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In this appendix, we collect some basic facts from algebraic topology
pertaining to the fundamental class of an algebraic variety, and Gysin push-
forward maps in cohomology. Much of this material can be found in [Ful97,
Appendix B], and we often refer there for proofs.

This appendix is in rough form, and will probably change significantly.
(Watch the version date.)

1. A brief review of singular (co)homology

Let X be any space, let C∗X be the complex of singular chains on X, and
let C∗X = Hom(C∗X, Z) be the complex of singular cochains. The singular

homology modules are defined as

HiX = hi(C∗X),

and the singular cohomology modules are

H iX = hi(C∗X).

One sets H∗X =
⊕

HiX and H∗X =
⊕

H iX. We refer to [Spa66] for the
details and basic properties of these constructions, summarizing the most
relevant facts below.

One sacrifices some geometric intuition in working with cohomology in-
stead of homology, but one gains the advantage of an easily defined ring
structure. If σ ∈ CkX is a singular simplex, let fiσ ∈ CiX be the restriction
of σ to the front i-face of the standard simplex, and let bjσ be the restriction
of σ to the back j-face. Then one defines the cup product

H iX ⊗ HjX → H i+jX

by setting

(c ∪ d)(σ) = c(fiσ) d(bjσ),

for c ∈ CiX, d ∈ CjX, and σ an (i + j)-simplex.
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This makes H∗X into a skew-commutative graded ring: For c ∈ H iX and
d ∈ HjX, one has c ∪ d = (−1)ijd ∪ c. 1

H∗X becomes a (left) module over H∗X via the cap product

∩ : H iX ⊗ HjX → Hj−iX,

defined by c ∩ σ = c(biσ) (fj−iσ).
Associated to a continuous map f : X → Y , there are natural pushforward

and pullback maps on homology and cohomology, respectively, denoted f∗ :
H∗X → H∗Y and f∗ : H∗Y → H∗X. These are related by the projection
formula, also called “naturality of the cap product”:

f∗(f
∗c ∩ σ) = c ∩ f∗σ.

If X is triangulated, one also has the simplicial homology Hsimp
∗ X, and a

canonical isomorphism Hsimp
∗ X

∼

−→ H∗X. (This shows Hsimp
∗ X is indepen-

dent of the choice of triangulation.)
For A ⊂ U ⊂ X, with A closed in X and U open, there are natural

excision isomorphisms H i(X,U) ∼= H i(X r A,U r A).
If M is a compact, connected, oriented n-manifold, then it has a funda-

mental class [M ] ∈ HnM ∼= Z, characterized by the fact that it maps to a
chosen generator of Hn(M,M r {x}) ∼= Hn(U,U r {x}) ∼= Z for all x ∈ M ,
where U is a ball around x. There is a canonical isomorphism (the “Poincaré

isomorphism”) H iM
∼

−→ Hn−iM , given by c 7→ c ∩ [M ]. This isomorphism,
then, makes H∗M ∼= H∗M into a ring.

For such M , there is a perfect pairing
∫

M
: H∗M × H∗M → Z,(1)

called the Poincaré duality pairing.2 For c ∈ H iM and d ∈ Hn−iM , this
is given by (c, d) 7→ (c ∪ d) ∩ [M ] ∈ H0M = Z. If {xα} is a homogeneous
basis for H∗M , then the Poincaré dual basis is the basis {yα} dual for this
pairing, so

∫

M
xα · yβ = δαβ .

If V is a closed subset of M , there is also a canonical isomorphism

HiV ∼= Hn−i(M,M r V ).(2)

This isomorphism is often called the “Alexander-Lefschetz” isomorphism.
(See [Spa66, p. 296–7].)

1The sign conventions in the definition of the cup product vary throughout the litera-
ture. For example, ours agree with those of [Spa66] and [Hat02], but are the opposite of
those of [Mil-Sta74].

2In fact, there are several related (but different) notions which go by the name “Poincaré
duality”.
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For an oriented rank-r real vector bundle E
π
−→ X, and A any subspace

of X, there is the Thom isomorphism

H i(X,X r A) ∼= H i+r(E,E r A).

In fact, there is a class η ∈ Hr(E,E rX), called the Thom class, character-
ized by the fact that it restricts to the chosen generator of Hr(π−1(p), π−1(p)r
{p}) for all p ∈ X. The above isomorphism is given by c 7→ π∗(c)∪η. (Note:
we always identify X with its embedding by the zero section in a vector
bundle.)

For a smooth closed submanifold M of a smooth manifold M ′, there is a
neighborhood U of M in M ′ such that the pair (U,M) is diffeomorphic to
(N,M), where N is the normal bundle of the embedding M ⊂ M ′.

2. Borel-Moore homology

A better way, at least for our purposes, is to use Borel-Moore homology,
which we will denote by H iX. There are several ways to define these groups;
for example, via

• sheaf theory (as was done originally in [Bor-Moo60] and [Bor-Hae61]);
• locally finite chains;
• a one-point compactification X+, for good spaces X. (Use Hi(X

+,X+r

X).)

We will use a definition which comes equipped with many nice properties,
and which works for any space which can be embedded as a closed subspace
of an oriented smooth manifold M :

Definition 2.1. For a space X embedded as a closed subspace in an oriented
smooth manifold M , the Borel-Moore homology groups are

H iX := Hdim M−i(M,M r X).(3)

Proposition 2.2. This definition is independent of the choice of embedding.
In fact, given closed embeddings of X into manifolds M and M ′, there is
a canonical isomorphism HdimM−i(M,M r X) ∼= Hdim M ′

−i(M ′,M ′ r X).
Moreover, if X is embedded into a third manifold M ′′, these isomorphisms
form a commuting triangle:

HdimM−i(M,M r X)
∼

- HdimM ′
−i(M ′,M ′ r X)

HdimM ′′
−i(M ′′,M ′′ r X).

�

∼∼

-

For the proof, see [Ful97, pp. 216-217].
Note that these Borel-Moore homology groups are not homotopy invari-

ant: For example, our definition says that HnRn = Z. Nor are they functo-
rial with respect to arbitrary continuous maps. However, there is functori-
ality in two important situations.
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Proposition 2.3 (Covariance for proper maps). If f : X → Y is continuous
and proper (i.e., the inverse image of a compact set is compact), then there
are maps

f∗ : H iX → H iY.

Proof. Suppose X is embedded as a closed subspace of Rn, and Y is em-
bedded as a closed subspace of Rm. Since f is proper, we can find a map
ϕ : X → In such that

(f, ϕ) : X → Y × In ⊂ Rm × Rn

is a closed embedding.3 (Here In = [a, b]n, with a < 0 < b.)

H iX = Hm+n−i(Rm × Rn, Rm × Rn r X)

−→
(restrict)

Hn+m−i(Rm × Rn, Rm × Rn r (Y × In))

∼=
(homotopy)

Hm+n−i(Rm × Rn, Rm × Rn r (Y × {0}))

∼=
(Thom)

Hm−i(Rm, Y )

= H iY.

�

Exercise 2.4. Check independence of choices, and naturality: (g ◦ f)∗ =
g∗ ◦ f∗ for

X
f
−→ Y

g
−→ Z.

We also have contravariance for open inclusions. Let U ⊂ X be an open
subspace, embed X in an n-manifold M , and let Y = X r U . We get
restriction maps H iX → H iU from the long exact cohomology sequence of
the triad (M,M rY,M rX). Indeed, U is a closed subspace of the manifold
M r Y , so the map is

H iX = Hn−i(M,M r X) → Hn−i(M r Y, (M r Y ) r U) = H iU.

Exercise 2.5. Check independence of choice, and naturality for a sequence
of open inclusions U ′ ⊂ U ⊂ X.

In the case where M , X, and Y are complex varieties, we will use this
restriction map to find isomorphisms on top-dimensional homology. Also,
this allows restriction of homology classes to small (classical!) open sets.

3Take ϕ to be the composition of X →֒ Rn with a homeomorphism Rn → (a, b)n,
followed by the inclusion (a, b)n ⊂ In. When f is proper, this choice of ϕ makes (f, ϕ) a
closed embedding. Indeed, X →֒ Y ×(a, b)n is always a closed embedding; identify X with
its embedding in (a, b)n. Suppose (y, x) is a limit point of (f, ϕ)(X) ⊂ Y × In, so there
is a sequence {(yk, xk)} → (y, x), with f(xk) = yk. Then C = {yk} ∪ {y} is compact, so
f−1C is compact and contains {xk}, and therefore it must contain x.
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Example 2.6. X = Cn. (Or X = ball in Cn.) This is a manifold, so

H iX = H2n−i(X, ∅) =

{

Z if i = 2n;
0 otherwise.

Exercise 2.7. The operations of pushforward and restriction are compat-
ible. Specifically, if f : X → Y is proper and U ⊂ Y is open, then the
diagram

H iX - H i(f
−1U)

H iY
?

- HiU
?

commutes.

Proposition 2.8. For Y ⊂ X closed, with U = X r Y , there is a natural
long exact sequence

· · · → H iY → H iX → H iU → H i−1Y → · · · → H0U → 0.(4)

This sequence will allow inductions on dimension, when the homologies
of two of the three spaces are known.

Proof. When X is embedded as a closed subspace of a manifold M , this is
just the long exact cohomology sequence of the triad (M,M rY,M rX). �

3. Classes of subvarieties

Proposition 3.1. Let V be a k-dimensional quasi-projective algebraic va-
riety. Then H iV = 0 for i > 2k, and H2k =

⊕

Z, with one copy of Z for
each k-dimensional irreducible component of V .

Proof. In general, if X is a disjoint union of spaces Xj , then H iX =
⊕

j H iXj . (Exercise.) Now when V is nonsingular, this observation re-
duces the claim to the case where V is irreducible. Indeed, in a nonsingular
variety, connected components coincide with irreducible components. But
then V is a connected manifold, so H iV = H2k−iV ; this is 0 for i > 2k and
Z for i = 2k.

For a general (possibly singular and reducible) k-dimensional complex va-
riety V , we can reduce to the nonsingular case using the long exact sequence
of Borel-Moore homology. Let W ⊂ V be the closed set consisting of the
singular locus of V , together with all irreducible components of dimension
< k; thus W is a variety of dimension < k. By induction on dimension,
then, we may assume the claim holds for W . In particular, H iW = 0 for
i > 2k − 2. Now apply the long exact sequence for W ⊂ V : we have

0 = H2kW → H2kV → H2k(V r W ) → H2k−1W = 0.(5)

Thus H2k(V ) ∼= H2k(V rW ), and since the latter is a k-dimensional nonsin-
gular variety, the claim follows. (The same argument also shows vanishing
for i > 2k.) �
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Remark 3.2. An essential ingredient in the above proof is the fact that the
singular locus of a complex variety is a subvariety of complex codimension
at least 1, and hence of real codimension at least 2. Things are somewhat
more subtle in the real world, and one must impose additional hypotheses
for a similar claim to hold on real varieties.

We therefore have a fundamental class [V ] ∈ H2kV ∼= Z, for any irre-
ducible k-dimensional variety V . If V is a closed subvariety of a nonsingular
variety X, we also get a fundamental class corresponding to V in H2d(X),
where d is the codimension of V . This comes from

H2kV = H2d(X,X r V ) → H2d(X).

The element ηV ∈ H2d(X,X r V ) corresponding to [V ] ∈ H2kV is called
the refined class of V in X.

Remark 3.3. One should expect a class representing V in H2d(X) to be
“supported on V ,” and hence to come from H2d(X,X r V ). We need a
canonical representative, though, and the fundamental class of Borel-Moore
homology gives us one.

Remark 3.4. Suppose V and W are irreducible subvarieties of X, of re-
spective codimensions d and e. Then there is a class [V ] · [W ] ∈ H2d+2e(X).
In fact, using refined classes, we have

ηV · ηW ∈ H2d+2e(X,X r (V ∩ W )),

so this product is supported on the intersection of V and W . If V and W
intersect properly (i.e., codim(V ∩ W ) = d + e), then by Proposition 3.1,

H2d+2e(X,X r (V ∩ W )) = Htop(V ∩ W ) =
⊕

Z,

with one copy of Z for each irreducible component of V ∩W . Thus ηV · ηW

assigns an intersection number to each irreducible component of V ∩W , and
we have an intersection cycle V ·W . In fact, these numbers agree with those
defined algebraically in intersection theory.

We now turn to the behavior of fundamental classes under morphisms.

Proposition 3.5. Let X and Y be nonsingular varieties of respective di-
mensions n and m, and let f : X → Y be a proper morphism. Let V ⊂ X
be a closed subvariety, and let W = f(V ) ⊂ Y . Then

f∗ : H i(X) - H2m−2n+i(Y )

‖ ‖

H2n−i(X) - H2n−i(Y )

maps

[V ] 7→

{

0 if dim W < dim V ;
d[W ] if dim W = dim V,
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where d is the degree of V over W . (By definition, this is the degree of the
field extension [C(V ) : C(W )].)

Proof. The first case (dim W < dim V ) is clear from Proposition 3.1. In the
second case, there is an open set U ⊂ W such that f−1U ∩ V → U is a
d-sheeted covering. Taking U to be sufficiently small, we may assume it is
a ball, and we have f−1U ∩ V = U1

∐

U2
∐

· · ·
∐

Ud, with each Ui mapping
isomorphically to U .

Then we have a commuative diagram

d
⊕

i=1

H2k(Ui)=H2k(f
−1U ∩ V ) � H2kV - H2kX

H2kU
?

�
∼

-

H2kW
?

- H2kY,
?

and the proposition follows. �

The next proposition is about “compatibility of pullbacks.”

Proposition 3.6. Let f : X → Y be a morphism of nonsingular varieties,
with V ⊂ Y irreducible of codimension d. Assume there is a classical open
neighborhood U ⊂ Y where V ∩ U = V o ⊂ U is connected, nonsingular,
and defined by (holomorphic) equations h1, . . . , hd, such that W ∩ f−1U =
W o ⊂ f−1U is also connected, nonsingular, and defined by the equations
h1 ◦ f, . . . , hd ◦ f . Then f∗ηV = ηW .

Proof. We have

Z = H2d(Y, Y r V )
f∗

−→ H2d(X,X r W ) = Z,

so ηV 7→ c · ηW for some c ∈ Z. The assumptions on U and f−1U guarantee
that the restriction maps are isomorphisms:

H2d(Y, Y r V )
∼

−→ H2d(U,U r V o)

H2d(X,X r W )
∼
−→ H2d(f−1U, f−1U r W o).

Thus we may replace Y with U , and reduce to the situation where Y is a
vector bundle over V – in fact, a trivial bundle – and similarly X is a vector
bundle over W . The claim is that the Thom class in H2d(Y, Y r V ) pulls
back to the Thom class in H2d(X,X r V ). But the hypotheses mean that
X is the pullback of Y , when X and Y are considered as vector bundles
over W and V . The assertion thus reduces to naturality of the Thom class
of vector bundles. �

Thus for irreducible closed subvarieties V and W of a nonsingular variety
X, with dimV = k, dim W = l, and dimX = n, we obtain an intersection
class in H2n−2k−2l(V ∩ W ) = H2k+2l(X,X r (V ∩ W )), corresponding to
[V ]·[W ]. Each (k+l−n)-dimensional irreducible component Z of V ∩W gives
an intersection number i(Z, V ∩ W,X), which is the projection of [V ] · [W ]
onto the factor of H2k+2l−2n(V ∩ W ) =

⊕

Z corresponding to Z.
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Exercise 3.7. If there is an open set of Z on which V and W meet transver-
sally, then i(Z, V ∩ W,X) = 1. (See [Ful97, p. 222].)

Remark 3.8. Geometric considerations (“reduction to the diagonal”) can
be used to show that the intersection numbers i(Z, V ∩W,X) are nonnegative
whenever X is a manifold; hence any product [V ] · [W ] can be expressed as
a nonnegative sum of classes [Z]. Is this a formal property of the theory,
or does it depend on the geometry? For example, if X is a Q-homology
manifold (i.e., a variety having the Q-homology of a manifold), is it true
that the corresponding intersection numbers i(Z, V ∩ W,X) are positive
rational numbers?

Remark 3.9. When X is a manifold, the ring structure on H∗X comes
from the diagonal embedding. More specifically, one has the diagonal map
δ : X → X × X, and for classes α, β ∈ H∗X,

α ∪ β = δ∗(α × β) = δ∗(p∗1(α) ∪ p∗2(β)).(6)

For subvarieties V,W , we get [V ] · [W ] = δ∗[V × W ]. This technique of
“reduction to the diagonal” works because δ is a regular embedding.

Proposition 3.10. If X = Xs ⊃ Xs−1 ⊃ · · · ⊃ X0 = ∅ are closed algebraic
subsets, and Xi r Xi−1 =

∐

j Uij with Uij
∼= Cn(i,j), then the classes [U ij]

form a Z-linear basis for H∗X.

Proof. Use induction on i, and assume the proposition holds for Xi−1. As-
sociated to the inclusion Xi−1 ⊂ Xi, we have an exact sequence

→ Hk(Xi−1) → Hk(Xi) →
⊕

j

Hk(Uij) → Hk−1(Xi−1) → .(7)

When k is odd, Hk(Xi−1) = 0 by induction, and Hk(Uij) = Hk(C
n(i,j)) = 0

by calculation. Therefore HkXi = 0, as well, and we have short exact
sequences

0 → H2k(Xi−1) → H2k(Xi) →
⊕

j

H2k(Uij) → 0.(8)

Now [U ij ] maps to [Uij ] under the map H∗(Xi) → ⊕jH∗(Uij), and the

latter classes form a basis, so the former are independent in H∗(Xi). The
proposition follows. �

Exercise 3.11. Show that H∗Pn = Z[ζ]/(ζn+1), where ζ corresponds to
[H], the class of a hyperplane.

Exercise 3.12. Compute f∗ and f∗ for the Segre embedding Pm × Pn →֒
Pnm+n+m.

Exercise 3.13. If a connected group G acts continuously on a space X,
show that g acts trivially on H∗X for each g ∈ G. For varieties, show
g · [V ] = [gV ] = [V ].
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Remark 3.14. In fact, more is true: The operations from intersection the-
ory in algebraic geometry make sense in Borel-Moore homology, and are
compatible. See [Ful98, §19].

4. Homotopy type of the complement of an affine algebraic
set

Proposition 4.1. If Z ⊂ CN is a Zariski-closed set, of codimension d, then
πi(C

N rZ) = 0 for 0 < i ≤ 2d−2. This is always sharp: π2d−1(C
N rZ) 6= 0

if Z is nonempty.

Proof. (D. Speyer.) Identify Cn with R2n. For a smooth (C∞) map f : Si →
Cn r Z, let S = {p ∈ (real) line between Z and f(Si)}. (This is analogous
to a secant variety in algebraic geometry.) Consider the number

dimR S = dimR Z + dimR f(Si) + dimR R

≤ 2n − 2d + i + 1,

since smoothness of f implies dim f(Si) ≤ i. The condition that this number
be less than 2n is exactly that i ≤ 2d−2. For such i, then, S ( Cn; therefore
we can find a point p 6∈ S . Since p does not lie on any line joining Z and
f(Si), the set of line segments between p and f(Si) lies in Cn r Z. Use this

to extend f to a map of the ball f̃ : Di+1 → Cn r Z, thus showing that f is
null-homotopic.

Since every continous map between smooth manifolds is homotopic to
a smooth map (see [Bott-Tu95, 213–214]), the homotopy groups can be
computed using only smooth maps. Thus πi(C

n r Z) = 0 for i ≤ 2d − 2.
On the other hand, it follows from this and the Hurewicz isomorphism

theorem that π2d−1(C
n r Z) = H2d−1(C

n r Z), and H2d−2(C
n r Z) = 0.

Now by the universal coefficient theorem and the long exact sequence for
the pair (Cn, Cn r Z), we have

H2d−1(C
n r Z)∨ ∼= H2d−1(Cn r Z)

∼= H2d(Cn, Cn r Z)

= H2n−2dZ,

and we know this top Borel-Moore homology group is nonzero. �

5. Gysin maps

All maps and manifolds are assumed to be smooth. We need a few prelim-
inary notions about compatibility of orientations of manifolds. Throughout,
let X, Y , X ′, and Y ′ be oriented manifolds of (real) dimensions n, m, n′,
and m′, respectively.

Suppose f : X → Y is a closed embedding, with normal bundle N =
NX/Y . There is an exact sequence

0 → TX → TY |X → N → 0,
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and a canonical isomorphism
∧n TX⊗

∧m−n N →
∧m TY |X ; then N is said

to be compatibly oriented for f if this isomorphism preserves orientations.
More generally, any proper map f : X → Y factors through a closed

embedding in Y × RN . The given orientations on X and Y , together with
the standard orientation on RN , induce a compatible orientation on N =
NX/Y ×RN . (That is, N is compatibly oriented for the sequence

0 → TX → T (Y × RN )|X → N → 0,

as above.)
There is also a notion of compatible orientations for a fiber square of

oriented manifolds. Suppose

X ′
g′

- X

Y ′

f ′

? g
- Y

f
?

is such a square, with f (and hence f ′) proper. Factor f through a closed
embedding in Y × RN , and factor f ′ through Y ′ × RN by pullback. Give
N = NX/Y ×RN and N ′ = NX′/Y ′×RN the orientations compatible for f and

f ′. Then the square is said to be compatibly oriented if this orientation
on N ′ agrees with that induced by N ′ ∼= (g′)∗N ; in other words, (g′)∗N is
compatible for the sequence

0 → TX ′ → T (Y ′ × RN )|X′ → (g′)∗N → 0.

Exercise 5.1. Check these definitions are independent of the choice of fac-
torization of f .

When f : X → Y is a locally trivial fiber bundle, with smooth fiber F ,
the sequence

0 → TF → TX|F → f∗TY |F → 0

induces a compatible orientation on F . In this case, an equivalent way
of saying a fiber square is compatibly oriented is to require that the two
orientations on F induced by f : X → Y and f ′ : X ′ → Y ′ agree.

Remark 5.2. One must be a little careful with this definition. For example,
fix an orientation on S1, and give S1 × S1 the induced orientation. Then
the fiber for the first projection inherits the original orientation, but for the
second projection, the compatible orientation on the fiber is the opposite
orientation.

Exercise 5.3. Fix orientations on Sn and Sm, and give Sn × Sm the in-
duced orientation. Check that compatibility of orientations for the second
projection depends on the parity of nm.

Now for a proper map f : X → Y , there are Gysin maps

f∗ : H iX → H i+dY,(9)
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defined via the pushforward for Borel-Moore homology:

H iX = Hn−iX
f∗
−→ Hn−iY = H i+m−nY.

These Gysin maps satisfy the following properties:

(i) (Functoriality) For maps X
f
−→ Y

g
−→ Z, we have

(g ◦ f)∗ = g∗ ◦ f∗.

(ii) (Projection formula) For x ∈ H∗X and y ∈ H∗Y ,

f∗(f
∗(y) · x) = y · f∗(x).

(iii) (Naturality) Suppose f : X → Y is proper, and

X ′
g′

- X

Y ′

f ′

? g
- Y

f
?

is a compatibly oriented fiber square, with n − m = n′ − m′. Then
f ′

∗
◦ (g′)∗ = g∗ ◦ f∗.

(iv) (Embedding) When f : X →֒ Y is a closed embedding, f∗ factors
as

H∗X
∼
−→
t

H∗+m−n(Y, Y r X) → H∗+m−nY,(10)

where t comes from the isomorphism defined by the Thom class of
the normal bundle N = NX/Y , when N is compatibly oriented for

f . Thus the composition f∗ ◦ f∗ : H iX → H i+m−nX is (right)
multiplication by the Euler class e(N).

Remark 5.4. In general, order is important in the above formulas. For
example, if one exchanges factors, the projection formula (ii) becomes

f∗(x · f∗(y)) = (−1)bdf∗(x) · y,

where b = deg(y) and d = m − n. Indeed, we have

f∗(x · f∗(y)) = (−1)deg(x) deg(y)f∗(f
∗(y) · x)

= (−1)deg(x) deg(y)y · f∗(x)

= (−1)deg(x) deg(y)(−1)deg(y)(deg(x)−d)f∗(x) · y.

Remark 5.5. When X and Y are complex algebraic varieties, there are
Gysin pushforward maps induced by certain “nice” maps in more general
situations. For example, assuming all varieties are pure-dimensional (but
not necessarily irreducible), and all maps are proper, there are Gysin maps
for the following:

(i) Proper maps of nonsingular varieties X → Y , as above.
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(ii) Any (proper) map X → Y , where Y is nonsingular. Regardless of
whether X is nonsingular, there is a map H∗X → H∗X given by
cap product with [X]. Composing this with H∗X → H∗Y = H∗Y
gives the pushforward.

(iii) Regular embeddings X →֒ Y . That is (for general Y ) X is locally
defined by a regular sequence, so the ideal sheaf I/I2 is locally free.
(This is somewhat harder to construct.)

(iv) Smooth maps X → Y .
(v) Local complete intersection morphisms X → Y . (This follows from

(iii) and (iv), since any such map may be factored X →֒ Y ×P → Y
as a regular embedding followed by a smooth projection.)

6. Poincaré duality for fiber bundles

For our purposes, the right setting in which to express Poincaré duality
is the following. Let p : X → S be a fiber bundle with X and S smooth
oriented manifolds, with smooth, compatibly oriented fiber F , as above. For
x, y ∈ H∗X, set 〈y, x〉 = p∗(y · x) ∈ H∗S.

Proposition 6.1. Assume that there are finitely many (homogeneous) ele-
ments {xi} which form a basis for H∗X as a right H∗S-module, and whose
restrictions x̄i form a basis for H∗F over the coefficient ring R. Then there
is a unique (homogeneous, left) basis {yi} of H∗X over H∗S such that

〈yj, xi〉 = δji

in H∗S.

Proof. Order the xi’s so that xi ∈ Hk(i)X, with d = k(1) ≥ k(2) ≥ · · · ≥
k(m) = 0, and take ȳ1, . . . , ȳm to be the basis for H∗F dual to {x̄i} under
ordinary Poincaré duality. We will use induction on r to find lifts y1, . . . , yr

such that 〈yj, xi〉 = δji for all i, and for j ≤ r.

For r = 1, y1 ∈ H0X is the unique lift of ȳ1 ∈ H0F via H0X
∼

−→ H0F .
Now assume y1, . . . , yr−1 have been found. Take any lift y′r ∈ Hn−k(r)X

of ȳr, and set

yr = y′r −
r−1
∑

j=1

ajyj,

where

aj = 〈y′r, xj〉 ∈ Hk(j)−k(r)S.

A straightforward check shows that this choice of yr works.
To see that the yj ’s form a basis, it is enough to show they generate. Let

M be a free (left) H∗S-module with generators y1, . . . , ym, and consider the
maps

M →֒ H∗X → Hom(H∗X,H∗S),

where the first is the obvious inclusion, and the second is given by y 7→ 〈y, ·〉.
The composition is surjective, because yi 7→ x∗

i . Thus the second map is
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surjective, but as a map of free modules of the same rank, it must be an
isomorphism. �

Exercise 6.2. Compare xi · xj =
∑

k ck
ijxk with δ∗(yk) =

∑

i,j ak
ijyi × yj,

where δ : X → X ×S X is the diagonal map, yi × yj = p∗1(yi) · p
∗

2(yj), and

ak
ij, c

k
ij ∈ H∗S. In fact, show that ck

ij = ±ak
ij, and determine the sign.

(Of course, when all degrees are even – as they will be for applications
in algebraic geometry – there is no sign.) The geometric meaning of this
exercise is that the structure constants of the cohomology ring determine
the Gysin map δ∗, and vice versa.
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