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Let G be a Lie group acting on the left on a space X. Around 1960, Borel
defined the equivariant cohomology H∗

GX as follows [Bor60]. One finds a
contractible space EG on which G acts freely (on the right), with quotient
BG = EG/G. Then form

EG ×G X := EG × X/(e · g, x) ∼ (e, g · x).

(In effect, one replaces X by the homotopy-equivalent space EG × X, on
which G acts freely, and then forms the quotient. In the modern language
of stacks, EG ×G X represents the (topological) quotient stack [G\X].)

Definition 1.1. The equivariant cohomology of X with respect to G is
the ordinary (singular) cohomology of EG ×G X:

H i
GX = H i(EG ×G X).

This definition is independent of the choice of EG, as we will see.
For the special case of a point, we have

H∗
G(pt) = H∗(BG),

which we will denote by ΛG or Λ. For any X, the map X → pt induces
a pullback map ΛG → H∗

GX, so the equivariant cohomology of X has the
structure of a ΛG-algebra, at least when H i(BG) = 0 for odd i. In general,
this is a richer structure than the usual ring structure of classical cohomol-
ogy.

Example 1.2. Let G = C
∗ (or S1), and take EG = C

∞
r {0}. Then

BG = CP∞, and ΛG = Z[t]. Here t = c1(L), with L the tautological line
bundle on CP

∞ (so L = O(−1)!).

Exercise 1.3. For G = (C∗)n, show that ΛG = Z[t1, . . . , tn]. What is ΛG

for G = GLn(C)?
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Remark 1.4. The term “equivariant cohomology” appeared some time af-
ter Borel introduced the notion in his seminar on transformation groups.
Originally, it was used by topologists, mainly for finite groups, to answer
questions about what kinds of manifolds G can act on, and with what fixed
points.

Algebraic geometers were slow to appreciate or use equivariant cohomol-
ogy — very little was done before 1990 — possibly because the spaces in-
volved are infinite-dimensional and not algebraic. However, they are usu-
ally limits of finite-dimensional spaces, as we will see. For example, C∞ =
⋃

m C
m, and P

∞ =
⋃

m P
m.
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We always use singular cohomology, with integer coefficients unless oth-
erwise stated, and all spaces will be at least paracompact and Hausdorff. In
fact, for us X will be a complex algebraic variety (usually nonsingular, but
not necessarily compact), and G will be a linear algebraic group, usually a
torus, GLn(C), or an explicit subgroup of GLn(C). We will construct finite-
dimensional approximations EGm → BGm to EG → BG, all of which will
be algebraic manifolds, with

H i
GX = H i(EGm ×G X) for m ≥ m(2i).

Two key features of this theory are the existence of Chern classes and
fundamental classes:

(i) If F is an equivariant complex vector bundle on X, then it has
equivariant Chern classes

cG
i (F ) ∈ H2i

G X,

defined as follows. Since F is equivariant, EG ×G F is a vector
bundle on EG ×G X; take cG

i (F ) to be the ith Chern class of this
bundle. Equivalently, one can define these using Chern classes of
EGm ×G F → EGm ×G X, for m ≥ m(i).

(ii) If V ⊆ X is a G-invariant subvariety of codimension d, there is an

equivariant fundamental class [V ]G ∈ H2d
G X. In fact, EGm ×G

V is a subvariety of EGm×GX, so we can take its fundamental class
in the usual way (see Appendix A). To use this as a definition, one
must check these classes are compatible as m varies, independent
of the choices of EG and EGm.

Example 2.1. Let ρ be a complex linear representation of G — that is,
an equivariant vector bundle on a point, Eρ. Thus there are classes ci(ρ) =
cG
i (Eρ) ∈ H∗

GBG = ΛG.

Exercise 2.2. For a concrete example, let G = C
∗ act on C by g · z = gaz.

This is an equivariant line bundle La on a point, and

c1(La) = at ∈ ΛG = Z[t].
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(This explains the choice of generator t.)

Example 2.3. Let F be an equivariant vector bundle of rank d, and let s
be an equivariant section with codimX Z(s) = d. Then

[Z(s)]G = cG
d (F ).

(Using approximation spaces EGm, this reduces to the corresponding fact
for nonequivariant classes.)

Exercise 2.4. Let G = (C∗)n act on Cn in the natural way, and compute

[xi = 0]G ∈ H2
GC

n.

Exercise 2.5. Let V and W be G-invariant subvarieties of X. If V and W
are disjoint, then [V ]G · [W ]G = 0. If G is connected, and V and W intersect

properly, with V · W =
∑

miZi, then [V ]G · [W ]G =
∑

mi[Zi]
G.
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Much of what we do will involve fiber bundles

EG ×G X
↓

BG
and

EGm ×G X
↓

BGm

,

with fiber X. One can think of equivariant geometry as “spread-out geom-
etry”. These bundles are spread-out versions of X, in the same spirit as the
passages from vector space to vector bundle (with BGLn(C)), projective
space Pn to projective bundle P(E), Grassmannian to Grassmann bundle,
flag manifold to flag bundle, etc. — all familiar constructions in algebraic
geometry.

In particular, restricting to a fiber gives a map

H∗
GX → H∗X,(1)

which one expects to be surjective (especially after looking at examples).
Note that this comes from the fiber square

X - EG ×G X

pt
?

- BG.
?

If IG ⊂ ΛG is the ideal
⊕

i>0 H i(BG), we see from the diagram that there
is a map

H∗
GX ⊗ΛG

(ΛG/IG) → H∗X,(1′)

and we expect this to be an isomorphism.
There are several ways to give hypotheses which make these expectations

true; the notion is often expressed by saying that X is “equivariantly for-
mal”, at least if one takes cohomology with rational coefficients. For all our
examples, though, it will be easy to see directly, with integer coefficients.
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Remark 3.1. The above “expectations” are certainly not always true. For
a simple example, let X = G. As we will see later, H i

G(G) ∼= H i(G\G) =
H i(pt), so the map H i

G(G) → H i(G) is usually not surjective.

Example 3.2. Let X be a homogeneous space (e.g., Pn, Gr(k, n), Fl(n),
G/P ). Then H∗X has basis of Schubert classes [Ωw], where Ωw ⊂ X are
Schubert varieties; these are indexed by w ∈ W , where W is the corre-
sponding Weyl group or cosets. The Schubert varieties are invariant for an
action of a maximal torus T (or for a Borel subgroup B), so there are also

equivariant Schubert classes σw = [Ωw]T ∈ H∗
T X, mapping to [Ωw] ∈ H∗X.

(Note: the equivariant classes depend on a choice of flag; the classical ones
don’t.) These classes σw will be a basis for H∗

TX over ΛT
∼= Z[t1, . . . , tn]

(for T ∼= (C∗)n).
The structure of H∗

T X is the subject of equivariant Schubert calculus: for
u, v,w ∈ W ,

σu · σv =
∑

w

cw
uvσw,

with cw
uv ∈ ΛT homogeneous of degree ℓ(u) + ℓ(v) − ℓ(w). (Here ℓ(w) is the

codimension of Ωw in X.) When ℓ(u) + ℓ(v) = ℓ(w), the classical numbers
cw
uv ∈ Z are nonnegative for geometric reasons (the Kleiman-Bertini theo-

rem). The equivariant coefficients satisfy a positivity condition, too, which
we will describe later (see [Gra01]).

For the Grassmannian Gr(k, Cn), the classical numbers are the Littlewood-

Richardson coefficients, and combinatorial formulas for these exist; in fact,
there is also a combinatorial formula for the equivariant coefficients [Knu-Tao03],
which we will discuss later. For the two-step flag manifold Fl(k1, k2); C

n),
a combinatorial formula for classical coefficients has recently been proved
[Cos07], and there are conjectural formulas for the classical and equivariant
numbers by Knutson and Buch. There are also rules for classical Schubert
calculus on certain G/P in types other than A: Pragacz showed that a rule
of Stembridge computes the structure constants of the Lagrangian Grass-
mannian [Pra91], and Thomas and Yong recently gave a type-uniform rule
for all cominiscule flag varieties [Tho-Yong06].

Despite many attempts, no other families of homogeneous spaces even
have conjectured combinatorial formulas for the classical or equivariant
structure constants. For example, if X = Fl(n), there are integers (or
polynomials) cw

uv for each triple of permutations u, v,w ∈ Sn — but it has
been an open problem for a long time to find a combinatorial description of
them. However, there are explicit presentations for H∗Fl(n) and H∗

T Fl(n),
as well as “Giambelli” formulas for the classes σw, which we will describe.

4

There is a second general expectation for the behavior of equivariant
cohomology with respect to fixed points. Let XG denote the fixed point
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set, so the inclusion XG →֒ X determines a map H∗
GX → H∗

GXG. Now

H∗
GXG = H∗(BG×XG) = ΛG ⊗H∗XG, when this Künneth formula holds

(e.g., if XG is finite). One expects this map to be an embedding:

H∗
GX →֒ H∗

GXG.(2)

When XG is finite, H∗
GXG =

⊕

ΛG, with one copy of ΛG for each fixed
point. In fact, (2) should be an isomorphism after localizing at the quotient
field of ΛG, and one should be able to describe the image explicitly. (Some
hypotheses are certainly needed here: for example, X can’t be replaced by
X rXG.) In the case of a torus, this says giving a class in H∗

GX is the same
as giving certain polynomials at each fixed point. The idea here goes back
to [Cha-Skj74]; more recently and more generally, see [Gor-Kot-Mac98].

Using the maps (1′) and (2), one can hope to study Schubert calculus by
computing the images of σw’s. The fact that equivariant Schubert calculus
involves nonzero polynomial structure constants can help: one sometimes
sees non-trivial identities of polynomials which reduce to an uninformative
“0 = 0” in classical cohomology.

We will concentrate on homogeneous varieties and toric varieties, review-
ing some basic facts about these as necessary. Recently, other spaces have
been studied, including some Hilbert schemes [Li-Qin-Wang04], [Eva05],
[Nie06].

5

Example 5.1. In 1982, Lascoux and Schützenberger defined and began
studying Schubert polynomials Sw(x1, . . . , xn) ∈ Z[x1, . . . , xn], for w ∈ Sn,
which represent the Schubert classes [Ωw] ∈ H∗Fl(n). They also defined
double Schubert polynomials Sw(x1, . . . , xn; y1, . . . , yn). These specialize to
the single Schubert polynomials under yi 7→ 0, and have many wonderful
properties — for example, they multiply exactly as Schubert classes do (if
n is sufficiently large):

Su · Sv =
∑

w

cw
uvSw.

We will have more to say about these polynomials later, but for now,
we mention one way they arise naturally from equivariant geometry, which
shows how they could have been discovered much earlier. For a permutation
w ∈ Sn, form the matrix Aw with 1’s in the w(i)th column of the ith row,
and 0’s elsewhere. For example, if w = 2 3 1, we have

A231 =





0 1 0
0 0 1
1 0 0



 .

For any n × n matrix A, let A(p,q) denote the upper-left p × q submatrix.
Now let

Ωw = {A ∈ Mn,n | rk(A(p,q)) ≤ rk(A(p,q)
w ) for all 1 ≤ p, q ≤ n}.
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This is an irreducible subvariety of codimension ℓ(w), and is invariant for
the action of T = (C∗)n × (C∗)n, given by (u, v) ·A = uAv−1. (In fact, it is
also invariant for a similar action of Borel groups.) Thus there is a class

[Ωw]T ∈ H∗
T (Mn,n) = Z[x1, . . . , xn, y1, . . . , yn],

where the x’s and y’s are the usual classes for C
∗, which were denoted by t

earlier. (Note that Mn,n is contractible.)

Claim . This class is equal to the Schubert polynomial of Lascoux and

Schützenberger: [Ωw]T = Sw(x1, . . . , xn; y1, . . . , yn).

For example, Ω231 is defined by X11 = X21 = 0, so we have S231 = (x1 −
y1)(x2 − y1). In fact, the locus Xij = 0 has equivariant class xi − yj.

This fact was discovered by Fehér and Rimányi [Feh-Rim03] and Knutson
and Miller [Knu-Mil05]. Some of the modern story of equivariant cohomol-
ogy in algebraic geometry has its origins in work of Fehér and Rimányi; see
[Feh-Rim02] and references therein.

Exercise 5.2. Compute Sw for other w ∈ Sn, with ℓ(w) and n small. For
instance, try all w ∈ S3, or those of length at most 2 in S4. Can you find a
relation between Sw and Sw−1?
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[Feh-Rim03] L. Fehér and R. Rimányi, “Schur and Scubert polynomials as Thom
polynomials—cohomology of moduli spaces,” Cent. European J. Math. 4 (2003), 418–
434.

[Gor-Kot-Mac98] M. Goresky, R. Kottwitz, and R. MacPherson, “Equivariant cohomol-
ogy, Koszul duality, and the localization theorem,” Invent. Math. 131 (1998), no. 1,
25–83.

[Gra01] W. Graham, “Positivity in equivariant Schubert calculus,” Duke Math. J. 109

(2001), 599–614.
[Knu-Mil05] A. Knutson and E. Miller, “Gröbner geometry of Schubert polynomials,”
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