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A. Molev has just given a simple, efficient, and positive formula for the
structure constants cν

λµ for multiplication in H∗
T Gr(k, n), without puzzles

[Mol07]:

cν
λµ =

∑

R

∑

T

∏

α

(tℓ+T (α)−c(α) − tℓ+T (α)−ρ(α)T (α)
).(1)

Here ℓ = n − k, as usual. The rest of the notation is described as follows:

• The outer sum is over all sequences

R : µ = ρ(0) ⊂ ρ(1) ⊂ · · · ⊂ ρ(s) = ν,

where s = |ν| − |µ|, and ρ(i) is a partition obtained from ρ(i−1) by

adding one box. Let ri be the row of the box added in ρ(i)
r ρ(i−1).

• The inner sum is over all “reverse, barred, ν-bounded tableaux
T” on the shape λ. This means T is a filling of λ using entries
from {1, . . . , k}, weakly decreasing along rows and strictly decreas-
ing down columns. One also chooses s of the entries (or boxes of λ)
to be “barred”; these entries must be r1, r2, . . . , rs, occurring in this
order when the columns of T are read bottom-to-top, left-to-right.
Finally, the entries in the jth column of T must be less than or equal
to the number of boxes in the jth column of ν (i.e., T (i, j) ≤ ν ′

j).

• The product is over the boxes α = (i, j) of λ containing an unbarred
entry of T . Also, c(α) = j − i is the “content” of α, and ρ(α) is
the partition ρ(t), where t is the number of barred boxes occurring
before α in the column reading order.
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2 §10 MORE ON FLAG VARIETIES

Example 1.1. For k = ℓ = 3 and λ = µ = (2, 1), ν = (3, 1, 1), there are
two sequences R:

R1 : ⊂ ⊂ r1 = 1, r2 = 3

R2 : ⊂ ⊂ r1 = 3, r2 = 1

There is only one tableau for the sequence R1:

3̄ 1
1̄

t3+1−1 − t3+1−3 = t3 − t1. (ρ = (3, 1, 1))

For R2, there are two tableaux:

3̄ 1̄
1

t3+1+1 − t3+1−2 = t5 − t2 (ρ = (2, 1))

3̄ 1̄
2

t3+2+1 − t3+2−1 = t6 − t4. (ρ = (2, 1))

So the rule says cν
λµ = t6 − t4 + t5 − t2 + t3 − t1.

Part of the claim is that all terms are positive — i.e., ρ(α)T (α) > c(α). The
proof is almost the same as that of the original Molev-Sagan rule [Mol-Sag99]
(remarkably, since that rule involved non-positive cancellation), together
with a combinatorial argument showing that the “ν-bounded” tableaux pick
out the positive (nonzero) terms.

Question 1.2. Is there a bijection between the tableaux T in Molev’s rule
and the Knutson-Tao puzzles?

Note the independence of k, and the simple dependence on ℓ: Replacing
k by k+h and ℓ by ℓ+m, the coefficient cν

λµ for multiplication in H∗
TGr(k+

h, n+h+m) is obtained from that for H∗
TGr(k, n) by replacing ti with ti+m.

We’ll see a generalization of this kind of stability below.

Exercise 1.3. Prove this fact using puzzles: see what happens when you
place a 0 at the beginning of each string, or a 1 at the end of each string.
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In the last lecture, we saw that under the projection f : Fl(Cn) →
Gr(k, n), the inverse image of Ωλ(F•) is Ωw(λ)(F•), so f∗σλ = σw(λ). (Re-
call that if I(λ) = {i1 < · · · < ik} and J(λ) = {j1 < · · · < jℓ}, then
w(λ) = j1 · · · jℓ i1 · · · ik..) Replacing k with k + h and ℓ with ℓ + m takes
w(λ) to

1 2 · · ·m (j1 + m) · · · (jℓ + m) (i1 + m) · · · (ik + m) (n + m + 1) · · · (n + m + h).
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Note that the last h entries are irrelevant, since they are larger than all the
preceding entries. In general, the embedding Sn →֒ Sm+n (which lets Sn act
on the last n letters in an alphabet of size m + n) takes w to 1m ×w, where

1m × w = 12 · · · m (w1 + m) · · · (wn + m).

Molev’s stability generalizes as follows. For u, v,w ∈ Sn, we have σu σv =∑
cw
uv σw in H∗

TFl(Cn), with cw
uv ∈ ΛT = Z[t1, . . . , tn].

Proposition 2.1. c1m×w
1m×u,1m×v is obtained from cw

uv by mapping ti to ti+m.

We need an algebraic lemma:

Lemma 2.2 ([Buch-Rim04], Cor. 4). For v ∈ Sm+n, we have

Sv(z1, . . . , zm, x1, . . . , xn|z1, . . . , zm, y1, . . . , yn)

=

{
Sw(x1, . . . , xn|y1, . . . , yn) if v = 1m × w for some w ∈ Sn;

0 otherwise.

The proposition follows, since we have

S1m×u(x|t) · S1m×v(x|t) =
∑

cw
1m×u,1m×v Sw(x|t).

Set xi = ti for 1 ≤ i ≤ m in x = (x1, . . . , xm+n), and apply the lemma.
The lemma can be proved geometrically:

Proof. Recall from last lecture that Sw is characterized by the fact that
Sw(x|y) = [Ωw(ϕ)], for ϕ : E → F a general map of flagged vector bundles.
Take general line bundles L1, . . . , Lm, with zi = c1(Li), and let Hi = L1 ⊕
· · · ⊕ Li. Then we have a map id × ϕ of flagged vector bundles Hm ⊕ E →
Hm ⊕ F , as in the following diagram:

H1 ⊕ 0 ⊂ · · · ⊂ Hm ⊕ 0 ⊂ Hm ⊕ E1 ⊂ · · · ⊂ Hm ⊕ En

H1 ⊕ 0 � · · · � Hm ⊕ 0 � Hm ⊕ F1
� · · · � Hm ⊕ Fn.

id × ϕ
?

The locus Ωv(id × ϕ) is empty unless v = 1m × w, since v(i) 6= i for i ≤ m
would force rk(Hm → Hm) < m. For v = 1m × w, the locus is the same as
Ωw(ϕ), as can be seen from the diagram D(1m × w):

•
•
•
•

m

D(w)

.

�
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This stability corresponds to the embedding ι : Fl(n) →֒ Fl(m+n) which
sends L1 ⊂ · · · ⊂ Ln to C

1 ⊂ · · · ⊂ C
m ⊂ C

m ⊕ L1 ⊂ · · · ⊂ C
m ⊕ Ln. We

have

ι∗σv =

{
σw if v = 1m × w;
0 otherwise,

ι∗xi =

{
xi−m if i > m;

0 otherwise,

and

ι∗ti =

{
ti−m if i > m;

0 otherwise.

The other obvious embedding puts the “fixed parts” last:  : Fl(n) →
Fl(n + m) sends L• to L1 ⊂ · · · ⊂ Ln ⊂ Ln ⊕ C ⊂ · · · ⊂ Ln ⊕ C

m = C
n+m.

The corresponding inclusion Sn ⊂ Sn+m is the usual one, with v 7→ v. We
have

∗σv =

{
σv if v ∈ Sn ⊂ Sn+m;
0 otherwise,

∗xi =

{
xi if i ≤ m;
0 otherwise,

and

∗ti =

{
ti if i ≤ m;
0 otherwise.

An important property of Schubert polynomials, visible from the second
stability above, is that Sw(x|y) is independent of n, for w ∈ Sn. Also, they
multiply with the same structure constants as the Schubert classes σw; more
precisely, for u, v ∈ Sn we have

Su(x|y) · Sv(x|y) =
∑

cw
uv(y)Sw(x|y),(2)

where the sum is over w ∈ S2n−1. In fact, it suffices to consider w which
are less than (2n− 1) (2n − 3) · · · 3 1 2 4 · · · (2n− 2) in Bruhat order (to be
defined below), and such that w(n) < w(n + 1) < · · · . The first condition
must be satisfied, since all the monomials which appear on the LHS divide
(xn−1

1 · · · xn−1)
2. To see the second condition holds, recall that Sw is sym-

metric in xk and xk+1 iff w(k) < w(k + 1); since xk does not appear Su or
Sv for k ≥ n, the LHS is certainly symmetric in xk and xk+1 for all k ≥ n.

By the simple stability property, (2) specializes to the corresponding iden-
tity in H∗

T Fl(N) for any N ≥ n, discarding those Sw with w 6∈ SN .

Remark 2.3. If one uses an algebraic proof to see sλ′(x|t) = Sw(λ)(x|t),
then the degeneracy locus formula for flags implies the formulas of Kempf-
Laksov and Thom-Porteous.
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Recall that we write pv for the flag pv = 〈ev(n)〉 ⊂ 〈ev(n), ev(n−1)〉 ⊂ · · ·
(which is in the Schubert variety Ωv(F•)). For w ∈ Sn, let σw|v be the image
of σw under the restriction map to H∗

T (pv) = Λ.

Proposition 3.1. σw|v = Sw(tv(1), . . . , tv(n)|t1, . . . , tn).

Proof. Restricting to pv, the tautological quotient bundle Qp becomes

C
n/〈ev(n), . . . , ev(n+1−p)〉 = 〈ev(1), . . . , ev(p)〉,

so xi 7→ tv(i). �

Example 3.2. We have σsk
|v =

∑n
i=1(tv(i) − ti). Note that if u 6= v, there

is at least one k such that σsk
|u 6= σsk

|v: for example, the minimal k such
that u(k) 6= v(k) works.

As usual, σw|v = 0 unless pv ∈ Ωw, i.e., Ωv ⊂ Ωw. This is one charac-
terization of the Bruhat order on Sn. There are many others: One writes
w ≤ v if, equivalently,

(i) Ωv ⊂ Ωw.
(ii) rw(q, p) ≥ rv(q, p) for all p and q.
(iii) {w1, . . . , wk} ≤ {v1, . . . , vk} for all k, where the order on subsets is

by sorting the elements, and comparing termwise.
(iv) There is a chain w = w(0) → w(1) → · · · → w(s) = v, where each

step is of the form u → u · t, with t = (i, j) the transposition
exchanging entries in positions i and j, and ℓ(u · t) = ℓ(u)+1. That
is, ui < uj , and uk does not lie between ui and uj for all i < k < j.

(v) There is an expression v = si1 · · · siℓ with ℓ = ℓ(v) such that w is
given by a subsequence of length ℓ(w).

Write u
k
−→ v if v = u · t as in (iv) with t = (i, j) and i ≤ k < j.

Proposition 3.3. We have

σw|w = Sw(tw(1), . . . , tw(n)|t1, . . . , tn)

=
∏

i<j

w(i)>w(j)

(tw(i) − tw(j)).

There are algebraic proofs (cf. [Buch-Rim04]). Geometrically, it is similar
to the Grassmann case: Look at the neighborhood Uw of pw, and compute
the tangent space to Ωo

w as in the last lecture; the weights on the normal
space to Ωw at pw will be the weights of Tpw

Uw not in Tpw
Ωo

w.
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Example 3.4. For w = 416 3 2 7 5, the normal space to Ωw is given by the
∗’s:




1
1 ∗
0 0 1
0 1 ∗ ∗
0 1 ∗ ∗ ∗
0 0 0 0 0 1
0 0 0 0 1 ∗ ∗




.

The corresponding weights are t3 − t2, t4 − t1, t4 − t3, t4 − t2, t6 − t3, t6 − t2,
t6 − t5, and t7 − t5.

Proposition 3.5 (Equivariant Monk rule). We have

σsk
· σw =

∑

w
k

−→w+

σw+ + (σsk
|w)σw.

Proof. As for the Grassmannian case, the only possible σv appearing on the
RHS have v ≤ w and ℓ(w) − ℓ(v) ≤ 1. (One sees this by Poincaré duality,
intersecting with σ̃w0v.) The sum in the first part of the RHS is the classical
Monk rule; see [Ful97] for a proof. The second part is seen by restriction to
pw, using the fact that σw|w 6= 0 (and σw+|w = 0). �

Proposition 3.6. The polynomials cw
uv satisfy and are uniquely determined

by the following three properties:

(i) cw
ww = σw|w =

∏

i<j

w(i)>w(j)

(tw(i) − tw(j));

(ii) (σsk
|u − σsk

|v) cu
uv =

∑

v
k

−→v+

cu
uv+ ; and

(iii) (σsk
|w − σsk

|u)cw
uv =

∑

u
k

−→u+

cw
u+v −

∑

w−
k

−→w

cw−

uv .

Proof. The proof is essentially the same as in the Grassmannian case. To
show that (iii) is satisfied, use the Monk rule and associativity:

σsk
· (σu · σv) =

∑
cw
uvσsk

· σw

=
∑

w
k

−→w+

cw
uvσw+ +

∑

w

cw
uv(σsk

|w)σw,
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and

(σsk
· σu) · σv =

∑

u
k

−→u+

σu+ · σv + (σsk
|u)σu · σv

=
∑

u
k

−→u+

cw
u+vσw + (σsk

|u)
∑

w

cw
uvσw.

Equating the coefficients of σw on the RHS’s gives
∑

w−
k

−→w

cw−

uv + (σsk
|w)cw

uv =
∑

u
k

−→u+

cw
u+vσw + (σsk

|u)cw
uv,

which is (iii).
Setting w = v in (iii) gives

(ii′) (σsk
|v − σsk

|u)cv
uv =

∑

u
k

−→u+

cv
u+v,

using the fact that cv−

uv = 0, since v 6≤ v−. Using commutativity (cw
uv = cw

vu)
and interchanging u and v turns (ii′) into (ii).

The uniqueness statement is also almost the same as before. If u = v = w,
cw
uv is given by (i). If u = w, then cw

uv is given by (ii), using induction on
ℓ(u)−ℓ(v): one starts with v = w0 and uses the fact that one can always find
a k such that σsk

|u 6= σsk
|v. Finally, if u 6= w, (iii) gives cw

uv by induction on
ℓ(w) − ℓ(v). �

Remark 3.7. Conditions (i), (ii′), and (iii) also characterize cw
uv.

Remark 3.8. These conditions also determine the (unknown!) classical

coefficients cw
uv, as well as the Grassmannian coefficients cν

λµ = c
w(ν)
w(λ) w(µ).
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