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- (p. 166, §10.6) “...is independent [of] choices.”
- (p.294-5, §16.2) The symbol “-” should be “�/�” (5 instances).
- (p.383-7, §A.8) This section contains an inaccuracy about the

cohomology of inverse limits, and should be rewritten as be-
low.

A.8. Limits

In this section, we consider cohomology rings associated to direct
and inverse systems and their limits.

A directed poset is one with the property that for each pair =, =′

in the poset there is an =′′ greater than both. (In examples, the poset
will be the natural numbers.) A directed system is a collection of
objects and maps {-= , 
=,=′}, where 
=,=′ : -= → -=′ for = ≤ =′. An
inverse system is the same, but with 
=,=′ : -= → -=′ for = ≥ =′.

Given a directed system of topological spaces - = {-= , 
=,=′}

with cohomology rings �∗-= , we define the cohomology ring of
the system as �∗- = lim

←−−
�∗-= . Similarly, given an inverse system of

topological spaces - = {-= , 
=,=′} with cohomology rings �∗-=, we
define its cohomology by �∗- = lim

−−→
�∗-=. In either case, the limit is

taken in the category of graded rings. (We sometimes abuse notation
by writing - for the corresponding limit space. The question of when
�∗- is the cohomology of the limit space is discussed in remarks at
the end of the section.)
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Suppose we have a map of direct systems { 5= : -= → .=}, so that
each diagram

-= -=′

.= .=′

5= 5=′

commutes. Then the induced homomorphism lim
←−−

�∗.= → lim
←−−

�∗-=

is the pullback homomorphism 5 ∗ : �∗. → �∗-. The same construc-
tion produces pullbacks for maps of inverse systems of spaces.

Under further conditions, one can define Gysin pushforwards.
Given a map of direct or inverse systems { 5= : -= → .=}, sup-
pose each 5= : -= → .= is a proper map of complex manifolds, with
3 = dim.= − dim-= constant for all =. Furthermore, assume each
square

-= -=′

.= .=′


=,=′

5= 5=′
�=,=′

is a fiber square, so that �∗=,=′( 5=′)∗ = ( 5=)∗

∗
=,=′ by naturality of Gysin

homomorphisms. Then the pushforwards ( 5=)∗ define a Gysin ho-
momorphism

5∗ : � 8- → � 8+23.

between the cohomology rings of the systems.
One also has fundamental classes of subvarieties. First we consider

a direct system of embeddings of complex manifolds {-=}. Suppose
+= ⊆ -= is a direct system of closed subvarieties, such that +=′∩-= =

+= for all = ≤ =′; suppose also that this intersection is transverse, so
that 
∗=,=′[+=′] = [+=], and each += ⊆ -= has the same codimension,
say 3. Then the classes [+=] ∈ �23-= define an element ([+=]) in
lim
←−−

�23-= . We take this as a definition of [+] ∈ �23-.
Next we consider an inverse system {-=} of spaces. For fixed

=, suppose a closed subspace += ⊆ -= has a fundamental class
[+=] ∈ �23-= . This determines a class in the limit, by the canonical
homomorphism �23-= → �23-. For any =′ ≥ =, let +=′ = 
−1

=′,=+= ⊆

-=′. If, for all =′ ≥ =, the maps 
=′ ,= : -=′ → -= are such that
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∗=′,=[+=] = [+=′] in �23-=′, then the classes [+=′] all determine the
same class [+] in �23-. For example, this holds if all 
=′ ,= : -=′ → -=

are smooth maps of complex manifolds (Proposition A.3.2).

Example A.8.1. Let -= = P=−1
= P(C=), with -= ↩→ -=+1 given by

the linear embedding of C= as the span of the first = standard basis
vectors in C=+1. The limit space is

⋃

-= � P
∞, and we have

�∗- = lim
←−−

�∗P=−1

= lim
←−−
Z[C]/(C=)

= Z[C].

Let �= ⊆ P
=−1 be the hyperplane spanned by the last =−1 standard

basis vectors. Then � =

⋃

�= ⊆ P
∞ is the subspace where the first

coordinate is zero, and � ∩ P=−1
= �=, transversely for all =. Thus

we can identify C = [�] in �∗P∞.

Example A.8.2. Fix a basepoint ? ∈ P∞. Let -= =

∏=
:=1 P

∞, embed-
ded in -=+1 by (?1, . . . , ?=) ↦→ (?1, . . . , ?= , ?). The direct limit is the
restricted product of projective spaces,

lim
−−→

-= �

∏

:≥1

′
P
∞,

whose points are countable tuples (?1, ?2, . . .) such that ?8 = ? is the
basepoint for all but finitely many coordinates. The inverse limit of
cohomology rings is

�∗- = lim
←−−

�∗-= = lim
←−−
Z[C1, . . . , C=] = Z[[C1, C2, . . .]]gr.

Here the notation Z[[C]]gr = Z[[C1, C2, . . .]]gr is used for the graded formal

series ring. This ring consists of formal sums
∑

2
C

, where each

C
 = C
1

1
C
2

2
· · · is a monomial in finitely many C-variables, and 2
 ∈ Z;

the sum may have infinitely many terms but the total degree must be
bounded. (For example, C1 + C2 + · · · is an element of this ring.)

Note that �2- has uncountable rank as a Z-module, and it is not
free. (It is isomorphic to the direct product of countably many copies
of Z. This is the dual of �2-, which is isomorphic to the direct sum
of countably many copies of Z.)
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Example A.8.3. Consider -= =

∏=
:=1 P

∞ as in the previous example,
but as an inverse system via the projection -= → -=−1 on the first
= − 1 factors. The limit space is

lim
←−−

-= =

∏

:≥1

P
∞

is just the usual product of countably many projective spaces. Its
cohomology ring is

�∗- = lim
−−→

�∗-= = lim
−−→
Z[C1, . . . , C=] = Z[C1, C2, . . .],

the polynomial ring in countably many variables.
Fix 8, and let+(8)= ⊆ -= =

∏=
:=1 P

∞ be the subspace where the first
coordinate of the 8th factor is zero; in the notation of Example A.8.1,
this is

+(8)= =

8−1
∏

:=1

P
∞ × � ×

=
∏

:=8+1

P
∞.

Then [+(8)=] = C8 in �∗-= = Z[C1, . . . , C=] for all =, so [+(8)] = C8 in
�∗-.

Comparing with the previous example, the embedding of
∏′

:≥1 P
∞

in
∏

:≥1P
∞ induces an inclusion of ringsZ[C1 , C2, . . .] ↩→ Z[[C1, C2, . . .]]gr.

To conclude, we describe some situations where the formally-
defined cohomology rings of systems are related to cohomology rings
of the corresponding limit spaces.

Remark A.8.4. The relationship between limits and cohomology de-
pends on the cohomology theory, so in this remark, the notation
�∗(-) will depend on the theory to be specified.

For direct limits lim
−−→

-= , there is always a natural homomorphism

�∗(lim
−−→

-=) → lim
←−−

�∗-= .

We will use singular cohomology and consider CW complexes {-=},
where for each = ≤ =′, the map -= → -=′ is a closed embedding of
complexes. The direct limit is the union

lim
−−→

-= =

⋃

-= ,
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and is also a CW complex. Then for each 8, there is a natural exact
sequence

0→ lim
←−−
=

1� 8−1-= → � 8(lim
−−→

-=) → lim
←−−
=

� 8-= → 0,

where lim
←−−

1 is the derived functor of lim
←−−

. In particular, if �∗-= van-
ishes in odd degrees for all =, then there is a natural isomorphism
�∗(lim
−−→

-=) � lim
←−−

�∗-= . See [2, Theorem 3F.8].
For instance, the singular cohomology rings of the spaces P∞ and

∏′
:≥1 P

∞ are the rings computed in Examples A.8.1 and A.8.2 above.
Turning to inverse systems, we use Čech-Alexander-Spanier coho-

mology, which satisfies the continuity axiom: if all the spaces -= are
compact Hausdorff (and hence so is the limit), the natural homomor-
phism

lim
−−→

�∗-= → �∗(lim
←−−

-=)

is an isomorphism [3, Ch. 6, Sec. 6]; see also [4] for relaxations of the
compactness requirement as well as examples showing that some
conditions are needed.

Čech-Alexander-Spanier cohomology agrees with singular coho-
mology for locally contractible paracompact Hausdorff spaces, but
not in general, as the following simple example shows.

For example, let -
(@)
= =

∏=
:=1 P

@ form an inverse system (with
respect to =) via projections, with limit

∏

:≥1 P
@ . The cohomology

ring is a truncated polynomial ring in countably many variables:

�∗

(

∏

:≥1

P
@

)

= lim
−−→

�∗-
(@)
= = Z[C1, C2, . . .]/(C

@+1

1
, C

@+1

2 , . . .)

In particular, for @ > 0, �2
(
∏

:≥1 P
@
)

is a free Z-module of countably
infinite rank, so by the universal coefficient theorem, it cannot be the
singular cohomology of any space. (The space

∏

:≥1 P
@ is compact

Hausdorff, but not locally contractible.)
The space

∏

:≥1 P
∞ of Example A.8.3 is not compact, so the continu-

ity axiom does not directly compute its cohomology. One can show
that the natural map lim

−−→
�∗-= = Z[C1, C2, . . .] → �∗

(
∏

:≥1 P
∞
)

is an
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isomorphism of Čech-Alexander-Spanier cohomology rings, but the
techniques go beyond the scope of this appendix.
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