EQUIVARIANT COHOMOLOGY IN ALGEBRAIC
GEOMETRY
LECTURE TEN: MORE ON FLAG VARIETIES

WILLIAM FULTON
NOTES BY DAVE ANDERSON
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A. Molev has just given a simple, efficient, and positive formula for the
structure constants cf for multiplication in H}.Gr(k,n), without puzzles
[Mol07]:

(1) CKM = Z Z H(t€+T(a)—C(a) - t@-l—T(a)—p(a)T(a) )
R T «

Here £ = n — k, as usual. The rest of the notation is described as follows:

e The outer sum is over all sequences
R: ,u:p(o) Cp(l) C"'Cp(s) =v,

where s = |v| — ||, and p( is a partition obtained from p(i—1 by
adding one box. Let 7; be the row of the box added in p(® ~ p(i—1.

e The inner sum is over all “reverse, barred, v-bounded tableaux
T” on the shape A. This means T is a filling of A\ using entries
from {1,...,k}, weakly decreasing along rows and strictly decreas-
ing down columns. One also chooses s of the entries (or boxes of \)
to be “barred”; these entries must be 71,73, ..., 7y, occurring in this
order when the columns of T" are read bottom-to-top, left-to-right.
Finally, the entries in the jth column of T' must be less than or equal
to the number of boxes in the jth column of v (i.e., T'(i,5) < v}).

e The product is over the boxes a = (i, j) of A containing an unbarred
entry of T. Also, ¢(a) = j — i is the “content” of a, and p(«) is
the partition p(), where ¢ is the number of barred boxes occurring
before « in the column reading order.
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Example 1.1. For k =¢ =3 and A = p = (2,1), v = (3,1,1), there are
two sequences R:

Ry ‘C “C [ ] rm=1ro=3

Ry : | C | [ ] rn=3r=1

There is only one tableau for the sequence Rj:

3 1
1 t3g1-1 —tzp1-3 =t3 —t1. (p=(3,1,1))
For Ry, there are two tableaux:
3 1
1 tar1t1 —tari2 =t —t2 (p=(2,1))
3 1
9 t3y241 —t3ro-1 =t6 —ta. (p=(2,1))

So the rule says CKM =tg—tys+1t5— 1ty +tg —t1.

Part of the claim is that all terms are positive —i.e., p(@)p(q) > ¢(a). The
proof is almost the same as that of the original Molev-Sagan rule [Mol-Sag99]
(remarkably, since that rule involved non-positive cancellation), together
with a combinatorial argument showing that the “v-bounded” tableaux pick
out the positive (nonzero) terms.

Question 1.2. Is there a bijection between the tableaux 7" in Molev’s rule
and the Knutson-Tao puzzles?

Note the independence of k, and the simple dependence on ¢: Replacing
k by k+ h and ¢ by £+ m, the coefficient Ay for multiplication in H;.Gr(k +
h,n+h+m) is obtained from that for H}.Gr(k,n) by replacing t; with ¢;,.
We’ll see a generalization of this kind of stability below.

Exercise 1.3. Prove this fact using puzzles: see what happens when you
place a 0 at the beginning of each string, or a 1 at the end of each string.

2

In the last lecture, we saw that under the projection f : FI(C") —
Gr(k,n), the inverse image of 2)(F,) is Q0 (Fs), 50 fon = ayn). (Re-
call that if I(A\) = {i1 < -+ < ix} and J(A) = {j1 < --- < je}, then
w(\) = j1--+jet1---ik..) Replacing k with k£ + h and ¢ with ¢ + m takes
w(A) to

12---m@Gr+m)---Ge+m) (i1 +m)---(ig+m) (n+m+1)---(n+m+h).
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Note that the last h entries are irrelevant, since they are larger than all the
preceding entries. In general, the embedding S,, < S;,+,, (which lets S, act
on the last n letters in an alphabet of size m + n) takes w to 1™ x w, where

1"mxw=12---m(wy +m) - (wy, +m).

Molev’s stability generalizes as follows. For u,v,w € Sy, we have o, 0, =
Y. cw oy in HRFI(C™), with ¢y, € Ap = Z[t1, ..., ty)].

177L X W

Proposition 2.1. ¢ Xu,17 X v

is obtained from ci, by mapping t; to tiym.
We need an algebraic lemma:

Lemma 2.2 ([Buch-Rim04], Cor. 4). For v € Sp4n, we have

61)(217--- yRmy Ly 7‘Tn’217"'7zm7y17”’ 7yn)
] Gy, x|y, yn)  ifv =17 X w for some w € Sy;
o 0 otherwise.

The proposition follows, since we have
Simxu(@[t) - Srmxo(2[t) = Z Clm e, 1m xo G (z(t).

Set z; =t; for 1 <i<minx = (x1,...,%Tmin), and apply the lemma.
The lemma can be proved geometrically:

Proof. Recall from last lecture that &, is characterized by the fact that
Guw(zly) = [Qu(p)], for ¢ : E — F a general map of flagged vector bundles.
Take general line bundles Ly, ..., Ly, with z; = ¢;(L;), and let H; = L1 @
--+ @ L;. Then we have a map id x ¢ of flagged vector bundles H,, ® F —
H,, @ F, as in the following diagram:

H%0cCc --- ¢ H,90 c H,9®FE, Cc --- C H,®E,
id X @
Hl@o‘_‘_ m@o‘_Hm@Fl‘_”"_ mEBFn'

The locus Q,(id x ) is empty unless v = 1" X w, since v(7) # i for i < m
would force rk(H,, — Hy,,) < m. For v = 1" x w, the locus is the same as
Qu(p), as can be seen from the diagram D(1™ X w):

=

| .
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This stability corresponds to the embedding ¢ : Fl(n) < Fl(m-+n) which
sends [ C---CL,toClc.-.-.cC"cC"®L,cCc---CcC™"®L,. We
have

ooy fo=1"xuw;
9T\ 0 otherwise,

s — Ti_m if1>m;
¢ 0  otherwise,

and

e ti_m if i > m;
¢ 0  otherwise.

The other obvious embedding puts the “fixed parts” last: j : Fl(n) —
Fl(n+m) sends Ly to Ly C---C L, C L,®CC---C L, ®C™=C"t™,
The corresponding inclusion S,, C S,+m is the usual one, with v — v. We
have

" oy ifv eSS, CSnim;
1 0 otherwise,

N x; if i < my
J Ti = :
0 otherwise,

and

S ti if 4 < m;
Jt= { 0 otherwise.

An important property of Schubert polynomials, visible from the second
stability above, is that &, (z|y) is independent of n, for w € S,,. Also, they
multiply with the same structure constants as the Schubert classes ¢,,; more
precisely, for u,v € S,, we have

(2) Sulzly) - = (y)Su(ly),

where the sum is over w € So,_1. In fact, it suffices to consider w which
are less than (2n —1) (2n —3) --- 3124 --- (2n — 2) in Bruhat order (to be
defined below), and such that w(n) < w(n + 1) < ---. The first condition
must be satisfied, since all the monomials which appear on the LHS divide
(]~ L. ’an—1)2- To see the second condition holds, recall that &,, is sym-
metric in 2} and x4 iff w(k) < w(k + 1); since x does not appear &,, or
&, for k > n, the LHS is certainly symmetric in z; and xj1 for all k£ > n.

By the simple stability property, (2) specializes to the corresponding iden-

tity in H}FI(N) for any N > n, discarding those &,, with w ¢ Sy

Remark 2.3. If one uses an algebraic proof to see sy (z[t) = &\ (z]t),
then the degeneracy locus formula for flags implies the formulas of Kempf-
Laksov and Thom-Porteous.
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3

Recall that we write p, for the flag p, = (eyn)) C (€u(n) €o(n-1)) C -
(which is in the Schubert variety Q,(F,)). For w € Sy, let o], be the image
of oy, under the restriction map to Hj.(p,) = A.

Proposition 3.1. oyly = Gu(tyays - s tym)ltes - - - tn).

Proof. Restricting to p,, the tautological quotient bundle @, becomes

Cn/<ev(n)7 R ev(n+1—p)> = <ev(1)7 s 7ev(p)>7
SO Tj — ty(y)- O

Example 3.2. We have o, |, = > (ty;) — ti). Note that if u # v, there
is at least one k such that o, |, # 0s,],: for example, the minimal k& such
that u(k) # v(k) works.

As usual, o), = 0 unless p, € Q, ie, Q, C Q. This is one charac-
terization of the Bruhat order on S,,. There are many others: One writes
w < v if, equivalently,

(1) Qy C Q.
(i1) ry(q,p) > ry(gq,p) for all p and gq.
(iii) {wr,...,wi} < {v1,...,v;} for all k, where the order on subsets is
by sorting the elements, and comparing termwise.
(iv) There is a chain w = w©® — w® — ... — W) = v, where each
step is of the form uw — w - ¢, with ¢ = (4,j) the transposition

exchanging entries in positions 7 and j, and ¢(u-t) = ¢(u) + 1. That
is, u; < uj, and uy, does not lie between u; and w; for all 1 < k < j.

(v) There is an expression v = s;, ---;, with £ = £(v) such that w is
given by a subsequence of length ¢(w).

Write u % vif v =1t as in (iv) with t = (4,7) and i < k < j.
Proposition 3.3. We have

= Gw(tw(l)7 s )tw(n)|t17 s atn)

Jw|w

= H (tw) — tw())-
i<j
w(i)>w(j)

There are algebraic proofs (cf. [Buch-Rim04]). Geometrically, it is similar
to the Grassmann case: Look at the neighborhood U, of p,, and compute
the tangent space to 2, as in the last lecture; the weights on the normal
space to €, at p,, will be the weights of T}, U,, not in T}, €23,.
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Example 3.4. For w =4163275, the normal space to £, is given by the
*’S:

SO ¥ ¥ O %

SO OO OO =
O =

S O ¥ =

¥ O ¥ ¥

The corresponding weights are t3 — to, t4 —t1, t4 —t3, t4 — to, tg —t3, tg — to,
t6 — t5, and t7 — t5.

Proposition 3.5 (Equivariant Monk rule). We have

Osp " Ow = Z Ouwt + (s lw) Ow-
k

w—wt

Proof. As for the Grassmannian case, the only possible o, appearing on the
RHS have v < w and ¢(w) — ¢(v) < 1. (One sees this by Poincaré duality,
intersecting with ¢y,,,.) The sum in the first part of the RHS is the classical
Monk rule; see [Ful97] for a proof. The second part is seen by restriction to
Pw, using the fact that o)y # 0 (and o+ |w = 0). O

Proposition 3.6. The polynomials ciy, satisfy and are uniquely determined
by the following three properties:

()t =owlw= ] (i —twp):
1<J
w(i)>w(j)

(i) (O lu = osilo) iy = Z Copt s and
k

vt
(1) (ol — osplu)city = D iy — D cb .
k k
u—rut w— —w

Proof. The proof is essentially the same as in the Grassmannian case. To
show that (iii) is satisfied, use the Monk rule and associativity:

O - (Oy-0y) = ZC%U% S Ow

= Z CupOuwt + chv(o'sk’w)UUH
k w

w—wt
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and
(O-sk 'Uu)'av = 5 O+ '0v+(0-sk|u)0-u'0'v
ugqu
_ w w
= Z cu ow + (0g|u) Z Copy O
uiﬂfr v
Equating the coefficients of ¢, on the RHS’s gives
w w _ w w
E Cuv + (USk ’w)cuv - E : Cu+vaw + (O-Sk‘u)cum
k k
w—w u—rut

which is (iii).
Setting w = v in (iii) gives

(i) (ol = Ooplu)cly = D iy
k

u—ut
using the fact that ¢l,, =0, since v £ v~. Using commutativity (¢, = cit,)
and interchanging w and v turns (ii’) into (ii).

The uniqueness statement is also almost the same as before. If u = v = w,

c¥ is given by (i). If u = w, then ¢, is given by (ii), using induction on

0(u)—£(v): one starts with v = wp and uses the fact that one can always find
a k such that oy, |, # 05, |,. Finally, if u # w, (iii) gives ¢}, by induction on
L(w) — L(v). O

Remark 3.7. Conditions (i), (ii’), and (iii) also characterize c,.

Remark 3.8. These conditions also determine the (unknown!) classical
()
(

: w
coefficients ¢ Nl

. . w
., as well as the Grassmannian coefficients Su = Cy
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