EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY
ERRATA
VERSION 2024.10.3

DAVID ANDERSON AND WILLIAM FULTON

- (p. 166, §10.6) “...is independent [of] choices.”

- (p.294-5,8§16.2) The symbol “X” should be “G/B” (5 instances).

- (p.383-7, §A.8) This section contains an inaccuracy about the
cohomology of inverse limits, and should be rewritten as be-
low.

A.8. Livrrs

In this section, we consider cohomology rings associated to direct
and inverse systems and their limits.

A directed poset is one with the property that for each pair n, n’
in the poset there is an n” greater than both. (In examples, the poset
will be the natural numbers.) A directed system is a collection of
objects and maps {X,, ay» }, where a,, ,»: X, = X, forn < n’. An
inverse system is the same, but with a, ,: X,, — X, forn > n’.

Given a directed system of topological spaces X = {X, an .}
with cohomology rings H*X,, we define the cohomology ring of
the system as H*X = lin H*X,,. Similarly, given an inverse system of
topological spaces X = {X,,, @y, } with cohomology rings H*X,,, we
define its cohomology by H*X = 11_11)1 H*X,. In either case, the limit is
taken in the category of graded rings. (We sometimes abuse notation
by writing X for the corresponding limit space. The question of when
H*X is the cohomology of the limit space is discussed in remarks at
the end of the section.)
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Suppose we have a map of direct systems {f,: X, — Y}, so that
each diagram

Xn — Xn’

fi| Uz

Yn — Yn’

commutes. Then the induced homomorphism gn H*Y, — gn H*X,
is the pullback homomorphism f*: H*Y — H*X. The same construc-
tion produces pullbacks for maps of inverse systems of spaces.

Under further conditions, one can define Gysin pushforwards.
Given a map of direct or inverse systems {f,: X, — Y}, sup-
pose each f,,: X, — Y, is a proper map of complex manifolds, with
d = dimY, — dim X,, constant for all n. Furthermore, assume each
square

Xnn’

Xn —> Xn’

fi| . Iz

Y, —— Y
is a fiber square, so that B . (fuw )« = (fu):a;, ,, by naturality of Gysin
homomorphisms. Then the pushforwards (f,). define a Gysin ho-
momorphism
for HX — HIt2dy
between the cohomology rings of the systems.

One also has fundamental classes of subvarieties. First we consider
a direct system of embeddings of complex manifolds {X, }. Suppose
Vi € X, is a direct system of closed subvarieties, such that V,y N X, =
V, for all n < n’; suppose also that this intersection is transverse, so
that a;,n,[Vn/] = [V,], and each V,, C X, has the same codimension,
say d. Then the classes [V,] € H*'X, define an element ([V,]) in
lim H 24X . We take this as a definition of [V] € H2X.

Next we consider an inverse system {X,} of spaces. For fixed
n, suppose a closed subspace V,, € X, has a fundamental class
[V,,] € H¥X,,. This determines a class in the limit, by the canonical
homomorphism H?2X, — H?X. For anyn’ >n,letV,, = a;,ann -
Xy If, for all n’ > n, the maps ay,: Xpw — X, are suc:,h that
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ay [V.] = [V] in H%X,,, then the classes [V,] all determine the
same class [V]in H*X. For example, this holdsifall @, ,,: X,y — X,

are smooth maps of complex manifolds (Proposition A.3.2).

Example A.8.1. Let X, = P"~! = P(C"), with X, < X,41 given by
the linear embedding of C" as the span of the first n standard basis
vectors in C"*1. The limit space is | X, = P*, and we have

H*X = lim H*P" !
(—
— 11 n
= Lim Z[¢]/(")
= Z[t].

Let H, C P"~!be the hyperplane spanned by the last n — 1 standard
basis vectors. Then H = | JH, C P is the subspace where the first
coordinate is zero, and H N P"! = H,,, transversely for all n. Thus
we can identify t = [H] in H*'P*.

Example A.8.2. Fix a basepoint p € P*. Let X,, = []}_, P*, embed-
ded in X, 41 by (p1,...,pn) = (p1,...,Pn, p). The direct limit is the
restricted product of projective spaces,
lim X, = [ [P,
k>1
whose points are countable tuples (p1, p2, . . .) such that p; = p is the

basepoint for all but finitely many coordinates. The inverse limit of
cohomology rings is

H*X = @H X, = gnZ[tl,...,tn] =Z[[i’1,i’2,...]]gr.

Here the notation Z[[t[lg: = Z[[t1, t2, . . .]lgr is used for the graded formal
series ring. This ring consists of formal sums }) c,t*, where each
t* = t{'t,” - -+ is a monomial in finitely many ¢-variables, and ¢, € Z;
the sum may have infinitely many terms but the total degree must be
bounded. (For example, t; + t, + - - - is an element of this ring.)

Note that H2X has uncountable rank as a Z-module, and it is not
free. (It is isomorphic to the direct product of countably many copies
of Z. This is the dual of H,X, which is isomorphic to the direct sum
of countably many copies of Z.)
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Example A.8.3. Consider X, = [];_; P* as in the previous example,
but as an inverse system via the projection X, — X,,_1 on the first
n — 1 factors. The limit space is
lim X, = [ |7
k>1
is just the usual product of countably many projective spaces. Its
cohomology ring is

H*X :ll_II)IH X, :h_r>nZ[t1,...,tn] =7Z[ty, t,...],

the polynomial ring in countably many variables.
Fix i, and let V (i), C X, = [y, P* be the subspace where the first
coordinate of the ith factor is zero; in the notation of Example A.8.1,

this is

i—1 n

V(i) = HP""XHX ]_[ P,

k=1 k=i+1
Then [V (i),] = t; in H*X,, = Z[t1,...,t,] for all n, so [V (i)] = t; in
H*X.

Comparing with the previous example, the embedding of [}, P®

in [[4>1P* induces aninclusion of rings Z[t1, t, . . .| = Z[[t1, t2, .. Jlgr.

To conclude, we describe some situations where the formally-
defined cohomology rings of systems are related to cohomology rings
of the corresponding limit spaces.

Remark A.8.4. The relationship between limits and cohomology de-
pends on the cohomology theory, so in this remark, the notation
H*(X) will depend on the theory to be specified.

For direct limits h_n>1 Xy, there is always a natural homomorphism

H*'(lim X,)) —» im H*X,,.
— —
We will use singular cohomology and consider CW complexes {X,, },

where for each n < n’, the map X,, — X,y is a closed embedding of
complexes. The direct limit is the union

hi)an = UXn/
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and is also a CW complex. Then for each i, there is a natural exact
sequence
0 - lim'H'X, - H/(lim X,,) — limH'X,, — 0,
S — S
where 11m is the derived functor of lim. In particular, if H*X,, van-
ishes in odd degrees for all n, then there is a natural isomorphism
H* (h_n} X,) = mH X,;. See [2, Theorem 3E.8].

For instance, the singular cohomology rings of the spaces P and
[Tisq P* are the rings computed in Examples A.8.1 and A.8.2 above.

Turning to inverse systems, we use Cech-Alexander-Spanier coho-
mology, which satisfies the continuity axiom: if all the spaces X,, are
compact Hausdorff (and hence so is the limit), the natural homomor-
phism

h_r)nH*Xn — H*QiLn X)
is an isomorphism [3, Ch. 6, Sec. 6]; see also [4] for relaxations of the
compactness requirement as well as examples showing that some
conditions are needed.

Cech-Alexander-Spanier cohomology agrees with singular coho-
mology for locally contractible paracompact Hausdorff spaces, but
not in general, as the following simple example shows.

For example, let X(q) [T;_, P7 form an inverse system (with
respect to n) via projections, with limit [[;.;P7. The cohomology
ring is a truncated polynomial ring in countably many variables:

* . * 1 1
H (H Pq) = lim H X\ = Z[t, b, . )
>

In particular, for g > 0, H? ([T P7) is a free Z-module of countably
infinite rank, so by the universal coefficient theorem, it cannot be the
singular cohomology of any space. (The space [];»1 P7 is compact
Hausdorff, but not locally contractible.)

The space []>1 P* of Example A.8.3 is not compact, so the continu-
ity axiom does not directly compute its cohomology. One can show
that the natural map li_n)lH*Xn =Z[t,t2,...] & H ([T, P%) is an
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isomorphism of Cech-Alexander-Spanier cohomology rings, but the
techniques go beyond the scope of this appendix.
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