
CHAPTER 9

Schubert calculus on Grassmannians

In Chapter 4, we computed H∗GGr(d ,V) in terms of Schur poly-
nomials, using the tautological bundles on Gr(d ,V). Here we will
study the geometry of this space in more detail. Our main focus is
on Schubert varieties, especially ways of describing and multiplying
their classes in equivariant cohomology.

1. Schubert cells and Schubert varieties

As in Chapter 4, we fix d + e ! n, and consider the Grassmannian
Gr(d ,V) ! Gr(V, e). Now we also fix a flag

E• : E1 ⊂ E2 ⊂ · · · ⊂ En ! V,

with dim Eq ! q. Often we will write Eq
! En−q , so subscripts

indicate dimension, and superscripts indicate codimension in V .
Given a partition λ ! (e ≥ λ1 ≥ · · · ≥ λd ≥ 0), the Schubert cell

Ω◦λ ! Ω◦λ(E•) is the set of subspaces F ⊂ V satisfying the conditions

dim(F ∩ Eq) ! k for q ∈ [e + k − λk , e + k − λk+1], k ! 0, . . . , d.

Equivalently, given a subset I ! {i1 < · · · < id} ⊂ {1, . . . , n}, this is
the same as defining

Ω
◦
I !

{
F
"" dim(F ∩ Eq−1) ! d − k for q ∈ (ik , ik+1], k ! 0, . . . , d

}
.

(By convention, we set λ0 ! e, λd+1 ! 0, i0 ! 0, id+1 ! n + 1.) The
equivalence is by ik ! k + λd+1−k. The bĳection between partitions λ
inside the d × e rectangle and d-element subsets I ⊆ {1, . . . , n} can
be seen graphically by recording the vertical steps when walking SW
to NE along the border of λ, as shown in Figure 1.

Let us choose a standard basis e1, . . . , en so that the fixed subspace
Eq is the span of eq+1, . . . , en. The Borel subgroup B− ⊆ GL(V)
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134 §1. Schubert cells and Schubert varieties

d ! 4, e ! 5, n ! 9
λ ! (5, 3, 1, 1)
I ! {2, 3, 6, 9}

Figure 1. Partitions and k-subsets of {1, . . . , n}

preserving the flag E• gets identified with lower-triangular matrices.
For each partition λ (or subset I), there is a point pλ ! pI ∈ Gr(d ,V),
corresponding to the subspace EI ⊆ V spanned by standard basis

vectors {ei | i ∈ I}. The cell Ω◦λ can then be described as the B−-orbit
of this point, so

Ω
◦
λ ! B− · pλ .

A simple exercise in Gaussian elimination shows that points in Ω◦λ
are uniquely represented as column spans of matrices in “column
echelon form” as

Ω
◦
λ ! Ω

◦
I !



0 0 0 0
1 0 0 0
0 1 0 0
∗ ∗ 0 0
∗ ∗ 0 0
0 0 1 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 1



,

with the pivots appearing in rows I. This shows that Ω◦λ is an affine
space of codimension |λ | in Gr(d ,V), that is, Ω◦λ ! C

de−|λ | . It also
shows that the Schubert cells decompose Gr(d ,V), that is,

Gr(d ,V) !
∐
λ

Ω
◦
λ , union over λ ⊆ d

e

.

The Schubert varieties are

Ωλ ! Ωλ(E•) ! Ω◦λ ⊆ Gr(d ,V).
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They can be described by replacing equalities by inequalities in the
dimension conditions:

Ωλ !

{
F
"" dim(F ∩ Ee+k−λk ) ≥ k for k ! 1, . . . , d

}
.

(This is not difficult to see, but it is not obvious either!) It follows that
each Schubert variety decomposes into Schubert cells:

Ωλ !

∐
µ⊇λ

Ω
◦
µ,

the union over partitions µ in the d × e rectangle which contain λ.
As with Schubert cells, we will often write ΩI ! Ωλ, when I is the
d-element subset corresponding to the partition λ.

Not all the inequalities are needed to define a Schubert variety:

Exercise 1.1. Show that the inequalities in the above definition of
Ωλ are equivalent to

Ωλ !

{
F
"" dim(F ∩ Ee+k−λk ) ≥ k for k such that λk > λk+1

}
.

That is, the conditions coming from corners of the Young diagram
suffice to defineΩλ.

For example, if λ ! (p , . . . , p , 0, . . . , 0), with p occurring q times
(so the Young diagram is a q× p rectangle), thenΩλ is defined by the
single condition dim(F ∩ Ee+q−p) ≥ q.

2. Schubert classes and the Kempf-Laksov formula

The Schubert varietiesΩλ(E•) are evidently B−-invariant subvari-
eties, and the Schubert cell decomposition implies their classes form
a basis for cohomology.

Proposition 2.1. The classes [Ωλ]B− form a basis for H∗B−Gr(d ,V)

over Λ ! ΛB− .

Proof. Let Xi ⊆ Gr(d ,V) be the union of allΩλ with |λ | ! de − i,
i.e., all Schubert varieties of dimension i. Then Xi ! Xi−1 is the
disjoint union of Schubert cells Ω◦λ of dimension i, so the statement
follows from the equivariant cell decomposition lemma (Chapter 4,
Proposition 7.1). !
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In Chapter 4, we saw a presentation

H∗B−Gr(d ,V) ! ΛB−[c1, . . . , ce]/(sd+1, . . . , sn),

with ck ! cB−

k
(Q) and sk ! cB−

k
(V − Q). Now that we have a basis of

Schubert classes, a question naturally arises: How does one express
[Ωλ]B− in terms of the presentation, i.e., as polynomials in the Chern
classes cB−

k
(Q)?

To give such a formula for [Ωλ]B−, we introduce some nota-
tion. Given a partition λ ! (λ1 ≥ · · · ≥ λd ≥ 0) and elements
c(1), c(2), . . . , c(d), where c(i) is a graded series 1+ c1(i)+ c2(i)+ · · · ,
the multi-Schur determinant is

∆λ(c) ! ∆λ(c(1), . . . , c(d)) :! det
(
cλi+ j−i(i)

)
1≤i, j≤d

!

"""""""""

cλ1(1) cλ1+1(1) · · ·

cλ2−1(2) cλ2(2) · · ·
...

. . .

cλd (d)

"""""""""
.

(To remember this formula, write cλi (i) down the diagonal, and make
the subscripts increase by 1 across rows.) One may truncate zeroes in
λ without changing the determinant ∆λ(c). The Schur determinant
considered in Chapter 4 is the case where c ! c(1) ! · · · ! c(d).

Our first formula for equivariant Schubert classes was proved by
Kempf and Laksov in the context of degeneracy loci. Special cases
were found much earlier by Giambelli.

Theorem 2.2 (Kempf-Laksov). For λ in the d × e rectangle, we have

[Ωλ]
B−

! ∆λ(c(1), . . . , c(d)),

where c(i) ! cB−(Q − Ee+i−λi ).

The entries c(i) of the Schur determinant may be replaced by
c′(i) ! · · · ! c′(k) ! cB−(Q − Ee+k−λk ) if λi ! · · · ! λk > λk+1. This
follows from an easy property of multi-Schur determinants. Suppose
c(i − 1) ! c(i) · (1 + a), for some element a of degree 1. If λi−1 ! λi,
then

∆λ(. . . , c(i − 1), c(i), . . .) ! ∆λ(. . . , c(i), c(i), . . .).
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(The left-hand side comes by adding a times the ith row to the (i−1)st
row of the matrix on the right-hand side, and this operation leaves
the determinant unchanged.)

One can prove the Kempf-Laksov formula by finding a desingu-
larization of the locus Ωλ and computing pushforwards; this was
Kempf and Laksov’s approach. In §4, we will give a different proof
in T-equivariant cohomology (which is the same as B−-equivariant
cohomology) via combinatorics of symmetric functions. In the next
section, we establish some localization formulas which we will need.

Example 2.3. The formula says

[Ω (E•)]
B−

! cB−

1 (Q − Ee).

This is easy to see directly, since

Ω (E•) !
{
F
"" dim(Ee ∩ F) ≥ 1

}

!

{
F
"" rk(Ee → Q) < e

}

!

{
F
"" ∧e Ee →

∧e Q is 0
}
,

so its cohomology class is the first Chern class of the line bundle
Hom(

∧e Ee ,
∧e Q), which is equal to cB−

1 (Q − Ee). (We saw this for
Gr(2,C4) in Example 2.7 of Chapter 5.)

Example 2.4. Other instances of the Kempf-Laksov formula are

[Ω (E•)]
B−

!

"""" cB−

2 (Q − Ee−1) cB−

3 (Q − Ee−1)

1 cB−

1 (Q − Ee+1)

""""
! c2(1) c1(2) − c3(1)

and

[Ω (E•)]
B−

!

"""" cB−

1 (Q − Ee) cB−

2 (Q − Ee)

1 cB−

1 (Q − Ee+1)

""""
! c1(1) c1(2) − c2(1),
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or alternatively,

[Ω (E•)]
B−

!

"""" cB−

1 (Q − Ee+1) cB−

2 (Q − Ee+1)

1 cB−

1 (Q − Ee+1)

""""
! c1(2) c1(2) − c2(2).

3. Tangent spaces and normal spaces

In the rest of this chapter, we study the equivariant geometry
of Gr(d ,Cn) with respect to an action of a torus T by characters
χ1, . . . , χn . Let e1, . . . , en be a weight basis, so z · ei ! χ(z) ei for all z ∈

T. As we have seen before (Chapter 5, Example 1.10), Gr(d ,Cn)has an
open cover by T-invariant open sets, one for each I ! {i1 < · · · < id} ⊂

{1, . . . , n}.



∗ ∗ ∗ ∗

1 0 0 0
0 1 0 0
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 1 0
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 0 1



In matrix form, these open sets are represented by
n×d matrices so that the submatrix on rows I is the
identity matrix, and the remaining entries are free.
For example, if d ! 4, n ! 9, and I ! {2, 3, 6, 9},
the corresponding open set is shown at left. This
illustrates a natural identification with the de-
dimensional affine space E∨I ⊗ E{1,...,n}!I , where T

acts by the characters χ j − χi for i ∈ I and j " I.
There is an equivariant isomorphism between this
open affine and the tangent space TpI Gr(d ,Cn),
identifying pI with the origin 0 ∈ TpI Gr(d ,Cn). If

all characters χ1, . . . , χn are distinct, then all characters on each tan-
gent space TpI Gr(d ,Cn) are nonzero, and the fixed locus consists of
the finitely many points pI .

Comparing this with our description of the Schubert cell Ω◦I , we
see that the weights of T on TpIΩI are {χ j − χi | i ∈ I , j " I , i < j}. It
follows that the weights of T on the normal space NI to ΩI at pI are
{χ j − χi | i ∈ I , i " I , i > j}. From the self-intersection formula, this
means

(∗) [ΩI]
T |pI ! cT

top(NI) !
∏

i∈I , j"I
i> j

(χ j − χi).
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From the cell decomposition, we know

Ωµ ⊆ Ωλ iff µ ⊇ λ (as diagrams)

iff J ≥ I (i.e., jk ≥ ik for all k),

where I is the subset corresponding to the partition λ, and J is the
one corresponding to µ. This means that pµ ! pJ lies in Ωλ ! ΩI iff
µ ⊇ λ iff J ≥ I, so

(∗∗) [ΩI]
T |pJ ! 0 unless J ≥ I .

Now let us assume the characters χi are all distinct, so the fixed
points are isolated. It turns out that the two conditions (∗) and (∗∗)
uniquely determine the class [ΩI]T .

Lemma 3.1. If a homogeneous element α ∈ H∗TGr(d ,Cn) satisfies (∗)
and (∗∗), then α ! [ΩI]T .

Proof. We have seen that [ΩI]T satisfies the conditions, so it is
enough to show that if two classes α and α′ satisfy (∗) and (∗∗), then
they must be the same. Equivalently, we will show that β ! α − α′ is
zero.

We know β |pJ ! 0 unless J ≥ I by (∗∗). Let K ≥ I be a minimal
element such that β |pK # 0. It must be that K > I, since α |pI ! α′ |pI

by (∗). The “GKM” divisibility conditions (Chapter 7, Corollary 4.3)
force β |pK to be a multiple of∏

i∈K, j"K
i> j

(χ j − χi),

which is equal to [ΩK]T |pK . So β |pK has degree at least |ν |, where ν
is the partition corresponding to K. Since K > I, we have |ν | > |λ |,
contradicting the homogeneity of the classes α and α′. !

The conditions (∗) and (∗∗) can be regarded as an interpolation
problem; the lemma says this problem has a unique solution. We will
next tie this to symmetric functions, making it an explicit problem of
polynomial interpolation.
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4. Double Schur polynomials

We consider functions of two sets of variables, x ! (x1, x2, . . . , xd)

and y ! (y1, y2, . . .). (One can extend the y variables to be doubly
infinite, allowing non-positive indices, but in practice only finitely
many appear.) We define the “double monomial”

(xi |y)
p
! (xi − y1)(xi − y2) · · · (xi − yp).

There are several equivalent definitions of double Schur functions
sλ(x |y), generalizing corresponding definitions of the single Schur
polynomials, which are recovered by setting y ! 0.

Bialternants. Generalizing Cauchy’s functions, we set

sλ(x |y) !

""(xi |y)
λ j+d− j

""
1≤i, j≤d""(xi |y)d− j

""
1≤i, j≤d

,

where both determinants are d × d. The numerator is an alternating
function of x, and a pleasant exercise shows that the denominator is
the Vandermonde""(xi |y)

d− j
"" ! """xd− j

i

""" ! ∏
i< j

(xi − xj),

so the ratio is a polynomial.

Tableaux. There is a formula in terms of semistandard Young tableaux:

sλ(x |y) !
∑

T ∈SSYT(λ)

∏
(i, j)∈λ

(xT (i, j) − yT (i, j)+ j−i ),

the sum over SSYT tableaux T of shape λ with entries in {1, . . . , d}.
For example, if d ! 3, there are 8 semistandard Young tableaux of

shape λ ! ,

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3 ,
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so the double Schur function is

sλ(x |y) ! (x1 − y1)(x1 − y2)(x2 − y1) + (x1 − y1)(x1 − y2)(x3 − y2)

+ (x1 − y1)(x2 − y3)(x2 − y1) + (x1 − y1)(x2 − y3)(x3 − y2)

+ (x1 − y1)(x3 − y4)(x2 − y1) + (x1 − y1)(x3 − y4)(x3 − y2)

+ (x2 − y2)(x2 − y3)(x3 − y2) + (x2 − y2)(x3 − y4)(x3 − y2).

Jacobi-Trudi. The Jacobi-Trudi determinantal formula generalizes to

sλ(x |y) !
""hλi+ j−i(x |τ

1− j y)
""
1≤i, j≤d

,

where

hp(x |y) ! s(p)(x |y) !
∑

1≤i1≤···≤ip≤d

(xi1−yi1)(xi2−yi2+1) · · · (xip−yip+p−1),

and τ is the shift operator defined by (τ j y)i ! yi+ j .

The main fact we need is a vanishing theorem for double Schur
functions. Let yλ

k
! yλd+1−k+k ; or in terms of the corresponding subset

I, yI
k
! yik .

Lemma 4.1. We have

sλ(y
λ |y) !

∏
i∈I , j"I

i> j

(yj − yi),

where I ⊆ {1, . . . , n} is the subset corresponding to λ, and

sλ(y
µ |y) ! 0 if µ " λ.

Exercise 4.2. Prove Lemma 4.1.1

After appropriately identifying the variables, the lemma says that
double Schur functions satisfy conditions (∗) and (∗∗) from §3—that
is, the same interpolation problem solved uniquely by [Ωλ]T ! To
make this precise, let x1, . . . , xd be (equivariant) Chern roots of the
dual tautological bundle S∨ on Gr(d ,Cn), so

cT
k (S
∨) ! ek(x1, . . . , xd)
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Then, specializing the y variables by yi ! −χi ,

cT
k (S
∨)|pλ ! cT

k (E
∨
I ) ! ek(y

λ
1 , . . . , y

λ
d ).

In other words, there is a commuting diagram

cT
k
(S∨) H∗TGr(d ,Cn)

ck Λ[c1, . . . , cd] Λ

ek(x) Λ[x1, . . . , xd].

ι∗pλ

xk 0→ yλ
k

The polynomials sλ(x |y) are symmetric in the x variables, so they lie
in Λ[c1, . . . , cd]. They satisfy (∗) and (∗∗) by Lemma 4.1, so it follows
from Lemma 3.1 that sλ(x |y) 0→ [Ωλ]T .

Invoking the Jacobi-Trudi formula, we obtain:

Corollary 4.3. Evaluating x1, . . . , xd as equivariant Chern roots of
S∗, and yi ! −χi , we have

[Ωλ]
T
! sλ(x |y)

!

""hλi+ j−i(x |τ
1− j y)

""
1≤i, j≤d .

This proves the Kempf-Laksov formula (Theorem 2.2), once one
knows the entries of the matrices are identical.

Exercise 4.4. With the specializations as in Corollary 4.3, show
that cT

λi+ j−i(Q − Ee+i−λi ) ! hλi+ j−i(x |τ1− j y).2

5. Poincaré duality

We have seen one basis for H∗TGr(d ,Cn), the Schubert classes
σλ ! [Ωλ]T . Our next goal is to describe the Poincaré dual basis. Let
Ẽ• be the opposite flag to E•, so if Ek is spanned by en+1−k , . . . , en, then
Ẽk is spanned by e1, . . . , ek . The flag Ẽ• is fixed by the Borel group B,
which in this basis is the set of upper-triangular matrices in GLn .
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The opposite Schubert cells and varieties are defined as before, but
with respect to the flag Ẽ•:

Ω̃
◦
λ :! Ω◦λ(Ẽ•) and Ω̃λ :! Ωλ(Ẽ•).

These are B-invariant, so also T-invariant. To identify the T-fixed
points contained in Ω̃λ, it will help to introduce some more notation.
Let λ∨ be the complement to λ in the d × e rectangle, also called the
dual partition. In formulas, this is λ∨

k
! e−λd+1−k. Let I∨ ⊆ {1, . . . , n}

be the corresponding d-element subset, so I∨ ! {i∨1 < · · · < i∨
d
},

with i∨
k
! n + 1 − id+1−k. This can be seen by reading the border of

λ ⊆ d

e

in the opposite direction, from NE to SW, as illustrated
below.

λ ! (5, 3, 1, 1)

I ! {2, 3, 6, 9}

λ∨ ! (4, 4, 2, 0)

I∨ ! {1, 4, 7, 8}

Exercise 5.1. Verify that pI ! pλ is the unique T-fixed point in
Ω̃◦I∨ ! Ω̃

◦
λ∨ , so Ω̃◦λ∨ ! B · pλ.

For example, with d ! 4, n ! 9, and I ! {2, 3, 6, 9}, we have

Ω
◦
I !



0 0 0 0
1 0 0 0
0 1 0 0
∗ ∗ 0 0
∗ ∗ 0 0
0 0 1 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 1



and Ω̃
◦
I∨ !



∗ ∗ ∗ ∗

1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗
0 0 1 0
0 0 0 ∗
0 0 0 ∗
0 0 0 1



,

both inside the T-invariant affine neighborhood of pI . The pivot 1’s
in Ω̃◦I∨ are in the rows indicated by I∨, but read from bottom to top.
So

codimΩλ ! dim Ω̃λ∨ ! |λ |,
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while
dimΩλ ! codim Ω̃λ∨ ! |λ∨ |.

The correspondence λ↔ λ∨ reverses inclusions. Since the oppo-
site Schubert variety decomposes as Ω̃λ !

∐
µ⊇λ Ω̃

◦
µ and pµ∨ ∈ Ω̃◦µ,

we see
pµ ∈ Ω̃λ iff µ∨ ⊇ λ iff µ ⊆ λ∨.

Proposition 5.2. Let σλ ! [Ωλ]T and σ̃λ ! [Ω̃λ]T . Then {σ̃λ∨} is the
Poincaré dual basis to {σλ}.

Proof. We must show

ρ∗(σλ · σ̃µ) !

{
1 if µ ! λ∨;

0 otherwise.

When µ ! λ∨, the varieties Ωλ and Ω̃λ∨ meet transversally in the
single point pλ. In general, the above analysis of fixed points shows
that

(Ωλ ∩ Ω̃µ)
T
!

{
pν | µ

∨ ⊇ ν ⊇ λ
}
.

The fact that Ωλ ∩ Ω̃λ∨ is transverse is apparent from a computation
of tangent spaces—say, by using matrix descriptions of Ω◦I and Ω̃◦I∨ .
One sees as before that TpλΩ̃λ∨ has weights {χ j−χi | i ∈ I , j " I , i > j},
so that

TpλGr(d ,Cn) ! TpλΩλ ⊕ TpλΩ̃λ∨ .

This shows ρ∗(σλ · σ̃λ∨) ! 1.
If µ # λ∨, there are two possibilities to consider. First, suppose

µ # λ∨, so µ∨ " λ. Then (Ωλ∩Ω̃µ)T ! ∅, so the intersection is empty.
(Any nonempty projective variety has a T-fixed point, by Borel’s fixed
point theorem.) So ρ∗(σλ · σ̃µ) ! 0 in this case.

On the other hand, suppose µ $ λ∨, so µ∨ % λ. Then |µ∨ |− |λ | >

0. But this means de − |µ| − |λ | > 0, that is, |µ| + |λ | − de < 0. Since
ρ∗(σλ · σ̃µ) ∈ Λ

2(|µ|+|λ |−de)
T ! 0, we are done. !

We obtain a formula for the class of an opposite Schubert variety
by replacing E• by Ẽ• in the Kempf-Laksov formula.
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Theorem 5.3. In H∗TGr(d ,Cn), we have

[Ω̃λ]
T
! ∆λ (̃c(1), . . . , c̃(s))

! sλ(x | ỹ),

where c̃(k) ! cT(Q − Ẽe+k−λk ), x1, . . . , xd are equivariant Chern roots of
S∨, and ỹk ! yn+1−k ! −χn+1−k .

6. Multiplication

A major goal of equivariant Schubert calculus is to describe the
coefficients cνλµ appearing in the expansion

σλ · σµ !
∑
ν

cνλµ σν ,

in H∗TGr(d ,Cn). The same problem can be posed for other flag va-
rieties, but Grassmannians are one of the very few cases where a
complete and satisfying answer is known.

We will prove some basic facts about these coefficients, assuming
throughout that the characters χ1, . . . , χn are distinct. (The general
case can be obtained from this one, by specializing the χi ’s.) Evi-
dently, cνλµ is a homogeneous polynomial of degree |λ | + |µ| − |ν |.

Lemma 6.1. The coefficients cνλµ satisfy the following properties:

(i) cνλµ ! 0 unless λ ⊆ ν and µ ⊆ ν.

(ii) c
µ
λµ ! σλ |µ ! [Ωλ]T |pµ .

(iii) cλλλ !

∏
i∈I , j"I

i> j

(χ j − χi).

Proof. For (i), the cell decomposition lemma shows that restric-
tions of classes σα for α " λ form a basis for H∗(X ! Ωλ), because
these are classes of the Schubert varieties Ωα not contained in Ωλ.
The class σλ maps to 0 under H∗TX → H∗T(X!Ωλ)—as one can see by
using the long exact sequence of Borel-Moore homology—so σλ · σµ
also maps to 0, for any µ. It follows that σλ · σµ !

∑
ν cνλµσν involves
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only those ν such that ν ⊇ λ. By symmetry, one concludes that ν ⊇ µ,
as well.

For (ii), we restrict the equation defining cνλµ to pµ, obtaining

σλ |µ · σµ |µ !
∑
ν

cνλµ σν |µ.

We know σν |µ ! 0 unless pµ ∈ Ων , that is, µ ⊇ ν; but by (i), we
also know cνλµ ! 0 unless µ ⊆ ν. The only term surviving on the

right-hand side is ν ! µ, so we find σλ |µ · σµ |µ ! c
µ
λµ σµ |µ. We found

the formula for σµ |µ in §3, and this is not a zerodivisor since all χi are
distinct. Canceling these factors gives the claimed formula for c

µ
λµ.

Formula (iii) follows from (ii), using the formula for σλ |λ. !

The Chevalley-Pieri formula gives a rule for multiplication by a
divisor class σ . The classical (non-equivariant) version says that in
H∗X,

σ · σλ !

∑
λ+

σλ+ ,

the sum over all partitions λ+ obtained from λ by adding one box.
For example, in H∗Gr(3,C7) we have

σ · σ(3,2) ! σ(4,2) + σ(3,3) + σ(3,2,1) .

We will prove a very general version of this formula in Chapter 19.
The reader may enjoy proving the corresponding formula for mul-
tiplying a Schur polynomial by h1 ! x1 + x2 + · · · + xd. (As usual,
references are in the Notes.)

To state the equivariant version precisely, we need another for-
mula:

σ |λ !

∑
j"I

χ j −
n∑

i!d+1

χi

!

d∑
j!1

χ j −
∑
i∈I

χi .
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This follows from σ ! cT
1 (Q − Ee), using cT

1 (Q)|pλ !
∑

j"I χ j . The
second line makes it clear that the formula is independent of n. Note
that σ |λ # σ |µ if λ # µ.

Theorem 6.2 (Equivariant Chevalley-Pieri). In H∗TX, we have

σ · σλ !

∑
λ+

σλ+ +
67
8

d∑
j!1

χ j −
∑
i∈I

χi
9:
;
σλ ,

the sum over λ+ obtained from λ by adding one box.

Proof. The sum is from the nonequivariant case; the equivariant
coefficients must agree by degree. The other term has coefficient
cλλ ! σ |λ by Lemma 6.1(iii). No other terms appear, since cν λ is
nonzero only for |ν | ≤ |λ | + 1 and ν ⊇ λ, by Lemma 6.1(i). !

Remarkably, the equivariant Chevalley rule determines all struc-
ture constants cνλµ for H∗TGr(d ,Cn), and hence also for H∗Gr(d ,Cn).
This is far from true of the non-equivariant rule: H∗Gr(d ,Cn) is not
generated by the divisor class. A general reason for this phenomenon
was given in Chapter 7, §1. Here we will see an algorithmic proof.

First, we need some more formulas.

Lemma 6.3. We have

(σ |λ − σ |µ) cλλµ !
∑
µ+

cλλµ+ ,(i)

the sum over µ+ obtained by adding one box to µ, and

(σ |ν − σ |λ) cνλµ !
∑
λ+

cνλ+µ −
∑
ν−

cν
−

λµ,(ii)

the sums over λ+ obtained by adding one box to λ, and ν− obtained by
removing one box from ν.

Proof. For (i), using the formula cλµλ ! σµ |λ together with com-
mutativity, the left-hand side is (σ |λ − σ |µ)σµ |λ, while the right-
hand side is

∑
σµ+ |λ. So (i) results from restricting the equivariant

Chevalley-Pieri formula to pλ.
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For (ii), we will use associativity. By Chevalley-Pieri,

σ · (σλ · σµ) !
∑
ν

cνλµσ · σν

!

∑
ν+

cνλµσν+ +
∑
ν

cνλµ(σ |ν)σν ,

and

(σ · σλ) · σµ !
∑
λ+

σλ+ · σµ + (σ |λ)σλ · σµ

!

∑
λ+

∑
ν

cνλ+µσν + (σ |λ)
∑
ν

cνλµσν .

One obtains (ii) by equating coefficients of σν . !

Theorem 6.4 (Molev-Sagan). The polynomials cνλµ in Λ2(|λ |+|µ|−|ν |)

satisfy and are determined by the following properties:

cλλλ ! σλ |λ !

∏
i∈I , j"I

i> j

(χ j − χi),(i)

(σ |λ − σ |µ) cλλµ !
∑
µ+

cλλµ+ ,(ii)

and

(σ |ν − σ |λ) cνλµ !
∑
λ+

cνλ+µ −
∑
ν−

cν
−

λµ.(iii)

Proof. We have seen that (i)–(iii) hold. To prove that they uniquely
characterize the coefficients cνλµ, we proceed by induction. Suppose

dνλµ are any polynomials satisfying (i)–(iii). We know dλλλ ! cλλλ,
since this is the explicit formula (i).

Next, dλλµ ! σµ |λ ! cλλµ, by induction on |λ | − |µ|: the base case
is where λ ! µ, and is done by (i); for λ % µ, use formula (ii) and
induction. (On the left-hand side of (ii), the factor (σ |λ − σ |µ)

is nonzero for λ # µ. Terms on the right-hand side of (ii) have
|λ | − |µ+ | < |λ | − |µ|.)
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Finally, use (iii) and induction on |ν | − |λ | to get dνλµ ! cνλµ. All
terms on the right-hand side of (iii) have |ν | − |λ+ | < |ν | − |λ | and
|ν− | − |λ | < |ν | − |λ |. This reduces to the base case λ ! ν, which was
handled previously. !

Remark. By setting ν ! µ in (iii), one obtains

(ii′) (σ |µ − σ |λ) c
µ
λµ !

∑
λ+

c
µ
λ+µ,

since the coefficients c
µ−

λµ vanish. Using commutativity (cνλµ ! cνµλ)
and interchanging λ and µ, one recovers (ii) from (ii′). The conditions
(i), (ii′), and (iii) also characterize cνλµ.

7. Grassmann duality

In Chapter 4 we noted the canonical isomorphisms

Gr(d ,V) ! Gr(V, e) ! Gr(V∨, d) ! Gr(e ,V∨),

where d + e ! n ! dim V , by identifications

[F ⊆ V]↔ [V " V/F]↔ [V∨ " F∨]↔ [(V/F)∨ ⊆ V∨].

These are equivariant for any group G acting linearly on V , and by
the dual representation on V∨.

To see this in matrices, we fix a basis, so V ! Cn ! V∨. A
point of Gr(d ,V) is the image of an embedding [Cd ↪→ Cn], so it is
represented as the column span of a full-rank matrix A of size n × d.
A point of Gr(V, e) is an isomorphism class of quotients [Cn " Ce],
represented by a full-rank matrix B of size e × n. Dually, a point of
Gr(V∨, d) is a quotient represented by the transposed matrix A†, and
a point of Gr(e ,V∨) is the column span of B† (that is, the row span
of B).

With this notation, the Grassmann duality isomorphism is

γ : Gr(d ,Cn)→ Gr(e ,Cn),

F 0→ ker(A†) ! im(B†).

The group GLn acts on Gr(d ,Cn) by F 0→ g ·F, which sends A 0→ g ·A

and B 0→ B · g−1. Grassmann duality is therefore equivariant with
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respect to the group automorphism ϕ : GLn → GLn , ϕ(g) ! (g†)−1.
If T → GLn is a homomorphism given by characters χ1, . . . , χn,
then the algebra homomorphism H∗TGr(e ,Cn)→ H∗TGr(d ,Cn) inter-
twines the automorphism of ΛT ! Sym∗M induced by χ 0→ −χ for
all χ ∈ M.

Exercise 7.1. For λ in the d × e rectangle, show that γ(Ωλ) ! Ω̃λ′,
where λ′ is the conjugate partition (i.e., its diagram is the transpose
of that of λ).3

Duality exchanges the exact sequences

0→ S→ Cn
Gr → Q→ 0

and
0→ Q∨ → (Cn

Gr)
∨ → S∨ → 0.

Together with Exercise 7.1, this implies a dual Kempf-Laksov formula
for Schubert classes:

Corollary 7.2. Let x1, . . . , xd be equivariant Chern roots of S∨, and
x̃1, . . . , x̃e equivariant Chern roots of Q. For a partition λ in the d × e

rectangle, we have

σλ ! sλ(x |y)

! sλ′(x̃ |− ỹ),

and

σ̃λ ! sλ(x | ỹ)

! sλ′(x̃ |−y),

where T acts on Gr(d ,Cn) by characters χi ! −yi ! − ỹn+1−i.

Expressed as multi-Schur determinants in Chern classes of S∨

and Q, these formulas translate into

σλ ! ∆λ(c) ! ∆λ′(c̃
′)

and

σ̃λ ! ∆λ(c̃) ! ∆λ′(c
′),
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where

c(i) ! cT(Q − Ee+i−λi ),

c′(i) ! cT(S∨ − E∨d+i−λ′i
),

c̃(i) ! cT(Q − Ẽe+i−λi ), and

c̃′(i) ! cT(S∨ − Ẽ∨d+i−λ′i
).

(Recall that ∆λ(c(E)) ! sλ′(x1, . . . , xn) when x1, . . . , xn are Chern
roots of E.)

This lets us prove a refinement of the Cauchy identity used in
Chapter 4, §6.

Corollary 7.3. Let δ : Gr(d ,Cn) → Gr(d ,Cn) × Gr(d ,Cn) be the
diagonal embedding. Then

δ∗(1) !
∑
λ

∆λ(c) × ∆(λ∨)′(c
′).

(The partition (λ∨)′ is what we called the complement to λ in Chap-
ter 4.)

Proof. Use the Kempf-Laksov formulas for Schubert classes, to-
gether with the decomposition

δ∗(1) !
∑
λ

σλ × σ̃λ∨

of the diagonal into Poincaré dual classes. !

The same statement holds, without change, for equivariant Grass-
mann bundles Gr(d ,V) → Y, so long as the vector bundle V → Y

admits opposite flags E• and Ẽ•.
Writing (S∨)(1) and Q(2) for the tautological bundles from the

first and second factors of Gr(d ,Cn) × Gr(d ,Cn), and x1, . . . , xd and
x̃1, . . . , x̃e for their respective Chern roots, the Corollary expresses an
equality

d∏
i!1

e∏
j!1

(xi + x̃ j) !
∑
λ

sλ(x |y) · s(λ∨)′(x̃ |−y)

in H∗T(Gr(d ,Cn) × Gr(d ,Cn)), or in H∗T(Gr(d ,V) ×Y Gr(d ,V)).
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Exercise 7.4. Let cνλµ ∈ Λ be the coefficient defined by

σλ · σµ !
∑
ν

cνλµ σν in H∗TGr(d ,Cn),

as before, and consider similar coefficients defined by

σ̃λ · σ̃µ !
∑
ν

c̃νλµ σ̃ν in H∗TGr(d ,Cn),

and

σλ′ · σµ′ !
∑
ν′

cν
′

λ′µ′ σν′ in H∗TGr(e ,Cn).

Show that cνλµ maps to c̃νλµ under the substitution χi 0→ χn+1−i , and

cνλµ maps to cν
′

λ′µ′ under χi 0→ −χn+1−i .

For example, using σλ ! sλ(x |y) and yi ! −χi , one computes the
product

σ(2) · σ(3,1) ! σ(4,2) + σ(3,3) + (χ1 + χ3 − χ5 − χ6) σ(4,1)

+ (χ1 − χ5) σ(3,2) + (χ1 − χ5)(χ3 − χ5) σ(3,1)

in H∗TGr(2,C6). Compare this with

σ̃(2) · σ̃(3,1) ! σ̃(4,2) + σ̃(3,3) + (χ6 + χ4 − χ2 − χ1) σ̃(4,1)

+ (χ6 − χ2) σ̃(3,2) + (χ6 − χ2)(χ4 − χ2) σ̃(3,1)

and

σ(1,1) · σ(2,1,1) ! σ(2,2,1,1) + σ(2,2,2) + (χ1 + χ2 − χ4 − χ6) σ(2,1,1,1)

+ (χ2 − χ6) σ(2,2,1) + (χ2 − χ4)(χ2 − χ6) σ(2,1,1)

in H∗TGr(2,C6) and H∗TGr(4,C6), respectively.

8. Littlewood-Richardson rules

The ultimate goal is to find a positive formula for the coefficients
cνλµ. Such a formula is often called a Littlewood-Richardson rule. Here
we will state several of these rules, without proof.
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In the nonequivariant case, the meaning of positivity is clear:
cνλµ is a nonnegative integer, and this Littlewood-Richardson rule is
classical algebraic combinatorics. With |λ | + |µ| ! |ν |, the coefficient
cνλµ is number of ways to fill the boxes of the skew diagram ν/λ with
µ1 1’s, µ2 2’s, etc., so that

(a) the filling is weakly increasing along rows;
(b) the filling is strictly increasing down columns; and
(c) when the filling is read from right to left along rows, starting

at the top, at each step one has

#(1’s) ≥ #(2’s) ≥ · · · .

Conditions (a) and (b) say the filling is a semistandard Young
tableau on the shape ν/λ. Condition (c), sometimes called the “Ya-
manouchi word” condition, means that the partition µ grows by
reading the filling (in the indicated order), placing a box in the ith
row when one reads an entry “i”, and each intermediate step is also
a partition.

Example 8.1. Let λ ! (2, 1, 1), µ ! (3, 2, 1), ν ! (4, 3, 2, 1). There
are three fillings of ν/λ satisfying the conditions:

1 1
1 2
2

3

1 1
1 2
3

2

1 1
2 2
3

1

.

So cνλµ ! 3. The corresponding reading words—1 1 2 1 2 3, 1 1 2 1 3 2,
and 1 1 2 2 3 1—satisfy the Yamanouchi condition.

There are many other versions of the Littlewood-Richardson rule.
Some have equivariant analogues. In this context, a “positive” for-
mula should express the polynomial cνλµ as a weighted enumeration
of some combinatorial set, with weights of the form

∏
(χi − χ j) for

i < j. Indeed, the formulas we have seen for special cases have this
property, and a general theorem of Graham guarantees that this is
always possible. We will return to this in Chapter 19.

Here is one version, due to Krieman and Molev (working inde-
pendently). In the statement, reading in column order means that
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entries of a filling of λ are read along columns, from bottom to top,
starting at the left.

Theorem 8.2. The structure constants for multiplication in H∗TGr(d ,Cn)

are given by

cνλµ !
∑

R

∑
T

∏
(i, j)∈λ

(χe+T (i, j)−ρ(i, j)T (i , j)
− χe+T (i, j)−( j−i)),

where:

R runs over all sequences

µ ! ρ(0) ⊂ ρ(1) ⊂ · · · ⊂ ρ(s) ! ν,

such that ρ(i) is obtained by adding one box to ρ(i−1), in row ri (so
s ! |ν/µ|).

T runs over “reverse barred ν-bounded tableaux” on the shape λ.
This means:

– T is a filling of the boxes of λ using entries from {1, . . . , d},
weakly decreasing along rows and strictly decreasing down
columns;

– all entries in the jth column of λ are less than or equal to the
number of boxes in the jth column of ν, that is, T (i , j) ≤ ν′j ;

– s ! |ν/µ| of the entries are marked with a bar. When
these entries are read in column order, the resulting word is
r1 r2 · · · rs . Thus each barred entry corresponds to a partition
ρ(i).

The product is over all boxes (i , j) ∈ λ such that T (i , j) is un-
barred. If (i , j) is a box with an unbarred entry, ρ(i , j) ! ρ(t) is the
partition corresponding to the previous barred entry (in column
order). If there are no previous barred entries, ρ(i , j) ! ρ(0) ! µ.

Furthermore, ρ(i , j)T (i, j) > j − i for all unbarred boxes (i , j).



Chapter 9. Schubert calculus on Grassmannians 155

Example 8.3. For d ! 3, n ! 6 (so e ! 6− 3 ! 3) and λ ! µ ! (2, 1),
ν ! (3, 1, 1), there are two sequences R:

R1 : ⊂ ⊂ r1 ! 1, r2 ! 3

R2 : ⊂ ⊂ r1 ! 3, r2 ! 1

There is only one tableau for the sequence R1:

3 1
1

χ3+1−3 − χ3+1+1−2 ! χ1 − χ3.

(In this case, ρ(1, 2) ! (3, 1, 1), so ρ(1, 2)T (1,2) ! 3.) For R2, there are
two tableaux:

3 1
1

χ3+1−2 − χ3+1+2−1 ! χ2 − χ5 and

3 1
2

χ3+2−1 − χ3+2+2−1 ! χ4 − χ6.

(For the first of these, ρ(2, 1) ! (2, 1), so ρ(2, 1)T (2,1) ! 2. For the
second, ρ(2, 1) ! (2, 1), and ρ(2, 1)T (2,1) ! 1.) So the rule says cνλµ !

χ4 − χ6 + χ2 − χ5 + χ1 − χ3.

Historically, the first positive rule for cνλµ was given by Knutson
and Tao, and involves the combinatorics of puzzles. To describe it, we
use another encoding of Schubert classes in Gr(d ,Cn). Recall that a
partition λ corresponds to a d-element subset I ⊆ {1, . . . , n}. The 01-
sequence corresponding to λ has 1’s in positions I, and 0’s elsewhere.
For example, with d ! 2 and n ! 5, the partition λ ! (2, 0) has
I ! {1, 4} and 01-sequence 1 0 0 1 0.

To compute cνλµ, we label the boundary of an equilateral triangle
by 01-sequences corresponding to three partitions λ, µ, and ν, ori-
ented so that the sequence for λ appears along the NW side (from
SW to NE), the sequence for µ appears along the NE side (from NW
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to SE) and the sequence for ν appears along the S side (from W to E).
A puzzle of type ∆νλµ is a filling of the triangle by the pieces shown
in Figures 2 and 3. All except the equivariant piece may be rotated;
the equivariant piece must appear in its displayed orientation. (See
Figure 5 for an example.)

0 0

0

1 1

1

1

0

1

0

Figure 2. Classical puzzle pieces.

0 1

1 0

Figure 3. The equivariant puzzle piece.

Each equivariant piece contributes a factor χi − χ j , computed
from its position as shown in Figure 4. The weight wt(P) of a puzzle
P is the product of all such factors; it is evidently an element of
Z≥0[χ1 − χ2, . . . , χn−1 − χn].

The puzzle rule for computing cνλµ is this:

Theorem 8.4 (Knutson-Tao). We have

cνλµ !
∑

puzzles P

of type ∆νλµ

wt(P).

i j

Figure 4. An equivariant piece in position (i , j).
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For example, the puzzle in Figure 5 contributes χ3−χ5 to the coef-
ficient of σ(3,1) in σ(2,1) · σ(2). There are two other puzzles, computing
c(3,1)
(2,1),(2) ! (χ1 − χ2) + (χ2 − χ4) + (χ3 − χ5) ! χ1 + χ3 − χ4 − χ5.

0

1

0

1

0

0

1

0

0

1

0 1 0 0 1

0 0 0 0 0

1 0 0 0 1

1

1 0

Figure 5. A puzzle of type ∆01001
01010,10010 and weight χ3 − χ5.

The commutativity property cνλµ ! cνµλ is not immediately obvi-
ous from the puzzle rule—in general, there is no bĳection between
puzzles of types ∆νλµ and ∆νµλ, although the sums of their weights
are equal. On the other hand, Grassmann duality (Exercise 7.4) is ev-
ident: one defines a bĳection between puzzles of type ∆νλµ and those

of type ∆ν
′

µ′λ′ by reflecting a puzzle from left to right, and exchanging
0’s and 1’s.

Exercise 8.5. Using the puzzle rule, for λ corresponding to a
subset I, show that

cλλλ !

∏
i∈I , j"I

i> j

(χ j − χi)

recovering the formula we know for cλλλ ! σλ |λ.4

Exercise 8.6. Consider Pn−1
! Gr(1,Cn). The Schubert class yi ∈

H∗TP
n−1 corresponds to the 01-sequence with a 1 in position i +1, and

0’s elsewhere. Use the puzzle rule to recover the formula for ck
i j given

in Chapter 4, §7.

Notes

In the literature dealing with general Lie theory, B−-invariant subvari-
eties are usually called “opposite.” Our conventions are reversed, but have
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the advantage of better stability properties. We will continue this usage
through Chapter 13, and switch to the more standard convention when we
discuss general Lie groups in Chapter 15.

The Kempf-Laksov theorem (Theorem 2.2) was originally stated in the
context of degeneracy loci in Grassmann bundles [KeLa74]. Its appearance
as an equivariant Schubert class represents an early instance of the con-
nection between equivariant geometry and the geometry of fiber bundles,
although it was not seen this way at the time.

Studying rank conditions on matrices of homogeneous polynomials,
Giambelli proved the case of Theorem 2.2 corresponding to a rectangular
partition [Gi04]. We will see more about this in Chapter 11.

In Chapter 4, we saw a basis of Schur determinants ∆λ(cB−(Q)), for λ
inside the d × e rectangle. Here we have studied the basis of Schubert
classes [Ωλ]B− , which are expressed (via the Kempf-Laksov formula) as
multi-Schur determinants. What is the transition matrix between these two
bases? The answer, given in [AF-ABCD], involves certain flagged Schur
polynomials, which are special cases of the Schubert polynomials to be studied
in Chapter 10.

The argument for Lemma 3.1 comes from Knutson and Tao [KnTao03].
The same idea was axiomatized and applied to other settings by Guillemin
and Zara [GuZa01] and Tymoczko [Tym08b]. An alternative framework for
finding (unique) solutions to such interpolation problems was developed
systematically by Fehér and Rimányi [FeRi03].

An excellent reference for double Schur polynomials (and their relatives)
is Macdonald’s note [Mac92]. In particular, he proves the equivalence of the
three characterizations of sλ(x |y) we gave. (We mainly use his “Variation
6”.)

Lemma 4.1 is due to Okounkov, who shows that these conditions char-
acterize “shifted” Schur functions [Ok96]; see also [OO97] and [MoSa99].

Proofs of the classical (non-equivariant) case of the Chevalley-Pieri rule,
Theorem 6.2, can be found in many sources, e.g., [Ful-YT, §9.4]. A proof
of the equivariant version appears in [KnTao03, Appendix]. We will see a
complete proof of the analogous formula for general homogeneous spaces
G/P in Chapter 19. The characterization theorem (Theorem 6.4) is due to
Molev and Sagan [MoSa99], and was used extensively by Knutson and Tao
[KnTao03]. It also has an analogue for G/P, as we will see in Chapter 19.
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There are many references for the classical Littlewood-Richardson rule
and its variations; see, for example, [Mac95], [Sta99], [Ful-YT]. The first
complete proof is due to Schützenberger, using a game called jeu de taquin
[Schü77]. An equivariant jeu de taquin rule was given by Thomas and Yong
[ThYo18].

A combinatorial rule for the multiplying double Schur polynomials
sλ(x |y)was given by Molev and Sagan [MoSa99], but their original formula
was not manifestly positive in the variables yi − yj, i > j. Molev later
modified this to the positive formula described here [Mo09].

Knutson and Tao gave the first manifestly positive rule for the equivari-
ant structure constants [KnTao03]. In fact, they computed c̃νλµ, the structure
constants for multiplying in the opposite Schubert basis {σ̃λ}. These are re-
lated to cνλµ by the substitution χi 0→ χn+1−i . This is realized by reflecting
puzzles left-to-right, which has the effect of exhanging the equivariant and
non-equivariant rhombi.

Hints for exercises

1Use the bialternant definition. The (d − p , q)-entry of the matrix in the numer-
ator of sλ(yµ |y) is

(yµp+d−p+1 |y)
λq+d−q

! (yµp+d−p+1 − y1) · · · (yµp+d−p+1 − yλq+d−q).

If µ " λ, then some index k has µk < λk (so also µp < λq for q ≤ k ≤ p). But then
for all q ≤ k ≤ p, we have

1 ≤ µp + d − p + 1 ≤ λq + d − q,

so the above product vanishes, and it follows that the determinant is zero. If µ ! λ,
the matrix is triangular because

1 ≤ λp + d − p + 1 ≤ λq + d − q

if p > q, so its determinant is the product

d∏
p!1

λp+d−p∏
s!1

(yλp+d−p+1 − ys).

Dividing by the Vandermonde denominator gives the formula.

2The key identity is

hp(x |τ
1− j y) !

∑
a+b!p

ha(x1, . . . , xd)(−1)beb(y1 , . . . , yd+p− j),
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where ym ! 0 for m ≤ 0. (This is easy to prove from the tableau definition of
hp ! s(p).) Then compare with the degree p ! λi − i + j term of cT(Q − Ee−p+ j) !

cT(Ẽd+p− j − S).

3Let E• and Ẽ• be the standard and opposite flags inCn . Under the identification
V ! V∨ by the chosen basis, we have Ei 0→ (V/Ei)∨ ! Ẽn−i.

4See [KnTao03, Proposition 3].


