j}).

The equivariant cohomology of G/B embeds in that of a Bott-
Samelson variety. Let (α1, . . . , αN) be a reduced word for the longest
element w◦, so f : X(α) → G/B is birational. From the projection
formula, the composition f∗ ◦ f ∗ is the identity.

Corollary 4.4. Let

R � Λ[ f ∗y(sα) : α ∈ ∆] ⊆ H∗TX(α)

be the subalgebra generated by pullbacks of divisor classes. The pullback f ∗

identifies H∗T(G/B) with the subalgebra of H∗TX(α) consisting of elements
x such that some integral multiple c · x lies in R.

Proof. Using rational coefficients, we have seen that H∗T(G/B;Q)
is generated over ΛQ � H∗

T
(pt;Q) by the divisor classes y(sα). (This

follows from the Borel presentation given in Chapter 15, Corol-
lary 6.6. It also follows from Chevalley’s formula, which we will
see in Chapter 19, §1.) Using the splitting f∗ ◦ f ∗ and the fact that
both H∗

T
(G/B) and H∗

T
X(α) are free Λ-modules, it follows that

H∗T(G/B) � H∗T(X(α)) ∩ H∗T(G/B;Q)

as submodules of H∗
T
(X(α);Q). �
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5. A restriction formula for Schubert varieties

A remarkable formula for the restrictions y(w)|v was discovered
by Andersen-Jantzen-Soergel, and in a different context, by Billey.

Theorem 5.1 (Andersen-Jantzen-Soergel, Billey). Fix a reduced
word (α1 , . . . , αd) for v ∈ W . For any w ∈ W ,

(6) y(w)|v �

∑
βi1 · · · βiℓ ,

the sum over all subsets I � {i1 < · · · < iℓ} ⊆ {1, . . . , d} such that
α(I) � (αi1 , . . . , αiℓ ) is a reduced word for w.

Here βi � sα1 · · · sαi−1(αi), as in Chapter 15, Lemma 1.6. By one of
the many characterizations of Bruhat order there exists a subsequence
(αi1 , . . . , αiℓ ) as in the theorem if and only if w ≤ v, i.e., whenever
pv ∈ Y(w).

Considered as a formula for y(w)|v , one appealing feature is that
the right-hand side is positive: the roots βi which appear are all in
R+, and it follows that y(w)|v is nonzero whenever v ≥ w. Another
remarkable consequence of the formula is that the polynomial on the
right-hand side is independent of the choice of reduced word.

We will give two proofs of this theorem: one based on the ge-
ometry of Bott-Samelson varieties, and another using induction and
some algebra. We need an easy lemma.

Lemma 5.2. For any word α � (α1, . . . , αd) and any w ∈ W , the
pullback for f : X(α) → X is given by

f ∗y(w) �
∑

y(I),

the sum over all subsets I such that #I � ℓ(w) and the corresponding
α-chain v has vd � w.

Proof. Let 〈a , b〉 denote the usual pairing in cohomology, given
by pushforward of a · b to a point. By the projection formula, we
have 〈 f ∗y(w), x(I)〉 � 〈y(w), f∗x(I)〉. Since f∗x(I) � x(vd) when
X(I) → X(vd) is birational, and f∗x(I) � 0 otherwise, the lemma
follows from Corollary 2.5. �
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Remark 5.3. Applying the lemma to divisor classes, we have
f ∗y(sα) �

∑
yi , the sum over 1 ≤ i ≤ d such that αi � α. Com-

bining this with Proposition 4.1 gives a method for computing in
H∗

T
(G/B).

First proof of Theorem 5.1. Let f : X(α) → X is the projection,
and let v � (v1, . . . , vd) be the α-chain associated to I � {1, . . . , d},
so vi � sα1 · · · sαi , and in particular v � vd . Then f (pv) � pv, so
y(w)|v � ( f ∗y(w))|pv . By Lemma 5.2, this is

∑
y(K)|I , the sum over all

K such that #K � ℓ(w) and the corresponding α-chain vK has vK
d
� w.

On the other hand, by Corollary 3.4, we have y(K)|I �
∏

i∈K(−vi(αi)).
Since −vi(αi) � βi , the theorem is proved. �

For the second proof, we use a variation on the functions ψv which
we studied in Chapter 16. These were given by ψv(w) � y(v)|w . Here
we will use functions ϕv : W → Λ, defined by

ϕv(w) � y(w)|v � ψw(v).

Properties of these functions are immediate from the corresponding
properties of ψw (Chapter 16, Proposition 2.5). We only need an
inductive formula.

Lemma 5.4. We have

ϕv(w) � ϕvsα (w) if ℓ(wsα) > ℓ(w);(7)

ϕv(w) � ϕvsα (w) − v(α)ϕvsα (wsα) if ℓ(wsα) < ℓ(w).(8)

Proof. Using the operators Aα from Chapter 16, Proposition 2.5,
we have

ψw(vsα) − ψw(v) � v(α) (Aαψw)(v)

�

{
0 if ℓ(wsα) > ℓ(w);

v(α)ψwsα (v) if ℓ(wsα) < ℓ(w).

This immediately proves (7), as well as (8) with ϕv(wsα) appearing
on the right-hand side in place of ϕvsα (wsα). But by (7), we have
ϕv(wsα) � ϕvsα (wsα) (since ℓ(wsα) > ℓ(wsα · sα)). �
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Using the lemma, if we know the function ϕvsα , for some α, then
we know ϕv . For instance, we know

ϕe(w) �

{
1 if w � e;

0 otherwise

(since pe < Y(w) for w , e). This determines the rest!

Second proof of Theorem 5.1. We use induction on ℓ(v). For
ℓ(v) � 0, so v � e, this is the case observed above, so the theo-
rem holds. In general, fix a reduced word for v as in the theorem.
Set fv(w) to be the right-hand side of the formula (6), and let α � αd.
We assume the formula for ϕvsα is known, using the reduced word
(α1, . . . , αd−1) for it.

If ℓ(wsα) > ℓ(w), then no reduced word for w ends in α, and it
follows that fv(w) � fvsα (w). Since ϕv(w) � ϕvsα (w) by Lemma 5.4,
the formula holds in this case.

If ℓ(wsα) < ℓ(w), then no reduced word for wsα ends in α. Con-
sider subsets I � {i1 < · · · < iℓ} corresponding to reduced words
for w. For those I such that iℓ � d, the sequence (αi1 , . . . , αiℓ−1) is a
reduced word for wsα, and βd � −v(α) � (vsα)(α). So the sum of
such terms is ∑

I with iℓ�d

βi1 · · · βiℓ−1βiℓ � −v(α)ϕvsα (wsα).

The other terms, where iℓ < d, sum to ϕvsα (w). Applying Lemma 5.4,
the full sum is ϕv(w), as required. �

Example 5.5. Theorem 5.1 includes a formula for the restrictions of
divisor classes y(sα)|v , as the sum of those βi for which αi � α. On the
other hand, we saw y(sα) � ̟α − v(̟α) in Chapter 16, Lemma 2.6.
The latter is often simpler to use in this case. For example, with
G � SLn and α � t1 − t2, we have

̟α − v(̟α) � α1 + · · · + αv(1)−1

for any permutation v ∈ Sn , without needing to find a reduced
expression.
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Exercise 5.6. Check directly that the two formulas for y(sα)|v
agree: show that

̟α − v(̟α) �
∑

i:αi�α

sα1 · · · sαi−1(αi)

for any simple root α, and any reduced word (α1 , . . . , αd) for v ∈ W .4

Example 5.7. As noted above, Theorem 5.1 shows that y(w)|v is
nonzero if and only if pv ∈ Y(w). This is a special property of
the standard torus action on Schubert varieties. In general, for an
invariant subvariety Y of a nonsingular variety V , with [Y]T ∈ H∗

T
V ,

one can have [Y]T |p � 0 for an isolated fixed point p ∈ Y.
For example, consider V � P4 with coordinates x1, . . . , x5, and a

torus T acting by characters 0, χ1,−χ1, χ2,−χ2, where χ1 , χ2. Let Y

be the hypersurface defined by x2x3 − x4x5 � 0, so p � [1, 0, 0, 0, 0] is
the singular point of Y. Writing ζ � cT

1 (O(1)), we have [Y]T � 2ζ so
[Y]T |p � 0.

Remark 5.8. As we saw in Chapter 15, Equation (9), Schubert
classes in G/P pull back to Schubert classes in G/B. Writing the
projection as π : G/B → G/P, we have π∗y[w] � y(wmin). This is
compatible with restriction to fixed points, and we have

y[w]|[v] � y(wmin)|v

for any coset representative v ∈ [v]. In particular, Theorem 5.1
includes a formula for restricting G/P Schubert classes.

6. Duality

In Chapter 16, §4, we used an isomorphism Φw : G/B
∼
−→ G/Bw

to relate difference operators with the right W-action on G/B. The
particular case where w � w◦, so Bw◦ � Ûw◦B Ûw

−1
◦ � B−, is especially

useful for passing between formulas involving y(w) and ones involv-
ing x(w). Here we will state several such formulas; their proofs are
all immediate from the functoriality of pullbacks.
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To set up notation, let X � G/B−, with fixed points pw � ÛwB− and
Schubert varieties

X(w) � B− · pw and Y(w) � B · pw .

Let x(w) and y(w) be the corresponding Schubert classes in H∗TX.
The entire discussion for Schubert classes in X � G/B− is parallel to
that of X � G/B, except that each root is replaced by its negative. For
example,

y(w)|pw
�

∏
β∈w(R−)∩R+

(−β) � (−1)ℓ(w) y(w)|pw .

Let τ : Λ → Λ be the graded involution which is multiplication
by (−1)r on Symr M, so τ is induced by the involution of M taking
each root to its negative. Then

(9) y(w)|pv
� τ(y(w)|pv )

for every w , v ∈ W .
Write Φ � Φ

w◦ for the G-equivariant isomorphism X
∼
−→ X, so

Φ(gB) � g Ûw◦B
−. Since Φ(pww◦ ) � pw , we see

Φ(X(ww◦)) � Y(w) and Φ(Y(ww◦)) � X(w).

So Φ∗y(w) � x(ww◦) and Φ∗x(w) � y(ww◦), and we have

x(w)|pv � y(ww◦)|pvw◦
.

Combining this with (9), we obtain

(10) x(w)|pv � τ(y(ww◦)|pvw◦
).

Next consider the automorphism τ◦ � τw◦ : X→ X, coming from
the left action of W on G/B as in Chapter 16, §5. The map τ◦ is
equivariant with respect to the automorphism σ : g 7→ Ûw◦g Ûw

−1
◦ of

G. Restricting σ to the torus T ⊆ G, in turn, induces the algebra
automorphism w◦ : Λ→ Λ given by λ 7→ w◦(λ) for λ ∈ M. Since τ◦
maps pw◦w to pw, we see τ◦(X(w◦w)) � Y(w) and therefore

(11) x(w◦w)|pw◦v � w◦ · (y(w)|pv ).
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Like τ, the algebra automorphism w◦ sends a product of positive
roots to a product of negative roots—but in general these are different
automorphisms.

Finally, the isomorphism Φ ◦ τ◦ : X → X is equivariant with re-
spect to the automorphism σ, and takes Y(w◦ww◦) to Y(w), so

(12) y(w◦ww◦)|pw◦vw◦
� w◦ · τ(y(w)|pv ).

These identities generalize ones we have seen for Schubert poly-
nomials in type A. For instance, Equation (12) here corresponds to
Chapter 11, §8, Equation (2).

7. A nonsingularity criterion

For v ≤ w in W , when is the Schubert variety X(w) nonsingular
at the fixed point pv ∈ X(w)? We will see a criterion in terms of
equivariant cohomology, due to Kumar.

We need some information about the tangent cone Cpv X(w). Let

Vv � ÛvU− Ûv−1 · pv ⊆ X

be the T-invariant open affine neighborhood of pv, and let

V(w)v � X(w) ∩ Vv

be the corresponding affine neighborhood in X(w). We will write
V(w)v � Spec A, and m ⊆ A for the maximal ideal corresponding to
pv ∈ V(w)v .

Lemma 7.1. For each β ∈ v(R−) such that sβv ≤ w, there is a function
fβ ∈ A which is an eigenfunction of weight β for the action of T. (That is,
fβ(t
−1x) � β(t) f (x) for all t ∈ T and x ∈ V(w)v .)
Furthermore, the fβ generate an m-primary ideal in A. (That is,

fβ(pv) � 0 for each β, and pv is their only common zero.)

From the description of invariant curves we saw in Chapter 15,
§4, the roots β ∈ v(R−) such that sβv ≤ w are precisely the weights of
the T-invariant curves in X(w) through pv .

We will state the nonsingularity criterion in terms of the equivari-
ant multiplicities defined in Chapter 17.



Chapter 18. Bott-Samelson varieties and Schubert varieties 365

Theorem 7.2. For v ≤ w, the point pv is nonsingular in X(w) if and
only if

εT
pv

X(w) �
∏

β∈v(R−)

sβv≤w

β−1,

where εT
v X(w) is the equivariant multiplicity of X(w) at pv.

Proof. One direction is immediate. If X(w) is nonsingular at pv,
the weights on Tpv X(w) coincide with the tangent weights to the
T-invariant curves through pv. (This is a general fact about nonsin-
gular varieties with finitely many invariant curves; see Chapter 7,
Proposition 2.3.) Therefore

Tpv X(w) �
⊕
β∈v(R−)

sβv≤w

gβ .

By an elementary property of equivariant multiplicities, εT
v X(w) is

the inverse of the product of tangent weights (Chapter 17, Proposi-
tion 4.4(ii)).

Conversely, assume the formula holds. Using the notation of
Lemma 7.1, let A′ ⊆ A be the subring generated by the functions fβ.
Since εT

v X(w) has degree −dim X(w) � −ℓ(w), there are ℓ(w) such
fβ’s. It follows that they form a system of parameters for A at m.
So the subalgebra A′ � C[{ fβ | β ∈ v(R−), sβv ≤ w}] is a polynomial
ring, and A is a finitely generated module over A′.

Let V � V(w)v � Spec A and V ′ � Spec A′, and write π : V → V ′

for the corresponding equivariant map of affine varieties. Let p′ ∈ V ′

be the origin, and note that this is a nondegenerate fixed point, since
the tangent weights β are all nonzero. Since the functions fβ are
a system of parameters, we have π−1(p′) � pv. It follows from
another property of equivariant mulitplicities (Chapter 17, Propo-
sition 4.4(vi)) that

εT
pv

V � d · εT
p′V
′,

where d is the degree of the finite map π; since equivariant multiplic-
ities are local, we have εT

v X(w) � εT
pv

V . On the other hand, p′ ∈ V ′ is
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nonsingular, with tangent weights β, so as observed above we have

εT
p′V
′
�

∏
β∈v(R−)

sβv≤w

β−1.

It follows that d � 1, so A � A′ is a polynomial ring, and V � Aℓ(w).
In particular, pv is a nonsingular point. �

The criterion may be rephrased in terms of restrictions of Schubert
classes.

Corollary 7.3. For v ≤ w, the point pv is nonsingular in X(w) if and
only if

x(w)|v �

∏
β∈v(R−)∩R−

sβv�w

β.

Proof. We have

x(w)|v � cT
N(Tpv X) · εT

v X(w)

�
©«

∏
β∈v(R−)

β
ª®
¬
· εT

v X(w),

using another characterization of equivariant multiplicities (Chap-
ter 17, §4, Equation (9)). Dividing both sides by cT

N
(Tpv X), the asser-

tion follows from Theorem 7.2. (For any β ∈ v(R−) ∩ R−, we have
sβv < v ≤ w, so these weights cancel.) �

Using the duality identities from the previous section, it is easy to
deduce corresponding nonsingularity criteria for opposite Schubert
varieties Y(w). Using the notation of §6, the automorphism τ◦ sends
pw◦v to pv and X(w◦w) to Y(w), so pv is nonsingular in Y(w) if and
only if pw◦v is nonsingular in X(w◦w). We obtain the following:

Corollary 7.4. For v ≥ w, the point pv is nonsingular in Y(w) if and
only if

y(w)|v �

∏
β∈v(R−)∩R+

sβv�w

β.
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In this case, the tangent space Tpv Y(w) has weights β ∈ v(R−) such that
sβv ≥ w.

(Applying Equation 11, it suffices to verify that{
β ∈ v(R−) | sβv � w

}
� w◦

({
γ ∈ w◦v(R

−) | sγw◦v � w◦w
})
,

which is straightforward, using w◦v ≤ w◦w iff v ≥ w.)
Combining this with the restriction formula of Theorem 5.1, we

arrive at a combinatorial criterion for nonsingularity of Y(w) at pv.

Corollary 7.5. Fix a reduced word α � (α1, . . . , αd) for v, and write
βi � sα1 · · · sαi−1(αi). Then pv is nonsingular in Y(w) if and only if∑

βi1 · · · βiℓ �

∏
β∈v(R−)∩R+

sβv�w

β,

where the sum on the left-hand side is over all I ⊆ {1, . . . , d} such that the
corresponding subword α(I) is a reduced word for w.

Exercise 7.6. If ℓ(v) � ℓ(w)+1, show that pv ∈ Y(w) is nonsingular.
Conclude that Schubert varieties are nonsingular in codimension one.
(That is, the singular locus has codimension at least two.)5

Exercise 7.7. For G � SLn and α � tk − tk+1, so sα � sk , show that
the (opposite) Schubert variety Y(sk) ⊆ SLn/B is singular at w if and
only if #{i ≤ k | w(i) > k} ≥ 2.6

Exercise 7.8. UseS2 1 4 3 � (x1 − y1)(x1 + x2 + x3 − y1 − y2 − y3) to
determine the singular locus of Y(2 1 4 3) � Ω2 1 4 3 ⊆ Fl(C4).

Remark 7.9. Using the Bott-Samelson resolution, the additivity
property of equivariant multiplicities (Chapter 17, Proposition 4.4(vi))
leads to another formula for εT

v X(w). We have

(13) εT
v X(w) �

∑
v

(
ℓ∏

i�1

(−vi(αi))

)−1

,

where α � (α1, . . . , αℓ) is a fixed reduced word for w, and the sum
is over all α-chains v � (e , v1, . . . , vℓ) such that vℓ � v. (These
correspond to the fixed points pv ∈ X(α) mapping to pv under the
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resolution X(α) → X(w), and the corresponding term is εT
v X(α).)

Clearing denominators, one obtains a formula for x(w)|v which is
different from the one deduced from Billey’s formula. In particular,
note that the chains indexing terms of the sum need not correspond
to reduced words for v.

Remark 7.10. As noted in Remark 5.8, knowing about Schubert
varieties in G/B is enough to say something about Schubert varieties
in G/P. The projection π : G/B → G/P makes X(wmax) → X[w]

and Y(wmin) → Y[w] into fiber bundles, with nonsingular fiber P/B.
So a point p[v] ∈ X[w] is nonsingular if and only if pv ∈ X(wmax) is
nonsingular, for any coset representative v ∈ [v]; and similarly for
p[v] ∈ Y[w]. So Theorem 7.2 and Corollary 7.3 provide nonsingular-
ity criteria for Schubert varieties in G/P.

Notes

Bott and Samelson gave a construction similar to the one indicated in
Remark 3.5, and used it to study the cohomology of G/B � K/S [BoSa55].
In particular, they prove a non-equivariant version of Corollary 4.4. The
algebraic version which is more commonly used in Schubert calculus and
representation theory was introduced by Demazure [De74] and Hansen
[Han74], and for this reason the varieties X(α) are sometimes called Bott-
Samelson-Demazure-Hansen (or BSDH) varieties. The non-equivariant part
of the formula for x2

i
(Exercise 4.3) appears in [De74, §4.2].

Corollary 3.4 was proved by Willems, using a localization argument
similar to the second proof we gave [Wi04]. Our geometric argument,
using the submanifolds Y(I), appears to be new.

Theorem 5.1 appears as an exercise (without proof) in a book by An-
dersen, Jantzen, and Soergel [AJS94, p. 298]. Billey discovered the formula
independently, emphasizing the connection with Schubert calculus [Bi99].
Her proof proceeds by decreasing induction on w, with a separate argu-
ment that the polynomial is independent of the choice of reduced word.
The result is sometimes known as the AJSB formula.

Example 5.7 is due to Brion [Bri00].
Among simple linear algebraic groups, the automorphisms τ and w◦

(from §6) are equal precisely in types Bn , Cn , D2n , E7, E8, F4, and G2; see,
e.g., [Hum81, §31.6].
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Theorem 7.2 is due to Kumar [Ku96, Theorem 5.5]. A simplified argu-
ment was given by Brion [Bri97b, §6.5], and this is essentially the one we
use. Lemma 7.1 follows from a result of Polo [Po94, Prop. 2.2]; see also Ku-
mar [Ku02, Prop. 5.2]. A more detailed study of the tangent cones Cpv X(w)

has been carried out by Carrell and Peterson; see, e.g., [Ca94].
The formula (13) for εT

v X(w) is due to Rossmann [Ro89, (3.8)].

Hints for exercises

1Use the subword characterization of Bruhat order, and a greedy algorithm to
see that sαi1

· · · sαiℓ
≤ sα1 ∗ · · · ∗ sαd for any subword of α. See [KnMi04, Lemma 3.4].

2Consider the point p � p{1,...,d} ∈ X(α). Using terminology from Chapter 7, §2,
the tangent space TpX(α) contains parallel weights whenever α is a non-reduced
word; in this case there are infinitely many T-curves through a neighborhood of p.
Whenever the sequence α has a repeated root, an instance of the variety considered
in Example 2.6 occurs as a subvariety of X(α), and this has infinitely many T-curves.

To see that X(α) is toric when all roots are distinct, look at the tangent space
to p∅ : the characters form part of a basis for M, so there is a dense T-orbit. To see
that f is an isomorphism in this case, keep track of fixed points.

3Use induction on d. The same argument shows that the analogous map

G ×B Pα1 ×
B · · · ×B Pαd/B→ Z(α)

is an isomorphism.

4Argue inductively as in the second proof of Theorem 5.1. It is obvious for
v � e. Suppose the equality is known for v, and β is a simple root such that
ℓ(vsβ) � ℓ(v) + 1. If β , α, the right-hand sides are clearly equal for v and
vsβ ; since sβ(̟α) � ̟α for β , α, so are the left-hand sides. If β � α, then the
difference of the right-hand sides is v(α), and the difference of the left-hand sides
is v(̟α) − vsα(̟α) � v(α).

5The claim about pv ∈ Y(w) being nonsingular follows easily from Billey’s
formula for y(w)|v . Using B-equivariance, one sees that the nonsingular locus of
Y(w) contains the union of Schubert cells Y(v)◦ for v ≥ w and ℓ(v) ≤ ℓ(w)+1. (The
conclusion also follows from the general fact that Schubert are normal.)

6Use the formula for y(sα)|w in Chapter 10, Exercise 7.2.





CHAPTER 19

Structure constants

A major problem in combinatorics and geometry is to deter-
mine the structure constants for multiplying Schubert classes in G/P.
The ultimate goal is a positive combinatorial formula akin to the
Littlewood-Richardson rule for Grassmannians, and in this sense the
problem is open for most cases.

Here we will prove an equivariant version of Chevalley’s rule for
multiplying by a Schubert divisor. As we saw for Grassmannians
and type A flag varieties, this recursively determines all equivariant
structure constants. We conclude with two proofs of a theorem due
to Graham, which specifies the sense in which equivariant structure
constants are positive.

1. Chevalley’s formula

We start with Schubert classes in G/B. Let α be a simple root,
so y(sα) ∈ H∗

T
(G/B) is a divisor class. The equivariant Chevalley

formula expresses y(sα) · y(v) as a sum of classes y(w). Such a
product takes place in Y(sα)∩Y(v), so the classes y(w)which appear
will have w ⋗ v (that is, w > v with ℓ(w) � ℓ(v) + 1), together with
w � v.

Using the characterization of Bruhat order from Lemma 2.1(9),
the covering relation w ⋗ v may be described as follows.

Lemma 1.1. We have w ⋗ v if and only if ℓ(w) � ℓ(v) + 1, and there is
a positive root β, with γ � v(β) also positive, such that w � v sβ � sγ v.

(If (α1, . . . , αℓ) is a reduced word for w, so that (α1, . . . , α̂k , . . . , αℓ) is
a reduced for v, then β � sαℓ · · · sαk+1(αk).)

Here is the formula.

371
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Theorem 1.2 (Equivariant Chevalley formula). For a simple root
α and v ∈ W , we have

(∗) y(sα) · y(v) � (̟α − v(̟α)) y(v) +
∑

w�v sβ

ℓ(w)�ℓ(v)+1

〈̟α , β
∨〉 y(w)

in H∗T(G/B).

As remarked in Chapter 15, §1.2, using a W-invariant inner prod-
uct ( , ) one can write the coefficients as

〈̟α , β〉 � nαβ ·
(α, α)

(β, β)
,

where nαβ is the coefficient of α when β is written as a sum of simple
roots.

Proof. As noted above, for degree and support reasons, the terms
appearing in y(sα) · y(v) must be those y(w) for which w ≥ v and
ℓ(w) ≤ ℓ(v) + 1. By Lemma 1.1, these are the ones appearing on the
right-hand side of (∗). For each such w, except v itself, pv < Y(w). So
restricting both sides of (∗) to pv, we obtain

y(sα)|v · y(v)|v � λ · y(v)|v + 0,

for some λ ∈ M. Since y(v)|v , 0, it follows that λ � y(sα)|v, and we
have seen the formula for this restriction (Chapter 16, Lemma 2.6).
So we have the first term.

The other coefficients are classical, but it is easier to compute them
equivariantly. By Poincaré duality, the coefficient of y(w) is

ρ∗
(
y(sα) · y(v) · x(w)

)
,

where ρ : G/B→ pt is the projection. For ℓ(w) � ℓ(v)+1, the Schubert
varieties Y(v) and X(w)meet transversally in the T-invariant curve

E � Y(v) ∩ X(w) � Gγ · pv

containing the fixed points pv and psγv � pvsβ . This follows from
the fact that Schubert varieties are nonsingular in codimension one.
(See Chapter 18, Exercise 7.6.) Since the subspace Tpv X(v) ⊆ Tpv X(w)

has codimension one, and meets Tpv Y(v) transversally, it follows that
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Tpv X(w)∩Tpv Y(v) is one-dimensional; and similarly for the subspace
Tpw X(w) ∩ Tpw Y(v).

From the characterization of invariant curves, E has character γ,
with tangent weight γ on Tpw E and −γ on Tpv E. By transversality of
the intersection, we have

y(v) · x(w) � [E]T .

Writing f : E ֒→ G/B for the inclusion, and η : E→ pt, an application
of the projection formula shows

ρ∗
(
y(sα) · y(v) · x(w)

)
� η∗

(
f ∗y(sα)

)
.

Now we use localization to compute this integral. The restriction
of f ∗y(sα) to pw is y(sα)|w , and the restriction to pv is y(sα)|v , so using
the formulas we know for these, we have

ρ∗
(
y(sα) · y(v) · x(w)

)
�

y(sα)|w

γ
+

y(sα)|v

−γ

�

y(sα)|w − y(sα)|v

γ

�

v(̟α) − w(̟α)

γ
.

Since w � sγv, we can write

v(̟α) − w(̟α) � v(̟α) − sγv(̟α)

� 〈v(̟α), γ
∨〉 γ,

and it follows that the desired coefficient is 〈v(̟α), γ∨〉. Since the
pairing is W-invariant and γ � v(β), this is equal to 〈̟α , β∨〉, as
claimed. �

Exercise 1.3. Prove that the same coefficients give the correspond-
ing formula for multiplication by B-invariant divisor classes x(w◦sα):

x(w◦sα) · x(w) � (x(w◦sα)|w) · x(w) +
∑

v

〈̟α , β
∨〉 x(v),

the sum over v ≤ w with ℓ(v) � ℓ(w) − 1, where v � wsβ.1



374 §2. Characterization of structure constants

Exercise 1.4. Prove Chevalley’s formula for G/P. For α ∈ ∆ r ∆P

and v � vmin a minimal representative for [v] ∈ W/WP ,

y[sα] · y[v] � (̟α − v(̟α)) y[v] +
∑

w�vminsβ

〈̟α , β
∨〉 y[w],

the sum over w ≥ vmin with ℓ(w) � ℓ(vmin) + 1 and [w] , [v].
Note that the coefficients (̟α − v(̟α)) and 〈̟α , β∨〉 appearing in the
formula are independent of the choice of coset representative.

Recall that the G-equivariant line bundle Lλ � G ×B Cλ has
cT

1 (Lλ)|w � w(λ). Since y(sα)|w � ̟α − w(̟α), we see that

y(sα) � cT
1 (L−̟α ⊗ C̟α ) � cT

1 (L−̟α ) + ̟α .

There is a similar formula for multiplying by cT
1 (Lλ).

Exercise 1.5. For any weight λ ∈ M, show that

cT
1 (Lλ) · y(v) � w(λ) · y(v) +

∑
w�v sβ

〈λ, β∨〉 y(w)

in H∗
T
(G/B), the sum over w such that ℓ(w) � ℓ(v) + 1, as before.2

Remark 1.6. To compute in H∗
T
(G/P), one can use pullback by the

projection π : G/B → G/P to embed the problem in H∗
T
(G/B). This

gives π∗y[w] � y(wmin) for any coset [w] ∈ W/WP. For a simple root
α ∈ ∆ r ∆P, we have π∗y[sα] � y(sα), and the formula

y[sα] · y[v] � (̟α − v(̟α)) · y[v] +
∑

w�vminsβ

〈̟α , β
∨〉 y[w]

follows from Theorem 1.2, where the sum is over all w such that
ℓ(w) � ℓ(vmin) + 1. (Terms with β ∈ RP do not appear, so w � vminsβ
is minimal in its coset. Indeed, 〈̟α , β∨〉 � 0 for such β.)

2. Characterization of structure constants

No formula as explicit as Theorem 1.2 is currently known for
multiplying two general Schubert classes. However, the general co-
efficients are characterized by a recursion similar to what we have
seen for Gr(d ,Cn) and Fl(Cn).
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For u , v , w ∈ W , let cw
uv ∈ Λ be defined by

y(u) · y(v) �
∑

w

cw
uv y(w)

in H∗T(G/B). As before, special cases of these coefficients appear as
restrictions of Schubert classes.

Exercise 2.1. Show that cv
uv � y(u)|v . In particular,

cu
uu � y(u)|u �

∏
β∈u(R−)∩R+

β.

Recall that w⋗v if and only if there is some positive root β such that
w � vsβ and ℓ(w) � ℓ(v) + 1. In this situation, it will be convenient
to use the notation

cα(v , w) :� 〈̟α , β∨〉

when stating the recursive characterization.

Theorem 2.2. The polynomials cw
uv, homogeneous of degree ℓ(u)+ℓ(v)−

ℓ(w) in Λ, satisfy and are determined by the following properties, for all
simple roots α ∈ ∆:

cu
uu �

∏
β∈u(R−)∩R+

β,(i)

(y(sα)|u − y(sα)|v) c
u
uv �

∑
v+⋗v

cα(v , v
+) cu

uv+ ,(ii)

and

(y(sα)|w − y(sα)|u) c
w
uv �

∑
u+⋗u

cα(u , u
+) cw

u+v

−
∑

w−⋖w

cα(w
−, w) cw−

uv ,(iii)

where the sums are over v+ such that ℓ(v+) � ℓ(v) + 1, u+ such that
ℓ(u+) � ℓ(u) + 1, and w− such that ℓ(w−) � ℓ(w) − 1.

The proof goes as in Chapter 9, Theorem 6.4, and Chapter 10,
Theorem 7.4, using the following observation.

Lemma 2.3. For any u , v in W , there is a simple root α such that
y(sα)|u , y(sα)|v .
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Proof. Using y(sα)|u � ̟α − u(̟α), this follows from the fact that
the fundamental weights ̟α form a basis for the vector space MR,
and W acts faithfully on this space. �

The involutions we used in Chapter 18, §6, apply to give identities
among structure constants for various bases. Recall that τ is the
automorphism of Λ induced by λ 7→ −λ for λ ∈ M, and w◦ is the
one induced by the usual W action, i.e., λ 7→ w◦(λ) for λ ∈ M.

Proposition 2.4. With notation as in Chapter 18, §6, we have

y(u) · y(v) �
∑

w

τ(cw
uv) y(w);

x(uw◦) · x(vw◦) �
∑

w

τ(cw
uv) y(ww◦);

x(w◦u) · x(w◦v) �
∑

w

w◦(c
w
uv) x(w◦w);

y(w◦uw◦) · y(w◦vw◦) �
∑

w

w◦τ(c
w
uv) y(w◦ww◦).

Note that w◦τ � τw◦, and this preserves products of positive roots.
For general G/P, with cosets [u], [v], [w] ∈ W/WP, we write

y[u] · y[v] �
∑
[w]

c
[w]

[u][v]
y[w]

in H∗
T
(G/P). Since H∗

T
(G/P) embeds in H∗

T
(G/B), these coefficients

occur among the cw
uv, but they can be characterized directly.

Theorem 2.5. For [u], [v], [w] ∈ W/WP, fix minimal representatives
u � umin, v � vmin, and w � wmin. The polynomials c

[w]

[u][v]
, homogeneous

of degree ℓ(u)+ℓ(v)−ℓ(w) inΛ, satisfy and are determined by the following
properties, for all α ∈ ∆ r ∆P:

c
[u]

[u][u]
�

∏
β∈u(R−)∩R+

β,(i)

(y[sα]|[u] − y[sα]|[v]) c
[u]

[u][v]
�

∑
v+⋗v

cα(v , v
+) c
[u]

[u][v+]
,(ii)
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and

(y(sα)|w − y(sα)|u) c
[w]

[u][v]
�

∑
u+⋗u

cα(u , u
+) c
[w]

[u+][v]

−
∑

w−⋖w

cα(w
−, w) c

[w−]

[u][v]
,(iii)

where the sums are over v+ such that ℓ(v+) � ℓ(v) + 1, u+ such that
ℓ(u+) � ℓ(u) + 1, and w− such that ℓ(w−) � ℓ(w) − 1.

The proof goes as usual, using the fact that for any distinct cosets
[u] , [v] ∈ W/WP, there is a simple root α ∈ ∆ r ∆P such that
u(̟α) , v(̟α). This is a consequence of a basic lemma:

Lemma 2.6. Let MP ⊆ MR be the subspace spanned by ̟α for simple
roots α ∈ ∆r∆P. The isotropy group for the action of W on MP is precisely
the subgroup WP ⊆ W .

3. Positivity via transversality

When ℓ(wmin) � ℓ(umin) + ℓ(vmin), the coefficients c
[w]

[u][v]
for mul-

tiplying Schubert classes in the ordinary cohomology ring H∗(G/P)

are nonnegative integers. This is proved by an easy transversality ar-
gument, which we will review below. A subtler positivity property
holds for the equivariant structure constants. Let us write the simple
roots as ∆ � {α1 , . . . , αr}.

Theorem 3.1 (Graham). Consider multiplication in H∗
T
(G/P) with

respect to the basis {y[w]}. The corresponding structure constants c
[w]

[u][v]

are polynomials in the (positive) simple roots with nonnegative coefficients:
c
[w]

[u][v]
∈ Z≥0[α1, . . . , αr].

The theorem includes the statement that the structure constants
are polynomials in roots: that is, they lie in the subringΛrt � Sym∗Mrt

of Λ � Sym∗M. This can be deduced from the characterization in
Theorem 2.5, but it is easy to see directly.

Lemma 3.2. The structure constants c
[w]

[u][v]
lie in the subring Λrt ⊆ Λ

of polynomials in roots.
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Proof. The adjoint group Gad
� G/Z(G) has parabolic subgroup

Pad
� P/Z(G) and maximal torus Tad

� T/Z(G). The map on char-
acter groups corresponding to the quotient map T → Tad is the
inclusion of the root lattice Mrt ⊆ M, so ΛTad � Λrt. There is a
canonical isomorphism G/P

∼
−→ Gad/Pad, and the action of T factors

through that of Tad, so the structure constants in H∗
Tad(G/P) lie in

Λrt. The change-of-groups homomorphism embeds H∗
Tad(G/P) as a

subalgebra of H∗
T
(G/P) and preserves the Schubert basis, so the claim

follows. �

We will see two proofs of the positivity theorem. The first
uses a refinement of the transversality argument which proves non-
equivariant positivity, this time applied to certain fiber bundles. Later
we will see a second proof via degeneration, which leads to a more
precise result.

As a warmup, let us quickly review the reason why the non-
equivariant structure constants are nonnegative integers. The basic
tool is a weak version of the Kleiman-Bertini transversality theorem.
Recall that two subvarieties Y, Z ⊆ X intersect properly if Y ∩ Z is
either empty or pure-dimensional, with codimension (in X) equal to
codimX Y + codimX Z.

Lemma 3.3. Let Γ be a connected algebraic group acting transitively on
an irreducible variety X, and let Y, Z ⊆ X be irreducible subvarieties. There
is a dense open subset Γ◦ ⊆ Γ such that gY meets Z properly for all g ∈ Γ◦.

The proof is not difficult. The main point is to show that the action
morphism q : Γ × Y → X is flat.3

We need a basic fact from intersection theory: If Y and Z are
subvarieties of a nonsingular variety X which intersect properly, then

[Y] · [Z] �
∑

V

mV[V]

in H∗X, where the sum is over irreducible components V ⊆ Y ∩ Z,
and the intersection multiplicities mV are nonnegative integers. (See
Proposition 3.3 of Appendix A.)
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Now let us calculate the coefficients c
[w]

[u][v]
in the non-equivariant

case. Writing
∫

: H∗(G/P) → Z for the pushforward to a point and
using Poincaré duality, we have

c
[w]

[u][v]
�

∫
y[u] · y[v] · x[w].

The intersection Z � Y[v] ∩ X[w] is proper (and transverse at the
generic point), so y[v] · x[w] � [Z]. Applying Lemma 3.3 with Γ � G,
X � G/P, and Y � Y[u], we can find g ∈ G so that gY meets Z

properly. Since G is connected, we have [gY] � [Y] for all g ∈ G, and
then

c
[w]

[u][v]
�

∫
y[u] · y[v] · x[w]

�

∫
[gY] · [Z]

�

∑
V

mV

∫
[V],

where V ranges over components of gY ∩ Z. The pushforward
∫
[V]

is equal to 1 if V is a point and 0 otherwise, and mV ≥ 0 always, so it
follows that c

[w]

[u][v]
≥ 0.

Our plan here is to prove Theorem 3.1 by imitating the above
argument for positivity of the non-equivariant coefficients. We will
show that c

[w]

[u][v]
represents the class of a (possibly reducible) subva-

riety of an approximation space—that is, it is an effective class. The
main obstacle in applying the Kleiman-Bertini theorem directly is
that the approximation spaces are not homogeneous. However, a
small refinement suffices.

Lemma 3.4. LetΓ be a connected algebraic group acting on a nonsingular
irreducible variety X with finitely many orbits X1, . . . ,Xn. Let Y ⊆ X be
an irreducible subvariety, and assume it meets each Γ-orbit properly. Given
another irreducible subvariety Z, there is a dense open subset Γ◦ ⊆ Γ such
that gY meets Z properly for all g ∈ Γ◦.

Proof. Let us write Yi � Y ∩ Xi and Zi � Z ∩ Xi for the intersec-
tions with each orbit. If c � codimX Y, then also c � codimXi Yi for
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each i, by the assumption that Y meets orbits properly. Let d � dim Z

and di � dim Zi . For each i, we may apply Lemma 3.3 to find a dense
open subset Γ◦

i
⊆ Γ consisting of g such that dim(gYi ∩ Zi) � di − c

for all g ∈ Γ◦
i
. We claim that Γ◦ �

⋂n
i�1 Γ

◦
i

is the desired open subset.
Since X is nonsingular, for any g ∈ Γ, every nonempty component

of gY ∩ Z has dimension at least equal to d − c. So it suffices to show
that when g ∈ Γ◦, each component of this intersection has dimension
at most d − c. Since Z is irreducible and Z �

∐
i Zi , there is a unique

j such that Z j ⊆ Z is dense; in particular, d j � d � dim Z, and di < d

for all i , j. For each g ∈ Γ◦, we have gY ∩ Z �

∐
i gYi ∩ Zi , and

dim gYi ∩ Zi � di − c ≤ d − c, with equality exactly for i � j. So
gYj ∩ Z j ⊆ gY ∩ Z is dense, and the claim follows. �

Now we return to the situation of Theorem 3.1. First we must
characterize effective classes. Any choice of basis t1, . . . , tr for M

determines an isomorphism Λ � Z[t1, . . . , tr]. According to our
standard conventions, the positive classes naturally determined by
such a basis are polynomials with nonnegative coefficients in the
negative variables −t1, . . . ,−tr . To see why, we employ the corre-
sponding isomorphism T � (C∗)r along with approximation spaces
E � (Cm r 0)r and B � (Pm−1)r (for m ≫ 0). The variables are
identified as ti � c1(pr∗

i
O(−1)), so −ti � c1(pr∗

i
O(1)) is a hyperplane

class. Then a homogeneous polynomial in Λ � Z[t1, . . . , tr] is effec-
tive if and only if it is a nonnegative combination of monomials in
−t1, . . . ,−tr .

With Lemma 3.2 in mind, we will assume G � Gad for the remain-
der of this section, so that Mrt � M and Λrt � Λ � Z[α1, . . . , αr]. We
fix the basis of negative simple roots −α1, . . . ,−αr for M and use this
to identify T � (C∗)r , so that the effective classes for the correspond-
ing approximation space B � (Pm−1)r are given by polynomials in
Z≥0[α1, . . . , αr].

We wish to compute c
[w]

[u][v]
via an intersection on E ×T G/P, and

show that it is an effective class. To apply Lemma 3.4, we need an
appropriate group action on this approximation space.
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First we set some notation. Let X � E ×T G/P be the approxima-
tion space, so X → B is a fiber bundle over B � (Pm−1)r with fibers
G/P. Similarly, let Y [w] � E ×T Y[w] and X[w] � E ×T X[w].

Consider T acting on G by conjugation, so t · g � t gt−1, and let
G � E ×T G. The projection G→ Bmakes this a group scheme over
B, acting on X by

G ×BX →X , ([e , g], [e , x]) 7→ [e , gx].

Writing U ⊆ B ⊆ G as usual for the unipotent subgroup whose roots
are R+, we have a subgroup U � E ×T U of G, also acting on X .

As a variety with T-action, U is isomorphic to the vector space⊕
β∈R+ Cβ, where Cβ is the one-dimensional representation with

character β. Writing β � n1α1 + · · · + nrαr in terms of simple roots, it
follows that

U �

⊕
β∈R+

O(β)

as varieties, where

O(β) � pr∗1O(n1) ⊗ · · · ⊗ pr∗rO(nr)

is a line bundle on B � (Pm−1)r .
The key observation is this: since β is a positive root, each O(β) is

a globally generated line bundle, soU is generated by global sections.
Let Γ f � Γ(B,U ) be the space of global sections; this is a group

by pointwise multiplication, and it is a finite-dimensional complex
vector space, so it is connected. For any given b ∈ B, there is an
evaluation homomorphism Γ f → U , which we denote by g 7→ gb.
This is surjective, since U is globally generated. The group Γ f has a
natural “fiberwise” action on X , by g · [e , x] � [e , gb · x], where e ∈ E

maps to b ∈ B.
The group (GLm)

r acts transitively onB � (Pm−1)r , and this action
lifts to the standard action on E � (Cm r 0)r . This induces an action
of (GLm)

r on X , by h · [e , x] � [h · e , x].
These two actions naturally intertwine: (GLm)

r acts on Γ f by
(h · g)b � gh−1b for any h ∈ (GLm)

r , g ∈ Γ f , and b ∈ B. Let

Γ � Γ f ⋊ (GLm)
r
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be the corresponding semidirect product. Since (GLm)
r and Γ f are

connected algebraic groups, so is Γ. This group acts on X by

(g , h) · [e , x] � [h · e , gh·b · x],

for g ∈ Γ f , h ∈ (GLm)
r , x ∈ G/P and e ∈ Emapping to b ∈ B.

Lemma 3.5. The orbits for the action of Γ on the approximation space
X � E ×T G/P are the approximation spaces X[w]◦ � E ×T X[w]◦ for
Schubert cells.

Proof. The projection X → B is equivariant with respect to the
projection Γ→ (GLm)

r , and (GLm)
r acts transitively on B � (Pm−1)r .

So to determine the orbits of Γ onX , it suffices to determine the orbits
of Γ f on any fiber. For a point b ∈ B, the fiberwise action is given by
the evaluation homomorphism Γ f → U . Since this homomorphism
is surjective, the orbits of Γ f on a fiber are the same as those of U on
G/P, and the claim follows. �

In particular, there are finitely many orbits, and Y [u] � E×T Y[u]

intersects each of them properly. Now we can prove the positivity
theorem, by applying Lemma 3.4 to the action of Γ on X .

First proof of Theorem 3.1. Let ρ : G/P → pt be the map to a
point, with corresponding pushforward ρ∗ : H∗

T
(G/P) → Λ. Using

Poincaré duality, we know

c
[w]

[u][v]
� ρ∗(y[u] · y[v] · x[w]).

There are finitely many structure constants c
[w]

[u][v]
, so one can

compute all of them using a single approximation spaceE � (Cmr0)r

for m sufficiently large. (In fact, m > ℓ(wmin
◦ ) � dim G/P suffices,

since this is the largest possible degree of c
[w]

[u][v]
.) Fixing such E→ B,

and writing X � E×T G/P as above, let ρ : X → B be the projection.
Using the identification H iB � Λ

i for i < 2m − 1, we have

c
[w]

[u][v]
� ρ∗([Y [u]] · [Y [v]] · [X[w]])

� ρ∗([Y [u]] · [Z]),

where Z � Y [v] ∩X[w].
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The hypotheses of Lemma 3.4 are satisfied, for Γ acting on X ,
so there is a g ∈ Γ such that gY [u] meets Z properly. Since Γ is
connected, it follows that

[Y [u]] · [Z] � [gY [u]] · [Z] � [gY [u] ∩Z].

Now c
[w]

[u][v]
� ρ∗[gY [u] ∩ Z] is the pushforward of an effective

class. By basic properties of Gysin maps, pushforward preserves
effective classes (see Appendix A, §6). It follows that c

[w]

[u][v]
is effective,

proving the theorem. �

Example 3.6. Consider T � (C∗)n acting Cn by standard charac-
ters t1, . . . , tn , and on the complete flag variety Fl(Cn) in the usual
way. (This is not the adjoint torus!) The approximation space
E → B is identified with (Cm r 0)n → (Pm−1)n using the basis
−t1 + t2, . . . ,−tn−1 + tn ,−tn for the character lattice of T to define
the action on E. Let

Mi � pr∗i O(1) and Li � Mi ⊗ · · · ⊗Mn ,

so c1(Mi) � ti − ti+1 and c1(Li) � ti . Forming the vector bundle
V � L1 ⊕ · · · ⊕ Ln on B, we have

End(V) �
⊕

i, j

Li ⊗ L−1
j .

By construction, End(V) has global sections in upper-triangular ma-
trices; that is, Li ⊗ L−1

j
is globally generated if and only if i ≤ j. In this

setting, the group Γ f is formed by taking global sections of Li ⊗ L−1
j

for i < j.
This construction also identifiesE×T Fl(Cn) � Fl(V), and choosing

opposite flags Ẽp � L1 ⊕ · · · ⊕ Lp and Ep � Ln+1−p ⊕ · · · ⊕ Ln , we have
X(w) � Ωw◦w(Ẽ•) and Y (w) � Ωw(E•) inside Fl(V).

4. Positivity via degeneration

Here we will use a degeneration to prove the positivity theorem,
closely following the argument originally given by Graham. We
are concerned with the action of a connected solvable group B on
a nonsingular variety X. Let T be the maximal torus. Our goal is
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to write the class of a T-invariant cycle in X as a sum of classes of
B-invariant cycles, keeping control over the coefficients. To begin, we
consider a basic example.

Example 4.1. Let B act on P1 via a homomorphism B → GL2,
given by

b 7→

[
χ(b) ϕ(b)

0 1

]
,

where χ : B → C∗ is a character, and ϕ : B → A1
� Ga is a regular

function satisfying the identity

ϕ(b1b2) � ϕ(b1) + χ(b1)ϕ(b2)

for b1, b2 ∈ B. Note that ϕ(t) � 0 for t ∈ T, since T consists of
semisimple elements of B, which must map to diagonalizable ele-
ments of GL2. The torus T therefore acts on C2 by the characters χ
and 0.

As we have seen (Chapter 2, Example 6.2),

H∗TP
1
� Λ[ζ]/(ζ + χ)ζ,

where ζ � cT
1 (O(1)). The point 0 � [1, 0] is fixed by B, and∞ � [0, 1]

is fixed by T, and we have

[0]T � ζ and [∞]T � ζ + χ.

The relation

(1) [∞]T � [0]T + χ

writes the class of the T-invariant cycle ∞ as a sum of the classes of
the B-invariant cycles 0 and P1, with coefficients 1 and χ, respectively.

Next we consider a situation which will be used in the induction
step of the main theorem. Let U ⊆ B be the unipotent radical, so it
is normal in B, with B � U · T and U ∩ T � {e}. Let U′ ⊆ U be a
normal subgroup of B, with dim(U/U′) � 1, so U/U′ is isomorphic
to the additive groupGa . (Such a U′ exists, by solvability.) The action
of T on U by conjugation determines an action of T on U/U′ � A1

by a character χ. Equivalently, if u ⊃ u′ are the corresponding Lie
algebras, then χ is the weight of T acting on u/u′.
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Let θ : U → Ga be any homomorphism with kernel U′, deter-
mining another isomorphism θ : U/U′

∼
−→ Ga . This is unique up to

multiplication by a nonzero scalar.
These two pieces of data, U′ ⊂ U and θ : U → Ga , will determine

a homomorphism B → GL2 and an action as in the above example.
To see how, we record two lemmas.

Let B′ � U′ · T, a non-normal closed subgroup of B, with B

acting on B/B′ by left multiplication. Combining the isomorphisms
θ : U/U′

∼
−→ Ga and U/U′

∼
−→ B/B′, we obtain an action of B on Ga .

Lemma 4.2. The above action of B on Ga is given by

(2) b · z � θ(u) + χ(t)z

for b � ut with u ∈ U , t ∈ T, and z ∈ Ga � C.

Proof. Consider an element vU′ ∈ U/U′, for some v ∈ U . Using
the isomorphism U/U′ � B/B′, the element b � ut acts on U/U′ by
b · vU′ � u · (tvt−1)U′. (To check this, write

b · vB′ � utvB′ � u(tvt−1)tB′ � u(tvt−1)B′

in B/B′.) Using the isomorphism θ : U/U′ → Ga , sending vU′ to
z � θ(v), we see b · z � θ(u(tvt−1)) � θ(u)+ θ(tvt−1) � θ(u)+ χ(t)z,
as claimed. �

Given a character χ : T → C∗, let χ : B→ C∗ be the unique exten-
sion to a character of B, so χ(ut) � χ(t).

Lemma 4.3. With θ and χ as above, defineϕ : B→ C byϕ(ut) � θ(u).
Then the zero scheme of ϕ is B′, and ϕ(b1b2) � ϕ(b1) + χ(b1)ϕ(b2) for
b1, b2 ∈ B. So the map

b 7→

[
χ(b) ϕ(b)

0 1

]
,

is a homomorphism from B to GL2.

Proof. By our choice of θ : U → Ga , its zero scheme is U′ ⊂ U ,
and it follows that the zero scheme of ϕ is B′. Writing bi � ui ti for
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i � 1, 2, we compute

ϕ(b1b2) � ϕ(u1t1u2t−1
1 · t1t2)

� θ(u1 · t1u2t−1
1 )

� θ(u1) + χ(t1)θ(u2)

� ϕ(b1) + χ(b1)ϕ(b2),

as claimed. �

So B acts on P1, preserving A1
� {[z , 1] | z ∈ C} � B/B′ and

fixing the point 0 � [1, 0]. Now suppose B acts on an n-dimensional
nonsingular variety X, with subgroup B′ ⊂ B and character χ as
above. The following proposition provides the main ingredient for
an inductive proof of the positivity theorem.

Proposition 4.4. Suppose Y ⊆ X is a B′-invariant effective cycle of
dimension k. There are canonically defined B-invariant effective cycles Z1

and Z2, with dim Z1 � k and dim Z2 � k + 1, such that

(3) [Y]T � [Z1]
T
+ χ[Z2]

T

in H2n−2k
T

X.

Proof. It suffices to make the construction when Y is an irre-
ducible subvariety. If Y is B-invariant, then Z1 � Y and Z2 � 0 are
the canonical choices. Otherwise, let W be the closure of B · Y in X;
this is a subvariety of dimension k + 1. Let

V � B ×B′ Y,

with the natural left action of B. This is a fiber bundle over B/B′ � A1,
with fiber Y. The mapping V → A1×X, sending [b , y] to (ϕ(b), b · y),
is a B-equivariant closed embeddding, where B acts diagonally on
A1 × X.

Using the action of B onP1 which results from the two lemmas, we
have a B-equivariant compatification A1 ⊂ P1. Let V be the closure
of V in P1 × X, so this is a B-invariant subvariety of dimension k + 1
which maps onto W ⊆ X by the second projection. Using the first
projection P1 × X → P1 to pull back the relation (1), we obtain a
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relation

(4) [∞ × X]T � [0 × X]T + χ

in H2
T
(P1 × X).

We can intersect both sides of this relation with [V]T . On the
left-hand side, ∞ × X meets V scheme-theoretically in ∞ × Y ⊆ V .
This is because the zero scheme of ϕ is B′, which preserves Y.

On the other hand, V → P1 is dominant, so V meets 0×X properly
in a positive k-dimensional cycle of the form 0 × Z1. Since V and
0 × X are B-invariant subvarieties of P1 × X, so is their intersection,
and therefore Z1 ⊆ X is a B-invariant k-cycle. It follows that

[∞ × Y]T � [0 × Z1]
T
+ χ · [V]T

in H2n−2k+2
T (P1 × X). Pushing forward by the projection P1 × X → X

gives
[Y]T � [Z1]

T
+ χ · d[W]T ,

where d is the degree of the map V → W . So Z1 and Z2 � dW are
the required positive B-invariant cycles. �

With the same setup, so B is a solvable group acting on a nonsin-
gular variety X, suppose we have chosen a chain of subgroups

U � UN ⊃ UN−1 ⊃ · · · ⊃ U1 ⊃ U0,

all normal in B, with dim Ui/Ui−1 � 1. Let χi be the character of T

on the Lie algebra ui/ui−1, and write Bi � Ui · T.

Theorem 4.5. Suppose Y is an effective B0-invariant k-cycle in X. There
are canonical effective B-invariant cycles ZI for each subset I ⊆ {1, . . . ,N},
with dim ZI � k + #I, such that

(5) [Y]T �

∑
I

(∏
i∈I

χi

)
[ZI]

T

in H2n−2k
T

X.

Proof. We use induction on N , the base case N � 0 being trivial.
So assume the result for N − 1. For J ⊆ {1, . . . ,N − 1}, we have
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nonnegative cycles Z′
J
, invariant for B′ � UN−1 · T, such that

[Y]T �

∑
J

©«
∏
j∈J

χ j
ª®¬
[Z′J]

T .

Applying Proposition 4.4 to each Z′
J
, we may write

[Z′J]
T
� [Z J]

T
+ χr[Z J∪{N}]

T

for some nonnegative B-invariant cycles Z J and Z J∪{N}, and the result
follows. �

Let u �

⊕
uχ be the weight decomposition. In each monomial

coefficient
∏

i∈I χi from the theorem, no χ occurs more often than
dim uχ. In particular, if each weight space uχ is one-dimensional,
these coefficients are square-free.

Remark. There are many ways to choose a chain of subgroups U•.
These choices may be organized as follows. Begin by choosing u1 to
be any one-dimensional subspace of any weight space uχ such that
χ is not the sum of two other weights of u. Inductively, one takes
ui+1 � ui⊕v, where v ⊆ uχ is a one-dimensional subspace and χ is not
the sum of two weights of u/ui . The chain U• uniquely determines
the positive cycles in Theorem 4.5, but different chains can produce
different cycles.

For B acting on X, we will apply Theorem 4.5 to the action of
B̃ � (U × U) · T on X × X, and deduce the positivity of structure
constants. Choose any chain of normal subgroups U• with U0 being
the diagonal U ⊆ U × U and UN � U × U . So BN � B̃, and B0 � B

acting diagonally on X.
If Y is a B-invariant positive cycle in X � δ(X) ⊆ X × X, then

Theorem 4.5 produces nonnegative B̃-invariant cycles ZI in X × X

such that

(∗∗) [δ(Y)]T �

∑
I

(∏
i∈I

χi

)
[ZI]

T

in H∗
T
(X × X), where δ : X ֒→ X × X is the diagonal embedding.
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If U acts on X with finitely many orbits, we can be more precise
about the cycles ZI . In this case, B̃ � (U ×U) · T acts on X × X with
finitely many orbits, and each B̃-orbit is of the form V◦ ×W◦, where
V◦ and W◦ are B-orbits in X. (This is because U-orbits and B-orbits
on X are the same, both being orbits of T-fixed points.) It follows that
X is a finite union of (U×U)-orbits V◦×W◦, the orbits of (T×T)-fixed
points.

Let N � dim U , and let χ1, . . . , χN be the weights of u, with
repetition according to multiplicity.

Corollary 4.6. Suppose U acts on X with finitely many orbits, and let
Y be a B-invariant positive cycle. There are B-invariant subvarieties VI and
WI of X, and nonnegative integers mI , indexed by I ⊆ {1, . . . ,N}, such
that

[δ(Y)]T �

∑
I

mI

(∏
i∈I

χi

)
[VI ×WI]

T

in H∗
T
(X × X).

Proof. Since the B̃-invariant subvarieties of X × X are all of the
form VI × WI , each cycle ZI appearing in (∗∗) may be written as∑

mI(VI ×WI). The weight spaces associated to a chain from U to
U × U are the same as those occuring in U itself, since u ⊕ u/δ(u) is
T-equivariantly isomorphic to u. �

The case of Corollary 4.6 where B is a Borel subgroup of G and
X � G/P implies the positivity theorem. As noted above, the fact
that weight spaces of u are one-dimensional (with weights being the
positive roots) implies that the coefficients are squarefree monomials.

Corollary 4.7. For the diagonal embedding δ : G/P ֒→ G/P × G/P,
we have

δ∗(x[w]) �
∑
[u],[v]

c
[w]

[u][v]
x[u] × x[v],

in H∗
T
(G/P × G/P), where each coefficient c

[w]

[u][v]
is a nonnegative sum of

squarefree monomials in the positive roots.
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This proves Theorem 3.1, since the coefficients c
[w]

[u][v]
appearing in

the corollary are the same as the structure constants for multiplying
in the basis {y[w]}, by Poincaré duality (Chapter 3, Proposition 7.2).

Notes

Chevalley proved the non-equivariant version of Theorem 1.2 for G/B

(which is the main case) [Ch94]. He also gave a direct argument that
the intersection Y(v) ∩ X(w) is transverse when ℓ(w) � ℓ(v) + 1. The
corresponding formula for G/P, as in Exercise 1.4, appears in [FulWo04].

Lemma 2.6 is proved in [Hum90, §1.15].
The Kleiman-Bertini theorem (Lemma 3.3) was proved by Kleiman,

who gives a more refined statement [Kl74]. Further generalizations and
refinements, akin to Lemma 3.4, were given by Speiser [Spe88].

The fact that U-orbits and B-orbits coincide when there are finitely many
U-orbits is proved in [Gra01, Lemma 3.3], where it is attributed to Brion.

The positivity theorem (Theorem 3.1) was conjectured by Billey and by
Peterson; see [Bi99, §8, Remark 3]. The transversality argument given in
§3 is based on [An07b, AGM11]. Graham’s argument via degeneration, as
in §4, was built on similar constructions by Kumar and Nori, who studied
varieties with finitely many U-orbits [KuNo98]. See also [Ku02, §11.4].

Hints for exercises

1Use x(w) � w◦ · y(w◦w) and x(w)|v � w◦ · (y(w◦w)|w◦v), as in Chapter 18, §6.
Note that the roles of v and w are swapped relative to Theorem 1.2.

2Either using the above formula for y(sα) to reduce to Theorem 1.2, or argue
more directly by imitating the proof of the theorem and computing the degree of
Lλ |E .

3See [Kl74, Theorem 2(i)]. Consider the diagram

Z′ Z

Γ Γ × Y X,

r

p q

where q(g , y) � g · y is the action map, and p is the projection onto the first
factor. One uses generic flatness together with homogeneity to show that q is flat.
Then it follows Z′ is pure-dimensional, with dim Z′ � dim Z + dim Γ − codimX Y.
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From the theorem on dimension of fibers, it follows that r−1(g) has dimension
dim Z − codimX Y for all g in an open dense set Γ◦ ⊆ Γ. But r−1(g) � gY ∩ Z by
definition.





APPENDIX A

Algebraic topology

This appendix collects some basic facts from algebraic topology
needed for our development of equivariant cohomology. Our basic
references are the books by Dold [Do80] and Spanier [Spa66] on gen-
eral algebraic topology, together with Appendix B of Young Tableaux
[Ful-YT].

1. Homology and cohomology

We use HiX and H iX to denote the singular homology and co-
homology of a space with coefficients in Z (except in §8, where we
use Čech-Alexander-Spanier cohomology). Some basic properties
are these:

• Homology is covariant for continuous maps, and cohomol-
ogy is contravariant, so there are pushforward and pullback
homomorphisms

f∗ : HiX → HiY and f ∗ : H iY → H iX

associated to a continuous map f : X → Y. Both are invariant
under homotopy: if f , g : X → Y are homotopic, then f∗ � g∗
and f ∗ � g∗.

• H∗X is a graded-commutative ring (with unit) under cup
product, written c · d. This means

c · d � (−1)i j d · c

when c ∈ H iX and d ∈ H jX.

• H∗X is a graded module over H∗X via cap product, given by

H iX ⊗ H jX
a
−→ H j−iX.

393
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There are relative groups H i(X,A) for a subspace A ⊆ X, with a
long exact sequence of pairs

· · · → H i(X,A) → H i(X, B) → H i(A, B) → H i+1(X,A) → · · ·

when B ⊆ A ⊆ X. There is a similar sequence for relative homology
groups Hi(X,A).

If U and V are open sets in X, there is a long exact Mayer-Vietoris
sequence

· · · → H i(U∪V) → H iU ⊕H iV → H i(U∩V) → H i+1(U∪V) → · · · .

For subspaces U ⊆ A ⊆ X, there is also a canonical excision isomor-
phism

H i(X,A) � H i(X rU,A rU)

whenever the closure of U is contained in the interior of A. (See
[Spa66, Chapter 4, §6].)

The universal coefficient theorem says there is a natural exact se-
quence

0→ Ext1(Hi−1X,Z) → H iX → Hom(HiX,Z) → 0.

(See [Spa66, Chapter 5, §5].) The Künneth theorem gives natural short
exact sequences

0→
⊕

k

HkX⊗Hi−kY→ Hi(X×Y) →
⊕

k

Tor1(HkX,Hi−1−kY) → 0.

Combined with the universal coefficient theorem, in cases where Ext1

and Tor1 vanish, one obtains an isomorphism

H∗(X × Y) � H∗X ⊗ H∗Y.

For example, this holds when HiX and HiY are free, for all i.

There is a tautness property for nice enough spaces. Suppose X

is locally contractible, paracompact, and Hausdorff, and A ⊆ X is a
closed subspace. Then there is an isomorphism

lim
−−→

H i(X,U)
∼
−→ H i(X,A),
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the limit over all open neighborhoods U of A in X. (This comes from
the tautness property of Alexander-Spanier cohomology, together
with the fact that this cohomology theory agrees with singular coho-
mology under the stated hypotheses [Spa66, Chapter 6, §6, §9].)

The map X → pt determines a canonical pullback homomor-
phism Z � H∗(pt) → H∗X, which is injective, being split by the
pullback H∗X → H∗(pt) for the inclusion of any point. Often it
is notationally convenient to consider the reduced cohomology groups
H̃∗X :� H∗X/H∗(pt). Of course, H̃ i(X) � H iX for i > 0, and H̃0X has
rank one less than H0X (so it is zero if X is path-connected).

For any space X, the cohomology with compact support is

H i
cX � lim

−−→
H i(X,X r K),

the direct limit over all compact subspaces K ⊆ X. This is not homo-
topy invariant in general, and it is contravariant only for proper maps,
i.e., maps so that the inverse image of a compact set is compact. When
X is compact, however, H i

cX � H iX.
When M is an oriented n-manifold and K ⊆ M is a compact

subspace, there is an orientation class µK ∈ Hn(M,M r K). (This is
a local section of the orientation sheaf U 7→ Hn(M,M r U). See, e.g.,
[Do80, §VIII.2].) Capping with the orientation class defines maps

H i(M,M r K) → Hn−iM, c 7→ c a µK ,

inducing the Poincaré isomorphism

H i
cM

∼
−→ Hn−iM.

When M is compact, the Poincaré isomorphism is given by cap prod-
uct with the fundamental class µM ∈ HnM. In this case, one has
Poincaré duality, which says that the bilinear map H iM×Hn−i M→ Z

given by

〈c , d〉 �

∫
M

(c · d) :� ρ∗((c · d) a µM)

is a perfect pairing. Here ρ∗ is pushforward by ρ : M→ pt.
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One can interpret this as giving an isomorphism (modulo torsion)

H iM
∼
−→ Hom(Hn−iM,Z),

defined by c 7→ (d 7→
∫

c · d), which factors into the Poincaré isomor-
phism Hn−iM � HiM and the Kronecker isomorphism, which identifies
H iM � Hom(HiM,Z) (modulo torsion).

Suppose that {ai} and {bi} are bases for H∗M which are dual
under this pairing, so 〈ai , b j〉 � δi j . We say {ai} and {bi} are Poincaré
dual bases in this setting. For any class c ∈ H∗X, basic linear algebra
gives

c �

∑
i

〈c , bi〉 ai .

2. Borel-Moore homology

We will use a “non-compact” homology theory which pairs with
H∗ the way H∗ pairs with H∗c. In reference to [BorMo60, BorHa61],
this is usually called Borel-Moore homology now, but it is closely related
to constructions worked out by others. (See especially [Ma78].) We
will define these groups only for spaces X which can be embedded as
a closed subspace in some oriented n-manifold M. (By the Whitney
embedding theorem, one may take M � Rn.) Our assumption that
X be embeddable in an oriented manifold holds whenever X is a
complex algebraic variety. Indeed, a variety can be covered by finitely
many affine varieties, which embed by definition, and it follows that
X itself embeds. (See [Do80, §IV.8].)

The definition is this:

H iX � Hn−i(M,M r X).

Here are some basic properties.

• The group H iX is independent of the choice of embedding
X ֒→ M.

• Borel-Moore homology is covariant for proper maps, so there
is a pushforward f∗ : H iX → H iY whenever f : X → Y is
proper.
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• There is a restriction homomorphism H iX → H iU for open
subsets U ⊆ X. (This follows immediately from the inclusion
of pairs (M◦ ,M◦ r U) ֒→ (M,M r X), where M◦ ⊆ M is an
open set so that M◦ ∩ X � U .)

• There is a long exact sequence

· · ·H iZ→ H iX → H iU → H i−1Z → · · ·

when Z ⊆ X is closed and U � X r Z. (Use the cohomology
exact sequence for M r X ⊆ M r Z ⊆ M.)

• If X is an oriented n-manifold, H iX
∼
−→ Hn−iX. (Use X � M

and independence of choice in the definition.)

• If X is compact and locally contractible, then H iX � HiX.

• If X embeds as a closed subspace of an n-manifold, then
H iX � 0 for i > n.

(The last property can fail for singular homology! For example,
if X is a countable union of 2-spheres in R3, all tangent at the origin,
then HiX , 0 for all i > 1 — in fact, these groups are uncountable.
This computation is due to Barratt and Milnor [BaMil62].)

Example 2.1. We have

H iR
n
�

{
Z if i � n;

0 otherwise.

In particular, H iX is not homotopy-invariant. (It is invariant for
proper homotopies, i.e., if F : X × [0, 1] → Y is proper, then f0 and f1
induce the same homomorphisms H iX → H iY.)

3. Class of a subvariety

A closed subvariety of a nonsingular algebraic variety defines
a canonical class in cohomology. We will need a straightforward
generalization of this construction to include subvarieties of complex
manifolds.
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A complex analytic space (or complex analytic variety) has a sheaf of
holomorphic functions, and is covered by open sets which are iso-
morphic to the zero sets of finitely many holomorphic functions in
some domain in Cn . The dimension of an analytic space may be
defined as the maximal dimension of its local rings. Any analytic
space has a unique decomposition into irreducible components, and
its dimension is equal to the maximal dimension of irreducible com-
ponents. The singular locus Vsing of an analytic space V is a closed
analytic subspace; the smooth locus Vsm � V r Vsing is a complex
manifold. (The book by Grauert and Remmert [GrRe84] is a good
reference for details on analytic spaces.)

We will only consider finite-dimensional complex analytic spaces
which can be embedded as closed subspaces of a Euclidean space.

Proposition 3.1. Let V be a complex analytic variety of dimension
k. We have H iV � 0 for i > 2k, and H2kV �

⊕
Z, the sum over

k-dimensional irreducible components.

The proof is identical to the one given in [Ful-YT, §B.3] for alge-
braic varieties, using the fact that dim Vsing < dim V .

In particular, if V is irreducible, then it has a fundamental class
ηV ∈ H2kV . This has the characterizing property that under the
canonical isomorphism

0 � H2kVsing→ H2kV → H2kVsm→ H2k−1Vsing � 0,

we have ηV 7→ ηVsm , where ηVsm is the fundamental class of the
(oriented!) complex manifold Vsm.

If V ⊆ X is a codimension-d closed irreducible analytic subvariety
of a complex manifold, we obtain a class [V] ∈ H2dX as the image of
ηV under

H2kV � H2d(X,X rV) → H2dX.

A useful property of the fundamental class is that it is local.
Suppose X◦ ⊆ X is an open set such that V◦ � V ∩ X◦ is connected.
(For example, X◦ could be a small ball around p ∈ V .) Then the
restriction H2kV → H2kV◦ is an isomorphism, and it sends ηV to
ηV◦.
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We can describe how the class of a subvariety behaves under
pullbacks and products. In §6 we will see how these classes behave
under pushforward.

Let f : X → Y be a map of complex manifolds, with W ⊆ Y a
closed analytic subvariety of codimension d. Let Y◦ ⊆ Y be an open
set so that W◦ � W ∩ Y◦ is smooth and connected, and W◦ ⊆ Y◦

is defined by local holomorphic equations h1 � · · · � hd � 0. Let
V � f −1W ⊆ X.

Proposition 3.2. If Y◦ can be chosen so that V◦ � V ∩ f −1Y◦ is also
connected, smooth, and defined by equations h1 ◦ f � · · · � hd ◦ f � 0,
then f ∗ηW � ηV in H2d(X,X r V). In particular, f ∗[W] � [ f −1W] in
H2dX.

The proof is given in [Ful-YT, §B.3]. A particularly useful case
is when f : X → Y is a submersion of complex manifolds, or a
smooth morphism of nonsingular varieties: then the hypotheses of
the proposition are satisfied for any pure-dimensional closed analytic
subspace W ⊆ Y.

Now consider a complex manifold X with closed analytic subva-
rieties V and W , of codimensions d and e, respectively. Under good
conditions, we have [V] · [W] � [V ∩W] in H2d+2eX. More precisely,
we have:

Proposition 3.3. Suppose V and W intersect properly, meaning that
each irreducible component Z ⊆ V ∩W has codimension d + e. Then

[V] · [W] �
∑

mZ[Z]

for some nonnegative integers mZ.

This can be deduced from the previous proposition, applied to
the diagonal map ∆ : X → X × X. In fact, the product class [V] · [W]
comes from ηV · ηW , which in turn can be constructed from by a
homomorphism

H2d(X,X r V) ⊗ H2e(X,X rW) → H2d+2e(X × X, (X × X) r (V ×W))

→ H2d+2e(X,X r (V ∩W)).
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A similar argument appears in [Ful-YT, §B.3]; see also [Ful-IT, §8].
The product ηV · ηW is supported on V ∩W regardless of whether

the intersection is proper. A particularly useful consequence is that
[V] · [W] � 0 whenever V ∩W � ∅.

A useful application of these ideas provides bases for cohomol-
ogy, under assumptions that often hold. This is a kind of “cellular
decomposition” lemma.

Proposition 3.4. Let f : X → Y be a morphism of complex manifolds,
and suppose there is a filtration

∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xm � X

by closed analytic subsets, such that for each p ≥ 0,

Xp r Xp−1 �

∐
j

Up, j

is a disjoint union of (irreducible) complex manifolds. Assume that for some
N ≤ ∞, the homomorphisms H iY → H iUp, j are isomorphisms for all p,
all j, and all i < N . Let Vp, j � Up, j ⊆ X, a closed irreducible analytic
subvariety of codimension d(p , j), defining a class [Vp, j] ∈ H2d(p, j)X. Then
for any k < N , any c ∈ HkX has a unique expression

c �

∑
p, j

ap, j[Vp, j] :�
∑
p, j

( f ∗ap, j)[Vp, j]

for some ap, j ∈ Hk−2d(p, j)Y.

Proof. The hypotheses imply that the Borel-Moore long exact
sequence for Xp−1 ⊂ Xp breaks into split short exact sequences

0→ H iXp−1 → H iXp → H i(Xp r Xp−1) → 0

for all i > 2 dim X −N , since the classes [Up, j] ∈ H∗(Xp rXp−1) freely
generate over H∗Y in this range, and they come from [Vp, j] ∈ H∗Xp.
Applying induction on p proves the claim. �

In the very special case where Y � pt and Up, j � C
n(p, j) (so each

Up, j is a cell), the proposition says that the classes of the closures of
cells form a Z-basis for H∗X. This is the usual cellular decomposition
statement found in [Ful-YT, §B.3].
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If N � ∞, the conclusion says that the classes [Vp, j] form a (free)
basis for H∗X as an H∗Y-module. Many applications are a particular
instance of this, where each Up, j → Y is a locally trivial bundle whose
fibers are affine spaces.

When X and Y are algebraic varieties and the filtration is by
algebraic subsets, the same conclusion holds for Chow groups (by
the same argument), so long as each Up, j → Y is an affine bundle
with affine-linear transition functions.

Exercise 3.5. Suppose a connected Lie group G acts by holomor-
phic automorphisms on a complex manifold X. Show that [gV] � [V]

for any analytic subvariety V ⊆ X and any g ∈ G.

Exercise 3.6. Let H ⊆ Pn−1 be a hyperplane, with class h � [H] in
H2Pn−1. Show that H∗Pn−1

� Z[h]/(hn).

4. Leray-Hirsch theorem

A continuous map ρ : X → Y is a locally trivial fiber bundle, with
fiber F, if there is a covering of Y by open sets U so that ρ−1U � U×F,
compatibly with the projection to U . The following is a basic fact
about the cohomology of such bundles.

Theorem 4.1. Let ρ : X→ Y be a locally trivial fiber bundle, with fiber
F � Fy � ρ−1(y), and N a positive integer or ∞. Assume that for each
i < N there are finitely many elements ci j ∈ H iX restricting to a Z-basis for
H i(Fy), for all y ∈ Y. Then for all k < N , every c ∈ HkX can be written
uniquely as

c �

∑
i, j

ai j ci j ,

for some ai j ∈ Hk−iY.

The case N � ∞appears in Hatcher’s book [Hat02, Theorem 4D.1],
and the general case is given as an exercise on the companion website.
We will briefly sketch an argument.

Proof. The basic case where the bundle is trivial, so X � Y × F,
follows from the Künneth theorem. When Y can be covered by
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finitely many trivializing open sets, one uses induction and the
Mayer-Vietoris sequence to deduce the conclusion. (In particular,
this suffices for compact Y.) A simple Mayer-Vietoris argument also
gives the conclusion for an arbitrary disjoint union of open sets, when
the result is known for each open individually.

The general case requires a bit more care, because the cohomology
groups of an arbitrary union of open sets may not be the inverse
limit of the cohomology groups of those opens. One may use CW-
approximation to conclude the argument (as is done in Hatcher’s
book). Here is another way to conclude the proof, which works for
all spaces of concern to us.

Assume Y is locally compact, Hausdorff, and σ-compact—so it is
a union of nested compact sets Kn with Kn ⊆ int(Kn+1). Each “band”
Kn r int(Kn−1)may be covered by an open set Un ⊆ int(Kn+1)r Kn−2,
which is a finite union of open sets for which the bundle is trivial. By
the previous case, one knows the result over each of

U �

∐
U3n , V �

∐
U3n+1, and W �

∐
U3n+2,

as well has over their pairwise intersections. Since Y �U ∪V ∪W,
another Mayer-Vietoris argument proves the theorem in this case. �

The analogous statement holds for fiber bundle pairs (X,X′) → Y,
with the same proof. (That is, X′ ⊆ X is a subspace which is also a
locally trivial fiber bundle over Y with fibers F′y, and the hypothesis is
that there are classes in H i(X,X′) restricting to a basis for H i(Fy , F′y).)

For instance, if π : E→ Y is a (real) vector bundle of rank r, a Thom
class is an element γE ∈ Hr(E, E r 0)which restricts to a generator of
Hr(Ey , Ey r 0) � Z for all y ∈ Y. (Such a class exists if and only if E

is orientable.) A special case of the Leray-Hirsch theorem for pairs is
the Thom isomorphism

H iY
∼
−→ H i+r(E, E r 0), by c 7→ π∗c · γE ,

for all i ≥ 0.
Another special case is often useful:
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Corollary 4.2. If f : X → Y is a locally trivial fiber bundle and
H̃ i( f −1(y)) � 0 for all i < N , then f ∗ : H iX → H iY is an isomorphism
for all i < N .

The following is proved in the same way as Theorem 4.1.

Lemma 4.3. Let

X X′

Y

f

ρ ρ′

be a map of locally trivial fiber bundles, inducing maps of fibers Xy → X′y
for y ∈ Y. Assume the pullbacks H iX′y → H iXy are isomorphisms for all
y ∈ Y and all i < N . Then f ∗ : H iX′ → H iX is an isomorphism for all
i < N .

5. Chern classes

For this section, all spaces are at least paracompact and Hausdorff,
so that partitions of unity exist. (Any complex analytic space or
algebraic variety satisfies these conditions.)

For a complex vector bundle E on a space X, there are Chern classes
ci(E) ∈ H2iX satisfying the following formal properties.

(1) For any continuous map f : X′→ X, f ∗ci(E) � ci( f
∗E).

(2) ci(E) � 0 unless 0 ≤ i ≤ r :� rk(E), and c0(E) � 1.

(3) For an exact sequence of vector bundles

0→ E′→ E→ E′′→ 0,

there is the Whitney sum formula

ck(E) �
∑

i+ j�k

ci(E
′) · c j(E

′′).

Writing c(E) �
∑

ci(E)u
i for the total Chern class (where u

is a dummy variable), the Whitney formula is equivalent to
c(E) � c(E′) · c(E′′).
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There are also geometric properties, for which we assume X is
a nonsingular algebraic variety or complex manifold. (Versions of
these properties do hold more generally.)

(4) For line bundles L and M, we have c1(L⊗M) � c1(L)+ c1(M).

(5) If s : X → L is a nonzero section with zero locus Z(s) ⊆ X,
then [Z(s)] � c1(L) in H2X.

(6) For the projective bundle of lines in E, π : P(E) → X, with
tautological line bundle O(−1) ⊆ π∗E and its dual O(1), we
have

H∗P(E) � (H∗X)[ζ]/(ζr − c1(E
∗)ζr−1

+ · · · + (−1)r cr(E
∗)),

where ζ � c1(O(1)).

The splitting principle is useful when computing with Chern classes.
Given any vector bundle E → X, there is a map f : X′ → X so that
f ∗ : H∗X→ H∗X′ is injective, and f ∗E � L1⊕· · ·⊕Lr splits as a sum of
line bundles on X′. (One can take X′ to be the flag bundle Fl(E) → X,
with tautological flag S1 ⊆ · · · ⊆ Sr � f ∗E, and choose a Hermitian
metric to split this filtration into its factors Li � Si/Si−1.)

Exercise 5.1. Deduce the following properties from (1)-(6) above.

(7) If E splits as a direct sum L1 ⊕ · · · ⊕ Lr , with xi � c1(Li), then
ci(E) � ei(x1, . . . , xr), the elementary symmetric polynomial
in the x variables.

(8) ci(E
∨) � (−1)i ci(E).

(9) If s : X → E is a section whose zero locus Z(s) ⊆ X has pure
codimension r � rk E, then [Z(s)] � cr(E) in H2rX.

(10) For a projective bundle π : P(E) → X with tautological se-
quence 0→ O(−1) → π∗E → Q → 0, and any α ∈ H∗X, we
have

π∗(π
∗α · c j(Q)) �

{
α if j � r − 1;

0 otherwise.
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There are also Chern classes for virtual bundles E − F, defined by
the formula

c(E − F) �
c(E)

c(F)
�

1 + c1(E)u + c2(E)u
2
+ · · ·

1 + c1(F)u + c2(F)u2
+ · · ·

,

where one expands this rational function in power series about u � 0,
so ck(E − F) is the coefficient of uk in this expansion. This formal
notation is often useful when dealing with degeneracy loci.

Exercise 5.2. Prove the following properties of Chern classes for
virtual bundles.

(11) For a vector bundle E of rank r, and a line bundle L, we have

cr(E ⊗ L∗) � cr(E − L).

(In particular, if s : L → E is a twisted section whose zero
locus Z(s) has pure codimension r, then [Z(s)] � cr(E − L).)

(12) (−c1(L))
a · cb(E − L) � ca+b(E − L) for any a ≥ 0 and b ≥ r.

6. Gysin homomorphisms

Borel-Moore homology can be used to define a Gysin pushforward
homomorphism for a proper map f : X → Y of complex manifolds.
Writing d � dim Y − dim X, the homomorphism

f∗ : H iX → H i+2dY

is defined as the composition

H iX � H2 dim X−iX → H2 dim X−iY � H i+2dY.

A basic instance is when the map ρ : X → Y is a smooth fiber bundle,
with compact fibers. Here ρ∗ may be identified with integration
over the fiber. Another basic case is the that of a closed embedding
ι : X ֒→ Y. Here we have ι∗(1) � [X] ∈ H2dY, from the definitions.

Some general properties of Gysin homomorphisms are these.

(1) (Functoriality) For proper maps X
f
−→ Y

g
−→ Z, the pushfor-

ward by the composition is the composition of pushforwards:
(g ◦ f )∗ � g∗ f∗.



406 §7. The complement of a variety in affine space

(2) (Projection formula) For b ∈ H∗Y and a ∈ H∗X, we have
f∗( f

∗b · a) � b · f∗a.

(3) (Naturality) For a fiber square

X′ X

Y′ Y,

g′

f ′ f
g

with f (and hence f ′) proper, and d � dim Y − dim X �

dim Y′ − dim X′, we have g∗ f∗ � f ′∗ (g
′)∗. (In the case where

X′ � ∅, here we use the convention that dim ∅ can be any
integer, so this equation holds and says the pushforward-
pullback composition is the zero homomorphism.)

(4) (Self-intersection) If ι : X ֒→ Y is a closed embedding with
normal bundle N of rank d, then ι∗ι∗(a) � cd(N) · a for any
a ∈ H∗X.

(5) (Finite cover) If f : X → Y is proper, V ⊆ X is an irreducible
subvariety (possibly singular), and W � f (V) ⊆ Y, then

f∗[V] �

{
deg(V/W)[W] if dim W � dim V ;

0 otherwise.

7. The complement of a variety in affine space

Proposition 7.1. If Z ⊂ CN is a Zariski-closed set, of codimension
d, then πi(C

N r Z) � 0 for 0 < i ≤ 2d − 2. This is always sharp:
π2d−1(C

N r Z) , 0 if Z is nonempty.

Proof. (D. Speyer.) Identify Cn with R2n. For a smooth (C∞) map
f : Si → Cn rZ, let S � {p ∈ (real) line between Z and f (Si)}. (This
is analogous to a secant variety in algebraic geometry.) Consider the
number

dimRS � dimR Z + dimR f (Si) + dimRR

≤ 2n − 2d + i + 1,
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since smoothness of f implies dim f (Si) ≤ i. The condition that this
number be less than 2n is exactly that i ≤ 2d − 2. For such i, then,
S ( Cn ; therefore we can find a point p < S . Since p does not lie
on any line joining Z and f (Si), the set of line segments between p

and f (Si) lies in Cn r Z. Use this to extend f to a map of the ball
f̃ : D i+1 → Cn r Z, thus showing that f is null-homotopic.

Since every continuous map between smooth manifolds is homo-
topic to a smooth map (see [BoTu95, 213–214]), the homotopy groups
can be computed using only smooth maps. Thus πi(C

n r Z) � 0 for
i ≤ 2d − 2.

On the other hand, it follows from this, together with the Hurewicz
isomorphism theorem, that π2d−1(C

n r Z) � H2d−1(C
n r Z) and

H2d−2(C
n r Z) � 0. By the universal coefficient theorem and the

long exact sequence for the pair (Cn ,Cn r Z), we have

H2d−1(C
n r Z)∨ � H2d−1(Cn r Z)

� H2d(Cn ,Cn r Z)

� H2n−2dZ,

and we know this top Borel-Moore homology group is nonzero. �

8. Limits

In this section, we use Čech-Alexander-Spanier cohomology. As
noted earlier, this agrees with singular cohomology for locally finite
CW complexes—or more generally for locally contractible paracom-
pact Hausdorff spaces—but it is different for some common examples
of infinite-dimensional spaces. For instance, the theories may differ
on the inverse limit of locally contractible spaces (which need not be
locally contractible).

Consider a directed system {Xn} of topological spaces, with di-
rect limit X � lim

−−→
Xn . There is always a canonical homomorphism

H∗X → lim
←−−

H∗Xn , and a naive expectation is that this should be
an isomorphism. Similarly, given an inverse system {Xn} of spaces,
with inverse limit X � lim

←−−
Xn , there is a canonical homomorphism
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lim
−−→

H∗Xn → H∗X, and one naively expects this to be an isomor-
phism. We will identify some hypotheses which make these naive
expectations true, and which are commonly satisfied in applications
to algebraic geometry.

For direct systems, we consider CW complexes {Xn}, where for
each n ≤ n′, the map Xn → Xn′ is a closed embedding of complexes.
The direct limit is the union

X � lim
−−→

Xn �

⋃
Xn ,

and is also a CW complex. Then for each i, there is a natural exact
sequence

0→ lim
←−−

n

1H i−1Xn → H iX → lim
←−−

n

H iXn → 0,

where lim
←−−

1 is the derived functor of lim
←−−

. In particular, if H∗Xn

vanishes in odd degrees for all n, then there is a natural isomorphism
H∗X � lim

←−−
H∗Xn . (See [Hat02, Theorem 3F.8].)

For inverse systems, we consider arbitrary (paracompact Haus-
dorff) spaces {Xn}, where for n ≤ n′, the map Xn′ → Xn is surjective.
It follows that the inverse limit X � lim

←−−
Xn maps surjectively to each

Xn. Under these conditions, Čech-Alexander-Spanier cohomology
satisfies the continuity axiom, which says

lim
−−→

n

H∗Xn → H∗X

is an isomorphism. (When all Xn are compact Hausdorff, no sur-
jectivity conditions are needed; see [Spa66, Ch. 6, Sec. 6]. For non-
compact spaces, see [Wa87]. Note that in general, the limit X need
not be paracompact!)

These isomorphisms are natural. Suppose we have a map of direct
systems { fn : Xn → Yn}, so that each diagram

Xn Xn′

Yn Yn′

fn fn′
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commutes, inducing a map f : X → Y of direct limits. Then the
induced homomorphism lim

←−−
H∗Yn → lim

←−−
H∗Xn is the pullback ho-

momorphism f ∗ : H∗Y → H∗X. The same holds for inverse limits of
spaces.

Under further conditions, one can define Gysin pushforwards.
Suppose each fn : Xn → Yn is a proper map of complex manifolds,
with d � dim Yn − dim Xn constant for all n. Furthermore, assume
each square

Xn Xn′

Yn Yn′

αn ,n′

fn fn′

βn ,n′

is a fiber square, so that β∗n,n′( fn′)∗ � ( fn)∗α
∗
n,n′ by naturality of Gysin

homomorphisms. Then the pushforwards ( fn)∗ define a Gysin ho-
momorphism

f∗ : H iX → H i+2dY

on the cohomology of limit spaces.
One also has fundamental classes of subvarieties. First we con-

sider a direct system of complex manifolds {Xn}, with union X.
Suppose Vn ⊆ Xn is a direct system of closed subvarieties, such that
Vn′ ∩ Xn � Vn for all n ≤ n′; suppose also that this intersection is
transverse, so that α∗n,n′[Vn′] � [Vn], and each Vn ⊆ Xn has the same
codimension, say d. Then the classes [Vn] ∈ H2dXn define an element
([Vn]) in lim

←−−
H2dXn. We take this as a definition of [V] ∈ H2dX, for

the closed subspace V � lim
−−→

Vn ⊆ X.
Next we consider an inverse system {Xn} of spaces, with limit X.

For fixed n, suppose a closed subspace Vn ⊆ Xn has a fundamental
class [Vn] ∈ H2dXn . This determines a class in the limit, by the
canonical homomorphism H2dXn → H2dX. For any n′ ≥ n, let
Vn′ � π−1

n′ ,nVn ⊆ Xn′. If, for all n′ ≥ n, the maps πn′,n : Xn′ → Xn

are such that π∗n′ ,n[Vn] � [Vn′] in H2dXn′, then the classes [Vn′] all
determine the same class in H2dX. We denote this class by [V], where
V � π−1

n Vn ⊆ X. For example, this holds if all πn′ ,n : Xn′ → Xn are
smooth maps of complex manifolds (Proposition 3.2).
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Example 8.1. Let Xn � Pn−1
� P(Cn), with Xn ֒→ Xn+1 given by

the linear embedding of Cn as the span of the first n standard basis
vectors in Cn+1. Then X �

⋃
Xn � P

∞, so

H∗P∞ � lim
←−−

H∗Pn−1

� lim
←−−
Z[t]/(tn)

� Z[t],

recalling that this is the inverse limit in the category of graded rings.
Let Hn ⊆ P

n−1 be the hyperplane spanned by the last n−1 standard
basis vectors. Then H �

⋃
Hn ⊆ P

∞ is the subspace where the first
coordinate is zero, and H ∩ Pn−1

� Hn, transversely for all n. Thus
we can identify t � [H] in H∗P∞.

Example 8.2. Fix a basepoint p ∈ P∞. Let Xn �

∏n
k�1 P

∞, embed-
ded in Xn+1 by (p1, . . . , pn) 7→ (p1, . . . , pn , p). The direct limit is the
restricted product of projective spaces,

X � lim
−−→

Xn �

∏
k≥1

′
P∞,

whose points are countable tuples (p1, p2, . . .) such that pi � p is the
basepoint for all but finitely many coordinates. The inverse limit of
cohomology rings is

H∗X � lim
←−−

H∗Xn � lim
←−−
Z[t1, . . . , tn] � Z[[t1, t2, . . .]]gr.

Here the notation Z[[t]]gr � Z[[t1, t2, . . .]]gr is used for the graded formal
series ring. This ring consists of formal sums

∑
cαtα, where each

tα � tα1
1 tα2

2 · · · is a monomial in finitely many t-variables, and cα ∈ Z;
the sum may have infinitely many terms but the total degree must be
bounded. (For example, t1 + t2 + · · · is an element of this ring.)

Note that H2X has uncountable rank as a Z-module, and it is not
free. (It is isomorphic to the direct product of countably many copies
of Z. This is the dual of H2X, which is isomorphic to the direct sum
of countably many copies of Z.)

Example 8.3. Consider Xn �

∏n
k�1 P

∞ as in the previous example,
but as an inverse system via the projection Xn → Xn−1 on the first
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n − 1 factors. Then
X � lim
←−−

Xn �

∏
k≥1

P∞

is just the usual product of countably many projective spaces. Its
cohomology ring is

H∗X � lim
−−→

H∗Xn � lim
−−→
Z[t1, . . . , tn] � Z[t1, t2, . . .],

the polynomial ring in countably many variables.
Fix i, and let V(i)n ⊆ Xn �

∏n
k�1 P

∞ be the subspace where the
first coordinate of the ith factor is zero; in the notation of Example 8.1,
this is

V(i)n �

i−1∏
k�1

P∞ × H ×

n∏
k�i+1

P∞.

Then [V(i)n] � ti in H∗Xn � Z[t1, . . . , tn] for all n, so [V(i)] � ti in
H∗X.

Comparing with the previous example, the embedding of
∏′

k≥1 P
∞

in
∏

k≥1P
∞ induces an inclusion of ringsZ[t1 , t2, . . .] ֒→ Z[[t1, t2, . . .]]gr.

This example also provides an instance of the distinction between
singular and Čech-Alexander-Spanier cohomology. Since the Čech-
Alexander-Spanier cohomology H2X is a free module of countable
rank, it cannot be the (algebraic) dual of any Z-module, violating the
universal coefficient theorem for singular cohomology. (Here X is
paracompact and Hausdorff, but not locally contractible.)
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Specialization in equivariant Borel-Moore homology

Let Z be a complex variety or algebraic scheme, and letπ : Z→ A1

be a mapping such that π−1(A1 r {0}) → A1 r {0} is a locally trivial
topological fibration. Write Z0 � π−1(0) and Z1 � π−1(1). There are
specialization homomorphisms

σ : HkZ1→ HkZ0.

Roughly speaking, specialization spreads out a k-cycle on Z1 to a
(k + 1)-cycle on π−1((0, 1]) � Z1× (0, 1], and takes the limiting k-cycle
on Z0 � π−1(0) obtained by taking the closure and restricting to the
fiber over 0. The bivariant language of [FulMac81] is a convenient
tool for making this precise. Given a in HkZ1 � H−k(Z1 → {1}),
there is a unique α in H−k(Z → [0, 1]) which restricts to a at 1.
The specialization σ(a) is defined to be the restriction of α at 0, in
H−k(Z0 → {0}) � Hk(Z0). Here the bivariant group Hp(X → Y) is
defined as the singular cohomology group Hp+n(Y×Rn , Y×Rn rX),
for a closed embedding of X in some Y × Rn compatible with the
given mapping from X to Y. For details on this construction of
specialization see [FulMac81, §3.4].

We will use this in the setup of the deformation to the normal cone
[Ful-IT, §5.1]. Let X be a subvariety (or closed subscheme) of a
variety (or scheme) Y. One constructs the space

M◦ � M◦XY � BlX×{0}(Y ×A
1) r Ỹ ,

where Ỹ is the proper transform of Y×{0} in the blowup. This comes
with an embedding X ×A1 ֒→ M◦. The projection

π : M◦ → A1

413
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is trivial away from 0, that is, π−1(A1 r {0}) � Y × (A1 r {0}), with
X × (A1 r {0}) embedded naturally. The special fiber is π−1(0) is
the normal cone CXY to X in Y, which comes with a zero section
embedding of X in CXY and a projection from CXY to X. We obtain
specialization maps

σ � σX/Y : HkY → HkCXY.

Lemma. The specialization to the normal cone satisfies the following
properties:

(1) Let f : Y′→ Y be a smooth morphism of relative (complex) dimen-
sion d. Let X′ � f −1(X), so f induces a morphism

f : CX′Y
′
� CXY ×X X′→ CXY,

also smooth of relative dimension d. Then the diagram

HkY HkCXY

Hk+2dY′ Hk+2dCX′Y
′

σX/Y

f ∗ f
∗

σX′/Y′

commutes.

(2) Let c ∈ H iY, a ∈ HkY. Then

σX/Y(c a a) � ϕ∗(c) a σX/Y(a),

in Hk−i(CXY), where ϕ is the composite CXY → X → Y.

(3) If V is a closed subscheme of Y of pure dimension n, then CX∩V V

is a closed subscheme of CXY of pure dimension n, and

σX/Y([V]) � [CX∩V V]

in H2nCXY . In particular, if Y and X are pure-dimensional, then
σX/Y([Y]) � [CXY] and σX/Y([X]) � [X].

Proof. We use the basic notions of [FulMac81].
(1) The morphism M◦

X′
Y′→ A1 factors as

M◦X′Y
′ F
−→ M◦XY

π
−→ A1,
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with F smooth of relative dimension d. Restricting over the interval
[0, 1], we have mappings

M′→ M→ [0, 1].

The first map has a canonical orientation class θ in H−2d(M′ → M),
which is the restriction of the orientation class of the smooth mapping
F. Let α in H−k(M → [0, 1]) restrict to a in H−k(Y → {1}) � Hk(Y) at
1. The product θ · α in H−2d−k(M′→ [0, 1]) restricts to f ∗(a) at 1 and
to f

∗
(σX/Y(a)) at 0. This gives the required equation σX′/Y′( f

∗(a)) �

f
∗
(σX/Y(a)).

(2) With the notation just set up, let c̃ ∈ H i(M) be the pullback of
c by the projection M → Y × [0, 1] → Y. Then c̃ · α restricts to c a a

at 1 (since bivariant products and pullbacks commute), so it restricts
to σX/Y(c a a) at 0. But c̃ restricts to ϕ∗(c) and α restricts σX/Y(a) at
0, so their product c̃ · α restricts to ϕ∗(c) a σX/Y(a) at 0, as required.

(3) This follows from the fact that [M◦X∩V V] restricts to [V] at 1
and to [CX∩V V] at 0. �

Using this lemma, we can define specialization in equivariant
Borel-Moore homology. Let X ⊆ Y be a G-invariant closed subvariety
or subscheme. For any approximation E→ B to EG→ BG, we have
specialization maps

(B.1) Hk+2b(E ×
G Y) → Hk+2b(E ×

G CXY)

where b � dim(B) � dim(E) − dim(G). If E′→ B′ is another approx-
imation, the two specialization maps can be compared by using the
product E × E′→ B × B′:

Hk+2b(E ×
G Y) Hk+2b(E ×

G CXY)

Hk+2b′′(E × E
′ ×G Y) Hk+2b′′(E × E

′ ×G CXY)

Hk+2b′(E
′ ×G Y) Hk+2b′(E

′ ×G CXY)
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where b′ � dim(B′) and b′′ � dim(E) + dim(E′) − dim(G). This
diagram commutes by (1) of the lemma. Hence we have well-defined
equivariant specialization maps

(B.2) σG
X/Y

: H
G

k Y → H
G

k CXY,

defined to be the maps of (B.1) for any approximation that is suffi-
ciently contractible for the given k. These take [V]G to [CX∩V V]G for
any pure-dimensional closed G-invariant subscheme V of Y, by (3).
In particular, for Y and X pure-dimensional,

σG
X/Y
([Y]G) � [CXY]G and σG

X/Y
([X]G) � [X]G .

It follows from (2) that σG
X/Y

is a homomorphism of ΛG-modules.
A similar specialization map is defined for equivariant Chow

groups. In this case, the construction is more direct: one uses the
setup of [Ful-IT, §5.2] applied to approximation spaces. Part (3) of the
lemma shows that the specialization homomorphisms commute with
the canonical maps from equivariant Chow groups to equivariant
Borel-Moore homology groups.



APPENDIX C

Pfaffians and Q-polynomials

The main goal of this appendix is to provide a characterization
of certain symmetric functions, known as double Q-polynomials,
which is analogous to the interpolation characterization of the double
Schur polynomials (Chapter 9, §4). As preparation, we provide some
background on Pfaffians and the classical (single) Q-polynomials.

1. Pfaffians

We quickly review some basic facts about Pfaffians. This is stan-
dard material; Knuth’s article [Knuth96] is a good source for refine-
ments and historical context.

Let M � (mi j)1≤i, j≤2r be a skew-symmetric matrix of even size,
with entries in a commutative ring. The determinant of such a matrix
has a canonical square root, called the Pfaffian. It may be defined as

Pf(M) :�
∑
π

(−1)ℓ(π)mπ(1)π(2) · · ·mπ(2r−1)π(2r),

the sum over all matchings π ∈ S2r—that is, permutations such that
π(2i − 1) < π(2i) for all i, and π(1) < π(3) < · · · < π(2r − 1). For
example, the Pfaffian of a 2× 2 matrix is Pf(M) � m12, and for a 4× 4
matrix, it is

Pf

©«

· m12 m13 m14

· · m23 m24

· · · m34

· · · ·

ª®®®®¬
� m12m34 − m13m24 + m14m23.

Just as for determinants, if the 2r×2r matrix M has rank less than
2r, then Pf(M) � 0. Pfaffians generalize determinants, in the sense

417
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that if M is a block matrix of the form

M �

(
0 A

−A† 0

)
,

then Pf(M) � ±det(A). (The sign is (−1)(
r
2).)

A Laplace-type expansion formula is useful for computing recur-
sively:

Pf(M) �
2r−1∑
i�1

(−1)i−1mi,2r Pf(Mı̂ ,2̂r
),

where Mı̂ ,̂  is the (2r − 2) × (2r − 2) submatrix obtained by removing
the i-th and j-th rows and columns.

Like the determinant, the Pfaffian is multi-linear in the rows and
columns of a matrix, but to preserve skew-symmetry, one must mod-
ify rows and columns simultaneously. More precisely, let M � (mi j),
M′ � (m′

i j
), and M′′ � (m′′

i j
) be skew-symmetric matrices of the same

size. For some fixed k, suppose mik � a m′
ik
+ b m′′

ik
for all i, and mi j �

m′
i j
� m′′

i j
for all i , j not equal to k. Then Pf(M) � a Pf(M′)+ b Pf(M′′).

In particular, the Pfaffian is unchanged by adding a multiple of
one row to another, and simultaneously doing the same for corre-
sponding columns. (Take the kth row and column of M′′ to be equal
to the ℓth row and column of M′.) For a skew-symmetric matrix M

and any 2r × 2r matrix A, we have

Pf(A†MA) � det(A) · Pf(M).

Finally, Schur’s identity

Pf

(
xi − x j

xi + x j

)
�

∏
i< j

xi − x j

xi + x j

plays a role analogous to that of the Vandermonde identity for deter-
minants.

2. Schur Q-polynomials

Before discussing the double Q-polynomials, we review some
properties of the “single” Q-polynomials which they generalize.
These are classical symmetric functions defined by Schur in his study
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of projective representations of the symmetric group. More details
and proofs may be found in Macdonald’s book [Mac95, §III.8].

2.1. Pfaffian formula. We consider formal variables q1, q2, . . .,
with q0 � 1, often writing q � 1 + q1 + q2 + · · · for the corresponding
generating series. Our Q-polynomials will be elements of the poly-
nomial ring in these variables. We will define Qλ � Qλ(q) for any
sequence λ � (λ1, . . . , λs) of nonnegative integers.

For s � 1, we set Q(a) � 1.
For s � 2, we set

Qab � qa qb + 2
b∑

i�1

(−1)iqa+i qb−i(C.1)

� qa qb − 2 qa+1 qb−1 + 2 qa+2 qb−2 − · · · + (−1)b2 qa+b .

In particular, Q(a,0) � Q(a) � qa .
For s > 2, we define a skew-symmetric matrix Mλ(q)by specifying

its entries mi j for i < j, as follows. If s is even, then Mλ(q) is the s × s

skew-symmetric matrix with entries mi j � Qλi ,λ j . If s is odd, we
append λs+1 � 0 and set Mλ(q) � M(λ1 ,... ,λs ,0)(q).

Definition. The Schur Q-polynomial Qλ � Qλ(q) is defined to be
the Pfaffian

Qλ(q) � Pf(Mλ(q)).

In particular, Q(a) � Qa0 � qa , and Q(a,b) � Qab .
The Laplace-type expansion formula gives an alternative way to

compute Qλ for a strict partition with an odd number of parts:

Qλ �

s∑
i�1

(−1)i−1qλi · Q(λ1 ,... ,λ̂i ,... ,λs )
.

For example,

Q(a,b,c) � qaQbc − qbQac + qcQab and

Q(a,b,c,d) � QabQcd − QacQbd + QadQbc .

The second reduces to the first when d � 0.
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2.2. Raising operators. Another way of formulating the defini-
tion of Qλ will be useful when discussing double Q-polynomials. We
consider formal, labelled, monomials q(1)a1 · · · q(s)as , allowing nega-
tive indices ai . For i < j, the raising operator Ri j acts on such labelled
monomials by taking one away from the jth index and adding it to
the ith index. That is,

Ri j · (· · · qai (i) · · · qa j ( j) · · · ) � · · · qai+1(i) · · · qa j−1( j) · · · .

A monomial R in Ri j ’s is also called a raising operator.
By taking linear combinations one obtains compact formulas. For

example,

Qab �

1 − R12

1 + R12
· q(1)a q(2)b ,

as can be seen by expanding the fraction as

1 − R12

1 + R12
� 1 − 2R12 + 2R2

12 − 2R3
12 + · · · .

More generally, the Pfaffian formula for Q-polynomials takes the
form

Qλ �
©«
∏
i< j

1 − Ri j

1 + Ri j

ª®¬
· q(1)λ1 · · · q(s)λs ,

regardless of the parity of s. To see this, first write Ri j � Ti ·T
−1
j

, where
Ti is the operator which adds 1 to the ith index. In the case where
s is even, let A be the diagonal matrix with entries q(1)λ1 , . . . , q(s)λs ,
and let M be the skew-symmetric matrix with entries

1 − Ri j

1 + Ri j
�

T j − Ti

T j + Ti
.

So the matrix A†MA has entries

Qλi ,λ j �

1 − Ri j

1 + Ri j
· q(i)λi q( j)λ j .

Applying Schur’s identity and using Pf(A†MA) � Pf(M) · det(A), we
obtain the asserted equality between the Pfaffian and raising-operator
formulas for Qλ. The case where s is odd can be reduced to the even
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case by appending λs+1 � 0 as before, because in the expression

©«
∏

1≤i< j≤s+1

1 − Ri j

1 + Ri j

ª®¬
· q(1)λ1 · · · q(s)λs · q(s + 1)0,

no terms involving s + 1 remain after evaluating q(s + 1)0 � 1 and
q(s + 1)a � 0 for a < 0.

See [Mac95, §I.1, §I.3, §III.8], and [AnFul18, §A.1] for more details
on raising operators and Pfaffians.

2.3. The ring of Q-polynomials. We are particularly interested
in the images of the Q-polynomials in a certain quotient ring.

Definition. Let

Γ � Z[q1, q2, . . .]/(Qpp)p>0,

where the relations

Qpp � q2
p − 2 qp+1 qp−1 + 2 qp+2 qp−2 − · · ·

are as in formula (C.1) from §2.1.
For n > 0, let

Γ
(n)

� Γ/(qn+1 , qn+2, . . .)

� Z[q1, . . . , qn]/(Qpp)1≤p≤n .

We will recycle notation, writing q and Qλ for their images in Γ or
Γ(n). The relations Qpp � 0 imply Qab � −Qba for all a , b, and more
generally, that Qλ is alternating in the indices λ. In particular, Qλ

is zero if λ contains repeated indices, so we may consider only the
polynomials indexed by strict partitions λ � (λ1 > · · · > λs > 0).

Just as the Schur polynomials sλ form a basis for the ring of
symmetric functions, the Q-polynomials are a basis for Γ.

Exercise 2.1. Show that Γ(n) has a basis of squarefree monomials
in q1, . . . , qn. That is,

Γ
(n)

�

⊕
λ

Z · qλ1 · · · qλs ,
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where the sum ranges over strict partitions λ with no part larger
than n. Conclude that Γ(n) is free of rank 2n . Then deduce that Γ has
a basis of squarefree monomials in q1, q2, . . .; that is, of monomials
qλ1 · · · qλs as λ ranges over all strict partitions.1

Exercise 2.2. Show that {Qλ(q) | λ � (n ≥ λ1 > · · · > λs ≥ 0)}
form a basis for Γ(n). Similarly, show that {Qλ(q) | λ � (λ1 > · · · >

λs ≥ 0)} form a basis for Γ.2

2.4. Symmetric functions and a tableau formula. The classical
Schur Q-polynomials are obtained by further specializing the q vari-
ables. Let x � (x1, x2, . . .) be a set of variables, and consider the
evaluation

q 7→ q(x) :�
∏
i≥1

1 + xi

1 − xi
.

Since q(x) · q(−x) � 1, the relations Qpp � 0 hold for p > 0, so this
specialization descends to Γ. In fact, it defines an embedding of Γ into
the ring of symmetric functions in x. For a strict partition λ, Schur’s
Q-function Qλ(x) is the image of Qλ under this homomorphism.

The Q-polynomial Qλ(x) � Qλ(x1, . . . , xn) is defined similarly for
a finite set of variables, by specializing

q 7→ q(x) :�
n∏

i�1

1 + xi

1 − xi
.

There is a combinatorial tableau formula for Qλ(x), analogous to
the one for Schur functions sλ(x) in terms of semistandard Young
tableaux. This will be a sum over certain fillings of the shifted diagram
of a strict partition: one writes represents λ by placing λi boxes in the
ith row, as usual, but the ith row is indented by i − 1. For instance,
λ � (6, 4, 2, 1) has shifted diagram

.

A shifted primed tableau of shape λ is a filling T of the shifted diagram
using the ordered entries 1′ < 1 < 2′ < 2 < · · · , so that rows and
columns are weakly increasing; furthermore, the unprimed entries
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strictly increase down columns, and the primed entries strictly in-
crease along rows. The corresponding monomial weight xT records
a factor xi for each i or i′ appearing in T . For example, with
λ � (6, 4, 2, 1), the tableau

1 1 2′ 2 3 4
2 2 3 5

3′ 4′
4′

has weight xT � x2
1 x4

2 x3
3 x3

4 x5.
Then

Qλ(x) �
∑
T

xT ,

the sum over all shifted primed tableaux of shape λ. (See [Mac95,
§III.8], where this is deduced from a version of the Pieri rule for
Q-polynomials.) To obtain a formula for Qλ(x1, . . . , xn), one simply
restricts the entries to 1′ < 1 < · · · < n′ < n.

From the rule defining a shifted marked tableau, it is easy to
see that the entries along the main (southwest) diagonal may be
freely chosen between primed or unprimed labels. It follows that
the symmetric function Qλ(x) is divisible by 2s , whenever λ has s

nonzero parts.
Furthermore, the entry in the ith position along the main diagonal

must be greater than or equal to i′. From this one concludes

(C.2) Qλ(x1, . . . , xn) � 0 if n < s ,

that is, when the number of variables is less than the number of
nonzero parts of λ.

Exercise 2.3. Show that Qρ(x) � 2s sρ(x), where ρ � (s , s −

1, . . . , 1) is the staircase partition.3

3. Double Q-polynomials and interpolation

The double Q-functions were introduced by Ivanov [Iva05], and
their connection to the equivariant cohomology of the Lagrangian
Grassmannian was established by Ikeda [Ike07] (see also [IMN11]).
These authors consider functions in two sets of variables x and y,
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which specialize to the Schur Q-function Qλ(x)when the y variables
are 0.

We require a variation which is based on work of Kazarian [Kaz00],
and specializes to Ivanov’s polynomial. Our Qλ(q |y) is a polynomial
in two sets of variables, q and y, which specializes to the polynomi-
als considered in the previous section when y � 0: Qλ(q |0) � Qλ(q).
Our main goal is to prove a theorem which characterizes these poly-
nomials by their interpolation properties.

Here we will always assume the q variables satisfy the relations
Qpp � 0, so they belong to the ring Γ, and the double Q-polynomial
lies in Γ[y].

Definition. Fix a sequence λ � (λ1, . . . , λs) of nonnegative inte-
gers. Let

q(k) � q · (1 + y1) · · · (1 + yλk−1)

for each 1 ≤ k ≤ s, so

q(k)a � qa + e1(y1, . . . , yλk−1) qa−1 + · · · + ea(y1, . . . , yλk−1),

where the ei are elementary symmetric polynomials. The double Q-
polynomial is

Qλ(q |y) �
©
«

∏
1≤i< j≤s

1 − Ri j

1 + Ri j

ª®¬
· q(1)λ1 · · · q(s)λs .

As with the single Q-polynomials, this raising operator formula
is equivalent to a Pfaffian formula. We define

Qab(q |y) � q(1)a q(2)b +
b∑

i�1

(−1)i q(1)a+i q(2)b−i ,

where q(1) � q · (1+ y1) · · · (1+ ya−1) and q(2) � q · (1+ y1) · · · (1+ yb−1).
Let Mλ(q |y) be the matrix with entries mi j � Qλi ,λ j (q |y). Then

Qλ(q |y) � Pf(Mλ(q |y)).

where as before one augments λ by adding λs+1 � 0 in case s is odd.
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For example, if s � 1, so λ � (a), we have

Q(a)(q |y) � q(1)a � qa + e1(y1, . . . , ya−1) qa−1 + · · ·

+ ea−1(y1, . . . , ya−1) q1.

(Note ea(y1, . . . , ya−1) � 0.) Similarly, we have Q(a,b)(q |y) � Qab(q |y).

Exercise 3.1. Verify that the matrix Mλ(q |y) is skew-symmetric;
that is, Qab(q |y) � −Qba(q |y) and Qaa(q |y) � 0.4

It follows from this exercise that Qλ(q |y) is alternating in the
indices λ, so from now on we will consider only strict partitions
λ � (λ1 > · · · > λs > 0).

Exercise 3.2. Show that the polynomials Qλ(q |y) form a basis for
Γ[y] over Z[y].5

Given a set S of positive integers, we define a specialization ho-
momorphism Γ→ Z[yi | i ∈ S] by sending q to

q |S � yS :�
∏
i∈S

1 − yi

1 + yi
.

Up to sign, when S � Z>0, this gives the standard embedding of Γ
into the ring of symmetric functions in y. For S � {i1 , i2, . . .}, the
image of the (single) Q-polynomial Qλ(q) under this specialization
is the Schur Q-function Qλ(−yi1 ,−yi2 , . . .).

A strict partition µ � (µ1 > · · · > µr > 0) may be regarded as a
set S, and we use the notation q |µ � yµ to denote the corresponding
specialization.

Here is the main theorem about the polynomials Qλ(q |y).

Theorem. The double Q-polynomials satisfy and are characterized by
two properties:

(∗) Qλ(y
λ |y) �

s∏
k�1

∏
ℓ≤λk

ℓ∈λ

(−yℓ − yλk
) ·

∏
ℓ<λk

ℓ<λ

(yℓ − yλk
)

and

(∗∗) Qλ(y
µ |y) � 0 if µ + λ.
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Proof. To prove (∗), we need an easy fact (cf. Appendix A, §5 (12)).
Suppose we have a series c � 1+ c1 + c2 + · · · which can be written as

c �

1
1 + z

· (a polynomial of degree ≤ d).

Then

(C.3) (−z)a · cp � cp+a for any p ≥ d.

Now let

q̃(k) �
(1 + yλ1) · · · (1 + yλk−1)

(1 − yλ1) · · · (1 − yλk−1)
· q(k)|λ

�
1

1 + yλk

· (1 ± y1) · · · (1 ± yλk−1)(1 − yλk
),

for each 1 ≤ k ≤ s. (The factor is 1+ yi if i ∈ λ, and 1− yi if i < λ, but
this point is immaterial to the proof.) By (C.3), we have

(−yλk
)a · q̃(k)p � q̃(k)p+a

for p ≥ λk .
The claim in (∗) is that

Qλ(y
λ |y) � q̃(1)λ1 · · · q̃(s)λs ,

since one checks

q̃(k)λk
�

∏
ℓ≤λk

ℓ∈λ

(−yℓ − yλk
) ·

∏
ℓ<λk

ℓ<λ

(yℓ − yλk
).

We will show

©«
∏

1≤i< j≤s

r−1< j

1 − Ri j

1 + Ri j

ª®®®®¬
· q̃(1)λ1 · · · q̃(r − 1)λr−1 · q(r)λr |λ · · · q(s)λs |λ

(C.4)

�

©
«

∏
1≤i< j≤s

r< j

1 − Ri j

1 + Ri j

ª®®®®¬
· q̃(1)λ1 · · · q̃(r)λr · q(r + 1)λr+1 |λ · · · q(s)λs |λ ,
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for each 1 ≤ r ≤ s. This establishes the claim: at r � 1, the left-hand
side of (C.4) is the left-hand side of (∗); at r � s, the right-hand side
of (C.4) is the right-hand side of (∗).

We can write∏
1≤i< j≤s

r−1< j

1 − Ri j

1 + Ri j
�

r−1∏
i�1

1 − Rir

1 + Rir
·
∏
i< j

r< j

1 − Ri j

1 + Ri j
.

For p1 ≥ λ1, . . . , pr ≥ λr , we have

q̃(1)p1 · · · q̃(r)pr �

(
r−1∏
i�1

1 − Rir

1 + Rir

)
· q̃(1)p1 · · · q̃(r − 1) · q(r)pr |λ ,

using (C.3) together with

q̃(r)p �

(
r−1∏
i�1

1 + yλi

1 − yλi

· q(r)|λ

)
p

for all p. The identity (C.4) follows, so (∗) is proved.
For (∗∗), suppose µ + λ, and let k be the smallest index such that

µk < λk , so µ1 ≥ λ1, . . . , µk−1 ≥ λk−1. For ℓ ≤ k, we have

q(ℓ)|µ �

(
1 − yµ1

1 + yµ1

)
· · ·

(
1 − yµk−1

1 + yµk−1

)
· (1 ± y1) · · · (1 ± yλℓ−1).

In particular, for ℓ ≤ k and p ≥ λℓ ,

q(ℓ)p |µ � qp + e1 qp−1 + · · · + eλℓ−1 qp−λℓ+1,

where q � q |{yµ1 ,... ,yµk−1 }
and ei � ei(±y1, . . . ,±yλℓ−1). (The main

point here is that p − λℓ + 1 > 0.) For ℓ > k, q(ℓ)p |µ may be written as

q(ℓ)p |µ � qp + α1 qp−1 + · · · + αp ,

where the αi are some homogeneous polynomials in the y variables.
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By expanding the q(ℓ)p according to the above expressions, and
using the multi-linearity of Pfaffians, we can write

Qλ(y
µ |y) �

©«
∏
i< j

1 − Ri j

1 + Ri j

ª®¬
· q(1)λ1 |µ · · · q(s)λs |µ

�

∑
ν

ανQν ,

the sum taken over partitions ν with at least k nonzero parts, where
Qν � Qν(−yµ1 , . . . ,−yµk−1) is the (single) Schur Q-polynomial, and
the coefficients αν are some homogeneous polynomials in y. Each
Qν � 0 by (C.2) from §2.4, since it involves fewer variables than ν has
parts. So (∗∗) is proved.

Finally, suppose F(q |y) is a homogeneous polynomial of degree
|λ | which satisfies (∗) and (∗∗); we will show F(q |y) � Qλ(q |y). Since
the double Q-polynomials form a basis for Γ[y], we can write

F(q |y) �
∑
ν

αν Qν(q |y)

for some homogeneous polynomials αν ∈ Z[y], with the sum over
|ν | ≤ |λ |.

Using induction on the set of strict partitions ν partially ordered
by containment, we see αν � 0 for ν , λ in this sum, by considering
the specialization F(yν |y). (We assume by induction that αµ � 0 for
all µ ( ν. So the only term that survives is

F(yν |y) � αν Qν(y
ν |y),

which equals zero since ν + λ. By (∗), we know Qν(y
ν) , 0, and it

follows that αν � 0. The base case ν � ∅ is similar.) The same rea-
soning shows that F(yλ |y) � αλ Qλ(y

λ |y), and since F(q |y) satisfies
(∗), it follows that αλ � 1. �

Remark. Ivanov’s polynomials Qλ(x |y) are recovered from our
Qλ(q |y) by specializing q �

∏ 1+xi

1−xi
. The evaluation q 7→ yµ can be



Appendix C. Pfaffians and Q-polynomials 429

written by further specializing these x variables as

xi 7→

{
−yi if i ∈ µ;

0 if i < µ.

With this specialization, Ikeda uses the interpolation property and
the localization theorem to show that Qλ(x |y) represents an equi-
variant Schubert class in the Lagrangian Grassmannian.

A different specialization of the q variables is more directly con-
nected to the geometry of Lagrangian Grassmannians. Suppose the
x and y variables satisfy relations

(C.5) ek(x
2
1 , x

2
2 , . . .) � ek(y

2
1 , y2

2 , . . .)

for all k, where ek is the elementary symmetric function. Then we
may set

(C.6) q 7→
∏
i≥1

1 − xi

1 + yi
,

since
(∏ 1−xi

1+yi

)
·
(∏ 1+xi

1−yi

)
� 1. Now the evaluation q 7→ yµ is obtained

by specializing the x variables as

xi 7→

{
yi if i ∈ µ;

−yi if i < µ.

Let us write Q̃λ(x |y) for the image of Qλ(q |y) under the sec-
ond specialization (C.6). The “single” polynomials Q̃λ(x) � Q̃λ(x |0)
were introduced by Pragacz and Ratajski in the study of the co-
homology of the Lagrangian Grassmannian and degeneracy loci
[Pra88, Pra91, PraRa97]. The double polynomials Q̃λ(x |y) are the
natural generalizations to equivariant cohomology. These are dis-
tinct from the Schur and Ivanov Q-functions.

To explain the connection with geometry precisely, let V be a 2n-
dimensional symplectic vector space, with a torus T acting by char-
acters −yn , . . . ,−y1, y1, . . . , yn. Let E ⊆ V be the isotropic subspace
spanned by the last n basis vectors, and let S ⊆ V be the tautologi-
cal subbundle on the Lagrangian Grassmannian. The Chern classes
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c � cT(V − S − E)may be written as

cT(V − S − E) � cT(S∨ − E) �

n∏
i�1

1 − xi

1 + yi
,

where x and y are equivariant Chern roots of S and E, respectively.
The relations (C.5) follow from the identity cT(S + S∨) � cT(E + E∨)

(both sides being equal to cT(V)). In this setting, Pragacz and Ratajski
show that the cohomology class of a Schubert variety Ωλ is equal to
Q̃λ(x). Theorem 2.2 of Chapter 13 shows that the equivariant class
of Ωλ is equal to Q̃λ(x |y).

Hints for exercises

1Use the relations Qpp � 0. See [Mac95, §III.8, (8.6)].

2From the raising operator formula, one has

Qλ � qλ +

∑
µ>λ

aλµ qµ ,

for some integers aλµ, where > is the “dominance” partial order on partitions,
generated by Ri jλ > λ. Now apply the previous exercise. See [Mac95, §III.8, (8.9)].

3Construct a weight-preserving bĳection between (1) the set of primed tableaux
on the shifted diagram of ρ, in which all entries along the main diagonal are
unprimed; and (2) the set of semistandard tableaux on the usual diagram of ρ. See
[Mac95, §III.8, Ex. 3(b)] for another argument.

4Use the relations Qpp � 0, together with the fact that an elementary symmetric
polynomial vanishes when the degree is greater than the number of variables.

5One can write
Qλ(q |y) � Qλ(q) +

∑
|µ|<|λ |

αµQµ(q)

for some polynomials αµ in the y variables, by expanding the entries of the Pfaffian
which defines Qλ(q |y) and using multi-linearity. Since the Qλ(q) form a basis for
Γ over Z, the claim follows.
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Schubert conventions

The literature contains many conflicting conventions for describ-
ing and notating Schubert varieties, and especially in the equivariant
situation, it is important to know exactly which set of conventions
are in use. The following glossary is not meant to be a guide to the
literature, but rather to the several sets of notation used in the book.
We illustrate the translations with a running example.

Throughout, V is an n-dimensional vector space, often identified
with Cn via a standard basis {e1 , . . . , en}.

1. Grassmannians

Start with Gr(d ,V). Schubert varieties are indexed in three ways:

(1) by partitions λ fitting inside the d × (n − d) rectangle;
(2) by d-element subsets I ⊆ {1, . . . , n};
(3) by 01-sequences of length n, with d terms equal to 1.

The translation between the second two is easy: simply record the
positions of the 1’s in a 01-sequence to get a subset I. The first two
indexings are related as

λ � (λ1 ≥ · · · ≥ λd ≥ 0) ↔ I � {i1 < · · · < id}

λk � k − d − 1 + id+1−k ↔ ik � k + λd+1−k .

Graphically, we usually represent λ by its Young diagram—a
collection of boxes, with λk boxes in the kth row. As a subset of the
d×(n− d) rectangle, the diagram is also determined by its southwest
border—the path from the lower-left corner of the rectangle to the
upper-right corner tracing the borders of the boxes. There are n steps
in this path, and we get the corresponding d-subset I by recording
the vertical (upward) steps.
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Here is an example:

λ � (5, 3, 1, 1), d � 4, n � 9
I � {2, 3, 6, 9}
b � 011001001

There is a duality which is important in this story. Given λ,
the “dual” partition λ∨ is the complement of λ in the d × (n − d)

rectangle, rotated 180 degrees. The dual subset I∨ and 01-sequence
b∨ are obtained by reading the southwest border backwards. In
formulas:

λ � (λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0)

λ∨ � (n − d − λd ≥ n − d − λd−1 ≥ · · · ≥ n − d − λ1 ≥ 0)

(that is, λ∨k � n − d − λd+1−k);

I � {i1 < i2 < · · · < id}

I∨ � {n + 1 − id < n + 1 − id−1 < · · · < n + 1 − i1}

(that is, i∨k � n + 1 − id+1−k);

b � b1b2 · · · bn

b∨ � bn bn−1 · · · b1.

In pictures, continuing the above example:

λ∨ � (4, 4, 2), d � 4, n � 9
I∨ � {1, 4, 7, 8}
b � 100100110

The size of λ is |λ | � λ1 + · · · + λd . In terms of the subset I, this is
equal to #

{
j < i | i ∈ I , j ∈ {1, . . . , n} r I

}
.

1.1. Degeneracy or incidence locus version. The standard flag
E• has Eq

� 〈en , . . . , eq+1〉. The opposite flag Ẽ• has Ẽq
� 〈e1, . . . , en−q〉.

The spaces Eq and Ẽq have codimension q in V . We write Eq � En−q

and Ẽq � Ẽn−q for the corresponding q-dimensional subspaces.
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The Schubert varietyΩλ � Ωλ(E•) is

Ωλ �

{
F ⊂ Cn

�� dim(F ∩ Ed−k+λk ) ≥ k , for 1 ≤ k ≤ d
}

�

{
F ⊂ Cn

�� rk(F → Cn/Ed−k+λk ) ≤ d − k , for 1 ≤ k ≤ d
}

(D.1)

It has codimension |λ | in Gr(d ,Cn). Its equivariant cohomology class
is the double Schur polynomial sλ(x |y), where

x1, . . . , xd are Chern roots of S∗

and −y1, . . . ,−yn are characters of T acting on Cn. (Chapter 9, §4).
This Schubert variety is the closure of the Schubert cell

Ω
◦
λ �

{
F

���� dim(F ∩ Es) � i for
s ∈ [n − d + k − λk , n − d + k − λk+1], k � 0, . . . , d

}

�

{
F
�� dim(F ∩ Es−1) � d − k for s ∈ (ik , ik+1], 0 ≤ k ≤ d

}
,(D.2)

using the conventions λ0 � n − d and λd+1 � 0, and i0 � 0 and
id+1 � n + 1.

It is useful to parametrize the cells with matrices. Our convention
(suggested by group actions) is that spaces are column-spans, so a
point in Gr(d ,Cn) is represented by an n × d matrix. A point in
Ω
◦
λ
� Ω

◦
I is uniquely represented by a matrix with “pivot 1’s” forming

an identity matrix on the rows i1, . . . , id, zeroes above these pivots,
and arbitrary entries elsewhere.

For d � 4, n � 9, and λ � (5, 3, 1, 1), so I � {2, 3, 6, 9}, the cell is
this:

Ω
◦
λ �



0 0 0 0
1 0 0 0
0 1 0 0
∗ ∗ 0 0
∗ ∗ 0 0
0 0 1 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 1



↑

4
4

3

2
2
2

1
1
1




dim(F ∩ Es).
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The numbers on the right record intersection dimensions with the
fixed flag E•; note that jumps occur at rows labelled by I, which is
also where the pivots are.

The opposite Schubert varieties Ω̃λ are defined similarly, but with
respect to the flag F̃•. Here is the opposite cell, for λ � (5, 3, 1, 1) again
(so λ∨ � (4, 4, 2)):

Ω̃
◦
λ∨ �



∗ ∗ ∗ ∗

1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗
0 0 1 0
0 0 0 ∗
0 0 0 ∗
0 0 0 1



↓

0
1

2

2
2
3

3
3
4




dim(F ∩ Ẽs).

The basic fact is that

Ωλ ∩ Ω̃λ∨ � pλ ,

and this intersection is transverse. The intersection point pλ � pI is
represented by the matrix with identity matrix on rows I, and zeroes
elsewhere.

1.2. Orbit versions. The group GLn acts on Gr(d ,V)via its action
on V � Cn . Consider the subgroups

P � block-upper triangular matrices of block sizes d and n − d ,

B � upper-triangular matrices,

B− � lower-triangular matrices.

The subspace E � Ẽd � 〈e1, . . . , ed〉 is stabilized by P, identifying the
Grassmannian with GLn/P (and this is the reason for using column
spans). The flag E• is stabilized by B−, and Ẽ• is stabilized by B.

The “degeneracy locus” varieties satisfy:

Ωλ is: B−-invariant, of codimension |λ |;
Ω̃λ is: B-invariant, of codimension |λ |.
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In the context of representation theory, it is common to have
Schubert varieties with dimension |λ |—so we define “orbit” Schubert
varieties X(λ) � X(I) and Y(λ) � Y(I) satisfying

X(λ) is: B-invariant, of dimension |λ |;
Y(λ) is: B−-invariant, of codimension |λ |.

They are closures of cells:

X(I)◦ � B · pI ;

Y(I)◦ � B− · pI .

A feature of these conventions is X(λ) ∩ Y(λ) � pλ, transversally.
For example, with λ � (5, 3, 1, 1) and I � {2, 3, 6, 9}, recall that

pλ � pI is the subspace 〈e2, e3, e6, e9〉. The cells are

X(I)◦ �



∗ ∗ ∗ ∗

1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗
0 0 1 0
0 0 0 ∗
0 0 0 ∗
0 0 0 1



and Y(I)◦ �



0 0 0 0
1 0 0 0
0 1 0 0
∗ ∗ 0 0
∗ ∗ 0 0
0 0 1 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 1



.

So it is easy to see:

Ω̃λ � X(λ∨) and Ωλ � Y(λ).(D.3)

2. Flag varieties

Next consider Fl(Cn). The indexing set is Sn , the group of
permutations of n letters, which we write in “one-line” notation:
w � [w(1), w(2), . . . , w(n)]. (Sometimes we omit the brackets and
commas.) The longest permutation is w◦ � [n , n − 1, . . . , 1].

For w ∈ Sn , the corresponding permutation matrix Aw has 1’s
in positions (w(i), i), and zeroes elsewhere. This is compatible with
matrix multiplication: Auv � AuAv. So it is just the standard repre-
sentation of Sn on Cn .
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The rank function and dimension function are defined as

rw(p , q) � #{i ≤ p | w(i) ≤ q} and kw(p , q) � #{i ≤ p | w(i) > q}.

So rw(p , q) is the rank of the upper-left q × p submatrix of Aw, and
kw(p , q) is the rank of the lower-left (n − q) × p submatrix.

The length of w is ℓ(w) � #{i < j | w(i) > w( j)}.

Example. The permutation w � 2 3 6 9 1 4 5 7 8 has length
ℓ(w) � 10. Its matrix Aw and rank function rw are shown below.



0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0



p
−→

0 0 0 0 1 1 1 1 1
1 1 1 1 2 2 2 2 2
1 2 2 2 3 3 3 3 3
1 2 2 2 3 4 4 4 4
1 2 2 2 3 4 5 5 5
1 2 3 3 4 5 6 6 6
1 2 3 3 4 5 6 7 7
1 2 3 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9



↓ q

Aw rw

2.1. Degeneracy-locus version. The flag variety has universal
bundles

S1 ֒→ S2 ֒→ · · · ֒→ Sn � Cn
� Qn ։ · · ·։ Q2 ։ Q1.

For a fixed flag E• as above, set

Ωw(E•) �
{
F•

�� rk(Fp → C
n/Eq) ≤ rw(p , q) for 1 ≤ p , q ≤ n

}
�

{
F•

�� rk((Cn/Eq)∨ → F∨p ) ≤ rw(p , q) for 1 ≤ p , q ≤ n
}

�

{
F•

�� dim(Fp ∩ Eq) ≥ kw(p , q) for 1 ≤ p , q ≤ n
}
.(D.4)

(The equality comes from p − rw(p , q) � kw(p , q).) This has codimen-
sion ℓ(w). Its equivariant cohomology class is the double Schubert
polynomialSw(x |y), where

xi � −cT
1 (Si/Si−1) and yi � −cT

1 (E
i−1/Ei).
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(Chapter 10, §6.)
The Schubert variety is the closure of a Schubert cell, which is

defined by replacing inequalities with equalities:

Ω
◦
w(E•) �

{
F•

�� rk(Fp → C
n/Eq) � rw(p , q) for 1 ≤ p , q ≤ n

}
�

{
F•

�� dim(Fp ∩ Eq) � kw(p , q) for 1 ≤ p , q ≤ n
}
.(D.5)

By taking column spans, a flag can be represented by an n×n matrix.
The flag corresponding to the matrix Aw is the point pw; it is

pw � 〈ew(1)〉 ⊂ 〈ew(1), ew(2)〉 ⊂ · · · ⊂ 〈ew(1) , ew(2), . . . , ew(n)〉 � C
n .

In particular, the point pw lies in the cell Ω◦w . Points in Ω◦w may
therefore be represented by matrices whose rank functions are the
same as that of Aw . More precisely, they have pivot 1’s in positions
(w , i), zeroes below and to the right of the pivots, and free entries
elsewhere.

Example. For w � 2 3 6 9 1 4 5 7 8, the Schubert cell Ω◦w is shown
below, along with the rank function rw.



0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
∗ 1 0 0 0 0 0 0 0
∗ ∗ 0 0 ∗ 1 0 0 0
∗ ∗ 0 0 ∗ ∗ 1 0 0
∗ ∗ 1 0 0 0 0 0 0
∗ ∗ ∗ 0 ∗ ∗ ∗ 1 0
∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ 1 0 0 0 0 0





0 0 0 0 1 1 1 1 1
1 1 1 1 2 2 2 2 2
1 2 2 2 3 3 3 3 3
1 2 2 2 3 4 4 4 4
1 2 2 2 3 4 5 5 5
1 2 3 3 4 5 6 6 6
1 2 3 3 4 5 6 7 7
1 2 3 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9

︸                                 ︷︷                                 ︸
rk(Fp→Cn/Eq )

It has dimension 26 � 36 − 10 � dim Fl(C9) − ℓ(w).
The conditions on F4 (the bold column) are the same as those

defining Ωλ ⊂ Gr(4,C9), for λ � (5, 3, 1, 1). In fact, these are the
only relevant conditions: the other entries of the rank table are the
smallest possible ones consistent with the fourth column.
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In general, the relation between Schubert varieties in Gr and Fl is
as follows. Given any partition λ in the d × (n − d) rectangle, there is
a Grassmannian permutation w(λ) defined as

w(λ) � i1 i2 · · · id j1 j2 · · · jn−d ,

where I � {i1 < · · · < id} is the subset corresponding to λ, and
J � { j1 < · · · < jn−d} � {1, . . . , n} r I. Then

π−1
Ωλ � Ωw(λ) ,

where π : Fl(Cn) → Gr(d ,Cn) is the projection.
As before, the opposite Schubert varieties are defined using the

opposite flag, i.e., Ω̃w � Ωw(Ẽ•). From the matrix point of view, it is
easy to check that

Ω̃w � w◦ ·Ωw ,

so Ω̃w contains the point w◦ · pw � pw◦w . We have

Ωw ∩ Ω̃w◦w � {pw},

transversally.

2.2. Orbit versions. The upper-triangular Borel group B fixes
pe � Ẽ•, and the flag variety is identified with GLn/B. The “orbit
Schubert varieties” are defined as before:

X(w) is: B-invariant, of dimension ℓ(w);
Y(w) is: B−-invariant, of codimension ℓ(w);

they are closures of orbits:

X(w)◦ � B · pw;

Y(w)◦ � B− · pw;

and intersect transversally in X(w) ∩ Y(w) � pw.
Comparing with the degeneracy locus versions, we have

Ω̃w � X(w◦w) and Ωw � Y(w).(D.6)

Note that Y(w) � w◦ · X(w◦w).
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3. General G/P

For a general homogeneous space G/P, fixed points and Schubert
varieties are indexed by cosets W/WP. Here WP is the Weyl group of
the parabolic P. Write WP

min and WP
max for the sets of minimal- and

maximal-length coset representatives in W . Since minimal represen-
tatives are used more often, WP means WP

min.
For any coset [w] ∈ W/WP, write wmin ∈ WP

min and wmax ∈ WP
max

for its minimal and maximal representatives. These are related by

wmax
� wmin · wP

◦ ,

where wP
◦ ∈ WP is the longest element.

Write p[w] � wP/P for the fixed point in G/P corresponding to
w ∈ WP, and define

X[w]◦ � B · p[w];

Y[w]◦ � B− · p[w];

(One could take any w ∈ W , since X[w] � X[w′], etc., when w ≡ w′ in
W/WP. However, to get dimension counts right, one needs minimal
representatives.) The closures of these cells satisfy

X[w] is: B-invariant, of dimension ℓ(w);
Y[w] is: B−-invariant, of codimension ℓ(w);

and X[w] ∩ Y[w] � {p[w]}, transversally.
In the case where G/P � Gr(d ,Cn) is a Grassmannian, the no-

tation corresponds as follows. For a partition λ in the d × (n − d)

rectangle, the Grassmannian permutation w(λ) is a minimal rep-
resentative in WP. Minimal representatives for the Poincaré dual
classes are given by w(λ∨) � w◦w(λ)w

P
◦ .





APPENDIX E

Characteristic classes and equivariant cohomology

The fiber bundles arising in the Borel construction of equivari-
ant cohomology—and their finite-dimensional approximations—are
universal among all fiber bundles, in a sense to be made precise here.
It follows that calculations in equivariant cohomology determine for-
mulas for general fiber bundles.

We fix a category of (locally trivial) fiber bundles ξ : X → B, with
fiber X and structure group G. Main examples include topological
fiber bundles, Zariski-locally trivial bundles, or étale-locally trivial
bundles. Any such bundle may be realized as X � E ×G X, for some
principal G-bundle E→ B (see, e.g., [Hus75, Ch. 5]).

We also fix a cohomology theory H∗, with the following key
properties: it is a contravariant functor from spaces to (graded-
commutative) rings, and pullback via an affine space bundle is injec-
tive. Main examples include singular cohomology and Chow coho-
mology.

By a characteristic class (with values in H i) of fiber bundles with
fiber X and structure group G, we mean an assignment α of a class in
H i to each fiber bundle, which satisfies the following compatibility.
For every ξ there is α(ξ) ∈ H iX, and for every fiber square

X′ X

B′ B,

f

ξ′ ξ
f

so ξ′ � f ∗ξ, we have α( f ∗ξ) � f
∗
α(ξ). Characteristic classes with

values in H∗ form a graded-commutative ring under “pointwise”
product: by definition, (α · β)(ξ) � α(ξ) · β(ξ).
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Theorem. The ring of characteristic classes is naturally identified with
the equivariant cohomology ring H∗

G
X.

Any characteristic class α certainly produces an equivariant class,
by applying α to the bundle EmG ×G X → BmG. (Here the bundles
EmG → BmG are finite-dimensional approximations to the classify-
ing space.) Conversely, any characteristic class is induced from an
equivariant class, in the following strong sense.

Proposition. Given a fiber bundle ξ and an integer i ≥ 0, there exist
finite-dimensional approximation spaces EmG→ BmG and fiber squares

X X′ EmG ×G X

B B′ BmG,

ξ

π

ξ′

ϕ

ξ∞
π ϕ

such that π∗ is injective and H i
G

X � H i(Em G ×G X).

Proof. Write ξ as E ×G X → B for some principal G-bundle
E → B. Then take approximations BmG � (V r S)/G follow-
ing Totaro, for some sufficiently high codimension closed subset
S in a G-representation V . Setting E′ � E × (V r S), the bundle
ξ′ : E′ ×G X → E′/G � B′ does the trick. �

Proof of Theorem. Given any characteristic class αwith values in
H i , it follows from the proposition that the values α(ξ) on every fiber
bundle ξ are determined by α(ξ∞) ∈ H i

G
X. Indeed, one has π∗α(ξ) �

α(ξ′) � ϕ∗α(ξ∞). To prove the theorem, it only remains to check
compatibility with products. This follows by a similar argument:
with notation as in the proof of the proposition, the pullback maps

ϕ∗ : H∗(Em G ×G X) → H∗(X′)

are ring homomorphisms, and by choosing an appropriate approxi-
mation space, the product in H∗(EmG ×G X) agrees with that of H∗

G
X

in any given degree. �

The cases where G is GLn , or the subgroup of upper-triangular
matrices, are particularly relevant to the study of degeneracy loci.
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Example 1. In the case G � GLn , the Proposition takes on a
concrete form. Let E be a rank n vector bundle on a variety B.
Then there is a variety B′, together with morphisms p : B′ → B and
f : B′ → Gr(Cm , n) (for m ≫ 0), such that (1) p∗ : H∗B → H∗B′ is
injective, and (2) p∗E � f ∗Q, where Q is the tautological quotient
bundle on BmGLn � Gr(Cm , n).

This follows from the Proposition, but here is an alternative ar-
gument. First suppose B is affine, with coordinate ring A. Then
E corresponds to a finitely generated and locally free A-module M.
Choosing m generators, one has A⊕m ։ M; that is, a surjective
homomorphism O

⊕m
B
։ E. By the universal property of the Grass-

mannian, this determines a morphism f : B → Gr(Cm , n) such that
f ∗Q � E.

Next assume B is quasi-projective. There is an affine variety B′,
with a morphism p : B′→ Bwhich is locally trivial with affine space
fibers. (This is known as “Jouanolou’s trick”, and an exposition can be
found in [As09], along with some generalizations. In our context, the
construction is an easy and pleasant exercise.) So p∗ : H∗B→ H∗B′ is
injective, and we can apply the argument of the previous paragraph
to p∗E on B′.

For a general varietyB, one can reduce to the quasi-projective case
by means of a Chow envelope B̃→ B; this means B̃ is quasi-projective
and the corresponding pullback homomorphism is injective on co-
homology. So one obtains maps B′ → B̃ → B whose composition
has the desired properties.

If one has a flag of quotient bundles E•, corresponding to the case
where G � B is a Borel subgroup of GLn , is entirely analogous: such a
flag is pulled back from a universal flag, usingBmB � Fl(Cm ; n , . . . , 1)
and its tautological quotient flag Q• in place of the Grassmannian.
Flags of subbundles are obtained by dualizing.

This argument is sketched in the final paragraphs of [Gra97]; as
noted in the proof of the Proposition, the statements are implicit in
[Tot99]. See Chapter 11, §6 for applications.
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Example 2. Let E and F be vector spaces of respective dimensions
n and m, and let X � Hom(F, E), with the natural action by G �

GL(E)×GL(F). There is a characteristic classDr for this situation, for
each nonnegative integer r.

This is the class corresponding to [Dr]
G ∈ H∗

G
X, where Dr ⊆ X

is the locus of homomorphisms of rank at most r. As a polynomial
in H∗

G
X � Z[a1, . . . , an , b1, . . . , bm], Dr is computed by the Giambelli

determinantal formula. (Chapter 11, §1.)

Example 3. With notation as in the previous example, fix complete
flags

F1 ⊆ · · · ⊆ Fm � F and E � En ։ · · ·։ E1

of sub- and quotient spaces. Let X � Hom(F, E) as in the previous
example, with a reduction of structure group from G � GL(E)×GL(F)

to the Borel subgroup B � B(E•) × B(F•)which fixes the flags. In this
situation, there is a characteristic class Dr for each n × m irreducible
rank function r. (A rank function is a matrix of nonnegative integers
r � (r(p , q))1≤p≤n,1≤q≤m . It is irreducible if it arises from a partial
permutation matrix, i.e., r(p , q) is the rank of the upper-left p × q

submatrix of some 01-matrix with at most one 1 in each row and
column.)

This class corresponds to [Dr]
B ∈ H∗BX, where Dr ⊆ X is the

locus of homomorphisms ϕ : F → E such that the composite map
ϕpq : Fq → Ep has rank at most r(p , q). As a polynomial in H∗BX �

Z[x1, . . . , xn , y1, . . . , ym], Dr is equal to the Schubert polynomial
Sw(x; y), where w � w(r) is the minimal permutation such that
the upper-left q × p submatrix of the associated permutation matrix
has rank r(p , q). (Chapter 11, §2–4.)

Example 4. Given a homomorphism ϕ : F → E of vector bundles
on a variety Y, one has the degeneracy locus Dr(ϕ) ⊆ Y of points
y ∈ Y where the corresponding linear map ϕy : Fy → Ey has rank at
most r. Writing ξ : X→ B for the vector bundle Hom(F , E) → Y, the
fibers are identified with X � Hom(F, E) as in the above examples,
where dim E � rkE and dim F � rkF . The homomorphism ϕ

corresponds to a section of this bundle. Since ξ is a vector bundle,
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there is a canonical isomorphism H∗X � H∗B. We use this to identify
Dr with ϕ∗Dr , for any section ϕ.

The homology class Dr(ξ) a [Y] is always supported on the de-
generacy locus Dr(ϕ). When Y is nonsingular,Dr(ξ) a [Y] � [Dr(ϕ)]

if and only if Dr has expected codimension (m − r)(n − r) in Y.
Conversely, if Dr(ξ) a [Y] ∈ H∗Y is not an effective class—that

is, if it is not represented by an algebraic subvariety—then there is
no homomorphism ϕ : F → E whose degeneracy locus Dr(ϕ) has
codimension (m − r)(n − r). (Effectivity of the class Dr(ξ) a [Y] can
often be checked using the determinantal formula for Dr .)
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Chevalley formula, 371–374, 390
for G/B, 371
for G/P, 373
for Grassmannian, 146–147

Chevalley-Monk formula, 180, 190
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simplicial, 132

fiber bundle, 2, 401–403, 441

in Borel construction, 2–5

in localization, 5

Poincaré duality, 40–41

finite cover, 38

finite group

cohomology of, 25
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fixed point

attractive, 102–104
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nondegenerate, 337

restriction to, 4, 5, 67

singular, 106

flag bundle, 12, 47–50, 210

as tower of Grassmann bundles,
49, 245

complete, 49

constructed from frame bundle, 12

isotropic, 245–247

partial, 49

flag variety, 7, 161–190

as approximation space, 24

cell decomposition, 163

cohomology of, 51

fixed points, 163–165

generalized, 287

tangent weights, 164

tautological bundle, 49

forgetful homomorphism, 3

four lines, 78–80

frame bundle, 11
free action, 35
fundamental class, 18, 395, 397–401

equivariant, 18–20, 331
for limit of subvarieties, 409
in Borel-Moore homology, 331
properties of, 19
pullback, 399
pushforward, 406

fundamental weight, 283, 315
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fixed points, 287
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general linear group
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Giambelli formula, 136, 158, 174,
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GKM theorem, 99
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graded-commutative ring, 393, 441
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Grassmann bundle, 12, 47–49
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tautological quotient bundle on,
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tautological subbundle on, 13

Grassmann duality, 48
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cell decomposition, 133–134
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in localization theorem, 71, 75–76,

83
Gysin sequence, 28, 101
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homogeneous space, 6, 281–305, 378,

379
cohomology of, 35

homology, 393–396

Borel-Moore, 396–397
equivariant, xii, 329–333

Hurewicz isomorphism, 407

infinite flag variety, 221–239
cohomology of, 223, 227

infinite Grassmannian, 224–239

cohomology of, 225–226
infinite isotropic flag variety, 253
infinite Lagrangian Grassmannian,

253
integration formula, 5, 74–80, 83

computes divided difference
operator, 312

computes structure constants, 373

divisibility condition, 77, 115
for Bott-Samelson varieties, 355
in enumerative geometry, 96–97

interpolation
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polynomial, 141, 158

characterizing Schubert
polynomials, 236–237

determining cohomology class,
139, 158

intersection multiplicity, 378, 399
invariant curve, 104–107

character of, 104, 114
criterion for finitely many, 106
in G/P, 296–297, 312
in Bott-Samelson variety, 350
in flag variety, 166–167
in Schubert variety, 297, 364

inversion, 168, 284
irreducible factor, 109–111
isotropic flag, 243
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Grassmannian, 249

cohomology of, 246–247, 251–253
fixed points, 260
tangent weights, 260
tautological bundle, 246
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Jacobi-Trudi determinant, 44–45,
141, 142

Joseph polynomial, 343
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kw , 161
Kempf-Laksov formula, 136–138,

142, 144, 158, 195, 233
dual, 150
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378–379, 390

Kronecker isomorphism, 396
Künneth theorem, 35, 394, 401
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cohomology of, 249–253

fixed points, 257–259

tangent weights, 259

Lagrangian subspace, 243

Lefschetz trace formula, 83

Leibniz formula, 175, 272, 312, 314,
317

length

of partial permutation, 198

of permutation, 168

of signed permutation, 256

of strict partition, 255

of Weyl group element, 284

Leray-Hirsch theorem, 401–403

for comparing approximation
spaces, 15

for equivariantly formal spaces, 81

linear algebraic group, 281–286, 304

semisimple, 281

Littlewood-Richardson coefficient,
145, 152

Littlewood-Richardson rule, 152–157

equivariant, 153–157, 159

local class, 338

localization, 4–5, 67–84, 99–118

Chang-Skjelbred theorem,
109–110

divisibility condition, 107–109,
115, 117, 139

for Borel-Moore homology,
336–338

for Bott-Samelson variety, 352–356

for nonsingular varieties, 70–71,
73–74

for Schubert variety, 359–362
general theorem, 99–102, 109, 116
GKM theorem, 112, 116, 121
image theorem, 107–117
integration formula, 5, 74–80

long exact sequence, 37, 331, 394, 397
longest element, 168, 256, 284, 291

Mrt, 282
Mwt, 283
matching, 417
maximal coset representative, 181,

291
Mayer-Vietoris sequence, 36, 394
Milnor construction, 25, 28
minimal coset representative, 181,

184, 291
Molev-Sagan theorem, 148
moment graph, 77, 97, 114

convexity, 117
moment map, 117
Monk formula, 180, 190
multidegree, 343
multiplicative group

cohomology of, 2, 17

nαβ , 285
Nägelsbach-Kostka formula, 44
nil-Coxeter algebra, 326
nil-Hecke algebra, 309, 325, 326
normal cone, 335

deformation to, 339, 413
specialization to, 336, 414
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◦
I
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Ωλ , 134
Ω◦
λ
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Ωw , 162
Ω◦w , 162
Ω[w], 181
one-line notation, 161, 256
opposite Borel subgroup, 282
opposite flag, 142, 244
orientation class, 395, 415
orthogonal group, 25, 27
orthogonal space, 243

PP∗(Σ), 130
Φw , 319
ϕv , 360
ψv , 314
pI , 134
pλ, 134
pw , 163, 287
p[w], 291
pv , 346
pw

v , 319
parabolic subgroup, 290–296

cohomology of, 34
maximal, 290, 295
minimal, 290, 295, 308
stabilizer of point in

Grassmannian, 56
partial flag variety, 181–183, 290–296
partition, 43

complementary, 58
conjugate, 44, 195, 215
dual, 143, 257
strict, 247, 248, 255–257, 421, 425

permutation, 161
Grassmannian, 188, 215, 295
matrix, 161, 198
partial, 197–200
signed, 256–257
vexillary, 236

Pfaffian, 248, 253, 417–418

formula for degeneracy locus,
269–270

Laplace expansion, 418, 419

multi-linearity, 418, 427

multi-Schur, 266–267

Schur’s identity, 418

piecewise polynomial function,
130–131

in equivariant Chow cohomology,
132

Pieri rule, 64, 146–147

Plücker embedding, 48

Poincaré dual basis, 40, 41, 396

for G/B, 290

for G/P, 294

for Bott-Samelson variety, 352–355

for flag variety, 171–172

for Grassmannian, 58–60, 142–144

for isotropic flag variety, 263

from transverse subvarieties, 61

Poincaré duality, 40–42, 395

in Schubert basis, 142–144, 172,
263, 290, 294

toric varieties, 129

Poincaré isomorphism, 395

polytope, 122

f -numbers, 130

h-numbers, 130

simple, 122

positivity

in cohomology of Grassmannian,
153

in Schubert calculus, 6, 63, 179,
359, 377–390

in Schur expansion, 47, 64

of polynomial in Chern classes, 46

principal bundle, 11–14

associated to vector bundle, 12

locally trivial, 13, 305

universal, 14, 442
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projective bundle, 12

cohomology of, 4, 26
constructed from frame bundle, 12

projective line
as T-curve, 104
cohomology of, 39
localization, 107

projective space
as homogeneous space, 36
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equivariant cohomology of, 26
fixed points, 67
localization, 67, 107–109
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proper intersection, 378, 399
pullback, 31

Qλ(c), 248, 419
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Q-polynomial, 247–248, 418–430
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Grassmannian, 250

basis for Γ, 421
double, 266–268, 278, 423–430
interpolation property, 267,

425–428
Pfaffian formula, 419
raising operator formula, 420
represents Schubert class,

267–268, 429
tableau formula, 422–423

quaternionic Grassmannian, 299
Quillen-Suslin theorem, 127

R+, 282
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P , 290
rw , 161
raising operator, 420–421
rank condition, 7, 162, 196, 204–205,

211

rank function, 161, 196–200, 202, 206
reduced expression, 170, 284
reduced word, 284, 348, 349, 358
reductive group, 68, 281
reflection, 282

simple, 284
representation, 20

dual, 215
of GLn , 46
of torus, 20
standard, 20

restriction, see localization
Richardson variety, 172–174, 190
root, 282
root lattice, 282–284, 315
root subgroup, 283

S
(n)
m , 184
Sw(x; y), 7
Symm(x), 226
σλ , 144
σw , 172
σ̃λ , 144
σ̃w , 172
sβ , 282
sλ(x |y), 140
sλ(x), 43
Sw(c; x; y), 229
SC

w(c; x; y), 272
Schubert basis, 63

for G/B, 289
for G/P, 293
for flag variety, 163, 182
for Grassmannian, 135
for isotropic flag variety, 263
for projective space, 63

Schubert calculus, 6, 133–159
equivariant, 63, 145–149, 152–157

Schubert cell
in G/B, 287
in G/P, 292
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in flag variety, 162–165

in Grassmannian, 133–135

in isotropic flag variety, 260–262

in partial flag variety, 181

opposite, 143, 171, 261

Schubert class, 6

interpolation property, 139, 265,
277

restriction to fixed point, 138–139,
165, 277, 314–316, 359–362

stable, 184–185, 223–224, 227–229,
263–265

Schubert divisor, 361, 374

restriction to fixed point, 179, 315

Schubert polynomial, 6–8, 174–179,
189, 271–278

back-stable, 236

basis for polynomial ring,
186–187, 231, 276

characterized by interpolation,
188, 236–237, 276–277

duality property, 204, 210

for infinite flag variety, 229, 280

for isotropic flag variety, 271–275

represents degeneracy locus, 8,
202, 207, 232–235

represents Schubert class, 7, 176,
182, 185, 273

stability, 183–186, 231, 235, 271,
279

structure constants, 187, 217–218

universal property, 211–212

Schubert variety

as degeneracy locus, 194, 202

in G/B, 287–288

in G/P, 293

in flag bundle, 163

in flag variety, 162–165

in Grassmannian, 134–135

in infinite flag variety, 227–232

in isotropic flag variety, 260–262

in Lagrangian Grassmannian, 265

in partial flag variety, 181

is closure of Schubert cell, 169–170

is Cohen-Macaulay, 190

matrix, 218

nonsingular in codimension one,
367, 372

nonsingularity criterion, 364–368

opposite, 143, 171, 261

Schur Q-function, 247, 253, 270,
419–423

Schur determinant, 45, 194, 254

basis for cohomology of flag
variety, 58

basis for cohomology of
Grassmannian, 54

basis for polynomial ring, 56

multi-, 136, 150

Schur function, 43–47

as sum over tableaux, 44

basis for symmetric functions, 45,
56

double, 140–142, 158

represents Schubert class, 142

Schur module, 46

Segre class, 333–335

Segre variety, 195

self-intersection formula, 38, 73, 138,
339

semisimple group, 281

adjoint, 284

simply connected, 284

shelling, 123

signed permutation, 255–257

Grassmannian, 257, 278

simple transposition, 170

simply connected group, 284

slice theorem, 68–69, 82, 106

smooth morphism, 399
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special group, 27, 305
special linear group, 22, 70
specialization homomorphism,

413–416
spherical variety, 97
split Grassmannian, 23
splitting principle, 23, 404
stack, 8
standard flag, 162, 244
Stanley-Reisner ring, 125–130, 132
Steiner’s problem, 85, 97
Stiefel manifold, 11
structure constant, 6

for G/P, 371–390
for flag variety, 179–182
for Grassmannian, 145–149
for projective space, 63, 64
inductive characterization,

148–149, 158, 180, 374–377
submersion, 399
subword, 170
Sumihiro’s theorem, 100, 117
support

of cohomology class, 206
Sylvester identity, 77, 83
symmetric function

complete homogeneous, 44, 141
elementary, 44
ring of, 45, 226
Stanley, 237, 280
super-, 225–226, 232

symmetric group, 285
symmetric map, 241, 249
symplectic form, 242
symplectic group, 244

cohomology of, 24, 299–300

τw , 320
T-curve, 104
tangent cone, 337

to Schubert variety, 369

tangent weight
relatively prime, 112
to G/B, 289
to G/P, 291
to Bott-Samelson variety, 347
to flag variety, 164
to Grassmannian, 138
to invariant curve, 312
to isotropic flag variety, 260
to Lagrangian Grassmannian, 259
to Schubert variety, 138, 165, 262,

289, 293
Thom class, 402
Thom isomorphism, 402
toric variety, 121–132, 350

cohomology of, 123–125
invariant divisors, 124

torus, 29–30
cohomology of, 2
maximal, 281

transversality
for flag bundles, 380–383
Kleiman-Bertini, 6, 378–383
of opposite Schubert varieties,

144, 262
Poincaré dual bases, 61

trivial action, 35
tubular neighborhood, 69

UP , 291
Uβ, 283
Uσ, 121
U−(w), 165
U(w), 286
unipotent group, 34, 281
unipotent radical, 34, 282, 291
universal coefficient theorem, 394
universal principal bundle, 14

V(τ), 122
Vλ , 46
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Veronese surface, 85
in space of conics, 89
tangent weights, 91

WP , 291
Ûw, 284

ŵ, 197
w(α), 348
wmax, 181, 291
wmin, 181, 291
w◦, 168
wP
◦ , 291

weight diagram, 91
weight lattice, 282–284
Weyl group, 284–286, 291

action on cohomology of G/B,
313, 318–320

dot and star actions, 327
invariants, 300–304
left- and right-handed actions,

320, 323, 327
right action on G/B, 298–299,

318–320, 356
Whitney formula, 19, 403

for relations in cohomology, 50,
52, 250, 251

X(Σ), 121
X(α), 346
X(w)◦, 287
X[w]◦, 292
x(I), 347
x(w), 289

Y(w)◦, 287
Y[w]◦, 292
y(I), 352
y(w), 289
Yamanouchi word, 153
Young diagram, 43

shifted, 255, 265, 422

Young subgroup, 181
Young tableau

reverse barred ν-bounded, 154
semistandard, 43–44, 47, 140, 153,

167
shifted primed, 423

Z(α), 345
Z(v), 309
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