Let X be a complete nonsingular toric variety. In this lecture, we will describe $H^*_T X$. First we recall some basic notions about toric varieties.

Let T be an n-dimensional torus with character group M, and let $N = \text{Hom}_\mathbb{Z}(M, \mathbb{Z})$ be the dual lattice. Then $X = X(\Sigma)$, for a complete nonsingular fan Σ. That is, Σ is a collection of cones σ in $N_K = N \otimes \mathbb{Z} K$ such that two cones meet along a face of each; each cone must be generated by part of a basis for N (the nonsingular condition), and the union of the cones is all of N_K (the completeness condition).

The toric variety X is covered by open affines $U_\sigma = \text{Spec} \mathbb{C}[\sigma^\vee \cap M]$, where $\sigma^\vee = \{ u | \langle u, v \rangle \geq 0 \text{ for all } v \in \sigma \}$. In fact, $U_\sigma \cong \mathbb{C}^k \times (\mathbb{C}^*)^{n-k}$, where $k = \dim \sigma$, and the n-dimensional cones suffice to cover. Also, $U_{\{0\}} = \text{Spec} \mathbb{C}[M] = T$, and $U_\sigma \cap U_\tau = U_{\sigma \cap \tau}$. Write $\chi^u \in \mathbb{C}[M]$ for the element corresponding to $u \in M$.

Each cone τ determines a T-invariant subvariety $V(\tau) \subset X$, which is closed and nonsingular, of codimension equal to $\dim \tau$. On open affines, this is given by

$$V(\tau) \cap U_\sigma = \text{Spec} \mathbb{C}[\tau^\perp \cap \sigma^\vee \cap M],$$

with the containment in U_σ given by

$$\mathbb{C}[\sigma^\vee \cap M] \to \mathbb{C}[\tau^\perp \cap \sigma^\vee \cap M],$$

with $\chi^u \mapsto \chi^u$ if $u \in \tau^\perp$ and $\chi^u \mapsto 0$ otherwise. (This is a homomorphism because $\tau^\perp \cap \sigma^\vee$ is a face of σ^\vee.) Then $V(\tau)$ is a nonsingular toric variety, for the torus with character group $\tau^\perp \cap M$; it corresponds to a fan in N/\mathbb{N}_τ, where \mathbb{N}_τ is the sublattice generated by τ.

The T-fixed points of X are $p_\sigma = V(\sigma)$ for $\dim \sigma = n$.

X is projective if and only if there is a lattice polytope $P \subset M_K$, with vertices in M, such that Σ is the normal fan to P. That is, to each face F of P, the corresponding cone in Σ is

$$\sigma_F = \{ v | \langle u', v \rangle \geq \langle u, v \rangle \text{ for all } u' \in P, u \in F \}.$$
This correspondence reverses dimensions: \(\dim \sigma_F = \text{codim} F \).

Example 1.1. The standard \(n \)-dimensional simplex corresponds to \(\mathbb{P}^n \). An \(n \)-cube corresponds to \((\mathbb{P}^1)^n\). Figures...

For \(X \) projective, choose a general vector \(v \in N_{\mathbb{R}} \), giving an ordering of the vertices \(u_1, \ldots, u_N \) (so that \(\langle u_1, v \rangle < \cdots < \langle u_N, v \rangle \)), and thus an ordering of the \(n \)-dimensional cones \(\sigma_1, \ldots, \sigma_N \). For \(1 \leq i \leq N \), let

\[
\tau_i = \bigcap_{j > i} \sigma_i \cap \sigma_j,
\]

so \(\tau_1 = \{0\} \), \(\tau_N = \sigma_N \), and \(\tau_p \subseteq \tau_q \) implies \(p \leq q \). (Such an ordering of cones is called a *shelling* of the fan.) This gives a cellular decomposition of \(X \), with closures of cells being \(V(\tau_1), \ldots, V(\tau_N) \), so

\[
[V(\tau_1)], \ldots, [V(\tau_N)]
\]

forms a basis for \(H^*X \). It follows that \([V(\tau_1)]^T, \ldots, [V(\tau_N)]^T\) form a basis for \(H^*_T X \).

If \(X \) is not projective, one can always find a refinement \(\Sigma' \) of \(\Sigma \) (by subdividing cones), giving a surjective, birational, \(T \)-equivariant morphism \(\pi : X' \to X \), with \(X' \) projective and nonsingular. Under \(\pi \), \(V(\tau') \) maps to \(V(\tau) \), where \(\tau \) is the smallest cone containing \(\tau' \); this is birational if they have the same dimension. Since \(\pi_* \circ \pi^* = \text{id} \) on \(H^*X \) or \(H^*_T X \), one sees the following:

Lemma 1.2. For \(X \) a complete nonsingular toric variety, \(H^*X \) is generated by the classes \([V(\tau)]\) over \(\mathbb{Z} \), and \(H^*_T X \) is generated by \([V(\tau)]^T\) over \(\Lambda \). Also, \(H^*_T X \otimes_{\mathbb{Z}} \mathbb{Z} \to H^*X \).

We will see that \(H^*X \) and \(H^*_T X \) are always free of rank \(N \), the number of \(n \)-dimensional cones.

Question 1.3. Is there always a basis of \([V(\tau)]\)’s for \(H^*X \)? If not, an old combinatorial conjecture on shellability is false.

For any cones \(\sigma \) and \(\tau \), if they span a cone \(\gamma \), then \(V(\sigma) \cap V(\tau) = V(\gamma) \); if \(\dim \gamma = \dim \sigma + \dim \tau \), the intersection is transversal, so

\[
[V(\sigma)] \cdot [V(\tau)] = [V(\gamma)] \quad \text{and} \quad [V(\sigma)]^T \cdot [V(\tau)]^T = [V(\gamma)]^T.
\]

If \(\sigma \) and \(\tau \) are contained in a cone of \(\Sigma \), then \(V(\sigma) \cap V(\tau) = \emptyset \), and the corresponding products are zero.

Let \(D_1, \ldots, D_d \) be the \(T \)-invariant divisors, with \(D_i = V(\tau_i) \) for rays \(\tau_i \); let \(v_i \in N \) be the minimal generator of the ray \(\tau_i \). For \(u \in M \), with corresponding rational function \(\chi^u \),

\[
\text{div}(\chi^u) = \sum \langle u, v_i \rangle D_i.
\]
Equivariantly, χ^u is a rational section of the line bundle L_u corresponding to the character u, so

$$u = c^T_i(L_u) = [\text{div}(\chi^u)]^T = \sum \langle u, v_i \rangle [D_i]^T$$

in $H^*_T X$.

Note that $[D_{i_1}] \cdots [D_{i_r}] = [V(\tau)]$ if v_{i_1}, \ldots, v_{i_r} span a cone τ, and the product is 0 otherwise; the same is true for equivariant products.

2

Let X_1, \ldots, X_d be variables, one for each ray.

In $\mathbb{Z}[X] = \mathbb{Z}[X_1, \ldots, X_d]$, we have two ideals:

(i) I is generated by all monomials $X_{i_1} \cdots X_{i_r}$ such that v_{i_1}, \ldots, v_{i_r} do not span a cone of Σ. It suffices to take minimal such sets, so that any proper subset does span a cone.

The ring $\mathbb{Z}[X]/I$ is called the **Stanley-Reisner ring**: it appears in combinatorics.

(ii) J is generated by all elements $\sum_{i=1}^d \langle u, v_i \rangle X_i$, for $u \in M$. It suffices to let u run through a basis for M.

We have

$$(\ast) \quad \mathbb{Z}[X]/(I + J) \to H^*_X,$$

where the map is given by $X_i \mapsto [D_i]$. We have seen that I and J map to 0, so this is well-defined. It is surjective since $[V(\tau)] = [D_{i_1}] \cdots [D_{i_r}]$ if v_{i_1}, \ldots, v_{i_r} span τ. In fact, (\ast) is an isomorphism, as was proved by Jurkiewicz in the projective case, and by Danilov in general [Jur80, Dan78]. We will recover this result.

In $\Lambda[X] = \Lambda[X_1, \ldots, X_d]$, we have two ideals:

(i) I', with the same generators as I, i.e., monomials $X_{i_1} \cdots X_{i_r}$ such that v_{i_1}, \ldots, v_{i_r} do not span a cone in Σ.

(ii) J', with generators $\sum_{i=1}^d \langle u, v_i \rangle X_i - u$, for all $u \in M$ (or a basis of M).

We have

$$(\ast_T) \quad \Lambda[X]/(I' + J') \to H^*_T X,$$

by $X_i \mapsto [D_i]^T$. Again, we have seen that I' and J' map to 0. Similarly, this map is surjective. We will prove that (\ast_T) is also an isomorphism.

All this will follow from the construction of a complex often used in toric geometry (see for example Danilov, Lunts, etc.). (refs) For each cone τ, let v_{i_1}, \ldots, v_{i_k} be its generators, and set

$$\mathbb{Z}[\tau] := \mathbb{Z}[X_{i_1}, \ldots, X_{i_k}] = \mathbb{Z}[X]/(X_j | v_j \notin \tau).$$

Consider this as a \mathbb{Z}-module, and also as a $\mathbb{Z}[X]/I$-module. Set

$$C_k = \bigoplus_{\dim \tau = k} \mathbb{Z}[\tau].$$
For a face γ of τ, there is a canonical surjection $\mathbb{Z}[\tau] \to \mathbb{Z}[\gamma]$. Define $d : C_k \to C_{k-1}$ by taking $\mathbb{Z}[\tau]$ to the sum of those $\mathbb{Z}[\gamma]$ for facets γ of τ: Let v_{i_1}, \ldots, v_{i_k} be the generators of τ, with $i_1 < \cdots < i_k$, and let γ be generated by $v_{i_1}, \ldots, \hat{v}_{i_p}, \ldots, v_{i_k}$; then d_k is $(-1)^p$ times the canonical surjection $\mathbb{Z}[\tau] \to \mathbb{Z}[\gamma]$.

Lemma 2.1. This gives an exact sequence of $\mathbb{Z}[X]/I$-modules

$$0 \to \mathbb{Z}[X]/I \to C_n \xrightarrow{d_n} C_{n-1} \to \cdots \xrightarrow{d_1} C_0 \to 0.$$

Proof. The map d_k is a homomorphism of graded modules over $\mathbb{Z}[X]$, decomposing into a direct sum with one piece for each monomial $X_1^{m_1} \cdots X_d^{m_d}$. All components vanish unless the set of v_i with $m_i > 0$ span a cone λ in Σ. Each C_k contributes a copy of \mathbb{Z} for each τ that contains λ. The resulting complex is the one computing the reduced homology of a simplicial sphere N/N_Λ. □

Lemma 2.2. The canonical homomorphism

$$\mathbb{Z}[X]/I \to \Lambda[X]/(I' + J')$$

is an isomorphism.

Proof. Let u_1, \ldots, u_n be a basis for M. The elements $Z(u_j) = \sum_i (u_j, v_i) X_i - u_j$ form a regular sequence in $\Lambda[X]$ (since $\Lambda = \mathbb{Z}[u_1, \ldots, u_n]$), with quotient $\Lambda[X]/J'$.

In particular, $\Lambda \to \Lambda[X] \to \mathbb{Z}[X]/I$ takes $u \in M$ to $\sum (u, v_i) X_i$. Therefore the exact sequence (1) is an exact sequence of Λ-modules.

Proposition 2.3. $\mathbb{Z}[X]/I \cong \Lambda[X]/(I' + J')$ is free over Λ of rank N, the number of n-dimensional cones.

Proof. For a cone τ spanned by v_{i_1}, \ldots, v_{i_k}, choose $v(k+1), \ldots, v(n)$ to complete a basis of N. Let u_1, \ldots, u_n be the dual basis of M. Then $Z[\tau] \cong \Lambda/(u_{k+1}, \ldots, u_n)$ as a Λ-module, so the projective dimension of C_k is $\text{pd}_\Lambda C_k = n - k$. It follows by induction that $\text{pd}_\Lambda (\ker(C_k \to C_{k-1})) \leq n - k$. Therefore $\text{pd}_\Lambda \mathbb{Z}[X]/I = 0$. By the (easier) graded version of the Quillen-Suslin theorem, $\mathbb{Z}[X]/I$ is free. Now consider the beginning of (1):

$$0 \to \mathbb{Z}[X]/I \to C_n \to C_{n-1}.$$

C_n is free over Λ on N generators, since $\Lambda \cong \mathbb{Z}[\sigma]$ for n-dimensional cones σ. C_{n-1} is a torsion Λ-module. Thus $\mathbb{Z}[X]/I$ is free on N generators. □

Exercise 2.4. The Hilbert series

$$\sum_{m=0}^\infty \text{rk}_\mathbb{Z}(\mathbb{Z}[X]/I)_m t^m$$

is equal to

$$\sum_{i=0}^n \frac{(-1)^{n-i} a_i}{(1-t)^i}.$$
(We will not need this, however.)

Consider the diagram

\[0 \longrightarrow \mathbb{Z}[X]/I \longrightarrow C_n \xrightarrow{d_n} C_{n-1} \]

where \(\varphi \) takes \(\mathbb{Z}[\sigma] \) to \(H^*_T(p_\sigma) = \Lambda \) as follows: if \(v_1, \ldots, v_n \) span \(\sigma \), let \(u_1, \ldots, u_n \) be the dual basis in \(M \), and let \(\varphi \) be the isomorphism \(\mathbb{Z}[\sigma] = \mathbb{Z}[X_1, \ldots, X_n] \to \Lambda \) given by \(X_i \mapsto u_i \). The left vertical map is the composition \(\mathbb{Z}[X]/I \to \Lambda[X]/(I' + J') \to H^*_T X \), taking \(X_i \) to \(D_i \).

Exercise 2.5. Show that this diagram commutes. (The restriction to \(H^*_T(U_\sigma) \) factors through \(H^*_T(U_\sigma) \), and \(U_\sigma \cong \mathbb{C}^n \), with \(T \) acting by weights \(u_1, \ldots, u_n \). If \(v_i \in \sigma \), with \(i = i_j \), then \([D_i]^T \) restricts to \(u_j \)—indeed, \(D_i \) restricts to the \(j \)th coordinate hyperplane in \(U_\sigma = \mathbb{C}^n \), so its equivariant class restricts to \(c_1^T(L_{u_j}) = u_j \). If \(v_i \notin \sigma \), then \([D_i]^T \to 0 \).)

We have seen that the left vertical map is surjective; it follows that it is an isomorphism, proving \((*)_T \). Tensoring over \(\Lambda \) with \(\mathbb{Z} \), and noting \(\Lambda/M\Lambda = \mathbb{Z} \), we have

\[(\Lambda[X]/(I' + J')) \otimes_\mathbb{Z} \mathbb{Z} = \mathbb{Z}[X]/(I + J), \]

and \(H^*_T X \otimes_\Lambda \mathbb{Z} \cong H^* X \), so \((*) \) follows.

Also, we have the following descriptions:

\[H^*_T X = \mathbb{Z}[X]/I = \ker(d_n) = \{(f_\sigma), f_\sigma \in \mathbb{Z}[\sigma] \cong \Lambda \mid f_\sigma|_\tau = f_{\sigma'}|_\tau \text{ if } \tau \text{ is a facet of } \sigma \text{ and } \sigma'\} \]

where “piecewise polynomial” means continuous functions on \(N_\mathbb{R} \) defined by a polynomial in \(\Lambda \) on each maximal cone \(\sigma \) [Bri97]. This is the GKM theorem for toric varieties (with \(\mathbb{Z} \) coefficients).

Example 2.6. \(H^*_T X = \{ \text{piecewise linear functions} \} = \text{Div}_T M \).

Remark 2.7. If the fan \(\Sigma \) is only simplicial (so the generators of each cone form part of basis for \(N_\mathbb{R} \), but not necessarily for \(N \)), then all the statements here remain true if \(\mathbb{Z} \) is replaced by \(\mathbb{Q} \). (There may also be some multiplicities in products: \(V(\sigma) \cdot V(\tau) = m \cdot V(\gamma) \).)

The ring of piecewise polynomial functions on the support \(|\Sigma| \) can be defined for any fan \(\Sigma \), so it is natural to ask what geometric significance this has, for an arbitrary toric variety \(X = X(\Sigma) \). The answer was given by S. Payne: It is the equivariant operational Chow cohomology, \(A^*_T X \).

There are also descriptions of (ordinary and equivariant) intersection homology groups for singular toric varieties.
§13 TORIC VARIETIES

REFERENCES