EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE ELEVEN: POSITIVITY

WILLIAM FULTON NOTES BY DAVE ANDERSON

1

We will need a general fact relating intersection products and the diagonal. The setup is as follows: Let $X \xrightarrow{\rho} S$ be a (locally trivial) fiber bundle, where X and S are oriented smooth manifolds, and the fibers are compact ndimensional manifolds. (In our application, S will be an approximation space for BG.) Then we have a Gysin map $\rho_* : H^i X \to H^{i-n}S$. Assume H^*X is a free module over H^*S , and let $\{x_i\}$ be a basis of homogeneous elements for H^*X over H^*S . (Note that this does not depend on whether we regard H^*X as a left or right H^*S -module.) Let $\{y_i\}$ be the (right) dual basis, so $\deg(y_i) = n - \deg(x_i)$, and

$$\langle x_i, y_j \rangle := \rho_*(x_i \cdot y_j) = \delta_{ij}.$$

Write

$$x_i \cdot x_j = \sum_k c_{ij}^k x_k.$$

Consider the diagonal embedding $\delta : X \hookrightarrow X \times_S X$, with projections $p_1, p_2 : X \times_S X \to X$, and write

$$\delta_*(y_k) = \sum_{i,j} (y_i \times y_j) \, d_{ij}^k,$$

where by definition, $y \times z = p_1^* y \cdot p_2^* z$. (So the classes $y_i \times y_j$ form a basis for $H^*(X \times_S X)$ over H^*S .)

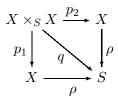
Proposition 1.1. $c_{ij}^k = (-1)^{\deg(y_i) \deg(x_j)} d_{ij}^k$.

Question 1.2. Is there a reference for this fact, even in the case where S is a point? (It was certainly known to Lefschetz.)

Question 1.3. Is there a choice of conventions which removes the sign?

Date: April 9, 2007.

The sign in Proposition 1.1 can become a mess, depending on what conventions one uses for orientations. Here we take $X \times_S X$ to be oriented so that



is an oriented square — so $p_{1*}p_2^* = \rho^*\rho_*$. Note that $\rho = q \circ \delta$, $p_a \circ \delta = \operatorname{id}_X$, and $q = \rho \circ p_a$ for a = 1, 2.

Lemma 1.4. $q_*(p_1^*(u) \cdot p_2^*(v)) = (-1)^{n(\deg(v)-n)} \rho_*(u) \cdot \rho_*(v).$

Proof. Using the projection formula,

$$LHS = \rho_* p_{1*}(p_1^*(u) \cdot p_2^*(v)) = \rho_*(u \cdot p_{1*} p_2^*(v))$$

= $\rho_*(u \cdot \rho^* \rho_*(v))$
= $(-1)^{n(\deg(v)-n)} \rho_*(u) \cdot \rho_*(v).$

The last step uses the fact that the projection formula depends on order (see Appendix A, Remark 5.4):

Exercise 1.5. $\rho_*(x \cdot \rho^* y) = (-1)^{n \deg(y)} \rho_*(x) \cdot y.$ Proof of Proposition 1.1. Compute:

$$\begin{aligned} c_{ij}^{k} &= \sum_{\ell} c_{ij}^{\ell} \rho_{*}(x_{\ell} y_{k}) &= \sum_{\ell} \rho_{*}(c_{ij}^{\ell} x_{\ell} \cdot y_{k}) \\ &= \rho_{*}(x_{i} \cdot x_{j} \cdot y_{k}) \\ &= q_{*} \delta_{*}(\delta^{*}(p_{1}^{*} x_{i} \cdot p_{2}^{*} x_{j}) \cdot y_{k}) \\ &= q_{*}(p_{1}^{*} x_{i} \cdot p_{2}^{*} x_{j} \cdot \delta_{*} y_{k}) \\ &= \sum_{a,b} q_{*}(p_{1}^{*} x_{i} \cdot p_{2}^{*} x_{j} \cdot p_{1}^{*} y_{a} \cdot p_{2}^{*} y_{b} \cdot d_{ab}^{k}) \\ &= \sum_{a,b} (-1)^{\deg(x_{j}) \deg(y_{a})} q_{*}(p_{1}^{*}(x_{i} \cdot y_{a}) \cdot p_{2}^{*}(x_{j} \cdot y_{b}) \cdot d_{ab}^{k}) \\ &= (-1)^{\deg(x_{j}) \deg(y_{i})} q_{*}(p_{1}^{*}(x_{i} \cdot y_{i}) \cdot p_{2}^{*}(x_{j} \cdot y_{j})) \cdot d_{ij}^{k}, \end{aligned}$$

where the last step uses Lemma 1.4 to see the only nonzero terms are for a = i and b = j. Since q has relative dimension 2n, there is no sign, and this is

$$= (-1)^{\deg(x_j) \deg(y_i)} \rho_*(x_i \cdot y_i) \rho_*(x_j \cdot y_j) \cdot d_{ij}^k$$

= $(-1)^{\deg(x_j) \deg(y_i)} d_{ij}^k,$

as asserted.

Exercise 1.6. $\delta_*(1) = \sum_i y_i \times x_i$.

(What is a reference for this?)

 $\mathbf{2}$

We now describe Graham's positivity theorem. Let X = G/P, where G is a complex semisimple group and P is parabolic subgroup, and let $T \subset B \subset G$ be a maximal torus and a Borel subgroup. Then H_T^*X has a basis of classes $\sigma_u = [\Omega_u]^T$, for $u \in W^P$. Here Ω_u is a B-invariant subvariety, and W^P is the set of cosets in the Weyl group of G for the subgroup generated by reflections corresponding to roots in P.

Theorem 2.1 ([Gra01]). Write

$$\sigma_u \cdot \sigma_v = \sum_w = c_{uv}^w \sigma_w.$$

Then $c_{uv}^w \in \mathbb{Z}_{\geq 0}[\chi_1, \ldots, \chi_m]$, where the χ_i are the weights of the action of T on \mathfrak{n}^{opp} . Here B^{opp} is the opposite Borel subgroup, $B^{opp} = T \cdot N^{opp}$ is its Levi decomposition (so N^{opp} is unipotent), and $\mathfrak{n}^{opp} = \text{Lie}(N^{opp})$.

For example, if B is upper-triangular matrices in $G = GL_n$, then B^{opp} is lower-triangular matrices, and \mathfrak{n}^{opp} is strictly lower-triangular matrices. The weights χ_i are $t_j - t_i$, for j > i.

The difficulty in the theorem is that G does not act on $EG \times^G X$.

Proof. There is an equivariant Poincaré duality, which follows from the classical case (and is similar to the version we have seen for $H_T^*Fl(n)$):

$$\langle \sigma_u, \tau_v \rangle = \delta_{uv},$$

where $\tau_v = \tilde{\sigma}_{w_0 v} = [\tilde{\Omega}_{w_0 v}]^T$. (Here $\tilde{\Omega}_{w_0 v}$ is a B^{opp} -invariant subvariety, the orbit closure for the *T*-fixed point corresponding to $w_0 v$.) Now

$$\delta_*(\tau_w) = \sum_{u,v} c^w_{uv} \tau_u \times \tau_v$$

by Proposition 1.1, where $\delta: X \hookrightarrow X \times X$ is the diagonal embedding.

Let $\mathbf{N} = N^{opp} \times N^{opp}$, and consider the action of $\mathbf{B} = T \cdot \mathbf{N}$ on $X \times X$. (Here $T \subset \mathbf{B}$ is the "diagonal" torus.) There are a finite number of \mathbf{N} orbits (and also of \mathbf{B} orbits), whose closures have classes $\tau_u \times \tau_v$. The subvariety $V = \delta(\tilde{\Omega}_{w_0 v}) \subset X \times X$ is *T*-invariant. The theorem then follows from Lemma 2.2 below.

Lemma 2.2 (cf. [Gra01, Theorem 3.2]). Let $B = T \cdot N$ be a solvable group, with maximal torus T and unipotent radical N, acting on a variety X with a finite number of N-orbits.¹ For a T-invariant subvariety V, we have

$$[V]^T = \sum c_i [W_i]^T$$

¹As observed by Brion, these are also *B*-orbits; see [Gra01, Lemma 3.3.].

§11 POSITIVITY

for B-invariant subvarieties W_i , with $c_i \in \mathbb{Z}_{\geq 0}[\chi_1, \ldots, \chi_m]$, where χ_i is positive on $\mathfrak{n} = \text{Lie}(N)$.

See [Gra01] for the proof. In the application, note that the characters of T which are positive on Lie(**N**) are those positive on \mathfrak{n}^{opp} .

Example 2.3. Consider the action of $B = T \cdot N$ on \mathbb{P}^1 given by the map $B \to GL_2$,

$$t \cdot n \mapsto \left(egin{array}{cc} \chi_1(t) & \varphi(n) \ 0 & \chi_2(t) \end{array}
ight),$$

where χ_1 and χ_2 are characters, and $\varphi : N \to \mathbb{G}_a = \mathbb{A}^1$ is a homomorphism making this an action. There are two *T*-fixed points, p = [1:0] and q = [0:1]; and one *B*-fixed point, p. Clearly $[p]^T = [p]^T$, and $[\mathbb{P}^1]^T = 1$. The nontrivial case is $[q]^T = [p]^T + (\chi_1 - \chi_2) \cdot 1$. Indeed, we know $H_T^* \mathbb{P}^1 = \Lambda[\zeta]/(\zeta + \chi_1)(\zeta + \chi_2)$, and $[p]^T = \zeta + \chi_2$ and $[q]^T = \zeta + \chi_1$, so $[q]^T - [p]^T = \chi_1 - \chi_2$. Note that $\chi_1 - \chi_2$ is the weight of T on \mathbb{A}^1 , so it is positive on \mathfrak{n} .

Remark 2.4. It is not necessary that X = G/P in the theorem: all that is needed is a basis $\{\sigma_u\}$ of classes of *B*-invariant subvarieties, and a Poincaré dual basis $\{\tau_u\}$ of classes of B^{opp} -invariant subvarieties.

~	
•)	
·. `	
0	

We conclude with some more facts about double Schubert polynomials. First, there is a duality on $Fl(\mathbb{C}^n)$ (see [BKTY04, §4.1]). Consider a complete flags of bundles on a variety X (e.g., $X = Fl(\mathbb{C}^n)$),

$$F_1 \subset \cdots \subset F_n = V = E_n \to \cdots \to E_1,$$

so there are degeneracy loci $\Omega_w = \Omega_w(F_{\bullet} \to E_{\bullet})$, where

$$\Omega_w(F_{\bullet} \to E_{\bullet}) = \{ x \in X \mid \operatorname{rk}(F_p \to E_q) \le r_w(q, p) \}.$$

Let $F'_i = \ker(V \to E_{n-i})$, and let $E'_i = V/F_{n-i}$, so we have

$$F'_1 \subset \cdots \subset F'_n = V = E'_n \to \cdots \to E'_1,$$

with degeneracy loci $\Omega'_w = \Omega_w(F'_{\bullet} \to E'_{\bullet}).$

Exercise 3.1. $\Omega_w = \Omega'_{w_0 w^{-1} w_0}$.

S

If $x_i = c_1(\ker(E_i \to E_{i-1}))$ and $y_i = c_1(F_i/F_{i-1})$, then the exchanges $E_{\bullet} \leftrightarrow E'_{\bullet}$ and $F_{\bullet} \leftrightarrow F'_{\bullet}$ exchange x_i and y_{n+1-i} . The exercise implies

$$\begin{split} \mathfrak{S}_{w}(x|y) &\equiv \ \mathfrak{S}_{w_{0} \, w^{-1} \, w_{0}}(y_{n}, \dots, y_{1}|x_{n}, \dots, x_{1}) \pmod{I} \\ &= \ (-1)^{\ell(w)} \mathfrak{S}_{w_{0} \, w \, w_{0}}(x_{n}, \dots, x_{1}|y_{n}, \dots, y_{1}) \\ &= \ \mathfrak{S}_{w_{0} \, w \, w_{0}}(-x_{n}, \dots, -x_{1}|-y_{n}, \dots, -y_{1}), \end{split}$$

where I is the ideal generated by $e_i(x) - e_i(y)$, for $1 \le i \le n$.

4

Example 3.2. For $w = s_k$, $\mathfrak{S}_{s_k} = x_1 + \dots + x_k - (y_1 + \dots + y_k)$. Since $w_0 s_k w_0 = s_{n-k}$, we see

$$\mathfrak{S}_{n-k}(-x_n,\ldots,-x_1|-y_n,\ldots,-y_1) = -x_n-\cdots-x_{k+1}+y_n+\cdots+y_{k+1}.$$

For $w \in S_n$, let $w' = w_0 w w_0$. (In one-line notation, this is w read "backwards and opposite": $(w_1 \cdots w_n)' = (n+1-w_n) \cdots (n+1-w_1)$. For example, (216354)' = 324165.

Corollary 3.3. The polynomial $c_{u'v'}^{w'}$ is obtained from c_{uv}^{w} by interchanging t_i and $-t_{n+1-i}$.

Exercise 3.4. For λ a partition contained in the $k \times \ell$ rectangle, show that $w(\lambda') = w(\lambda)'$, where λ' denotes the conjugate partition (as usual). Thus the Corollary generalizes the relation between $c_{\lambda\mu}^{\nu}$ and $c_{\lambda'\mu'}^{\nu'}$ we saw in Lecture 8.

Remark 3.5. The involution $D : Fl(\mathbb{C}^n) \to Fl((\mathbb{C}^n)^{\vee}) \cong Fl(\mathbb{C}^n)$ is equivariant for $g \mapsto ({}^tg)^{-1}$, and takes $\Omega_w(F_{\bullet})$ to $\Omega_{w'}(\widetilde{F}_{\bullet})$, so we see $\sigma_w \mapsto \sigma_{w'}$ by $x_i \mapsto -x_{n+1-i}$ and $t_i \mapsto -t_{n+1-i}$, as above.

More generally, one can consider products of the form

$$\mathfrak{S}_u(x|s)\cdot\mathfrak{S}_v(x|t)=\sum_w c^w_{uv}(s,t)\,\mathfrak{S}_w(x|t),$$

where $c_{uv}^w(s,t)$ is a homogeneous polynomial of degree $\ell(u) + \ell(v) - \ell(w)$ in $s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n)$. These specialize to the equivariant coefficients: $c_{uv}^w = c_{uv}^w(t,t)$. For the Grassmannian (so $u = w(\lambda)$, etc.), these are the coefficients studied by Molev and Sagan. They satisfy a vanishing property: $c_{uv}^w(s,t) = 0$ unless $v \leq w$ in Bruhat order. (Note that $c_{uv}^w(s,t)$ need not vanish when $u \not\leq w$!)

Proof. (D. Anderson.) On a variety Y, consider a vector bundle E of rank n, with two general flags of subbundles $S_1 \subset \cdots \subset S_n = E$ and $T_1 \subset \cdots \subset T_n = E$; let $s_i = c_1(S_i/S_{i-1})$ and $t_i = c_1(T_i/T_{i-1})$. Let $X = \mathbf{Fl}(E)$, with tautological quotients $E_X \to Q_{n-1} \to \cdots \to Q_1$, and let $x_i = c_1(\ker(Q_i \to Q_{i-1}))$. Then $\mathfrak{S}_u(x|s)$ is the class of the degeneracy locus $\Omega_u(S_{\bullet} \to Q_{\bullet})$, and $\mathfrak{S}_v(x|t)$ is the class of $\Omega_v(T_{\bullet} \to Q_{\bullet})$.

The classes $\mathfrak{S}_w(x|t)$ form a basis for H^*X over H^*Y , so one can write $\mathfrak{S}_u(x|s) \cdot \mathfrak{S}_v(x|t) = \sum_w c_{uv}^w(s,t) \mathfrak{S}_w(x|t)$ modulo the ideal defining H^*X ; taking *n* sufficiently large, there are no relevant relations and this becomes an identity of polynomials.

The class $\mathfrak{S}_u(x|s) \cdot \mathfrak{S}_v(x|t)$ is supported on $\Omega_v(T_{\bullet} \to Q_{\bullet})$, so it comes from a refined class in $H^*(X, X \setminus \Omega_v(T_{\bullet} \to Q_{\bullet}))$. Since $H^*(X \setminus \Omega_v(T_{\bullet} \to Q_{\bullet}))$ has a basis of classes $[\Omega_w(T_{\bullet} \to Q_{\bullet})]$ for $v \not\leq w$, the vanishing follows from the exact sequence for the pair $(X, X \setminus \Omega_v(T_{\bullet} \to Q_{\bullet}))$. \Box

§11 POSITIVITY

References

- [BKTY04] A. Buch, A. Kresch, H. Tamvakis, and A. Yong, "Schubert polynomials and quiver formulas," *Duke Math. J.* **122** (2004), no. 1, 125–143.
- [Gra01] W. Graham, "Positivity in equivariant Schubert calculus," Duke Math. J. 109 (2001), 599–614.