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We will need a general fact relating intersection products and the diagonal.

The setup is as follows: Let X
ρ
−→ S be a (locally trivial) fiber bundle, where

X and S are oriented smooth manifolds, and the fibers are compact n-
dimensional manifolds. (In our application, S will be an approximation
space for BG.) Then we have a Gysin map ρ∗ : H iX → H i−nS. Assume
H∗X is a free module over H∗S, and let {xi} be a basis of homogeneous
elements for H∗X over H∗S. (Note that this does not depend on whether
we regard H∗X as a left or right H∗S-module.) Let {yi} be the (right) dual
basis, so deg(yi) = n − deg(xi), and

〈xi, yj〉 := ρ∗(xi · yj) = δij .

Write

xi · xj =
∑

k

ck
ijxk.

Consider the diagonal embedding δ : X →֒ X×S X, with projections p1, p2 :
X ×S X → X, and write

δ∗(yk) =
∑

i,j

(yi × yj) dk
ij ,

where by definition, y × z = p∗1y · p∗2z. (So the classes yi × yj form a basis
for H∗(X ×S X) over H∗S.)

Proposition 1.1. ck
ij = (−1)deg(yi) deg(xj)dk

ij .

Question 1.2. Is there a reference for this fact, even in the case where S
is a point? (It was certainly known to Lefschetz.)

Question 1.3. Is there a choice of conventions which removes the sign?
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The sign in Proposition 1.1 can become a mess, depending on what con-
ventions one uses for orientations. Here we take X ×S X to be oriented so
that

X ×S X
p2

- X

X

p1
?

ρ
- S

ρ
?

q -

is an oriented square — so p1∗p
∗
2 = ρ∗ρ∗. Note that ρ = q ◦ δ, pa ◦ δ = idX ,

and q = ρ ◦ pa for a = 1, 2.

Lemma 1.4. q∗(p
∗
1(u) · p∗2(v)) = (−1)n(deg(v)−n)ρ∗(u) · ρ∗(v).

Proof. Using the projection formula,

LHS = ρ∗p1∗(p
∗
1(u) · p∗2(v)) = ρ∗(u · p1∗p

∗
2(v))

= ρ∗(u · ρ∗ρ∗(v))

= (−1)n(deg(v)−n)ρ∗(u) · ρ∗(v).

�

The last step uses the fact that the projection formula depends on order
(see Appendix A, Remark 5.4):

Exercise 1.5. ρ∗(x · ρ∗y) = (−1)n deg(y)ρ∗(x) · y.

Proof of Proposition 1.1. Compute:

ck
ij =

∑

ℓ

cℓ
ijρ∗(xℓyk) =

∑
ρ∗(c

ℓ
ijxℓ · yk)

= ρ∗(xi · xj · yk)

= q∗δ∗(δ
∗(p∗1xi · p

∗
2xj) · yk)

= q∗(p
∗
1xi · p

∗
2xj · δ∗yk)

=
∑

a,b

q∗(p
∗
1xi · p

∗
2xj · p

∗
1ya · p

∗
2yb · d

k
ab)

=
∑

a,b

(−1)deg(xj) deg(ya)q∗(p
∗
1(xi · ya) · p

∗
2(xj · yb) · d

k
ab)

= (−1)deg(xj) deg(yi)q∗(p
∗
1(xi · yi) · p

∗
2(xj · yj)) · d

k
ij ,

where the last step uses Lemma 1.4 to see the only nonzero terms are for
a = i and b = j. Since q has relative dimension 2n, there is no sign, and
this is

= (−1)deg(xj) deg(yi)ρ∗(xi · yi)ρ∗(xj · yj) · d
k
ij

= (−1)deg(xj) deg(yi)dk
ij ,

as asserted. �
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Exercise 1.6. δ∗(1) =
∑

i

yi × xi.

(What is a reference for this?)

2

We now describe Graham’s positivity theorem. Let X = G/P , where G is
a complex semisimple group and P is parabolic subgroup, and let T ⊂ B ⊂ G
be a maximal torus and a Borel subgroup. Then H∗

TX has a basis of classes

σu = [Ωu]T , for u ∈ W P . Here Ωu is a B-invariant subvariety, and W P

is the set of cosets in the Weyl group of G for the subgroup generated by
reflections corresponding to roots in P .

Theorem 2.1 ([Gra01]). Write

σu · σv =
∑

w

= cw
uvσw.

Then cw
uv ∈ Z≥0[χ1, . . . , χm], where the χi are the weights of the action of

T on n
opp. Here Bopp is the opposite Borel subgroup, Bopp = T · Nopp is its

Levi decomposition (so Nopp is unipotent), and n
opp = Lie(Nopp).

For example, if B is upper-triangular matrices in G = GLn, then Bopp

is lower-triangular matrices, and n
opp is strictly lower-triangular matrices.

The weights χi are tj − ti, for j > i.
The difficulty in the theorem is that G does not act on EG ×G X.

Proof. There is an equivariant Poincaré duality, which follows from the clas-
sical case (and is similar to the version we have seen for H∗

T Fl(n)):

〈σu, τv〉 = δuv,

where τv = σ̃w0 v = [Ω̃w0 v]
T
. (Here Ω̃w0 v is a Bopp-invariant subvariety, the

orbit closure for the T -fixed point corresponding to w0 v.) Now

δ∗(τw) =
∑

u,v

cw
uvτu × τv

by Proposition 1.1, where δ : X →֒ X × X is the diagonal embedding.
Let N = Nopp × Nopp, and consider the action of B = T · N on X × X.

(Here T ⊂ B is the “diagonal” torus.) There are a finite number of N orbits
(and also of B orbits), whose closures have classes τu × τv. The subvariety

V = δ(Ω̃w0 v) ⊂ X × X is T -invariant. The theorem then follows from
Lemma 2.2 below. �

Lemma 2.2 (cf. [Gra01, Theorem 3.2]). Let B = T ·N be a solvable group,
with maximal torus T and unipotent radical N , acting on a variety X with
a finite number of N -orbits.1 For a T -invariant subvariety V , we have

[V ]T =
∑

ci[Wi]
T

1As observed by Brion, these are also B-orbits; see [Gra01, Lemma 3.3.].
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for B-invariant subvarieties Wi, with ci ∈ Z≥0[χ1, . . . , χm], where χi is pos-
itive on n = Lie(N).

See [Gra01] for the proof. In the application, note that the characters of
T which are positive on Lie(N) are those positive on n

opp.

Example 2.3. Consider the action of B = T · N on P
1 given by the map

B → GL2,

t · n 7→

(
χ1(t) ϕ(n)

0 χ2(t)

)
,

where χ1 and χ2 are characters, and ϕ : N → Ga = A
1 is a homomorphism

making this an action. There are two T -fixed points, p = [1 : 0] and q =

[0 : 1]; and one B-fixed point, p. Clearly [p]T = [p]T , and [P1]
T

= 1. The

nontrivial case is [q]T = [p]T + (χ1 − χ2) · 1. Indeed, we know H∗
T P1 =

Λ[ζ]/(ζ + χ1)(ζ + χ2), and [p]T = ζ + χ2 and [q]T = ζ + χ1, so [q]T − [p]T =
χ1 − χ2. Note that χ1 − χ2 is the weight of T on A1, so it is positive on n.

Remark 2.4. It is not necessary that X = G/P in the theorem: all that is
needed is a basis {σu} of classes of B-invariant subvarieties, and a Poincaré
dual basis {τu} of classes of Bopp-invariant subvarieties.

3

We conclude with some more facts about double Schubert polynomials.
First, there is a duality on Fl(Cn) (see [BKTY04, §4.1]). Consider a com-
plete flags of bundles on a variety X (e.g., X = Fl(Cn)),

F1 ⊂ · · · ⊂ Fn = V = En → · · · → E1,

so there are degeneracy loci Ωw = Ωw(F• → E•), where

Ωw(F• → E•) = {x ∈ X | rk(Fp → Eq) ≤ rw(q, p)}.

Let F ′
i = ker(V → En−i), and let E′

i = V/Fn−i, so we have

F ′
1 ⊂ · · · ⊂ F ′

n = V = E′
n → · · · → E′

1,

with degeneracy loci Ω′
w = Ωw(F ′

• → E′
•).

Exercise 3.1. Ωw = Ω′
w0 w−1 w0

.

If xi = c1(ker(Ei → Ei−1)) and yi = c1(Fi/Fi−1), then the exchanges
E• ↔ E′

• and F• ↔ F ′
• exchange xi and yn+1−i. The exercise implies

Sw(x|y) ≡ Sw0 w−1 w0
(yn, . . . , y1|xn, . . . , x1) (mod I)

= (−1)ℓ(w)
Sw0 w w0

(xn, . . . , x1|yn, . . . , y1)

= Sw0 w w0
(−xn, . . . ,−x1| − yn, . . . ,−y1),

where I is the ideal generated by ei(x) − ei(y), for 1 ≤ i ≤ n.
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Example 3.2. For w = sk, Ssk
= x1 + · · · + xk − (y1 + · · · + yk). Since

w0 sk w0 = sn−k, we see

Sn−k(−xn, . . . ,−x1| − yn, . . . ,−y1) = −xn − · · · − xk+1 + yn + · · · + yk+1.

For w ∈ Sn, let w′ = w0 w w0. (In one-line notation, this is w read
“backwards and opposite”: (w1 · · ·wn)′ = (n + 1−wn) · · · (n + 1−w1). For
example, (2 1 6 3 5 4)′ = 324 1 6 5.

Corollary 3.3. The polynomial cw′

u′v′ is obtained from cw
uv by interchanging

ti and −tn+1−i.

Exercise 3.4. For λ a partition contained in the k× ℓ rectangle, show that
w(λ′) = w(λ)′, where λ′ denotes the conjugate partition (as usual). Thus the

Corollary generalizes the relation between cν
λµ and cν′

λ′µ′ we saw in Lecture
8.

Remark 3.5. The involution D : Fl(Cn) → Fl((Cn)∨) ∼= Fl(Cn) is equi-

variant for g 7→ (tg)−1, and takes Ωw(F•) to Ωw′(F̃•), so we see σw 7→ σw′

by xi 7→ −xn+1−i and ti 7→ −tn+1−i, as above.

More generally, one can consider products of the form

Su(x|s) · Sv(x|t) =
∑

w

cw
uv(s, t)Sw(x|t),

where cw
uv(s, t) is a homogeneous polynomial of degree ℓ(u) + ℓ(v) − ℓ(w)

in s = (s1, . . . , sn) and t = (t1, . . . , tn). These specialize to the equivariant
coefficients: cw

uv = cw
uv(t, t). For the Grassmannian (so u = w(λ), etc.), these

are the coefficients studied by Molev and Sagan. They satisfy a vanishing
property: cw

uv(s, t) = 0 unless v ≤ w in Bruhat order. (Note that cw
uv(s, t)

need not vanish when u 6≤ w!)

Proof. (D. Anderson.) On a variety Y , consider a vector bundle E of rank
n, with two general flags of subbundles S1 ⊂ · · · ⊂ Sn = E and T1 ⊂ · · · ⊂
Tn = E; let si = c1(Si/Si−1) and ti = c1(Ti/Ti−1). Let X = Fl(E), with
tautological quotients EX → Qn−1 → · · · → Q1, and let xi = c1(ker(Qi →
Qi−1)). Then Su(x|s) is the class of the degeneracy locus Ωu(S• → Q•),
and Sv(x|t) is the class of Ωv(T• → Q•).

The classes Sw(x|t) form a basis for H∗X over H∗Y , so one can write
Su(x|s) · Sv(x|t) =

∑
w cw

uv(s, t)Sw(x|t) modulo the ideal defining H∗X;
taking n sufficiently large, there are no relevant relations and this becomes
an identity of polynomials.

The class Su(x|s)·Sv(x|t) is supported on Ωv(T• → Q•), so it comes from
a refined class in H∗(X,X r Ωv(T• → Q•)). Since H∗(X r Ωv(T• → Q•))
has a basis of classes [Ωw(T• → Q•)] for v 6≤ w, the vanishing follows from
the exact sequence for the pair (X,X r Ωv(T• → Q•). �
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