
CHAPTER 1

Preview

Before beginning in earnest, we offer a taste of the themes and
topics this book will explore. Although we give some definitions
and sketches of arguments here, the reader should rest assured that
later chapters will provide more detail.

1. The Borel construction

Suppose a Lie group G acts on a space X (on the left). The
standard definition of the G-equivariant cohomology of X, written
H∗GX, goes like this. Find a contractible space EG with G acting freely
(on the right), and form the quotient

EG ×G X :! (EG × X)/(e · g , x) ∼ (e , g · x).

Then define
Hi

GX :! Hi(EG ×G X).

The idea behind this definition is to have Hi
GX ! Hi(G\X) when the

action on X is free; replacing X by EG ×X leaves the homotopy type
unchanged, but produces a free action, with quotient EG ×G X. This
construction first appeared (unnamed) in Borel’s 1958-9 seminar on
transformation groups, so the space EG ×G X is often called the Borel
construction.

The space BG :! EG/G is a classifying space for G and it, along
with the quotient map EG → BG, is universal in an appropriate
category, so this definition is independent of choices. We will not
need this general topological machinery, though.

The case when X is a point is important. Here we are looking at

ΛG :! H∗G(pt) ! H∗BG.
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Since BG usually has nontrivial cohomology, H∗G(pt) ! Z in general!
This is an essential feature of equivariant cohomology.

Example 1.1. For the multiplicative group G ! C∗, we can take
EG ! C∞ ! {0}. Certainly G acts freely, and it is a pleasant exercise
to prove this space is contractible.1 The quotient is BG ! CP∞. This
lets us compute our first equivariant cohomology ring:

ΛC∗ ! H∗C∗(pt) ! H∗CP∞ ! Z[t],

where t is the Chern class of the tautological line bundle on CP∞.
For the circle group G ! S1, regarded as the unit complex num-

bers, we can use EG ! S∞, regarded as the unit sphere in C∞. This is
contractible, since C∞ ! {0} retracts onto it, and we obtain the same
quotient space BG ! CP∞ as for C∗. Alternatively, we could use the
same space EG ! C∞ ! {0}, since the subgroup G ! S1 ⊆ C∗ acts
freely here. Either way, we obtain

ΛS1 ! ΛC∗ ! Z[t].

This is an instance of a general phenomenon: cohomology for a
complex group is the same as for a maximal compact subgroup.

Example 1.2. Elaborating on the previous example, for the torus
T ! (C∗)n we can take ET ! (C∞ ! {0})n to get BT ! (CP∞)n . We find

ΛT ! Z[t1, . . . , tn],

where ti comes from the tautological bundle on the ith factor of (P∞)n .
As before, we get the same result for the compact torus (S1)n ⊆ (C∗)n .

Early applications of equivariant cohomology were topological,
focusing on questions about how the cohomology of a space con-
strains the group actions it admits. Algebraic geometers were slower
to realize its utility, perhaps because the spaces EG ×G X are gener-
ally infinite-dimensional (as we’ve already seen). However, some of
the core ideas of equivariant cohomology had been used in algebraic
geometry for quite a while. The space EG ×G X is a fiber bundle over
the classifying spaceBG, with fiber X, and the study of such bundles
goes back at least to Ehresmann in the 1940’s. In algebraic geometry,
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fiber bundle constructions are familiar and ubiquitous—we are used
to going from a vector space to a vector bundle, projective space to
projective bundle, or Grassmannian to Grassmann bundle. A key
theme for us is that equivariant cohomology is intimately linked to
the study of general fiber bundles.

In fact, we will work with an alternative (but equivalent) definition
of H∗G which stays within the realm of finite-dimensional spaces. This
involves using “approximations” Em to EG, and each Em ×G X will be
a finite-dimensional algebraic manifold whenever X is. (A technical
assumption on G or X may be necessary, to guarantee algebraicity
of the quotient, but it will be automatic in most applications.) For
instance, we’ll use Em ! Cm ! 0 → Bm ! Pm−1 to approximate BC∗.
In the next chapter, we’ll prove lemmas that show this leads to a
well-defined theory.

As we’ll see, equivariant cohomology shares many familiar prop-
erties with ordinary (singular) cohomology: it is functorial (con-
travariant for equivariant maps), has Chern classes (for equivariant
vector bundles), and fundamental classes (for invariant subvarieties
of a nonsingular variety). Most of these properties are verified by do-
ing the analogous construction for ordinary cohomology on EG×G X

(or an approximation).

2. Fiber bundles

The Borel construction produces a certain fiber bundle from the
action of G on X: the fiber is X, and the base is BG (or an approxi-
mation). It is helpful to think of the diagram

X E ×G X

pt B

with the vertical arrow on the right coming from the projection on
the first factor. Pullback along the horizontal arrows—i.e., restriction
to a fiber—defines a forgetful homomorphism H∗GX → H∗X, from
equivariant to ordinary cohomology. Pullback along the vertical
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arrows gives homomorphisms

Z ! H∗(pt)→ H∗X and ΛG ! H∗G(pt)→ H∗GX.

The first of these is trivial, but the second endows H∗GX with the richer
structure of a ΛG-algebra, at least when this ring is commutative. In
some cases, this structure is rich enough to determine X itself! (For
example, this happens when X is a toric manifold.)

Example 2.1. The standard action of T ! (C∗)n on Cn (by scaling
coordinates) defines an action on Pn−1

! P(Cn), giving the universal
quotient line bundle O(1) an equivariant structure. Writing ζ !

cT
1
(O(1)) for its equivariant Chern class in H2

TP
n−1, we have

H∗TP
n−1

! ΛT[ζ]/
n∏

i!1

(ζ + ti).

We will work this out in detail soon; it follows easily from the general
formula for the cohomology of a projective bundle. Note that sending
ti (→ 0 for all i defines a surjection H∗TP

n−1 → H∗Pn−1
! Z[ζ]/(ζ

n
),

where ζ ! c1(O(1)) is the ordinary Chern class.

3. The localization package

The possibility of carrying out global computations using only
local information at fixed points provides one of the most powerful
applications of equivariant cohomology. This works best when G ! T

is a torus. Two notions underwrite this technique. The first is that
equivariant cohomology should determine ordinary cohomology: in good
situations,

H∗TX → H∗X is surjective, with kernel generated by
the kernel of ΛT → Z.

The second notion is that equivariant cohomology should be determined
by fixed points: in good situations, for ι : XT ↪→ X,

H∗TX
ι∗
−→ H∗TXT is injective, and becomes an isomor-

phism after inverting enough elements of ΛT .

We will also see theorems characterizing the image of ι∗.
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Both of these are desired properties, but they can certainly fail
for a given action of T on X. (For example, if X has no fixed points,
it will be difficult for the second notion to hold; if X ! T, acting
on itself by translation, then both properties fail. A useful exercise
is to look for other examples where one or both of these properties
fails.) In plenty of common situations, though, both do hold true: for
example, whenever X is a nonsingular projective variety with finitely
many fixed points. Theorems about when these properties hold form
the core of the localization package.

Another component of this package is an integration formula which
computes the pushforward along a proper map of nonsingular va-
rieties, f : X → Y, via restriction to fixed points. In the especially
useful case of ρ : X → pt, with XT finite, this takes the form∫

X
α :! ρ∗(α) !

∑
p∈XT

α |p

cT
top(TpX)

,

where the right-hand side is a finite sum of elements of the fraction
field of ΛT—that is, rational functions in the variables ti .

All of this package consists of essentially equivariant phenom-
ena: for any space X with nontrivial cohomology and finitely many
fixed points, you could never have an injection H∗X → H∗XT , by de-
gree! Similarly, the right-hand side of the integration formula is only
defined equivariantly, since the denominators are positive-degree
elements of H∗T(pt).

Localization fits into the fiber bundle picture via sections: in terms
of the previous diagram, we have

X E ×G X

pt B

ιp

with the inclusion ιp : {p} ↪→ X of a fixed point inducing a section of
the fiber bundle E ×G X → B. Pulling back along this section gives
the restriction homomorphism ι∗p : H∗GX → H∗G(p) ! ΛG.
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4. Schubert calculus and Schubert polynomials

Our two main thematic strands—fiber bundles and localization—
braid together nicely in modern Schubert calculus. Here X is a pro-
jective homogeneous space, for example, Pn−1, Gr(d ,Cn), Fl(Cn), or
more generally, G/P for a reductive group G and parabolic subgroup
P. The cohomology ring has a basis of Schubert classes [Ωw], where
Ωw ⊆ X is a Schubert variety, defined by certain incidence conditions.
These subvarieties are invariant for the action of a torus, and in fact
their equivariant classes σw ! [Ωw]T form a ΛT-basis for H∗TX. (The
set W indexing the Schubert basis is a quotient of the Weyl group of
G. For G ! GLn , this is the symmetric group Sn .)

A central problem is to understand these classes σw. In particular,
one would like expressions for them as polynomials in ring gener-
ators for H∗TX; formulas for their restrictions to fixed points; and
combinatorial rules for their multiplication. The last of these is a
long-standing open problem: one can write

σu · σv !

∑
w

cw
uv σw ,

for some homogeneous polynomials cw
uv in ΛT ! Z[t1, . . . , tn]. What

are these polynomials?
The structure constants cw

uv satisfy a positivity property: when
written in appropriate variables, these polynomials have nonnega-
tive coefficients. (When there is no torus, the structure constants are
nonnegative integers, by an application of Kleiman-Bertini transver-
sality.) The problem is to find a combinatorial formula for cw

uv man-
ifesting this positivity. Good answers are known for some spaces—
Grassmannians, cominuscule varieties, 3-step flag varieties—but even
the non-equivariant question remains open in most cases, despite
much recent progress. A key theme in recent advances is that equi-
variant techniques aid in proving non-equivariant theorems.

One can say more about the other problems. There is an elegant
formula for restricting σw to a fixed point pu , expressed as a sum
over certain reduced words in the Weyl group. And there are good
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formulas for representing σw as a polynomial in Chern classes, at
least in classical types.

We will focus on “type A”, and in particular the complete flag
variety Fl(Cn). For each permutation w ∈ Sn , there are Schubert
classes [Ωw] ∈ H∗Fl(Cn) and [Ωw]T ∈ H∗TFl(Cn). In 1982, Lascoux
and Schützenberger defined and initiated the study of Schubert poly-
nomialsSw(x) ∈ Z[x1, . . . , xn], which are homogeneous polynomials
mapping to [Ωw] under a ring presentation Z[x]! H∗Fl(Cn).

There are also double Schubert polynomials

Sw(x; y) ∈ Z[x1, . . . , xn , y1, . . . , yn],

and it was later proved that these map to [Ωw]T in H∗TFl(Cn) !

Z[x , y]/I. Since H∗TFl(Cn) is a quotient of a polynomial ring, there
are necessarily many choices for polynomials representing [Ωw]T ,
but it is generally agreed thatSw(x; y) are the best ones. They have
many wonderful combinatorial and geometric properties, and we
will study them in detail later.

Briefly, here is a different way the polynomials Sw(x; y) arise,
which would have been familiar to mathematicians working over
100 years earlier. We will place rank conditions on n × n matrices,
and compute the degree of the corresponding variety defined by
the vanishing of certain minors. This sort of problem was studied
by 19th century geometers, especially Cayley, Salmon, Roberts, and
Giambelli. For a permutation w ∈ Sn , consider the (transposed)
permutation matrix A†

w having 1’s in the w(i)th column of the ith row
(position (i , w(i))) and 0’s elsewhere. For example, the permutation
w ! 2 3 1 has matrix

A†
2 3 1 !

$%%
&

0 1 0
0 0 1
1 0 0

'((
)
.

Let A[p , q] denote the upper-left p × q submatrix of any matrix A,
and define

Dw !

{
A ∈ Mn,n

++ rk(A[p , q]) ≤ rk(A†
w[p , q]) for all 1 ≤ p , q ≤ n

}
.
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This is an irreducible subvariety of Mn,n " A
n2

, of codimension
'(w) ! {i < j | w(i) > w( j)}. It is invariant for an action of T !

(C∗)n × (C∗)n which scales rows and columns: viewing each factor of
T as diagonal matrices, (u , v) · A ! u A v−1. This means there is a
class

[Dw]
T ∈ H∗T Mn,n ! ΛT ! Z[x1, . . . , xn , y1, . . . , yn],

homogeneous of degree '(w) in the variables. (Since Mn,n is con-
tractible, its equivariant cohomology is that of a point.)

Theorem. This class equals the Lascoux-Schützenberger double Schu-
bert polynomial: [Dw]T !Sw(x; y).

This theorem is one piece of evidence of the naturality of Schubert
polynomials, as well as the advantage of working equivariantly: there
are no relations in the polynomial ring H∗T Mn,n , so no choices.

Example. The locus D2 3 1 is defined by two equations, a11 ! a21 !

0. Each coordinate aij comes with T-weight xi − yj , so Bézout’s
theorem impliesS2 3 1(x; y) ! (x1 − y1)(x2 − y1).

Notes

In addition to the original construction, many of the core ideas of equi-
variant cohomology appear in Borel’s seminar on transformation groups
[Bor60]. This includes the fiber bundle and localization perspective, as well
as the idea of approximating by finite dimensional spaces. (They used CW
complexes, not algebraic varieties.) In modern language, the Borel con-
struction can be regarded as a “homotopy quotient” of X by G, since it is
the homotopy colimit of a diagram G×X ⇒ X. Alternatively, one can view
H∗GX as the cohomology of the quotient stack [G\X]. See [Beh04] for an
introduction to the stack perspective.

Much of the current work on equivariant cohomology in algebraic ge-
ometry has roots in the story of modern Schubert calculus. Recent break-
throughs in the structure constant problem begin with Knutson and Tao’s
puzzle rule for Grassmannians [KnTao03], which we will see in Chap-
ter 9. Since then, formulas for two-step flag varieties have been found
[Co09, Buc15, BKPT16], as well as very recent formulas for two- and three-
step flags [KnZJ20]. There are also some rules for classical Schubert calculus
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on certain spaces G/P for groups G other than GLn. Pragacz showed that a
formula of Stembridge computes the structure constants of the Lagrangian
Grassmannian [Pra91], and more generally, Thomas and Yong have found
type-uniform formulas for all cominuscule flag varieties [ThYo09].

The restriction formula for equivariant Schubert classes at fixed points is
due to Andersen-Jantzen-Soergel [AJS94] and Billey [Bi99]; we will prove it
in Chapter 18. The relationship between double Schubert polynomials and
equivariant classes was established in the 1990’s [Ful92, KnMi05, FeRi03].

Hints for exercises

1A solution can be found in [Hat02, Ex. 1B.3]. See, e.g., [MilSta74, §14] for the
computation of H∗CP∞.


