EQUIVARIANT COHOMOLOGY IN ALGEBRAIC
GEOMETRY
LECTURE ELEVEN: POSITIVITY

WILLIAM FULTON
NOTES BY DAVE ANDERSON
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We will need a general fact relating intersection products and the diagonal.
The setup is as follows: Let X 2 S be a (locally trivial) fiber bundle, where
X and S are oriented smooth manifolds, and the fibers are compact n-
dimensional manifolds. (In our application, S will be an approximation
space for BG.) Then we have a Gysin map p, : H'X — H™"S. Assume
H*X is a free module over H*S, and let {z;} be a basis of homogeneous
elements for H*X over H*S. (Note that this does not depend on whether
we regard H*X as a left or right H*S-module.) Let {y;} be the (right) dual
basis, so deg(y;) = n — deg(z;), and

<9€i7 yj> = P*(wi : yj) = 5ij-
Write

E k
k

Consider the diagonal embedding § : X — X x g X, with projections py, ps :
X xg X — X, and write

Oulyn) = > (i x yy) d,

1,J

where by definition, y x z = pjy - p5z. (So the classes y; x y; form a basis
for H*(X xg X) over H*S.)

Proposition 1.1. cfj = (—1)deg(y")deg(x")d§j-

Question 1.2. Is there a reference for this fact, even in the case where S
is a point? (It was certainly known to Lefschetz.)

Question 1.3. Is there a choice of conventions which removes the sign?
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The sign in Proposition 1.1 can become a mess, depending on what con-
ventions one uses for orientations. Here we take X x g X to be oriented so
that

X xgX P2o x
pl{ X {p
X S
p
is an oriented square — so p1,p5 = p*p«. Note that p=¢qod, p, 06 = idyx,
and ¢ = pop, fora =1,2.
Lemma 1.4. q.(pi(u) - p3(v)) = (=1)" "B p(u) - p.(v).

Proof. Using the projection formula,

LHS = pup1,(pi(u) - p5(v)) = pulu-p1,p5(v))
= ps(u-p ps(v)
(_1)n(deg(v)_n)p* (u)  Px (U)
0

The last step uses the fact that the projection formula depends on order
(see Appendix A, Remark 5.4):

Exercise 1.5. p.(z - p*y) = (—1)" %W () - y.
Proof of Proposition 1.1. Compute:

= Yypnlam) = X plcyee )
l

= pu(@i- 25 yr)

= q.0.(0" (P17 - P575) - Yk)

= q(pizi - P5z; - Oui)

= > q-(pimi - p3x;  PiYa - PiYs - diy)
a,b

= > (—1)testr Bl g (57 (2 - ya) - 5 (s wp) - diy)
a,b

= (—1)desle)desilg (pi(2; - i) - p3(5 - ) - db,
where the last step uses Lemma 1.4 to see the only nonzero terms are for
a =1 and b = j. Since ¢ has relative dimension 2n, there is no sign, and
this is

deg(x ;) deg(y;) gk
(—1)des(@;) g(y)dij7

as asserted. O
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Exercise 1.6. 6,(1) = Zyi X x;.
i

(What is a reference for this?)

2

We now describe Graham’s positivity theorem. Let X = G/P, where G is
a complex semisimple group and P is parabolic subgroup, andlet T C B C G
be a maximal torus and a Borel subgroup. Then H7 X has a basis of classes
Oy = [Qu]T, for w € WP. Here Q, is a B-invariant subvariety, and WF
is the set of cosets in the Weyl group of G for the subgroup generated by
reflections corresponding to roots in P.

Theorem 2.1 ([Gra0l]). Write

_ __ LW
Oy Oy = E = CpupOuw-

w
Then ¢, € Z>o[X1,---,Xm], where the x; are the weights of the action of
T on n°PP. Here B°PP is the opposite Borel subgroup, B°PP =T - N°PP is its
Levi decomposition (so N°PP is unipotent), and n°PP = Lie(N°FP).

For example, if B is upper-triangular matrices in G = GL,,, then B°PP
is lower-triangular matrices, and n°PP is strictly lower-triangular matrices.
The weights x; are t; — t;, for j > 1.

The difficulty in the theorem is that G' does not act on EG x¢ X.

Proof. There is an equivariant Poincaré duality, which follows from the clas-
sical case (and is similar to the version we have seen for H}.Fl(n)):

(UU7 Tv> = 6uv7

~ ~ T =~ . . . .
where 7, = Gygv = [Queo] - (Here Q40 is a BPP-invariant subvariety, the
orbit closure for the T-fixed point corresponding to wyv.) Now

0x(Tw) = ZCL”UTU X Ty
u,v

by Proposition 1.1, where § : X — X x X is the diagonal embedding.

Let N = NP x N°P_ and consider the action of B=7T-N on X x X.
(Here T C B is the “diagonal” torus.) There are a finite number of N orbits
(and also of B orbits), whose closures have classes 7, x 7,. The subvariety

V = 6(Quyv) € X x X is T-invariant. The theorem then follows from
Lemma 2.2 below. 0

Lemma 2.2 (cf. [Gra0l, Theorem 3.2]). Let B =T -N be a solvable group,
with mazximal torus T and unipotent radical N, acting on a variety X with
a finite number of N-orbits." For a T-invariant subvariety V, we have

VIt = awi]”

1 A5 observed by Brion, these are also B-orbits; see [Gra0l, Lemma 3.3.].
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for B-invariant subvarieties Wy, with ¢; € Z>o[X1,- - -, Xm], where X; is pos-
itive on n = Lie(V).

See [Gra01] for the proof. In the application, note that the characters of
T which are positive on Lie(N) are those positive on n°PP.

Example 2.3. Consider the action of B = T - N on P! given by the map

B—>GL2,
x1(t)  e(n)
tn'—>< 10 X2(t)>7

where ;1 and yo are characters, and ¢ : N — G, = A! is a homomorphism
making this an action. There are two T-fixed points, p = [1: 0] and ¢ =

[0:1]; and one B-fixed point, p. Clearly [p]’ = [p]”, and [Pl]T = 1. The

nontrivial case is [¢]7 = [p]T + (x1 — x2) - 1. Indeed, we know H:Pl =

A[C]/(C+ x1)(¢ + x2), and [p]" = ¢+ x2 and [q)" = ¢+ x1, 50 [¢] —[p]" =
X1 — X2. Note that x1 — x2 is the weight of 7" on A!, so it is positive on n.

Remark 2.4. It is not necessary that X = G/P in the theorem: all that is
needed is a basis {0y} of classes of B-invariant subvarieties, and a Poincaré
dual basis {7, } of classes of B°PP-invariant subvarieties.

3

We conclude with some more facts about double Schubert polynomials.
First, there is a duality on FI(C™) (see [BKTY04, §4.1]). Consider a com-
plete flags of bundles on a variety X (e.g., X = FI(C")),

hc---cFkF,=V=E,—- - — FEy,
so there are degeneracy loci Q,, = Q,(Fe — E,), where
Qu(Fa = Eu) = {o € X | tk(Fy — Ey) < ru(a,p)}.
Let F! =ker(V — E,_;), and let E/ = V/F,_;, so we have
Ffc---CF, =V=E, — - — Ej,
with degeneracy loci Q), = Q,,(F, — E).
Exercise 3.1. Q, =/

wow L wy*

If 2; = ci(ker(E; — E;—1)) and y; = ¢1(F;/F;—1), then the exchanges
E, < E., and F, < F, exchange z; and y,11_;. The exercise implies

6w(£|y) = Gwo w1 wo(yna cee ,y1|$m cee 7:171) (HlOd I)
= (_1)Z(W)6w0ww0($nv'--)x1|yn7"'7y1)
- ngwwg(—ﬂfn’---’_wl’_yn7---7_yl)7

where I is the ideal generated by e;(z) — e;(y), for 1 < i <n.
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Example 3.2. For w = si, &5, = 21+ -+ x — (y1 + -+ + y). Since
wo Sk Wo = Sp—k, We see

Gn—k(_xna---a_x1|_ym---a_yl):_l‘n_"'_$k+l+yn+"'+yk+l-

For w € S, let w' = wowwy. (In one-line notation, this is w read
“backwards and opposite”: (wy - wy,) =(m+1—w,) - (n+1—w;). For
example, (216354) =324165.

Corollary 3.3. The polynomial cfj’,lv, is obtained from ci, by interchanging
ti and —tn+1_i.

Exercise 3.4. For A a partition contained in the k x £ rectangle, show that
w(N) = w(A\), where X' denotes the conjugate partition (as usual). Thus the
Corollary generalizes the relation between A and cKi s We saw in Lecture
8.

Remark 3.5. The involution D : FI(C") — FI((C")") = FI(C") is equi-
variant for g — (fg)™%, and takes Qy(Fa) t0 Qyr(Fa), SO We see 0y — Ty
by z; — —2zp411-; and t; — —t, 14, as above.

More generally, one can consider products of the form
Gu(zls) - Sy(x|t) = Zcuv $,t) Gy (zt),

where ¢ (s,t) is a homogeneous polynomial of degree £(u) + £(v) — ¢(w)
ins=(sy,...,s,) and t = (¢1,...,t,). These specialize to the equivariant
coefficients: ¢, = cit,(t,t). For the Grassmannian (so u = w(\), etc.), these
are the coefficients studied by Molev and Sagan. They satisfy a vanishing
property: ¢ (s,t) = 0 unless v < w in Bruhat order. (Note that ¢, (s,t)
need not vanish when u £ w!)

Proof. (D. Anderson.) On a variety Y, consider a vector bundle E of rank
n, with two general flags of subbundles S C --- C S, =F and Ty C --- C
T, = E; let s; = ¢1(S;/Si—1) and t; = ¢1(T;/T;—1). Let X = FI(E), with
tautological quotients Fx — Q-1 — -+ — Q1, and let x; = ¢1(ker(Q; —
Qi—1)). Then &,(z|s) is the class of the degeneracy locus §2,(Se — Qo),
and &, (z|t) is the class of Q,(Te — Qo).

The classes &, (z|t) form a basis for H*X over H*Y, so one can write
Gulxls) - Gy(z|t) = >, i (s,t) Sy (z|t) modulo the ideal defining H*X;
taking n sufficiently large, there are no relevant relations and this becomes
an identity of polynomials.

The class &,(x|s)- G, (z|t) is supported on Q,(Te — Q.), so it comes from
a refined class in H*(X, X \ Q,(Te — Q.)). Since H*(X \ Q,(Te — Qo))
has a basis of classes [Q,(Te — Qo)] for v £ w, the vanishing follows from
the exact sequence for the pair (X, X \ Q,(Te — Qo). O
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