
CHAPTER 18

Bott-Samelson varieties and Schubert varieties

Schubert varieties in G/P admit explicit equivariant desingular-
izations by Bott-Samelson varieties. These are certain towers of P1-
bundles, and their cohomology rings are relatively easy to compute.

In this chapter, we use the Bott-Samelson desingularization to
obtain a positive formula for restricting a Schubert class to a fixed
point. This, in turn, leads to a criterion for a point of a Schubert
variety to be nonsingular.

1. Definitions, fixed points, and tangent spaces

Let G ⊃ B ⊃ T be as usual: G is a semisimple (or reductive) group,
with Borel subgroup B and maximal torus T. For each simple root
α, we have a minimal parabolic subgroup Pα, and the corresponding
projection of flag varieties is aP1-bundle, G/B→ G/Pα. These spaces
occur frequently in this chapter, so we will write

X ! G/B and Xα ! G/Pα

from now on.
For any sequence of simple roots α ! (α1, . . . , αd), we have a big

Bott-Samelson variety Z(α) ! Z(α1 , . . . , αd), defined by

Z(α) ! X ×Xα1
X ×Xα2

· · · ×Xαd
X.

Since each projection X → Xαi is a P1-bundle, Z(α) is a tower of P1-
bundles over X. In particular, it is a nonsingular projective variety
of dimension dim X + d. The group G acts diagonally on Z(α),
equivariantly for each projection pri : Z(α) → X. (We index these
projections from left to right by 0 ≤ i ≤ d.)

Example 1.1. For G ! SLn , so X ! Fl(Cn), a Bott-Samelson variety
can be described as a sequence of flags, with the ith differing from
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346 §1. Definitions, fixed points, and tangent spaces

the (i − 1)st only in position j, if αi ! t j − t j+1. That is,

Z(α) !

{
(F(0)

• , . . . , F
(d)
• )

""" E(i)
k

! E(i−1)
k

for all k ! j,

where αi ! t j − t j+1

}
.

When n ! 3, these can be represented as configurations of points and
lines in P2. For instance, suppose α ! t1 − t2 and β ! t2 − t3. Then a
general point of Z(α, β, α, β) looks like a quintuple of flags:

( , , , , ) .

So from left to right, consecutive flags differ by moving the point,
then the line, then the point, and finally the line again.

The T-fixed points of Z(α) are easily described. An α-chain (or
simply chain) of elements of W is a sequence

v ! (v0, v1, . . . , vd)

such that for each i, either vi ! vi−1 or vi ! vi−1 · sαi .

Exercise 1.2. Show that the T-fixed points of Z(α) are the 2d · |W |

points
Z(α)T !

{
pv ! (pv0 , pv1 , . . . , pvd)

}
where each v is an α-chain.

The (small) Bott-Samelson variety is the fiber X(α) ! pr−1
0 (pe), that

is,
X(α) ! {pe} ×Xα1

X ×Xα2
· · · ×Xαd

X.

The projection X(α1 , . . . , αd) → X(α1, . . . , αd−1) is a P1-bundle, so
X(α) is a nonsingular projective variety of dimension d. Since pe is
fixed by B, the Bott-Samelson variety X(α) comes with an action of B

(but not G, in general).
The Bott-Samelson variety X(α) has 2d T-fixed points pv, for

chains v ! (e , v1, . . . , vd). We will index these in two ways: us-
ing the chain v, and using the subset I ! {i1 < · · · < i#} ⊆ {1, . . . , d}
defined by

I !
{
i
"" vi ! vi−1 · sαi

}
.
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We often use the notation interchangeably, writing pv ! pI . Some-
times we write I ! Iv and v ! vI to indicate the bĳection between
chains and subsets.

For each subset I ⊆ {1, . . . , d}, there is a B-invariant subvariety
X(I) ⊆ X(α), defined by

X(I) !
{
(x1, . . . , xd) ∈ X(α)

"" xj ! xj−1 for j " I
}
.

In fact, this is canonically isomorphic to another Bott-Samelson va-
riety. Each subset I ! {i1 < · · · < i#} corresponds to a subword
α(I) ! (αi1 , . . . , αi# ), and we have

X(I) # X(α(I)).

(Use a diagonal embedding of X#+1 in Xd+1.) Containment among
these subvarieties corresponds to containment of subsets:

X(J) ⊆ X(I) iff J ⊆ I .

For example, X({1, . . . , d}) ! X(α), and X(∅) is the point p∅.
Each X(I) is the closure of a locally closed set X(I)◦, consisting of

the points where xi ! xi−1 for i ∈ I. In fact, these are cells.

Lemma 1.3. We have X(I)◦ # A#, where # ! #I.

Proof. It suffices to consider I ! {1, . . . , d}. Here one has the
P1-bundle X(α1 , . . . , αd)→ X(α1, . . . , αd−1). The complement of the
locus where xd−1 ! xd is an A1-bundle over X(α1, . . . , αd−1), so the
claim follows by induction on d. !

The subvarieties X(I) therefore determine a cell decomposition of
X(α), and their classes x(I) ! [X(I)]T form a basis for H∗TX(α), as I

varies over subsets of {1, . . . , d}. It also follows that

pJ ∈ X(I) iff J ⊆ I .

We will need a description of the tangent spaces.

Lemma 1.4. Let v ! (e , v1, . . . , vd) be an α-chain. The torus weights
on Tpv X(α) are {−v1(α1), . . . ,−vd(αd)}.

More generally, for K ⊆ I, with corresponding chains vK and vI , the
weights on TpK X(I) are −vK

i (αi) for i ∈ I.
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Proof. We will find the weights at any fixed point of the big Bott-
Samelson variety . For a chain v ! (v0, v1, . . . , vd), consider the point
p ! pv ∈ Z(α). The tangent space to Z(α) at p is the fiber product of
vector spaces

Tp0 X ×
Tp[1]Xα1

Tp1X ×
Tp[2]Xα2

· · · ×
Tp[d]

Xαd

Tpd X,

where we have written pi ! pvi ∈ X and p[i] ! p[vi] ∈ Xαi to
economize on subscripts. (Note [vi] ! [vi−1] for each i, since v is
an α-chain.) We have seen descriptions of each of these spaces in
Chapter 15. The weights are v0(R−), from the first factor, together
with weights −vi(αi) for 1 ≤ i ≤ d, since g−vi(αi ) is the kernel of
Tpi X → Tp[i]

Xαi .
When v0 ! e, the variety X(α) is the fiber over pe in the first factor,

so the weights R− ! v0(R−) are omitted, proving the first claim. The
second claim follows from the first, using X(I) # X(αi1 , . . . , αi# ). !

2. Desingularizations of Schubert varieties

Let f : X(α) → X be the projection onto the last factor; that is,
f is the restriction of prd : Z(α) → X. For each I ⊆ {1, . . . , d}, with
corresponding α-chain v ! (e , v1, . . . , vd), we have f (pI) ! pvd . The
subset I corresponds to the subword (αi1 , . . . , αi# ) of α, and

vd ! sαi1
· · · sαi#

.

Since f is proper and B-equivariant, f (X(I)) contains the Schubert
variety X(vd) ⊆ X. However, if (αi1 , . . . , αi# ) is not a reduced word
for vd, the image of f may be larger.

Lemma 2.1. Let α ! (α1 , . . . , αd) be a sequence of simple roots. The set
of products sαi1

· · · sαi#
over subwords contains a unique maximum element

w(α) ∈ W in Bruhat order, and

f (X(α)) ! X(w(α)).

We have w(α) ! sα1 · · · sαd if and only if the word α is reduced.
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Proof. Since X(α) is irreducible, the image of the B-equivariant
morphism f : X(α) → X must be some Schubert variety X(w). It
follows that w ! w(α) satisfies the asserted properties. !

In fact, the maximal element w(α) can be easily computed. Let
“∗” be the associative product on W defined by

w ∗ sα !

{
wsα if #(wsα) > #(w);

w otherwise.

This product is called the Demazure product.

Exercise 2.2. Show that w(α) ! sα1 ∗ · · ·∗sαd , i.e., it is the Demazure
product of reflections from α.1

Lemma 2.3. The map f : X(α)→ X(w) is birational if and only if α is
a reduced word for w ! w(α).

Proof. If α is not a reduced word, then w(α) is the product of
reflections for a proper subword, so it has length #(w(α)) < d. In this
case, f cannot be birational by dimension.

If α is reduced, then w ! w(α) ! sα1 · · · sαd , and f (p{1,...,d}) ! pw.
The map f : X(α)◦ → X(w)◦ is B-equivariant, and therefore also
equivariant for the subgroup U(w) ! +wU +w−1 ∩ U . Since the map
u -→ u · pw defines an isomorphism U(w)

∼
−→ X(w)◦, it follows that

f : X(α)◦ → X(w)◦ is an isomorphism. !

For a reduced word α, one can also establish the birationality of
f : X(α) → X(w) by examining tangent weights. The tangent space
to X(α) at p ! p{1,...,d} has weights

α1, sα1(α2), . . . , sα1 · · · sαd−1(αd),

using Lemma 1.4, for vi ! sα1 · · · sαi . These are precisely the weights
on Tpw X(w) (see Chapter 15, Lemma 2.2).

Given a Schubert variety X(w) ⊆ G/B, one obtains a B-equivariant
desingularization f : X(α)→ X(w) by choosing a reduced word for
w. For a parabolic subgroup P, the projection G/B → G/P maps
X(wmin) birationally onto X[w], so we obtain desingularizations of
these varieties, too.
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Corollary 2.4. For a Schubert variety X[w] ⊆ G/B, and any re-
duced word α for wmin, one obtains a desingularization X(α)→ X[w] by
composing f with the projection G/B→ G/P. !

These statements have evident analogues for the subvarieties
X(I) ⊆ X(α). If I is a subset, with subword α(I), we will write
w(I) ! w(α(I)) for the corresponding Demazure product.

Corollary 2.5. Let I be a subset, and let v ! (v1, . . . , vd) be the
corresponding chain. The following are equivalent:

(i) The map X(I)→ X(w(I)) is birational.

(ii) w(I) ! vd.

(iii) #(vd) ! #I.

(iv) The subword α(I) is a reduced word for vd. !

Example 2.6. Let α ! (α, α), for some simple root α. Then X(α)

is isomorphic to P1 × P1. The Demazure product is sα ∗ sα ! sα, and
the map f : X(α, α)→ X(sα) is identified with the second projection
P1 × P1 → P1. The subvarieties X(I) ! X(v) are

X({1, 2}) ! X(sα , e) ! X(α),

X({1}) ! X(sα , sα) ! δ(P
1) (the diagonal in P1 × P1),

X({2}) ! X(e , sα) ! {pe} × P
1, and

X(∅) ! X(e , e) ! {(pe , pe)}.

While X(α) always has finitely many fixed points, it often has
infinitely many invariant curves—even when α is a reduced word.

Exercise 2.7. The following are equivalent, for a sequence of sim-
ple roots α ! (α1, . . . , αd):

(a) X(α) has finitely many T-curves.

(b) The roots α1, . . . , αd are distinct.

(c) X(α) is a toric variety for the quotient of T whose character
lattice has basis α1, . . . , αd.

(d) The map f : X(α)→ X(w) is an isomorphism.
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(Use the description of weights on tangent spaces.)2

Another construction of the Bott-Samelson variety X(α) is some-
times useful.

Proposition 2.8. For a word α ! (α1 , . . . , αd), there is an isomorphism

Pα1 ×
B Pα2 ×

B · · · ×B Pαd/B→ X(α),

given by [p1, . . . , pd] -→ (eB, p1B, p1p2B, . . . , p1 · · · pdB). This is B-
equivariant, where B acts via left multiplication on Pα1 . The subvarieties
X(I) ⊆ X(α) are identified with

X(I) ! {[p1, . . . , pd] | piB ! eB for i " I},

and the point pI corresponds to [ε1, . . . , εd], where εi ! +e for i ∈ I, and
ε j ! +sα j for j " I.

Exercise 2.9. Prove the proposition.3

Remark 2.10. Bott-Samelson varieties appear in the geometric
construction of divided difference operators described in Chapter 16,
§1. Let α be a reduced word for w. The big Bott-Samelson variety
Z(α) maps birationally to the double Schubert variety

Z(w) ! G · (pe , pw) ⊆ X × X

via the projection pr0 × prd. Using Chapter 16, Proposition 1.2, the
operator Dw−1 on H∗TX is identified with prd∗pr∗0.

On the other hand, these projections factor as iterated P1-bundles,
and the diagram

Z(α1) Z(α2) · · · Z(αd)

X X · · · X

shows that Dw−1 ! Dα# ◦ · · · ◦ Dα1 is independent of the choice of
reduced word. One can also see this by restricting the diagram

Z(α)

X X

pr0 prd
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to the fiber pr−1
0 (pe ), obtaining

X(α)

pe X(w).

f

Since f is birational, we have

Dw−1(x(e)) ! prd∗pr∗0(x(e)) ! f∗[X(α)]T ! [X(w)]T ! x(w).

3. Poincaré duality and restriction to fixed points

We have seen that the classes x(I) ! [X(I)]T form aΛ-module basis
for H∗TX(α). Next we will study their restrictions to fixed points, and
determine the Poincaré dual basis.

Lemma 1.4 leads directly to a description of weights at the fixed
points of X(I) ⊆ X(α). Suppose K ⊆ I, so pK ∈ X(I), and let vK and
vI be the corresponding chains. The weights on TpK X(I) are −vK

i (αi)

for i ∈ I. This, in turn, gives a formula for restricting the classes
x(I) ! [X(I)]T . For any x ∈ H∗TX(α), its restriction to the fixed point
pI is denoted x |I .

Corollary 3.1. We have

x(I)|K !

{∏
j"I vK

j (−α j) if K ⊆ I;

0 otherwise,

Let {y(I)} be the Poincaré dual basis to {x(I)}, meaning that
ρ∗(x(I) · y(J)) ! δI ,J in Λ, where ρ : X(α) → pt is the projection.
As we saw in Chapter 4, §6, such a basis always exists. It is natural to
look for invariant subvarieties Y(I) representing these Poincaré dual
classes. However, no such algebraic subvarieties exist!
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Example 3.2. Consider the variety X(α, α) # P1 × P1 from Exam-
ple 2.6. The basis {x(I)} consists of the equivariant classes of

x(∅) ! [(pe , pe)]
T ,

x({1}) ! [δ(P1)]T ,

x({2}) ! [{pe} × P
1]T , and

x({1, 2}) ! [P1 × P1]T .

Even non-equivariantly, the Poincaré dual basis cannot be repre-
sented by algebraic subvarieties: the class y({2}) must have zero
intersection with the diagonal class x({1}), and no algebraic curve in
P1 × P1 can do this.

Another way of phrasing the conclusion of Example 3.2 is this: we
seek a curve Y({2}) ⊆ P1 × P1 which consists of pairs (L, L′) of lines
in C2 such that L ! L′—but the complement of the diagonal is affine,
so it contains no complete curves. In fact, this observation indicates
a solution. Using the standard Hermitian metric on C2, we may
consider pairs of perpendicular lines (L, L′); in terms of a coordinate
z on P1, this is the set of pairs (z ,−1/z). This set is a non-algebraic
submanifold Y({2}) ⊆ P1×P1, which we orient by projecting onto the
first factor. (Projection onto the second factor would give the opposite
orientation, as the coordinate description shows.) Fixing the metric
amounts to reducing GL2 to the maximal compact subgroup U(2),
and identifying P1

! GL2/B with U(2)/(T ∩U(2)).
The general situation is similar: we construct (non-algebraic) sub-

manifolds Y(I) ⊆ X(α) whose classes represent the Poincaré dual
classes y(I). Let K ⊆ G be a maximal compact subgroup, with
maximal compact torus S ! T ∩ K, so we have a diffeomorphism
K/S # G/B, and the Weyl group W ! NK(S)/S acts on the right. For
I ⊆ {1, . . . , d}, we define

Y(I) ! {(e , x1, . . . , xd) ∈ X(α) | xi ! xi−1 · sαi for i ∈ I}.

This is a C∞ submanifold, of real codimension 2 ·#I in X(α), invariant
for the action of the compact torus S. Containment among these
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submanifolds reverses containment of subsets:

Y(K) ⊆ Y(I) iff pK ∈ Y(I) iff K ⊇ I .

Lemma 3.3. Giving each Y(I) an appropriate orientation (to be specified
in the proof), the classes y(I) ! [Y(I)]S form the Poincaré dual basis to x(I).

For K ⊃ I, with corresponding α-chains vK and vI , the normal space to
Y(I) ⊆ X(α) at the fixed point pK has characters −vK

i (αi), for i ∈ I.

Proof. To compute the tangent spaces of Y(I), and to orient it,
we work from the left, using induction on d. For d ! 1, we have
Y({1}) ! { +sαB} (a point), and Y(∅) ! X(α) ! P1, so these are
already oriented. Proceeding inductively, consider the projection
X(α1, . . . , αd) → X(α1, . . . , αd−1). If d ∈ I, this induces an isomor-
phism Y(I)→ Y(I ! {d}). Otherwise, if d " I, it induces a P1-bundle,
so there is a fiber square

Y(I) X(α1, . . . , αd)

Y(I) X(α1, . . . , αd−1),

where we have written I ! I as a subset of {1, . . . , d − 1}. By the
inductive assumption, we have an orientation of Y(I). The canonical
orientation of the P1 fiber then induces an orientation of Y(I).

This construction also identifies the tangent spaces: assume d " I,
and for K ⊇ I, write p ! pK and p for the image of this point in Y(I).
The kernel of

TpY(I)→ TpY(I)

is gβ, where β ! −vK
d
(αd).

It follows that Y(I) meets X(I) transversally in the point pI . In-
deed, we have weight decompositions of the tangent spaces as

TpI X(I) !
⊕

i"I

g−vI
i (αi )
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and

TpI Y(I) !
⊕

i∈I

g−vI
i (αi )
.

So these are complementary subspaces of TpI X(α). By considering
fixed points, we see X(I) ∩ Y(J) ! ∅ unless J ⊆ I, and it follows that
the classes x(I) and y(J) form Poincaré dual bases. !

This description of tangent spaces proves a formula for restricting
the classes y(I).

Corollary 3.4. We have

y(I)|K !

{∏
i∈I vK

i (−αi) if K ⊇ I;

0 otherwise.

A more algebraic proof of Corollary 3.4 uses the localization for-
mula. The dual classes y(I) are uniquely determined by

(1)
∑

pK∈X(J)

y(I)|K

cT
top(TpK X(J))

! δI ,J ,

for every subset J ⊆ {1, . . . , d}. We know pK ∈ X(J) iff K ⊆ J, and
in this case cT

top(TpK X(J)) !
∏

j∈J(−vK
j (α j)). To prove the claimed

formula for y(I)|K , it remains to establish the identity

(2)
∑

K:I⊆K⊆ J

1∏
j∈J!I (−vK

j (α j))
! δI ,J .

This is clear if I ! J, or if I " J. When I # J, the terms cancel in
pairs, as follows. Suppose j is the largest index in J ! I; then for each
K $ j, there is K′ ! K ∪ { j}, and the corresponding terms cancel.
(Indeed, sα j (α j) ! −α j , so vK′

j (α j) ! −vK
j (α) and the other factors in

the product are equal.)

Remark 3.5. The identification X ! G/B ! K/S leads to a third
description of the Bott-Samelson varieties. Each Kα ! K ∩ Pα is a
maximal compact subgroup of the minimal parabolic Pα, and the
evident map

Kα1 ×
S Kα2 ×

S · · · ×S Kαd/S→ Pα1 ×
B Kα2 ×

B · · · ×B Kαd/B
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is a diffeomorphism. The submanifolds Y(I) ⊆ X(α) are easy to
identify from this point of view:

Y(I) !
{
[k1, . . . , kd]

"" kiS ! +sαi S for i ∈ I
}
.

For the corresponding projection f : X(α)→ X, one sees

f (Y({1, . . . , k})) ! sα1 · · · sαk · X(sαk+1 ∗ · · · ∗ sαd )

and
f (Y({k + 1, . . . , d})) ! X(sα1 ∗ · · · ∗ sαk ) · sαk+1 · · · sαd ,

where w · X(v) and X(v) · w denote the translations of Schubert
varieties by the left and right W-actions.

4. A presentation for the cohomology ring

Multiplication in the basis y(I) is particularly easy. To simplify
the notation, we will write pi ! p{i}, pij ! p{i, j}, yi ! y({i}), and
yij ! y({i , j}).

If I ∩ J ! ∅, then Y(I) and Y(J) meet transversally in Y(I ∪ J), so

(3) y(I) · y(J) ! y(I ∪ J) if I ∩ J ! ∅.

In particular, yi ·yj ! yij if i ! j, and y(I) ! yi1 · · · yi# if I ! {i1 , . . . , i#}.
To determine the structure of H∗TX(α), it suffices to give a formula for
y2

i .

Proposition 4.1. We have

(4) y2
i !

∑
j<i

(−〈αi , α
∨
j 〉) yij + αi yi ,

where 〈α, β∨〉 is the pairing between roots and coroots.

Proof. By considering degrees and support, we have

(5) y2
i !

∑
j!i

ci j yi j + λi yi ,

for some ci j ∈ Z and λi ∈ M. (Since pj " Y({i}) for j ! i, we have
yi |pj ! 0, so the classes yj do not appear. Similarly, p∅ " Y({i}), so
there is no “constant” term of degree 2 in Λ.) So we must determine
these coefficients.



Chapter 18. Bott-Samelson varieties and Schubert varieties 357

Using the restriction formula from Corollary 3.4, we have

yi |pi ! −v′i(αi) ! αi ,

where the chain corresponding to {i} is v′ ! (e , . . . , e , sαi , . . . , sαi ).
Since pi " Y({i , j}) for j ! i, restricting Equation (5) to this point
gives

(αi)
2
! λi αi ,

and it follows that λi ! αi .
Similarly, we have

yi |pij !

{
αi if i < j;

sα j (αi) if i > j.

(When i < j, the chain v′ corresponding to {i , j} has v′i ! sαi , so
yi |pij ! −sαi (αi) ! αi . For i > j, the chain has v′i ! sα j sαi , so
yi |pij ! −sα j sαi (αi) ! sα j (αi).) Likewise,

yij |pij !

{
αi sαi (α j) if i < j;

α j sα j (αi) if i > j.

(For i < j, we have v′j ! sαi sα j , and v′i ! sαi as noted before, so
Corollary 3.4 gives yij |pij ! αi · sαi (α j). If i > j, swap the roles of i

and j.)
By substituting λi ! αi and restricting (5) to pij , we obtain

α2
i ! ci j α j sα j (αi) + α

2
i ,

for i < j, so ci j ! 0 in this case. Doing the same for i > j, we obtain

sα j (αi)
2
! ci j α j sα j (αi) + αi sα j (αi),

so sα j (αi) ! ci j α j + αi . Since sα j (αi) ! αi − 〈αi , α∨j 〉 α j , the claim
follows. !

As a consequence, we obtain a presentation for equivariant coho-
mology.
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Corollary 4.2. The map ηi -→ yi defines an isomorphism

H∗TX(α) ! Λ[η1, . . . , ηd]/
+,
-
η2

i +

∑
j<i

〈αi , α
∨
j 〉 ηiη j − αi ηi

./
01≤i≤d

.

Similar formulas determine multiplication in the x(I) basis for
H∗TX(α).

Exercise 4.3. Writing βi ! sα1 · · · sαi−1(αi), show that

x2
i !

∑
j<i

(−〈βi , β
∨
j 〉) xij − βi xi ,

where xi ! x({1, . . . , d} ! {i}) and xij ! x({1, . . . , d} ! {i , j}).

The equivariant cohomology of G/B embeds in that of a Bott-
Samelson variety. Let (α1, . . . , αN) be a reduced word for the longest
element w◦, so f : X(α) → G/B is birational. From the projection
formula, the composition f∗ ◦ f ∗ is the identity.

Corollary 4.4. Let

R ! Λ[ f ∗y(sα) : α ∈ ∆] ⊆ H∗TX(α)

be the subalgebra generated by pullbacks of divisor classes. The pullback f ∗

identifies H∗T(G/B) with the subalgebra of H∗TX(α) consisting of elements
x such that some integral multiple c · x lies in R.

Proof. Using rational coefficients, we have seen that H∗T(G/B;Q)
is generated over ΛQ ! H∗T(pt;Q) by the divisor classes y(sα). (This
follows from the Borel presentation given in Chapter 15, Corol-
lary 6.6. It also follows from Chevalley’s formula, which we will
see in Chapter 19, §1.) Using the splitting f∗ ◦ f ∗ and the fact that
both H∗T(G/B) and H∗TX(α) are free Λ-modules, it follows that

H∗T(G/B) ! H∗T(X(α)) ∩ H∗T(G/B;Q)

as submodules of H∗T(X(α);Q). !
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5. A restriction formula for Schubert varieties

A remarkable formula for the restrictions y(w)|v was discovered
by Andersen-Jantzen-Soergel, and in a different context, by Billey.

Theorem 5.1 (Andersen-Jantzen-Soergel, Billey). Fix a reduced
word (α1 , . . . , αd) for v ∈ W . For any w ∈ W ,

(6) y(w)|v !

∑
βi1 · · · βi# ,

the sum over all subsets I ! {i1 < · · · < i#} ⊆ {1, . . . , d} such that
α(I) ! (αi1 , . . . , αi# ) is a reduced word for w.

Here βi ! sα1 · · · sαi−1(αi), as in Chapter 15, Lemma 1.6. By one of
the many characterizations of Bruhat order there exists a subsequence
(αi1 , . . . , αi# ) as in the theorem if and only if w ≤ v, i.e., whenever
pv ∈ Y(w).

Considered as a formula for y(w)|v , one appealing feature is that
the right-hand side is positive: the roots βi which appear are all in
R+, and it follows that y(w)|v is nonzero whenever v ≥ w. Another
remarkable consequence of the formula is that the polynomial on the
right-hand side is independent of the choice of reduced word.

We will give two proofs of this theorem: one based on the ge-
ometry of Bott-Samelson varieties, and another using induction and
some algebra. We need an easy lemma.

Lemma 5.2. For any word α ! (α1, . . . , αd) and any w ∈ W , the
pullback for f : X(α)→ X is given by

f ∗y(w) !
∑

y(I),

the sum over all subsets I such that #I ! #(w) and the corresponding
α-chain v has vd ! w.

Proof. Let 〈a , b〉 denote the usual pairing in cohomology, given
by pushforward of a · b to a point. By the projection formula, we
have 〈 f ∗y(w), x(I)〉 ! 〈y(w), f∗x(I)〉. Since f∗x(I) ! x(vd) when
X(I) → X(vd) is birational, and f∗x(I) ! 0 otherwise, the lemma
follows from Corollary 2.5. !
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Remark 5.3. Applying the lemma to divisor classes, we have
f ∗y(sα) !

∑
yi , the sum over 1 ≤ i ≤ d such that αi ! α. Com-

bining this with Proposition 4.1 gives a method for computing in
H∗T(G/B).

First proof of Theorem 5.1. Let f : X(α) → X is the projection,
and let v ! (v1, . . . , vd) be the α-chain associated to I ! {1, . . . , d},
so vi ! sα1 · · · sαi , and in particular v ! vd . Then f (pv) ! pv, so
y(w)|v ! ( f ∗y(w))|pv . By Lemma 5.2, this is

∑
y(K)|I , the sum over all

K such that #K ! #(w) and the corresponding α-chain vK has vK
d
! w.

On the other hand, by Corollary 3.4, we have y(K)|I !
∏

i∈K(−vi(αi)).
Since −vi(αi) ! βi , the theorem is proved. !

For the second proof, we use a variation on the functions ψv which
we studied in Chapter 16. These were given by ψv(w) ! y(v)|w . Here
we will use functions ϕv : W → Λ, defined by

ϕv(w) ! y(w)|v ! ψw(v).

Properties of these functions are immediate from the corresponding
properties of ψw (Chapter 16, Proposition 2.5). We only need an
inductive formula.

Lemma 5.4. We have

ϕv(w) ! ϕvsα (w) if #(wsα) > #(w);(7)

ϕv(w) ! ϕvsα (w) − v(α)ϕvsα (wsα) if #(wsα) < #(w).(8)

Proof. Using the operators Aα from Chapter 16, Proposition 2.5,
we have

ψw(vsα) − ψw(v) ! v(α) (Aαψw)(v)

!

{
0 if #(wsα) > #(w);

v(α)ψwsα (v) if #(wsα) < #(w).

This immediately proves (7), as well as (8) with ϕv(wsα) appearing
on the right-hand side in place of ϕvsα (wsα). But by (7), we have
ϕv(wsα) ! ϕvsα (wsα) (since #(wsα) > #(wsα · sα)). !
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Using the lemma, if we know the function ϕvsα , for some α, then
we know ϕv . For instance, we know

ϕe(w) !

{
1 if w ! e;

0 otherwise

(since pe " Y(w) for w ! e). This determines the rest!

Second proof of Theorem 5.1. We use induction on #(v). For
#(v) ! 0, so v ! e, this is the case observed above, so the theo-
rem holds. In general, fix a reduced word for v as in the theorem.
Set fv(w) to be the right-hand side of the formula (6), and let α ! αd.
We assume the formula for ϕvsα is known, using the reduced word
(α1, . . . , αd−1) for it.

If #(wsα) > #(w), then no reduced word for w ends in α, and it
follows that fv(w) ! fvsα (w). Since ϕv(w) ! ϕvsα (w) by Lemma 5.4,
the formula holds in this case.

If #(wsα) < #(w), then no reduced word for wsα ends in α. Con-
sider subsets I ! {i1 < · · · < i#} corresponding to reduced words
for w. For those I such that i# ! d, the sequence (αi1 , . . . , αi#−1) is a
reduced word for wsα, and βd ! −v(α) ! (vsα)(α). So the sum of
such terms is ∑

I with i#!d

βi1 · · · βi#−1βi# ! −v(α)ϕvsα (wsα).

The other terms, where i# < d, sum to ϕvsα (w). Applying Lemma 5.4,
the full sum is ϕv(w), as required. !

Example 5.5. Theorem 5.1 includes a formula for the restrictions of
divisor classes y(sα)|v , as the sum of those βi for which αi ! α. On the
other hand, we saw y(sα) ! +α − v(+α) in Chapter 16, Lemma 2.6.
The latter is often simpler to use in this case. For example, with
G ! SLn and α ! t1 − t2, we have

+α − v(+α) ! α1 + · · · + αv(1)−1

for any permutation v ∈ Sn , without needing to find a reduced
expression.
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Exercise 5.6. Check directly that the two formulas for y(sα)|v
agree: show that

+α − v(+α) !
∑

i:αi!α

sα1 · · · sαi−1(αi)

for any simple root α, and any reduced word (α1 , . . . , αd) for v ∈ W .4

Example 5.7. As noted above, Theorem 5.1 shows that y(w)|v is
nonzero if and only if pv ∈ Y(w). This is a special property of
the standard torus action on Schubert varieties. In general, for an
invariant subvariety Y of a nonsingular variety V , with [Y]T ∈ H∗TV ,
one can have [Y]T |p ! 0 for an isolated fixed point p ∈ Y.

For example, consider V ! P4 with coordinates x1, . . . , x5, and a
torus T acting by characters 0, χ1,−χ1, χ2,−χ2, where χ1 ! χ2. Let Y

be the hypersurface defined by x2x3 − x4x5 ! 0, so p ! [1, 0, 0, 0, 0] is
the singular point of Y. Writing ζ ! cT

1 (O(1)), we have [Y]T ! 2ζ so
[Y]T |p ! 0.

Remark 5.8. As we saw in Chapter 15, Equation (9), Schubert
classes in G/P pull back to Schubert classes in G/B. Writing the
projection as π : G/B → G/P, we have π∗y[w] ! y(wmin). This is
compatible with restriction to fixed points, and we have

y[w]|[v] ! y(wmin)|v

for any coset representative v ∈ [v]. In particular, Theorem 5.1
includes a formula for restricting G/P Schubert classes.

6. Duality

In Chapter 16, §4, we used an isomorphism Φw : G/B
∼
−→ G/Bw

to relate difference operators with the right W-action on G/B. The
particular case where w ! w◦, so Bw◦ ! +w◦B +w−1

◦ ! B−, is especially
useful for passing between formulas involving y(w) and ones involv-
ing x(w). Here we will state several such formulas; their proofs are
all immediate from the functoriality of pullbacks.
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To set up notation, let X ! G/B−, with fixed points pw ! +wB− and
Schubert varieties

X(w) ! B− · pw and Y(w) ! B · pw .

Let x(w) and y(w) be the corresponding Schubert classes in H∗TX.
The entire discussion for Schubert classes in X ! G/B− is parallel to
that of X ! G/B, except that each root is replaced by its negative. For
example,

y(w)|pw
!

∏
β∈w(R−)∩R+

(−β) ! (−1)#(w) y(w)|pw .

Let τ : Λ → Λ be the graded involution which is multiplication
by (−1)r on Symr M, so τ is induced by the involution of M taking
each root to its negative. Then

(9) y(w)|pv
! τ(y(w)|pv )

for every w , v ∈ W .
Write Φ ! Φw◦ for the G-equivariant isomorphism X

∼
−→ X, so

Φ(gB) ! g +w◦B−. Since Φ(pww◦ ) ! pw , we see

Φ(X(ww◦)) ! Y(w) and Φ(Y(ww◦)) ! X(w).

So Φ∗y(w) ! x(ww◦) and Φ∗x(w) ! y(ww◦), and we have

x(w)|pv ! y(ww◦)|pvw◦
.

Combining this with (9), we obtain

(10) x(w)|pv ! τ(y(ww◦)|pvw◦
).

Next consider the automorphism τ◦ ! τw◦ : X→ X, coming from
the left action of W on G/B as in Chapter 16, §5. The map τ◦ is
equivariant with respect to the automorphism σ : g -→ +w◦g +w−1

◦ of
G. Restricting σ to the torus T ⊆ G, in turn, induces the algebra
automorphism w◦ : Λ→ Λ given by λ -→ w◦(λ) for λ ∈ M. Since τ◦
maps pw◦w to pw, we see τ◦(X(w◦w)) ! Y(w) and therefore

(11) x(w◦w)|pw◦v ! w◦ · (y(w)|pv ).
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Like τ, the algebra automorphism w◦ sends a product of positive
roots to a product of negative roots—but in general these are different
automorphisms.

Finally, the isomorphism Φ ◦ τ◦ : X → X is equivariant with re-
spect to the automorphism σ, and takes Y(w◦ww◦) to Y(w), so

(12) y(w◦ww◦)|pw◦vw◦
! w◦ · τ(y(w)|pv ).

These identities generalize ones we have seen for Schubert poly-
nomials in type A. For instance, Equation (12) here corresponds to
Chapter 11, §8, Equation (2).

7. A nonsingularity criterion

For v ≤ w in W , when is the Schubert variety X(w) nonsingular
at the fixed point pv ∈ X(w)? We will see a criterion in terms of
equivariant cohomology, due to Kumar.

We need some information about the tangent cone Cpv X(w). Let

Vv ! +vU− +v−1 · pv ⊆ X

be the T-invariant open affine neighborhood of pv, and let

V(w)v ! X(w) ∩ Vv

be the corresponding affine neighborhood in X(w). We will write
V(w)v ! Spec A, and m ⊆ A for the maximal ideal corresponding to
pv ∈ V(w)v .

Lemma 7.1. For each β ∈ v(R−) such that sβv ≤ w, there is a function
fβ ∈ A which is an eigenfunction of weight β for the action of T. (That is,
fβ(t−1x) ! β(t) f (x) for all t ∈ T and x ∈ V(w)v .)

Furthermore, the fβ generate an m-primary ideal in A. (That is,
fβ(pv) ! 0 for each β, and pv is their only common zero.)

From the description of invariant curves we saw in Chapter 15,
§4, the roots β ∈ v(R−) such that sβv ≤ w are precisely the weights of
the T-invariant curves in X(w) through pv .

We will state the nonsingularity criterion in terms of the equivari-
ant multiplicities defined in Chapter 17.
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Theorem 7.2. For v ≤ w, the point pv is nonsingular in X(w) if and
only if

εT
pv

X(w) !
∏

β∈v(R−)
sβv≤w

β−1,

where εT
v X(w) is the equivariant multiplicity of X(w) at pv.

Proof. One direction is immediate. If X(w) is nonsingular at pv,
the weights on Tpv X(w) coincide with the tangent weights to the
T-invariant curves through pv. (This is a general fact about nonsin-
gular varieties with finitely many invariant curves; see Chapter 7,
Proposition 2.3.) Therefore

Tpv X(w) !
⊕
β∈v(R−)
sβv≤w

gβ .

By an elementary property of equivariant multiplicities, εT
v X(w) is

the inverse of the product of tangent weights (Chapter 17, Proposi-
tion 4.4(ii)).

Conversely, assume the formula holds. Using the notation of
Lemma 7.1, let A′ ⊆ A be the subring generated by the functions fβ.
Since εT

v X(w) has degree −dim X(w) ! −#(w), there are #(w) such
fβ’s. It follows that they form a system of parameters for A at m.
So the subalgebra A′ # C[{ fβ | β ∈ v(R−), sβv ≤ w}] is a polynomial
ring, and A is a finitely generated module over A′.

Let V ! V(w)v ! Spec A and V ′ ! Spec A′, and write π : V → V ′

for the corresponding equivariant map of affine varieties. Let p′ ∈ V ′

be the origin, and note that this is a nondegenerate fixed point, since
the tangent weights β are all nonzero. Since the functions fβ are
a system of parameters, we have π−1(p′) ! pv. It follows from
another property of equivariant mulitplicities (Chapter 17, Propo-
sition 4.4(vi)) that

εT
pv

V ! d · εT
p′V
′,

where d is the degree of the finite map π; since equivariant multiplic-
ities are local, we have εT

v X(w) ! εT
pv

V . On the other hand, p′ ∈ V ′ is
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nonsingular, with tangent weights β, so as observed above we have

εT
p′V
′
!

∏
β∈v(R−)
sβv≤w

β−1.

It follows that d ! 1, so A ! A′ is a polynomial ring, and V # A#(w).
In particular, pv is a nonsingular point. !

The criterion may be rephrased in terms of restrictions of Schubert
classes.

Corollary 7.3. For v ≤ w, the point pv is nonsingular in X(w) if and
only if

x(w)|v !

∏
β∈v(R−)∩R−

sβv$w

β.

Proof. We have

x(w)|v ! cT
N(Tpv X) · εT

v X(w)

!
+,
-

∏
β∈v(R−)

β
./
0
· εT

v X(w),

using another characterization of equivariant multiplicities (Chap-
ter 17, §4, Equation (9)). Dividing both sides by cT

N(Tpv X), the asser-
tion follows from Theorem 7.2. (For any β ∈ v(R−) ∩ R−, we have
sβv < v ≤ w, so these weights cancel.) !

Using the duality identities from the previous section, it is easy to
deduce corresponding nonsingularity criteria for opposite Schubert
varieties Y(w). Using the notation of §6, the automorphism τ◦ sends
pw◦v to pv and X(w◦w) to Y(w), so pv is nonsingular in Y(w) if and
only if pw◦v is nonsingular in X(w◦w). We obtain the following:

Corollary 7.4. For v ≥ w, the point pv is nonsingular in Y(w) if and
only if

y(w)|v !

∏
β∈v(R−)∩R+

sβv%w

β.
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In this case, the tangent space Tpv Y(w) has weights β ∈ v(R−) such that
sβv ≥ w.

(Applying Equation 11, it suffices to verify that{
β ∈ v(R−) | sβv % w

}
! w◦

({
γ ∈ w◦v(R

−) | sγw◦v % w◦w
})
,

which is straightforward, using w◦v ≤ w◦w iff v ≥ w.)
Combining this with the restriction formula of Theorem 5.1, we

arrive at a combinatorial criterion for nonsingularity of Y(w) at pv.

Corollary 7.5. Fix a reduced word α ! (α1, . . . , αd) for v, and write
βi ! sα1 · · · sαi−1(αi). Then pv is nonsingular in Y(w) if and only if∑

βi1 · · · βi# !

∏
β∈v(R−)∩R+

sβv%w

β,

where the sum on the left-hand side is over all I ⊆ {1, . . . , d} such that the
corresponding subword α(I) is a reduced word for w.

Exercise 7.6. If #(v) ! #(w)+1, show that pv ∈ Y(w) is nonsingular.
Conclude that Schubert varieties are nonsingular in codimension one.
(That is, the singular locus has codimension at least two.)5

Exercise 7.7. For G ! SLn and α ! tk − tk+1, so sα ! sk , show that
the (opposite) Schubert variety Y(sk) ⊆ SLn/B is singular at w if and
only if #{i ≤ k | w(i) > k} ≥ 2.6

Exercise 7.8. UseS2 1 4 3 ! (x1 − y1)(x1 + x2 + x3 − y1 − y2 − y3) to
determine the singular locus of Y(2 1 4 3) ! Ω2 1 4 3 ⊆ Fl(C4).

Remark 7.9. Using the Bott-Samelson resolution, the additivity
property of equivariant multiplicities (Chapter 17, Proposition 4.4(vi))
leads to another formula for εT

v X(w). We have

(13) εT
v X(w) !

∑
v

(
#∏

i!1

(−vi(αi))

)−1

,

where α ! (α1, . . . , α#) is a fixed reduced word for w, and the sum
is over all α-chains v ! (e , v1, . . . , v#) such that v# ! v. (These
correspond to the fixed points pv ∈ X(α) mapping to pv under the
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resolution X(α) → X(w), and the corresponding term is εT
v X(α).)

Clearing denominators, one obtains a formula for x(w)|v which is
different from the one deduced from Billey’s formula. In particular,
note that the chains indexing terms of the sum need not correspond
to reduced words for v.

Remark 7.10. As noted in Remark 5.8, knowing about Schubert
varieties in G/B is enough to say something about Schubert varieties
in G/P. The projection π : G/B → G/P makes X(wmax) → X[w]

and Y(wmin)→ Y[w] into fiber bundles, with nonsingular fiber P/B.
So a point p[v] ∈ X[w] is nonsingular if and only if pv ∈ X(wmax) is
nonsingular, for any coset representative v ∈ [v]; and similarly for
p[v] ∈ Y[w]. So Theorem 7.2 and Corollary 7.3 provide nonsingular-
ity criteria for Schubert varieties in G/P.

Notes

Bott and Samelson gave a construction similar to the one indicated in
Remark 3.5, and used it to study the cohomology of G/B ! K/S [BoSa55].
In particular, they prove a non-equivariant version of Corollary 4.4. The
algebraic version which is more commonly used in Schubert calculus and
representation theory was introduced by Demazure [De74] and Hansen
[Han74], and for this reason the varieties X(α) are sometimes called Bott-
Samelson-Demazure-Hansen (or BSDH) varieties. The non-equivariant part
of the formula for x2

i (Exercise 4.3) appears in [De74, §4.2].
Corollary 3.4 was proved by Willems, using a localization argument

similar to the second proof we gave [Wi04]. Our geometric argument,
using the submanifolds Y(I), appears to be new.

Theorem 5.1 appears as an exercise (without proof) in a book by An-
dersen, Jantzen, and Soergel [AJS94, p. 298]. Billey discovered the formula
independently, emphasizing the connection with Schubert calculus [Bi99].
Her proof proceeds by decreasing induction on w, with a separate argu-
ment that the polynomial is independent of the choice of reduced word.
The result is sometimes known as the AJSB formula.

Example 5.7 is due to Brion [Bri00].
Among simple linear algebraic groups, the automorphisms τ and w◦

(from §6) are equal precisely in types Bn , Cn , D2n , E7, E8, F4, and G2; see,
e.g., [Hum81, §31.6].
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Theorem 7.2 is due to Kumar [Ku96, Theorem 5.5]. A simplified argu-
ment was given by Brion [Bri97b, §6.5], and this is essentially the one we
use. Lemma 7.1 follows from a result of Polo [Po94, Prop. 2.2]; see also Ku-
mar [Ku02, Prop. 5.2]. A more detailed study of the tangent cones Cpv X(w)

has been carried out by Carrell and Peterson; see, e.g., [Ca94].
The formula (13) for εT

v X(w) is due to Rossmann [Ro89, (3.8)].

Hints for exercises

1Use the subword characterization of Bruhat order, and a greedy algorithm to
see that sαi1

· · · sαi#
≤ sα1 ∗ · · · ∗ sαd for any subword of α. See [KnMi04, Lemma 3.4].

2Consider the point p ! p{1,...,d} ∈ X(α). Using terminology from Chapter 7, §2,
the tangent space TpX(α) contains parallel weights whenever α is a non-reduced
word; in this case there are infinitely many T-curves through a neighborhood of p.
Whenever the sequence α has a repeated root, an instance of the variety considered
in Example 2.6 occurs as a subvariety of X(α), and this has infinitely many T-curves.

To see that X(α) is toric when all roots are distinct, look at the tangent space
to p∅ : the characters form part of a basis for M, so there is a dense T-orbit. To see
that f is an isomorphism in this case, keep track of fixed points.

3Use induction on d. The same argument shows that the analogous map

G ×B Pα1 ×
B · · · ×B Pαd/B→ Z(α)

is an isomorphism.

4Argue inductively as in the second proof of Theorem 5.1. It is obvious for
v ! e. Suppose the equality is known for v, and β is a simple root such that
#(vsβ) ! #(v) + 1. If β ! α, the right-hand sides are clearly equal for v and
vsβ ; since sβ(+α) ! +α for β ! α, so are the left-hand sides. If β ! α, then the
difference of the right-hand sides is v(α), and the difference of the left-hand sides
is v(+α) − vsα(+α) ! v(α).

5The claim about pv ∈ Y(w) being nonsingular follows easily from Billey’s
formula for y(w)|v . Using B-equivariance, one sees that the nonsingular locus of
Y(w) contains the union of Schubert cells Y(v)◦ for v ≥ w and #(v) ≤ #(w)+1. (The
conclusion also follows from the general fact that Schubert are normal.)

6Use the formula for y(sα)|w in Chapter 10, Exercise 7.2.


