EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE TEN: MORE ON FLAG VARIETIES

WILLIAM FULTON NOTES BY DAVE ANDERSON

1

A. Molev has just given a simple, efficient, and positive formula for the structure constants $c^{\nu}_{\lambda\mu}$ for multiplication in $H^*_T Gr(k, n)$, without puzzles [Mol07]:

(1)
$$c_{\lambda\mu}^{\nu} = \sum_{R} \sum_{T} \prod_{\alpha} (t_{\ell+T(\alpha)-c(\alpha)} - t_{\ell+T(\alpha)-\rho(\alpha)_{T(\alpha)}}).$$

Here $\ell = n - k$, as usual. The rest of the notation is described as follows:

• The outer sum is over all sequences

$$R: \ \mu = \rho^{(0)} \subset \rho^{(1)} \subset \dots \subset \rho^{(s)} = \nu,$$

where $s = |\nu| - |\mu|$, and $\rho^{(i)}$ is a partition obtained from $\rho^{(i-1)}$ by adding one box. Let r_i be the row of the box added in $\rho^{(i)} \leq \rho^{(i-1)}$.

- The inner sum is over all "reverse, barred, ν -bounded tableaux T" on the shape λ . This means T is a filling of λ using entries from $\{1, \ldots, k\}$, weakly *decreasing* along rows and strictly decreasing down columns. One also chooses s of the entries (or boxes of λ) to be "barred"; these entries must be r_1, r_2, \ldots, r_s , occurring in this order when the columns of T are read bottom-to-top, left-to-right. Finally, the entries in the jth column of T must be less than or equal to the number of boxes in the jth column of ν (i.e., $T(i, j) \leq \nu'_j$).
- The product is over the boxes $\alpha = (i, j)$ of λ containing an unbarred entry of T. Also, $c(\alpha) = j - i$ is the "content" of α , and $\rho(\alpha)$ is the partition $\rho^{(t)}$, where t is the number of barred boxes occurring before α in the column reading order.

Date: April 5, 2007.

Example 1.1. For $k = \ell = 3$ and $\lambda = \mu = (2, 1), \nu = (3, 1, 1)$, there are two sequences R:

There is only one tableau for the sequence R_1 :

$$\frac{\bar{3}}{\bar{1}} \quad 1 \quad t_{3+1-1} - t_{3+1-3} = t_3 - t_1. \quad (\rho = (3, 1, 1))$$

For R_2 , there are two tableaux:

$$\begin{array}{cccc} 3 & 1 \\ 1 & & \\ \bar{3} & \bar{1} \\ 2 & & \\ \end{array} \quad t_{3+1+1} - t_{3+1-2} = t_5 - t_2 \quad (\rho = (2,1)) \\ t_{3+2+1} - t_{3+2-1} = t_6 - t_4. \quad (\rho = (2,1)) \end{array}$$

So the rule says $c_{\lambda\mu}^{\nu} = t_6 - t_4 + t_5 - t_2 + t_3 - t_1$.

Part of the claim is that all terms are positive — i.e., $\rho(\alpha)_{T(\alpha)} > c(\alpha)$. The proof is almost the same as that of the original Molev-Sagan rule [Mol-Sag99] (remarkably, since that rule involved non-positive cancellation), together with a combinatorial argument showing that the " ν -bounded" tableaux pick out the positive (nonzero) terms.

Question 1.2. Is there a bijection between the tableaux T in Molev's rule and the Knutson-Tao puzzles?

Note the independence of k, and the simple dependence on ℓ : Replacing k by k + h and ℓ by $\ell + m$, the coefficient $c^{\nu}_{\lambda\mu}$ for multiplication in $H^*_T Gr(k + m)$ h, n+h+m is obtained from that for $H^*_T Gr(k, n)$ by replacing t_i with t_{i+m} . We'll see a generalization of this kind of stability below.

Exercise 1.3. Prove this fact using puzzles: see what happens when you place a 0 at the beginning of each string, or a 1 at the end of each string.

2

In the last lecture, we saw that under the projection $f: Fl(\mathbb{C}^n) \to \mathbb{C}^n$ Gr(k,n), the inverse image of $\Omega_{\lambda}(F_{\bullet})$ is $\Omega_{w(\lambda)}(F_{\bullet})$, so $f^*\sigma_{\lambda} = \sigma_{w(\lambda)}$. (Recall that if $I(\lambda) = \{i_1 < \cdots < i_k\}$ and $J(\lambda) = \{j_1 < \cdots < j_\ell\}$, then $w(\lambda) = j_1 \cdots j_\ell i_1 \cdots i_k$.) Replacing k with k + h and ℓ with $\ell + m$ takes $w(\lambda)$ to

 $1 \ 2 \cdots m \ (i_1 + m) \cdots (i_{\ell} + m) \ (i_1 + m) \cdots (i_k + m) \ (n + m + 1) \cdots (n + m + h).$

Note that the last h entries are irrelevant, since they are larger than all the preceding entries. In general, the embedding $S_n \hookrightarrow S_{m+n}$ (which lets S_n act on the last n letters in an alphabet of size m+n) takes w to $1^m \times w$, where

$$1^m \times w = 12 \cdots m (w_1 + m) \cdots (w_n + m).$$

Molev's stability generalizes as follows. For $u, v, w \in S_n$, we have $\sigma_u \sigma_v = \sum c_{uv}^w \sigma_w$ in $H_T^*Fl(\mathbb{C}^n)$, with $c_{uv}^w \in \Lambda_T = \mathbb{Z}[t_1, \ldots, t_n]$.

Proposition 2.1. $c_{1^m \times u, 1^m \times v}^{1^m \times w}$ is obtained from c_{uv}^w by mapping t_i to t_{i+m} .

We need an algebraic lemma:

Lemma 2.2 ([Buch-Rim04], Cor. 4). For $v \in S_{m+n}$, we have

$$\begin{aligned} \mathfrak{S}_{v}(z_{1},\ldots,z_{m},x_{1},\ldots,x_{n}|z_{1},\ldots,z_{m},y_{1},\ldots,y_{n}) \\ &= \begin{cases} \mathfrak{S}_{w}(x_{1},\ldots,x_{n}|y_{1},\ldots,y_{n}) & \text{if } v = 1^{m} \times w \text{ for some } w \in S_{n}; \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

The proposition follows, since we have

$$\mathfrak{S}_{1^m \times u}(x|t) \cdot \mathfrak{S}_{1^m \times v}(x|t) = \sum c_{1^m \times u, 1^m \times v}^w \mathfrak{S}_w(x|t).$$

Set $x_i = t_i$ for $1 \le i \le m$ in $x = (x_1, \ldots, x_{m+n})$, and apply the lemma. The lemma can be proved geometrically:

Proof. Recall from last lecture that \mathfrak{S}_w is characterized by the fact that $\mathfrak{S}_w(x|y) = [\Omega_w(\varphi)]$, for $\varphi : E \to F$ a general map of flagged vector bundles. Take general line bundles L_1, \ldots, L_m , with $z_i = c_1(L_i)$, and let $H_i = L_1 \oplus \cdots \oplus L_i$. Then we have a map $id \times \varphi$ of flagged vector bundles $H_m \oplus E \to H_m \oplus F$, as in the following diagram:

$$H_1 \oplus 0 \subset \cdots \subset H_m \oplus 0 \subset H_m \oplus E_1 \subset \cdots \subset H_m \oplus E_n$$
$$id \times \varphi \downarrow$$
$$H_1 \oplus 0 \longleftarrow H_m \oplus 0 \longleftarrow H_m \oplus F_1 \longleftarrow \cdots \longleftarrow H_m \oplus F_n.$$

The locus $\Omega_v(id \times \varphi)$ is empty unless $v = 1^m \times w$, since $v(i) \neq i$ for $i \leq m$ would force $\operatorname{rk}(H_m \to H_m) < m$. For $v = 1^m \times w$, the locus is the same as $\Omega_w(\varphi)$, as can be seen from the diagram $D(1^m \times w)$:

This stability corresponds to the embedding $\iota : Fl(n) \hookrightarrow Fl(m+n)$ which sends $L_1 \subset \cdots \subset L_n$ to $\mathbb{C}^1 \subset \cdots \subset \mathbb{C}^m \subset \mathbb{C}^m \oplus L_1 \subset \cdots \subset \mathbb{C}^m \oplus L_n$. We have

$$\iota^* \sigma_v = \begin{cases} \sigma_w & \text{if } v = 1^m \times w; \\ 0 & \text{otherwise,} \end{cases}$$
$$\iota^* x_i = \begin{cases} x_{i-m} & \text{if } i > m; \\ 0 & \text{otherwise,} \end{cases}$$

and

$$\iota^* t_i = \begin{cases} t_{i-m} & \text{if } i > m; \\ 0 & \text{otherwise.} \end{cases}$$

The other obvious embedding puts the "fixed parts" last: $j : Fl(n) \to Fl(n+m)$ sends L_{\bullet} to $L_1 \subset \cdots \subset L_n \subset L_n \oplus \mathbb{C} \subset \cdots \subset L_n \oplus \mathbb{C}^m = \mathbb{C}^{n+m}$. The corresponding inclusion $S_n \subset S_{n+m}$ is the usual one, with $v \mapsto v$. We have

$$j^* \sigma_v = \begin{cases} \sigma_v & \text{if } v \in S_n \subset S_{n+m}; \\ 0 & \text{otherwise,} \end{cases}$$

$$j^* x_i = \begin{cases} x_i & \text{if } i \le m; \\ 0 & \text{otherwise,} \end{cases}$$

and

$$j^* t_i = \begin{cases} t_i & \text{if } i \le m; \\ 0 & \text{otherwise.} \end{cases}$$

An important property of Schubert polynomials, visible from the second stability above, is that $\mathfrak{S}_w(x|y)$ is independent of n, for $w \in S_n$. Also, they multiply with the same structure constants as the Schubert classes σ_w ; more precisely, for $u, v \in S_n$ we have

(2)
$$\mathfrak{S}_u(x|y) \cdot \mathfrak{S}_v(x|y) = \sum c_{uv}^w(y) \mathfrak{S}_w(x|y),$$

where the sum is over $w \in S_{2n-1}$. In fact, it suffices to consider w which are less than $(2n-1)(2n-3)\cdots 3124\cdots (2n-2)$ in *Bruhat order* (to be defined below), and such that $w(n) < w(n+1) < \cdots$. The first condition must be satisfied, since all the monomials which appear on the LHS divide $(x_1^{n-1}\cdots x_{n-1})^2$. To see the second condition holds, recall that \mathfrak{S}_w is symmetric in x_k and x_{k+1} iff w(k) < w(k+1); since x_k does not appear \mathfrak{S}_u or \mathfrak{S}_v for $k \ge n$, the LHS is certainly symmetric in x_k and x_{k+1} for all $k \ge n$.

By the simple stability property, (2) specializes to the corresponding identity in $H^*_T Fl(N)$ for any $N \ge n$, discarding those \mathfrak{S}_w with $w \notin S_N$.

Remark 2.3. If one uses an algebraic proof to see $s_{\lambda'}(x|t) = \mathfrak{S}_{w(\lambda)}(x|t)$, then the degeneracy locus formula for flags implies the formulas of Kempf-Laksov and Thom-Porteous.

4

 $\mathbf{3}$

Recall that we write p_v for the flag $p_v = \langle e_{v(n)} \rangle \subset \langle e_{v(n)}, e_{v(n-1)} \rangle \subset \cdots$ (which is in the Schubert variety $\Omega_v(F_{\bullet})$). For $w \in S_n$, let $\sigma_w|_v$ be the image of σ_w under the restriction map to $H_T^*(p_v) = \Lambda$.

Proposition 3.1. $\sigma_w|_v = \mathfrak{S}_w(t_{v(1)}, ..., t_{v(n)}|t_1, ..., t_n).$

Proof. Restricting to p_v , the tautological quotient bundle Q_p becomes

$$\mathbb{C}^n/\langle e_{v(n)},\ldots,e_{v(n+1-p)}\rangle=\langle e_{v(1)},\ldots,e_{v(p)}\rangle,$$

so $x_i \mapsto t_{v(i)}$.

Example 3.2. We have $\sigma_{s_k}|_v = \sum_{i=1}^n (t_{v(i)} - t_i)$. Note that if $u \neq v$, there is at least one k such that $\sigma_{s_k}|_u \neq \sigma_{s_k}|_v$: for example, the minimal k such that $u(k) \neq v(k)$ works.

As usual, $\sigma_w|_v = 0$ unless $p_v \in \Omega_w$, i.e., $\Omega_v \subset \Omega_w$. This is one characterization of the **Bruhat order** on S_n . There are many others: One writes $w \leq v$ if, equivalently,

- (i) $\Omega_v \subset \Omega_w$.
- (ii) $r_w(q,p) \ge r_v(q,p)$ for all p and q.
- (iii) $\{w_1, \ldots, w_k\} \leq \{v_1, \ldots, v_k\}$ for all k, where the order on subsets is by sorting the elements, and comparing termwise.
- (iv) There is a chain $w = w^{(0)} \to w^{(1)} \to \cdots \to w^{(s)} = v$, where each step is of the form $u \to u \cdot t$, with t = (i, j) the transposition exchanging entries in positions i and j, and $\ell(u \cdot t) = \ell(u) + 1$. That is, $u_i < u_j$, and u_k does not lie between u_i and u_j for all i < k < j.
- (v) There is an expression $v = s_{i_1} \cdots s_{i_\ell}$ with $\ell = \ell(v)$ such that w is given by a subsequence of length $\ell(w)$.

Write $u \xrightarrow{k} v$ if $v = u \cdot t$ as in (iv) with t = (i, j) and $i \leq k < j$.

Proposition 3.3. We have

$$\sigma_w|_w = \mathfrak{S}_w(t_{w(1)}, \dots, t_{w(n)}|t_1, \dots, t_n) \\ = \prod_{\substack{i < j \\ w(i) > w(j)}} (t_{w(i)} - t_{w(j)}).$$

There are algebraic proofs (cf. [Buch-Rim04]). Geometrically, it is similar to the Grassmann case: Look at the neighborhood U_w of p_w , and compute the tangent space to Ω_w^o as in the last lecture; the weights on the normal space to Ω_w at p_w will be the weights of $T_{p_w}U_w$ not in $T_{p_w}\Omega_w^o$.

Example 3.4. For w = 4163275, the normal space to Ω_w is given by the *'s:

(1				
	1			*				
	0			0		1		
	0		1	*		*		
	0	1	*	*		*		
	0	0	0	0		0	1	
ĺ	0	0	0	0	1	*	*	

The corresponding weights are $t_3 - t_2$, $t_4 - t_1$, $t_4 - t_3$, $t_4 - t_2$, $t_6 - t_3$, $t_6 - t_2$, $t_6 - t_5$, and $t_7 - t_5$.

Proposition 3.5 (Equivariant Monk rule). We have

$$\sigma_{s_k} \cdot \sigma_w = \sum_{w \xrightarrow{k} w^+} \sigma_{w^+} + (\sigma_{s_k}|_w) \sigma_w$$

Proof. As for the Grassmannian case, the only possible σ_v appearing on the RHS have $v \leq w$ and $\ell(w) - \ell(v) \leq 1$. (One sees this by Poincaré duality, intersecting with $\tilde{\sigma}_{w_0v}$.) The sum in the first part of the RHS is the classical Monk rule; see [Ful97] for a proof. The second part is seen by restriction to p_w , using the fact that $\sigma_w|_w \neq 0$ (and $\sigma_{w^+}|_w = 0$).

Proposition 3.6. The polynomials c_{uv}^w satisfy and are uniquely determined by the following three properties:

(i)
$$c_{ww}^{w} = \sigma_{w}|_{w} = \prod_{\substack{i < j \\ w(i) > w(j)}} (t_{w(i)} - t_{w(j)});$$

(ii)
$$(\sigma_{s_k}|_u - \sigma_{s_k}|_v) c^u_{uv} = \sum_{v \stackrel{k}{\longrightarrow} v^+} c^u_{uv^+};$$
 and

(iii)
$$(\sigma_{s_k}|_w - \sigma_{s_k}|_u)c_{uv}^w = \sum_{u \stackrel{k}{\to} u^+} c_{u^+v}^w - \sum_{w^- \stackrel{k}{\to} w} c_{uv}^{w^-}.$$

Proof. The proof is essentially the same as in the Grassmannian case. To show that (iii) is satisfied, use the Monk rule and associativity:

$$\begin{split} \sigma_{s_k} \cdot (\sigma_u \cdot \sigma_v) &= \sum c_{uv}^w \sigma_{s_k} \cdot \sigma_w \\ &= \sum_{w \xrightarrow{k} w^+} c_{uv}^w \sigma_{w^+} + \sum_w c_{uv}^w (\sigma_{s_k}|_w) \sigma_w, \end{split}$$

and

$$\begin{aligned} (\sigma_{s_k} \cdot \sigma_u) \cdot \sigma_v &= \sum_{\substack{u \stackrel{k}{\to} u^+ \\ u \stackrel{k}{\to} u^+}} \sigma_{u^+} \cdot \sigma_v + (\sigma_{s_k}|_u) \sigma_u \cdot \sigma_v \\ &= \sum_{\substack{u \stackrel{k}{\to} u^+ \\ u \stackrel{k}{\to} u^+}} c_{u^+v}^w \sigma_w + (\sigma_{s_k}|_u) \sum_w c_{uv}^w \sigma_w. \end{aligned}$$

Equating the coefficients of σ_w on the RHS's gives

$$\sum_{w^- \xrightarrow{k} w} c_{uv}^{w^-} + (\sigma_{s_k}|_w) c_{uv}^w = \sum_{u \xrightarrow{k} u^+} c_{u^+v}^w \sigma_w + (\sigma_{s_k}|_u) c_{uv}^w,$$

which is (iii).

Setting w = v in (iii) gives

(ii')
$$(\sigma_{s_k}|_v - \sigma_{s_k}|_u)c_{uv}^v = \sum_{u \stackrel{k}{\longrightarrow} u^+} c_{u^+v}^v$$

using the fact that $c_{uv}^{v^-} = 0$, since $v \not\leq v^-$. Using commutativity $(c_{uv}^w = c_{vu}^w)$ and interchanging u and v turns (ii') into (ii).

The uniqueness statement is also almost the same as before. If u = v = w, c_{uv}^w is given by (i). If u = w, then c_{uv}^w is given by (ii), using induction on $\ell(u) - \ell(v)$: one starts with $v = w_0$ and uses the fact that one can always find a k such that $\sigma_{s_k}|_u \neq \sigma_{s_k}|_v$. Finally, if $u \neq w$, (iii) gives c_{uv}^w by induction on $\ell(w) - \ell(v)$.

Remark 3.7. Conditions (i), (ii'), and (iii) also characterize c_{uv}^w .

Remark 3.8. These conditions also determine the (unknown!) classical coefficients c_{uv}^{w} , as well as the Grassmannian coefficients $c_{\lambda\mu}^{\nu} = c_{w(\lambda)w(\mu)}^{w(\nu)}$.

References

[Buch-Rim04] A. Buch and R. Rimányi, "Specializations of Grothendieck polynomials," C. R. Acad. Sci. Paris, Ser. I 339 (2004), 1–4.

[Ful97] W. Fulton, Young Tableaux, Cambridge Univ. Press, 1997.

[Mol07] A. Molev, "Littlewood-Richardson polynomials," math.AG/0704.0065.

[Mol-Sag99] A. Molev and B. Sagan, "A Littlewood-Richardson rule for factorial Schur functions," Trans. Amer. Math. Soc. 351 (1999), no. 11, 4429–4443.

 $\overline{7}$