
CHAPTER 5

Localization I

The possibility of restricting attention to fixed points is a key
feature of equivariant cohomology. The technique works best when
the group is a torus T, and we will see some examples indicating
why. There are three basic pieces of the localization package:

(1) the main localization theorem, which says when the restriction
homomorphism ι∗ : H∗TX → H∗TXT is injective, or an isomor-
phism after inverting elements of ΛT ;

(2) the integration formula, which computes a Gysin homomor-
phism f∗ : H∗TX→ H∗TY in terms of a corresponding map on
fixed loci; and

(3) The image theorem, describing the image of ι∗ as a subring of
H∗TXT defined by divisibility conditions.

We will return to the third component in Chapter 7, and focus on
the first two pieces here.

1. The main localization theorem (first approach)

The main theorem says the restriction homomorphism

ι∗ : H∗TX → H∗TXT

becomes an isomorphism after inverting classes in ΛT ! Sym∗M,
coming from characters χ ∈ M. This is true for any algebraic variety
X, as we will see later. A very simple proof can be given for non-
singular varieties, though, so we consider that case first. The main
idea is to prove this statement about restriction to the fixed locus by
considering the Gysin pushforward from the fixed locus.
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68 §1. The main localization theorem (first approach)

Example 1.1. Let T act on P(V) ! Pn−1 by characters χ1, . . . , χn.
We have computed

H∗TP
n−1

! ΛT[ζ]/
∏

(ζ + χi),

where ζ ! cT
1 (O(1)). If the characters χ1, . . . , χn are distinct, the

fixed points are the coordinate lines pi ! [0, . . . , 0, 1, 0, . . . , 0], for
i ! 1, . . . , n. The tangent spaces are

TpiP
n−1

! Hom(Li ,V/Li) !
⊕

j"i

L∨i ⊗ Lj ,

where Li is the coordinate line, isomorphic toCχi as a T-representation.
In coordinates, one sees this by computing

z · [a1, . . . , ai−1 , 1, ai+1, . . . , an] ! [χ1(z) a1 , . . . , χi(z), . . . , χn(z) an]

! [
χ1(z)

χi(z)
a1, . . . , 1, . . . ,

χn(z)

χi(z)
an].

So cT
n−1(TpiP

n−1) !
∏

j"i(χ j − χi).
The self-intersection formula then says (ιpi )

∗(ιpi )∗ is multiplication
by

∏
j"i(χ j − χi). One can also see this directly. The Gysin pushfor-

ward (ιpi )∗ : H∗T(pi)→ H∗TP
n−1 sends 1 to [pi]T !

∏
j"i(ζ+χ j), and the

restriction of the tautological bundle is O(−1)|pi ! Li , so ζ restricts to
cT

1 (L
∨
i ) ! −χi .

Exercise 1.2. Using the basis {1, ζ, . . . , ζn−1} for H∗TP
n−1 and the

standard basis for Λ⊕n , compute the matrix of the restriction homo-
momorphism

ι∗ : H∗TP
n−1 → H∗T(P

n−1)T ! Λ⊕n .

Compute its determinant, and conclude that the map is injective.1

Exercise 1.3. If the characters χ1, . . . , χn are not distinct, the fixed
locus (Pn−1)T has positive-dimensional components. Identify the
fixed locus, and show that the restriction homomorphism is still
injective.

The slice theorem provides a useful tool for linearizing group
actions near fixed points or orbits: For any reductive (or compact)
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group G acting on X, there is an invariant neighborhood of p in X

which is equivariantly isomorphic to an invariant neighborhood of 0
in TpX. More generally, we have the following:

Theorem 1.4 (Slice theorem). Let X be a nonsingular complex aleg-
braic variety.

(1) Suppose K is a compact Lie group acting on X, with an orbit O !

K · x ⊆ X. Then there is a K-invariant open neighborhood U ⊆ X

of O which is equivariantly isomorphic to an open neighborhood of
the zero section in the normal bundle NO/X .

(2) Suppose X is affine, and G is a reductive group acting on X, with
a closed orbit O ! G · x. Then there is a G-equivariant étale
neighborhood U → X of O which is equivariantly isomorphic
to an étale neighborhood of the zero section of the normal bundle
NO/X .

The first statement, for compact groups, is easily proved: by
averaging any hermitian metric over K, one can find a K-invariant
hermitian metric on X. A tubular neighborhood of the orbit K · x

with respect to this metric provides the desired K-invariant open
neighborhood. References with more details can be found in the
Notes.

Often we will assume that T acts with finitely many fixed points.
This has a characterization in terms of tangent spaces. A fixed point
p ∈ XT is isolated if it is a connected component of XT .

Lemma 1.5. Let G be a connected reductive linear algebraic group (or
compact connected Lie group) acting on a nonsingular algebraic variety X,
with a fixed point p ∈ XG. The point p is isolated if and only if the trivial
representation does not occur in TpX.

Proof. By the slice theorem, we can reduce to the case where
X ! V is a representation of G, and p ! 0 is the origin. In this
case, the lemma is immediate, since for any representation V of a
connected group, the origin 0 ∈ V is an isolated fixed point if and
only if V contains no copy of the trivial representation. !
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The reductive (or compact) hypothesis is necessary.

Example 1.6. Let the additive group G ! C act onC2 by the matrix[
1 a
0 1

]
, inducing an action on P1. The point p ! [1, 0] is the unique

fixed point, but the representation on TpP
1 is trivial.

When G ! T is a torus and dim X ! n, the lemma says that p ∈ XT

is isolated if and only if cT
n (TpX) " 0. This formulation is particular

to tori, and is not true for other reductive groups.

Example 1.7. Consider G ! SLn ! X acting on itself by conju-
gation. The fixed points are the center of G, so there are finitely
many; in particular, the identity element e ∈ G is isolated. The action
of G on Te G ! sln is the adjoint representation. Restricting this to
the diagonal torus T ⊂ SLn one sees an (n − 1)-dimensional space
of weight zero, namely t ⊆ sln , so cT

top(Te G) ! 0. Since this is the
image of cG

top(Te G) under the injective map ΛG → ΛT , it follows that
cG

top(Te G) ! 0, as well.

We can now state our first localization theorem.

Theorem 1.8 (Localization Theorem, finite fixed locus). Consider
a d-dimensional nonsingular variety X with finitely many fixed points. Let

c !

∏
p∈XT

cT
d (TpX) ∈ Λ,

and let S ⊆ Λ be a multiplicative set containing c (which is nonzero, since
all fixed points are isolated). Assume there are m ≤ #XT classes in H∗TX

restricting to a basis of H∗X.
Then m ! #XT , the homomorphisms

S−1H∗TX
S−1ι∗
−−−→ S−1H∗TXT and S−1H∗TXT S−1ι∗

−−−→ S−1H∗TX

are isomorphisms, and ι∗ : H∗TX → H∗TXT is injective.

Most of hypotheses can be omitted, and we will see a stronger
form of the localization theorem in Chapter 7. However, this simple
version suffices for all the examples we will study, and it has the
advantage of being very easy to prove. The main idea is to use the
Gysin pushforward, as we saw for projective space.
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Proof. Let us temporarily write n ! #XT , so we have

Λ
⊕n

! H∗TXT ι∗
−→ H∗TX

ι∗
−→ H∗TXT

! Λ
⊕n .

By basic properties of Gysin maps, the composition ι∗◦ι∗ : Λ⊕n → Λ⊕n

is diagonal, and on the summand corresponding to p ∈ XT it is
multiplication by cT

d
(TpX). So det(ι∗ι∗) ! c, and the cokernel of ι∗ is

annihilated by c. In particular, S−1H∗TX → S−1H∗TXT is surjective.
The assumption that m elements restrict to a basis of H∗X means

that H∗TX is a free Λ-module of rank m (by Leray-Hirsch or graded
Nakayama). Since Λ is noetherian, we conclude that m ! n and
S−1H∗TX → S−1H∗TXT is an isomorphism. Injectivity of ι∗ follows
from the fact that H∗TX is free over the domain Λ. !

Example 1.9. When T acts on V ! Cn by distinct characters
χ1, . . . , χn , the localization theorem for X ! P(V) ! Pn−1 is simply
the Chinese Remainder Theorem. Indeed, with

A ! S−1H∗TP
n−1

! (S−1
Λ)[ζ]/

(∏
(ζ + χi)

)
,

the localization theorem says that the homomorphism

A→ A/(ζ + χ1) × · · · × A/(ζ + χn)

is an isomorphism. Algebraically, this is true because the ideals
(ζ + χi) are pairwise comaximal.

Example 1.10. Again suppose T acts on V ! Cn by distinct char-
acters χ1, . . . , χn. Then X ! Gr(d ,V) has finitely many fixed points,
corresponding to coordinate subspaces:

XT
!

{
pI | I ! {i1 < · · · < id} ⊆ {1, . . . , n}

}
,

where pI ! [EI] is the subspace EI ! 〈ei1 , . . . , eid〉 ! 〈ei | i ∈ I〉.
Indeed, each tangent space

TpI X ! Hom(EI ,V/EI) !
⊕

i∈I
j#I

L∨i ⊗ Lj
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has weights χ j − χi , for i ∈ I and j # I, which are all nonzero. We see

cT
top(TpI X) !

∏
i∈I
j#I

(χ j − χi).

There are
(n

d

)
fixed points, and we know bases of H∗TX with

(n
d

)
elements, restricting to bases of H∗X. So H∗TX ↪→ H∗TXT ! Λ⊕(

n
d).

An explicit coordinate description of this action is as follows.
Given a subset I, let J ! {1, . . . , n} ! I be the complement, so V/EI !

EJ and there is a decomposition V ! EI ⊕ EJ . As in Chapter 4, §2,
corresponding to this decomposition there is an open neighborhood
U ! Hom(EI , EJ) of pI . For instance, let us take n ! 6, d ! 3, and
I ! {2, 4, 5}, and the standard action of T ! (C∗)6 on V ! C6. The
induced action on U can be represented in matrix form as

z ·



∗ ∗ ∗

1 0 0
∗ ∗ ∗

0 1 0
0 0 1
∗ ∗ ∗



!



z1∗ z1∗ z1∗

z2 0 0
z3∗ z3∗ z3∗

0 z4 0
0 0 z5

z6∗ z6∗ z6∗



!



z1
z2
∗ z1

z4
∗ z1

z5
∗

1 0 0
z3
z2
∗ z3

z4
∗ z3

z5
∗

0 1 0
0 0 1

z6
z2
∗ z6

z4
∗ z6

z5
∗



.

This description makes the tangent weights visible.

With only a little more care, we can relax the hypothesis that
the fixed locus be finite. We still assume that X is nonsingular.
A basic fact is that XT is always nonsingular. In fact, this is true
more generally of fixed loci for actions by diagonalizable groups, i.e.,
G ! (C∗)r × A for some finite abelian group A:

Lemma 1.11. When a diagonalizable group G acts on a nonsingular
variety X, the fixed locus XG is nonsingular.

(In topology, this can be deduced easily from the slice theorem, and
it holds more generally for the action of any compact group G. A
stronger version of this lemma in algebraic geometry was proved by
Iversen.)
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We will need another lemma about the characters of the torus
acting on the normal bundle to a fixed component.

Lemma 1.12. Let X be a nonsingular variety, and let Z ⊆ XT be a
connected component of the fixed locus, of codimension d in X. Write
N ! NZ/X for its normal bundle, an equivariant vector bundle of rank d

on Z. Then there are nonzero characters χ1, . . . , χd so that for any point
p ∈ Z, the fiber Np ! TpX/TpZ has T acting by these weights. The action
of T on TpZ is trivial.

Proof. Use the slice theorem to find a neighborhood U ⊆ X of
p which is equivariantly isomorphic to a neighborhood of 0 in TpX.
Then Z ∩ U maps to an open subset of the 0-weight space of TpX

(where T acts trivially), since this is TpZ ⊆ TpX. It follows that the
characters on Np ! TpX/TpZ are all nonzero. Since Z is connected,
these characters are the same for any other point q ∈ Z. !

For any connected component Z ⊆ XT of codimension d, the
self-intersection formula says that the composition

H∗TZ
ι∗
−→ H∗TX

ι∗
−→ H∗TZ

is multiplication by the top Chern class cT
d
(NZ/X). In H∗TZ ! Λ⊗ZH∗Z,

this class can be written as

cT
d (NZ/X) ! χ1 · · · χd +

d∑
i!1

ad−i ci ,

for some classes a j ∈ Λ2 j and ci ∈ H2iZ, where χ1, . . . , χd are the
characters of T on the normal bundle, as in the previous lemma.
Since H∗Z is a finite-dimensional ring, the elements ci are nilpotent,
so cT

d
(NZ/X) becomes invertible in S−1H∗TZ, for any multiplicative set

S containing χ1 · · · χd .
With these observations, the proof of the following goes just as in

the case where XT is finite.

Theorem 1.13 (Localization Theorem, nonsingular varieties).

Let X be a nonsingular variety, and S ⊆ Λ a multiplicative set containing
all nonzero characters appearing in TpX, for all p ∈ XT . Write XT

!
∐

Zα
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as a union of connected components. Assume there are m elements of H∗TX

restricting to a basis of H∗X, with m ≤
∑
α rk H∗Zα.

Then m !
∑

rk H∗Zα , the homomorphisms

S−1H∗TX
S−1ι∗
−−−→ S−1H∗TXT and S−1H∗TXT S−1ι∗

−−−→ S−1H∗TX

are isomorphisms, and ι∗ : H∗TX → H∗TXT is injective.

Exercise 1.14. Prove Theorem 1.13, using the Gysin homomor-
phism as before.

Exercise 1.15. Consider T acting on X ! P2 by characters 0, χ, χ.
What is XT? Work out the weights on each tangent space.

Exercise 1.16. Suppose the T-action on V decomposes as V !⊕m
i!1 Vi, where Vi is the χi-isotypic component, and χ1, . . . , χm are

distinct. Say dim Vi ! ni . Show that X ! Gr(d ,V) has fixed locus

XT
!

∐
d1+···+dm!d

0≤di≤ni

Gr(d1,V1) × · · · × Gr(dm ,Vm).

Note that rk H∗X !

(n
d

)
!

∑∏m
i!1

(ni
di

)
! rk H∗XT . The normal bundle

to a component Zd ! Gr(d1,V1) × · · · × Gr(dm ,Vm) is

Nd !

⊕
j"i

Hom(Si ,Q j).

What are the characters of T acting on the restriction of Nd to a fixed
point?2

2. Integration formula

From now on, we will assume that S ⊆ Λ is a multiplicative set
such that the maps

S−1H∗TXT S−1ι∗
−−−→ S−1H∗TX

S−1ι∗
−−−→ S−1H∗TXT

are isomorphisms. (We have proved this in the case where X is
nonsingular, with H∗TX free over Λ of rank equal to that of H∗XT . In
fact, S−1ι∗ is an isomorphism for any X, for a suitable S, as we will
see in Chapter 7.)
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Consider a proper T-equivariant map of nonsingular varieties
f : X → Y. For each connected component P ⊆ XT , f (P) is contained
in a unique connected component Q ⊆ YT ; let fP : P → Q be the
restriction of f . For any class u ∈ H∗TX, we will write u |P ∈ H∗TP

for the restriction of this class to P, and similarly for the restriction
classes in H∗TY to Q.

Being components of the fixed locus for actions on nonsingular
varieties, both P and Q are nonsingular, and the map fP is proper, so
both vertical maps in the diagram

P X

Q Y

fP f

have associated Gysin homomorphisms. Our goal is to compute f∗
in terms of ( fP)∗. More precisely, we compute the restrictions f∗(u)|Q ,
for any u ∈ H∗TX.

Theorem 2.1 (Integration formula). For any u ∈ H∗TX and any
connected component Q ⊆ YT , we have

f∗(u)|Q ! cT
top(NQ/Y) ·

∑
P: f (P)⊆Q

( fP)∗

(
u |P

cT
top(NP/X)

)
.

In general, the formula takes place in the image ofΛ⊗H∗Q ! H∗TQ

in S−1H∗TQ ! S−1Λ⊗H∗Q. When H∗Q is free over H∗(pt)—for exam-
ple, if Q is a point, or if one uses field coefficients for cohomology—
the homomorphism Λ ⊗ H∗Q → S−1Λ ⊗ H∗Q is injective, and the
formula holds in H∗TQ ! Λ ⊗ H∗Q. This will be the case in all our
applications.

Proof. Since the Gysin map S−1ι∗ : S−1H∗TXT → S−1H∗TX is an
isomorphism, it suffices to prove the formula for u ! (ιP)∗(z), for
some component P ⊆ XT and z ∈ H∗TP. By functoriality and the
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self-intersection formula, the left-hand side is

(ι∗Q ◦ f∗ ◦ (ιP)∗)(z) ! (ι∗Q(ιQ)∗( fP)∗)(z)

!

{
cT

top(NQ/Y) · ( fP)∗(z) if f (P) ⊆ Q;

0 otherwise.

On the right-hand side, using the same properties of Gysin maps,
we have

u |P ! (ι∗P ◦ (ιP)∗)(z) ! cT
top(NP/X) · z ,

and u |P′ ! 0 for P′ " P. So the sum on this side reduces to the single
term

cT
top(NQ/Y) · ( fP)∗

(
cT

top(NP/X) · z

cT
top(NP/X)

)
! cT

top(NQ/Y) · ( fP)∗(z),

agreeing with the left-hand side. !

Example 2.2. When Y is a point, we get an integration formula for
ρ : X → pt:

ρ∗(u) !
∑

P⊆XT

(ρP)∗

(
u |P

cT
top(NP/X)

)
,

where (ρP)∗ : H∗TP→ Λ is integration over P.

Example 2.3. Suppose X and Y have finitely many fixed points,
and f : X → Y is a smooth morphism with relative tangent bundle
TX/Y . For each q ∈ YT we have

f∗(u)|q !

∑
p∈ f −1(q)T

u |p

cT
top(TX/Y |p)

,

since each fp is an isomorphism.

When P ! {p} is a point, the Chern class appearing in the corre-
sponding summand is cT

d
(TpX) ! χ1(p) · · · χd(p), where d ! dim X

and the χi(p) are the characters of T acting on the tangent space TpX.
Combining the two previous examples gives a particularly useful and
simple case:
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Corollary 2.4. Let X be a d-dimensional nonsingular compact alge-
braic variety with finitely many fixed points. Then

ρ∗(u) !
∑

p∈XT

u |p

cT
d
(TpX)

for any class u ∈ H∗TX.

Example 2.5. For T acting onPn−1 via distinct charactersχ1 , . . . , χn,
with ζ ! cT

1 (O(1)), we know

ρ∗(ζ
k) !

{
0 if k < n − 1,

1 if k ! n − 1,

by degree considerations in the first case, and by the classical fact
that n − 1 hyperplanes intersect in a point in the second case. On the
other hand, the integration formula computes this as

ρ∗(ζ
k) !

n∑
i!1

(−χi)k∏
j"i(χ j − χi)

.

Comparing the two yields a nontrivial algebraic identity!

Example 2.6. Consider T ! C∗ acting on P2 by the characters
0, t , 2t, so z · [a , b , c] ! [a , zb , z2c]. The fixed points are the usual co-
ordinate points p1, p2, p3. For u ∈ H∗TP

2, let ui ! u |pi . The integration
formula says

ρ∗(u) !
u1

2t2 +
u2

−t2 +
u3

2t2 !
u1 − 2u2 + u3

2t2 .

This must be a class in Λ ! Z[t], so the integration formula implies a
divisibility condition relating the restrictions to the three fixed points:
2t2 must divide the polynomial u1 − 2u2 + u3.

When computing via localization, it is often convenient to rep-
resent the fixed points of X as the vertices of a graph, with edges
connecting vertices when the corresponding fixed points are con-
nected by a T-invariant curve. This graph is called the moment graph
of X, and we will see several examples in the next few chapters.
(Symplectic geometry explains the way these graphs are drawn; see
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12

23 13

24 14

34

χ3 + χ4 − χ1 − χ2

χ4 − χ2 χ4 − χ1

χ3 − χ2 χ3 − χ1

0

Figure 1. The fixed points in X ! Gr(2,C4), and the class
[Ω]T restricted to H∗T XT .

the Notes in Chapter 7.) The image of a class under the restriction
H∗TX ↪→ H∗TXT is given by labelling the vertices of the moment graph
with characters.

Example 2.7. We will compute the number of lines meeting four
general lines in P3. Let X ! Gr(2,C4) be the space of lines on P3, with
an action of T induced by characters χ1, . . . , χ4.

Fix the line '0 corresponding to the subspace E12 ! span{e1, e2} ⊆

C4, and consider the locus Ω ⊆ X of lines ' meeting '0, i.e.,

Ω !

{
E ⊆ C4

99 dim(E ∩ E12) ≥ 1
}
.

This is defined by the condition that S → C4/E12 has rank at most
1, where S is the tautological bundle on X. In other words, the
determinant homomophism∧2 S→

∧2(C4/E12)

is zero. So Ω ! Z(s) is the zeroes of a section of the line bundle

Hom(
∧2 S,

∧2(C4/E12)) !
∧2 S∨ ⊗ Cχ3+χ4 ,

and [Ω]T is equal to its equivariant first Chern class. We will compute
its restriction to the fixed points pI .

We have cT
1 (

∧2 S∨ ⊗ Cχ3+χ4)|pij ! −χi − χ j + χ3 + χ4. The class
[Ω]T is shown as a labelled moment graph in Figure 1.
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To address the four-lines problem, first note that the assumption
that the given lines be general means that the intersection

Ω'1 ∩Ω'2 ∩Ω'3 ∩Ω'4 !

{
' | ' meets '1, '2, '3, and '4

}
is transverse and zero-dimensional, and we wish to compute the
number of points—that is,∫

X
[Ω'1] · [Ω'2] · [Ω'3] · [Ω'4],

where
∫

X
is the (non-equivariant) pushforward H∗X → H∗(pt) ! Z.

Any line '′ in P3 can be translated to '0 by an element g ∈ GL4.
So

Ω'′ !
{
' | ' ∩ '′ " ∅

}
! g−1

Ω,

and since GL4 is a connected group, we have [Ω'′] ! [Ω] in H∗X. So
it is equivalent to compute

∫
X
[Ω]4.

By basic properties of Gysin homomorphisms (Chapter 3, §6),∫
X
[Ω]4 is equal to the image of ρ∗(([Ω]T )4) under H∗T(pt) → H∗(pt).

The class is in degree 0, and H0
T(pt) ! H0(pt) ! Z. So this non-

equivariant pushforward is the same as the equivariant one, and we
can compute it using the integration formula:

ρ∗(([Ω]
T)4) !

(χ3 + χ4 − χ1 − χ2)4

(χ3 − χ1)(χ3 − χ2)(χ4 − χ1)(χ4 − χ2)

+
(χ4 − χ1)4

(χ2 − χ1)(χ2 − χ3)(χ4 − χ1)(χ4 − χ3)

+ (four more terms, one of which is zero).

This expression can be evaluated quickly by computer algebra, but
to carry out the calculation by hand, it is useful to employ another
simplification.

Let us writeΩi j ! {E | dim(E∩Eij ) ≥ 1}, soΩ ! Ω12. By the same
reasoning as before, we can compute with any four choices of i j; in
particular, we may choose them so that many terms in the integration
formula are zero. For example, the product [Ω12]T · [Ω13]T · [Ω34]T ·

[Ω24]T has nonzero localizations at only two fixed points, p14 and p23.
(See Figure 2.) Using the integration formula for this product, one
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[Ω12]T

χ4 − χ2

χ3 − χ1

0

[Ω13]T

χ4 − χ3

0 χ2 − χ1

0
[Ω34]T

χ1 − χ3

χ2 − χ4

[Ω24]T

χ1 − χ2 0

χ3 − χ4

!

0

(χ4 − χ2)(χ4 − χ3)(χ1 − χ3)(χ1 − χ2) 0

0 (χ3 − χ1)(χ2 − χ1)(χ2 − χ4)(χ3 − χ4)

0

Figure 2. The product [Ω12]T · [Ω13]T · [Ω34]T · [Ω24]T in
H∗T Gr(2,C4), represented by its localizations at fixed points.

sees ∫
X
[Ω]4 ! ρ∗

(
[Ω12]

T · [Ω13]
T · [Ω34]

T · [Ω24]
T )

!
(χ3 − χ1)(χ2 − χ1)(χ2 − χ4)(χ3 − χ4)

(χ2 − χ1)(χ3 − χ1)(χ2 − χ4)(χ3 − χ4)

+
(χ4 − χ2)(χ4 − χ3)(χ1 − χ3)(χ1 − χ2)

(χ1 − χ2)(χ4 − χ2)(χ1 − χ3)(χ4 − χ3)

! 1 + 1 ! 2,

so there are two lines through the four given lines.

Exercise 2.8. How many lines in P4 meet six general planes?3

3. Equivariant formality

There are general criteria which imply the hypotheses of the lo-
calization theorems—in particular, freeness of H∗TX as a Λ-module.
As noted earlier, we will be able to verify these hypotheses directly
for our main examples and applications, so the results of this section
are not logically necessary. However, it is sometimes useful to know
when to expect the localization package to work, and the terminology
appears frequently in the literature.
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For a Lie group G acting on X, an integer m > 0, and a coefficient
ring R (usually Z or a field), consider the following condition:

(∗m) For 0 ≤ i ≤ m, HiX is finitely generated and free over R, and
there are elements xij ∈ Hi

GX that restrict to a basis for HiX.

The space X is called (cohomologically) equivariantly formal with respect
to the action of G and the coefficient ring R if it satisfies (∗m ) for all m >

0. The main reason for introducing this condition is the following
direct consequence of the Leray-Hirsch theorem (Appendix A, §4):

Proposition 3.1. Assume (∗m) holds for some m > 0.

(1) Every element of Hm
G X has a unique expression as

∑
i, j ci j xi j , for

some ci j ∈ Hm−iBG.
(2) If X is equivariantly formal, then H∗GX is a free ΛG-module with

basis {xij}, and the forgetful homomorphism

H∗GX ⊗ΛG R→ H∗X

is an isomorphism. In fact, for any G′ acting on X through a
homomorphism G′ → G, the corresponding homomorphism

H∗GX ⊗ΛG ΛG′ → H∗G′X

is an isomorphism.

We are most interested in the case where G ! T is a torus. For
nonsingular complete varieties with finitely many fixed points, a
general theorem provides a cell decomposition.

Theorem 3.2 (Białynicki-Birula). Suppose a torus T acts on a non-
singular complete variety X with finitely many fixed points. Then there is a
filtration by T-invariant closed subsets X ! Xn ⊇ Xn−1 ⊇ · · · ⊇ X0 ⊇ ∅,
with Xi ! Xi−1 !

∐
Uij and Uij ! A

i . Moreover, the total number of cells
Uij is equal to #XT .

This implies such varieties are always equivariantly formal, since
the classes of the invariant subvarieties Uij form bases for H∗TX and
H∗X, over Λ and R, respectively.
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Corollary 3.3. Let a torus T act on a nonsingular complete variety
X, with finitely many fixed points. Then X is equivariantly formal with
integral coefficients. In particular,

(1) H∗TX → H∗X is surjective, with kernel generated by the kernel of
ΛT → Z; and

(2) H∗TX → H∗TXT is injective, and becomes an isomorphism after
inverting finitely many characters in ΛT .

Proof. With cells Uij as in the Białynicki-Birula decomposition,
the equivariant class [Uij]T restricts to the nonequivariant class [Uij],
so X is equivariantly formal. Injectivity of the restriction homomor-
phism comes from the diagram

H∗TX H∗TXT

S−1H∗TX S−1H∗TXT ,

ι∗

∼

for a suitable multiplicative set S ⊆ Λ, where the vertical arrows are
injective since H∗TX and H∗TXT are free overΛ, and the bottom arrow is
an isomorphism by the basic localization theorem (Theorem 1.8). !

Thus complete nonsingular varieties with finitely many fixed
points give a large class of examples where one sees the “two no-
tions” about equivariant cohomology described in Chapter 1.

Applying the general localization theorem to be proved in Chap-
ter 7, similar reasoning shows that if a T-variety X is equivariantly
formal, and H∗XT is also free over R, then the restriction homomor-
phism ι∗ : H∗TX → H∗TXT is injective.

Notes

Luna’s étale slice theorem is explained in [GIT, p. 198]. The topological
slice theorem is apparently due to Koszul [Ko53], and can be found in
Audin’s book [Aud04, Chapter I]. We learned Example 1.7 from Johan de
Jong.

Iversen’s theorem on the nonsingularity of the fixed locus (Lemma 1.11)
applies more generally for actions of linearly reductive groups, i.e., those
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for which all finite-dimensional respresentations are completely reducible;
in positive characteristic this amounts to considering diagonalizable groups
[Iv72]. Iversen also includes a formula for Euler characteristics which gives
rk H∗X ! #XT in the case when X has finitely many fixed points and no
odd-dimensional cohomology. Again, the novelty is mainly the algebraic
proof and the application to positive characteristic; as Iversen points out, in
topology it can be deduced from the Lefschetz trace formula.

The idea of proving localization theorems using Gysin pushforwards
can be traced to Quillen [Qn71a] and Quart [Qt79], who used similar tech-
niques in cobordism and K-theory, respectively.

The integration formula, especially in the finite fixed point case of Corol-
lary 2.4, is known by many names in the literature. Names commonly at-
tached to it include Atiyah-Bott (after their paper [AtBo84]), Berline-Vergne
([BeVer82]), Duistermaat-Heckman ([DuHe82]), and “stationary phase for-
mula” (especially in the physics literature).

Example 2.5 is one case of a family of identities due to Sylvester, and
rediscovered by many other mathematicians. A short review of the his-
tory, along with an elementary proof, can be found in [Bh99]. Many such
identities can be obtained by equivariant localization on other spaces.

The usage of the term “equivariantly formal” in the sense of §3 ap-
pears to originate in the seminal article of Goresky-Kottwitz-MacPherson
[GKM98]. In this paper (and in much of the literature stemming from it), an
equivariantly formal space is defined to be one for which the Serre spectral
sequence for the fibration EG ×G X→ BG,

E
p,q
2 ! Hp(BG; HqX)⇒ H

p+q
G X,

degenerates at the E2 term. This condition was considered earlier by Borel
[Bor60, §XII.3–6].

Using coefficients in Q, nine sufficient conditions for equivariant for-
mality are given in [GKM98, Theorem 14.1], including the following.

– H∗(X;Q) vanishes in odd degrees, and G is a connected linear
algebraic group or compact Lie group.

– X is a nonsingular projective variety, and G ! T is a torus.

– X is a possibly singular projective algebraic variety, G ! T is a
torus, and for all q ≥ 0, Hq(X;Q) is pure of weight q (in the sense
of mixed Hodge theory).
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The last condition includes all toric varieties. The use of field coefficients is
essential in all of these conditions.

A different notion of equivariant formality is used in rational homotopy
theory, where it involves an isomorphism between H∗(X;Q) and a certain
differential graded algebra. In order to disambiguate the terminology,Franz
and Puppe propose to add the modifier “cohomological” to the equivariant
formality we consider. (They also point out that the abbreviation CEF also
stands for “cohomology extension of the fiber”, which nicely captures the
geometry.)

Białynicki-Birula proved a stronger version of Theorem 3.2, where the
fixed locus XT may have positive-dimensional components [BB73]; see also
[Bri97b, §3.1].

Hints for exercises

1Here is another way to prove injectivity. The composition

Λ
⊕n

! H∗T(P
n−1)T

ι∗
−→ H∗TP

n−1 ι∗
−→ H∗T(P

n−1)T ! Λ
⊕n

is diagonal. What is its determinant? (This shows the maps S−1H∗T(P
n−1)T →

S−1H∗TP
n−1 → S−1H∗T(P

n−1)T are isomorphisms, for an appropriate multiplicative
set S.)

2The tangent bundle TX restricts to Zd as Hom(S,Q) !
⊕

i , j Hom(Si ,Q j), and
TZd accounts for the diagonal summands; this explains the computation of Nd.
The characters are χ j − χi for i " j, appearing with multiplicity di(nj − dj).

3The locus Ω ⊆ Gr(2,C5) of lines meeting the plane P(E123) is given by the
vanishing of

∧2 S→
∧2(C5/E123). So its class is [Ω]T ! cT

1
(
∧2 S∨ ⊗ Cχ4+χ5).


