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1. Chevalley’s formula

In the equivariant setting, Chevalley’s formula computes the product of a
divisor class y(sα), for α a simple root, and a general class y(v), for v ∈W .
This will involve classes y(w), for w = v, and for v ≤ w with ℓ(w) = ℓ(v)+1.
In the latter case, such w can be written uniquely in the form w = v sβ, for
some positive root β, with γ = v−1(β) also positive, and w = sγ v. (It is a
general fact — see Section 2 below for more — that v(R−)∩R+ consists of
ℓ(v) roots, and w(R−)∩R+ has one more root, which is γ.) Let nβα be the
coefficient of α when β is written as a sum of positive roots. Set

cα(v,w) = nβα =
(α,α)

(β, β)
.

We have given an explicit formula for y(sα)|v in §14.4. We need a basic fact:

Lemma 1.1. y(v)|v =
∏

β∈v(R−)∩R+

β.

Proof. Since p(v) is a nonsingular point of Y (v), we know (by §3, Proposition
5.1) that y(v)|v is the equivariant top Chern class of the normal space Np(v)

to Y (v) in X at p(v), i.e., cT2ℓ(v)(Np(v)). The tangent space to Y (v) at p(v)

has weights β ∈ v(R−)∩R−, and the tangent space to X at p(v) has weights
β ∈ v(R−); therefore Np(v) has the complementary weights, v(R−)∩R+. �

Proposition 1.2. y(sα) · y(v) =
∑

w=v sβ

cα(v,w) y(w) + (y(sα)|v) y(v).

Proof. We know the terms appearing on the RHS consist of y(w) with v ≤ w
and ℓ(w) ≤ ℓ(v)+1, which are just the terms displayed. Restricting to p(v),
we get

y(sα)|v y(v)|v = 0 + C y(v)|v ,

where C is the coefficient of y(v) in y(sα) · y(v). Since y(v)|v is not zero in
Λ, the coefficient C must be equal to y(sα)|v .
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The other coefficients are “classical”, but it is easier to compute them
equivariantly (see [Ful-Woo04]). By Poincaré duality, the coefficient of y(w)
is

ρ∗(y(sα) · y(v) · x(w))

in Λ.
Now Y (v) and X(w) meet transversally in the T -invariant curve E that

contains the fixed points p(v) and p(w). This follows readily from the fact
the Schubert varieties are nonsingular in codimension one. (This is part of
the general fact that Schubert varieties are normal, but an elementary proof
is given in [Che94].) Then, since Tp(v)X(v) ⊂ Tp(v)X(w) is codimension 1,
and it meets Tp(v)Y (v) transversally, it follows that Tp(v)X(w) ∩ Tp(v)Y (v)
has dimension 1, and similarly for Tp(w)X(w) ∩ Tp(w)Y (v).

It is now easy to find the weight λ of T acting on Tp(w)E, with the weight
−λ acting on Tp(v)E. This is the unique weight that occurs in Tp(w)X(w) (so

λ ∈ w(R−) ∩R+), such that −λ occurs in Tp(v)Y (v) (so −λ ∈ v(R−) ∩R−,

i.e., λ ∈ v(R+) ∩ R+). This is the weight γ = v−1β described earlier, so
w = sγ v = v sβ.

By the transversality of the intersection, we have

y(v) · x(w) = [Y (v)]T · [X(w)]T = [E]T .

Let ι : E →֒ X be the inclusion, and let η be the projection from E to a
point. Then

ρ∗(y(sα) · y(v) · x(w)) = ρ∗(y(sα) · ι∗(1))

= ρ∗(ι∗(ι
∗(y(sα))))

= η∗(ι
∗(y(sα))).

Now we use the localization formula to compute this classical push-forward.
Note that the restriction of ι∗(y(sα)) to p(w) is y(sα)|w, and its restriction
to p(v) is y(sα)|v , so

ρ∗(y(sα) · y(v) · x(w)) =
y(sα)|w − y(sα)|v

γ
.

We know that y(sα)|w = ̟α − w(̟α), and y(sα)|v = ̟α − v(̟α), where
̟α is the fundamental weight, so

y(sα)|w − y(sα)|v = v(̟α) − w(̟α)

= v(̟α) − sγv(̟α)

= 2
(v(̟α), γ)

(γ, γ)
γ.

Hence the required coefficient is 2(v(̟α), γ)/(γ, γ) = 2(̟α, β)/(β, β), since
v(β) = γ and ( , ) is W -invariant.

The fundamental weight̟α is characterized by the property that 2(̟α, α) =
(α,α) and 2(̟α, α

′) = 0 for any simple root α′ 6= α; thus sα′(̟α) =
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̟α − δαα′α′. Hence 2(̟α, β) = 2nβα(̟α, α) = nβα(α,α), giving the co-
efficient

nβα
(α,α)

(β, β)
= cα(v,w),

as required. �

Exercise 1.3. Prove the formula

x(w0 sα) · x(w) =
∑

cα(v,w)x(v) + (x(w0 sα)|w)x(w),

with the sum over v ≤ w with ℓ(v) = ℓ(w) + 1. (Solution: With the
notation of the preceding proof, the coefficient of x(v) is η∗ι

∗(x(w0 sα)) =
(x(w0 sα)|w − x(w0 sα)|v)/γ. Now use Lemma 4.3(2) from Lecture 14 to get
x(w0 sα)|w − x(w0 sα)|v = v(̟α) − w(̟α); the proof concludes as before.)

Exercise 1.4 (cf. [Ful-Woo04]). Prove Chevalley’s formula on G/P , for P =
PJ : For α ∈ R+

r J , and v ∈W a minimal representative for [v] ∈W/WP ,

y[sα] · y[v] =
∑

cα(v,w)y[w] + (y(sα)|v)y[v],

the sum over w ≥ v with ℓ(w) = ℓ(v) + 1 and [w] 6= [v]. (Solution: Apply
(πJ)∗. Note that for w = v sβ, v−1(R−) ∩ R+

J = ∅, and w−1(R−) ∩ R+ =

v−1(R−) ∪ {v−1(β)}, so w−1(R−) ∩ R+
J = ∅. Therefore w is a minimal

representative for [w].)

Remark 1.5. The fact that y(sα)|w−y(sα)|v = v(̟α)−w(̟α) is equivalent
to the formula cT1 (L(−̟α)) = y(sα) + c, for some c ∈ Λ1. This formula can
be proved by restricting both sides to the curves E′ = X(sα′), for α′ ∈ R+,
which join p(id) to p(sα′), and then pushing forward to a point. The right
side gives δαα′ ; the left gives (−̟α+sα′(̟α))/α′ = δαα′ . (See [Ful-Woo04].)

2

Proposition 2.1. The functions ψv : W → Λ (or W → Q) given by
ψv(w) = y(v)|w satisfy and are uniquely determined by the following prop-
erties:

(1) ψv(w) = 0 unless v ≤ w.

(2) ψv(v) =
∏

β∈v(R−)∩R+

β.

(3) (Aαψv) =

{

ψv sα if ℓ(v sα) < ℓ(v);
0 if ℓ(v sα) > ℓ(v).

Proof. Property (1) holds since y(v)|w = 0 for p(w) 6∈ Y (v). We have seen
(2), and (3) follows from the fact that Dαy(v) is y(v sα) or 0 according as
ℓ(v sα) < ℓ(v) or ℓ(v sα) > ℓ(v).

To see that these properties characterize ψv, note that the function ψw0

is determined by (1) and (2). Any other w ∈ W can be written as w =
w0 sα1

· · · sαℓ
, with ℓ(w) = ℓ(w0) − ℓ, so ψw is determined from ψw0

and
Property (3). �
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Remark 2.2. These functions ψv are denoted ξv in the literature stemming
from [Kos-Kum86]; cf. [Bil97]. Note that (2) is only needed for v = w0.

Billey has given an explicit formula for these values (ψv)(w). To express
it, we need a basic fact about roots. If α1 · · ·αℓ is a reduced word for w ∈W ,
then the ℓ(w) roots in w(R−) ∩R+ get numbered:

w(R−) ∩R+ = {β1, . . . , βℓ},

where β1 = α1, and βi = sα1
sα2

· · · sαi−1
(αi). (See [Bou81, VI §1.6], or

[Hum90, p. 14].)

Proposition 2.3 ([Bil97]). For any v,w ∈ W , with reduced word chosen
for w, we have

y(v)|w =
∑

βj1βj2 · · · βjk
,(1)

the sum over all subsets {j1 < · · · < jk} of {1, . . . , ℓ} such that αj1 · · ·αjk
is

a reduced word for v.

Billey proves that the right side satisfies the conditions (1), (2), and (3)
of Proposition 2.1, with (1) and (2) being clear. Property (3) is also clear
if αℓ = α, so the essential point is to prove that the right side of the for-
mula is independent of the choice of a reduced decomposition of w. For
this, she uses the nil-Coxeter algebra, which is generated over Λ by noncom-
muting variables uα, one for each simple root, with relations u2

α = 0, and
(uαuβ)m = (uβuα)m if (sαsβ)m = (sβsα)m in W . This is free over Λ, with
basis {uw}w∈W , where uw = uα1

· · · uαℓ
for any reduced word α1 · · ·αℓ for

w. Following ideas of Yang-Baxter and Fomin-Kirillov, set

Rw = (1 + β1uα1
)(1 + β2uα2

) · · · (1 + βℓuαℓ
),

with β1, . . . , βℓ defined as above. Billey [Bil97] and Stembridge [Ste93] show
that Rw is independent of the choice of reduced word. The coefficient of uv

in Rw is exactly the RHS of (1). Note that if ℓ(w sα) < ℓ(w), then Rw =
Rw sα · (1−w(α)uα), and if ℓ(w sα) > ℓ(w), then Rw sα = Rw · (1+w(α)uα).
Property (3) is equivalent to these identities.

Remark 2.4. Willems [Wil04] proves this formula by using the Bott tower,
which is an iteration of the construction of the correspondences we used to
calculate the operators Dv .

Remark 2.5. This gives another expression for y(sα)|w, as the sum of those
βi for which αi = α. It is not immediately obvious that this is equal to the
formula y(sα)|w = ̟α − w(̟α) we found earlier. The latter formula may
be simpler to use. For example, with the usual numberings in type An, for
α = α1 the first simple root, and w ∈W = Sn+1, we have

̟α − w(̟α) = α1 + · · · + αw(1)−1,

which does not require finding a reduced expression for w.
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Exercise 2.6. Check that the two formulas agree; i.e., for α1 · · ·αℓ a reduced
word for w,

̟α − w(̟α) =
∑

αi=α

sα1
· · · sαi−1

(α).

(Hint/solution: use induction on ℓ(w). It is obvious for w = id. Suppose
equality is known for w, and ℓ(wsβ) = ℓ(w)+1. If β 6= α, then the RHS’s are
clearly equal for w and wsβ, and since w(̟α) = wsβ(̟α), so are the LHS’s.
If β = α, then the difference of the RHS’s is w(α), while the difference of
the LHS’s is w(̟α) − wsα(̟α) = w(α).)

Remark 2.7. Kostant and Kumar construct the functions ξv in F (W,Q) as
duals to elements xv in the twisted group algebra Q[W ] (with multiplication
given by qw · q′w′ = qw(q′)ww′); for a reduced decomposition sα1

· · · sαℓ
for

v, xv = xsα1
· · · xsαℓ

, where

xsα =
1

α
sα −

1

α
.

These are independent of choice. Such calculations can also be used to show
that Billey’s formula is independent of choice (see [Kum02, §11.1.10]).

Remark 2.8. Billey’s formula shows that y(v)|w is nonzero if and only if

v ≤ w, i.e., p(w) ∈ Y (v). In general, however, it is not true that [Y ]T |p 6= 0
for an isolated T -fixed point p in a singular T -variety Y in a smooth T -
variety X, as the following example shows.

Example 2.9 (Cf. [Bri00]). Let T = (C∗)2 act on X = P4 by

(z1, z2) · [x1 : · · · : x5] = [x1 : z1 x2 : z−1
1 x3 : z2 x4 : z−1

2 x5].

Let Y ⊂ X be the hypersurface defined by the equation X2X3−X4X5 = 0,
and let p = [1 : 0 : · · · : 0] be the singular point of Y . Then [Y ]T |p = 0.
Indeed, Y = Zeroes(s), where s is a T -invariant section of O(2). If ζ =

cT1 (O(1)), then [Y ]T = 2ζ, and

H∗
T P

4 = Λ[ζ]/(ζ(ζ + t1)(ζ − t1)(ζ + t2)(ζ − t2)),

so ζ 7→ (0,−t1, t1,−t2, t2) in H∗
T (P4)T .

Remark 2.10. There is a long history of investigating when a T -fixed point
p(v) is a singular point on a Schubert variety Y (w), for w ≤ v (or on X(w),
v ≤ w). It is a necessary condition that the restriction y(w)|v be a product of
ℓ(w) roots (the weights of T on the normal space to Y (w) at p(v)). Formulas
for these y(w)|v can be useful for this study; see [Bri98] and [Bil-Lak00].

3. Line bundles

Recall the homomorphism b : Λ → H∗
TX of graded rings, for X = G/B,

determined by taking a character λ to cT1 (L(λ)). We want to compute
Dαb(P ) for P ∈ Λ.



6 §15 CHEVALLEY’S FORMULA, LINE BUNDLES, DUALITY

Recall the classical divided difference operators on Λ. For a simple root
α, ∂α : Λ → Λ is defined by

∂α(P ) =
sα(P ) − P

α
,

where sα(P ) is defined by the action of W on Λ = Sym•M coming from the
action on M described in Section 14.1.

The following proposition, in terms of operators and functions, appears
in [Ara86]:

Proposition 3.1. For all simple roots α, Dαb(P ) = b(∂αP ).

Since b is an injection, the classical fact (see [Ber-Gel-Gel73], [Dem74])
that the ∂α satisfy the usual relations follows:

• ∂α1
◦ · · · ◦ ∂αℓ

= 0 if ℓ(sα1
· · · sαℓ

) < ℓ;
• ∂v = ∂α1

◦ · · · ◦ ∂αℓ
is independent of the choice of reduced word

α1 · · ·αℓ for v; and
• ∂u ◦ ∂v = ∂uv if ℓ(uv) = ℓ(u) + ℓ(v), and is 0 otherwise.

Proof. To show that the left square in the diagram

Λ
b
- H∗

TX
⊂- F (W,Q)

Λ

∂α
? b

- H∗
TX

Dα
?

⊂- F (W,Q)

Aα
?

commutes, it suffices to show that the outer rectangle commutes (see Propo-
sition 14.4.1). Let b′ : Λ → F (W,Q) be the composition of the horizontal
maps.

Consider first the case P = λ ∈ M . We saw in section ? that the
corresponding function b′(λ) ∈ F (W,Q) takes w to w(λ), and Aα takes this
to the constant function

w 7→
wsα(λ) − w(λ)

w(α)

=
w(sα(λ) − λ)

w(α)

= −
2(λ, α)

(α,α)

w(α)

w(α)

= −
2(λ, α)

(α,α)
.

Now ∂α(λ) = sα(λ)−λ
α

= −2(λ,α)
(α,α) in Z = Λ0, and b′ preserves integers, so the

claim is true in this case.
Since all maps are additive, it suffices by induction on the degree of P to

prove that the validity of the formula for P1 = λ ∈M and P2 implies it for
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P1 · P2. Now

∂α(P1P2) = ∂α(P1)P2 + sα(P1) ∂α(P2),

which follows from the formula sα(P1P2) − P1P2 = (sα(P1) − P1)P2 +
sα(P1)(sα(P2) − P2); and

Aα(ψ1ψ2) = Aα(ψ1)ψ2 + sα(ψ1)Aα(ψ2),

which follows from the formula (ψ1ψ2)(wsα) − (ψ1ψ2)(w) = (ψ1(wsα) −
ψ1(w))ψ2(w) + ψ1(wsα)(ψ2(wsα) − ψ2(w)). (Here W acts on F (W,Q) by
(vψ)(w) = ψ(wv).)

The conclusion follows from the two displayed formulas, once we verify
that b′ respects the action of W . Since b′ is a ring homomorphism, it suffices
to verify this for λ ∈ M . Then (v · b′(λ))(w) = b′(λ)(wv) = (wv)(λ) =
w(v(λ)) = b′(v(λ))(w), so v · b′(λ) = b′(v(λ)) as required. �

Remark 3.2. It follows that the operators Dα also satisfy a “Leibniz-type”
formula: for x1, x2 ∈ H∗

TX,

Dα(x1x2) = Dα(x1)x2 + sα(x1)Dα(x2),

where the action ofW onH∗
TX is the one described in the following corollary.

Corollary 3.3. There is a unique left action of W on H∗
TX, preserving its

grading and Λ-algebra structure, and satisfying

sα · x = Dα(x · y(sα)) −Dα(x)y(sα)

for all x ∈ H∗
TX and simple roots α. This action satisfies and is determined

by the formula

(v · x)|w = x|wv

for all v,w ∈W and x ∈ H∗
TX.

Proof. This is the induced action of W on H∗
TX as a subalgebra of F (W,Λ).

If x′ is the image of x in F (W,Λ), and y′ is the image of y(sα), then

Aα(x′y′) = Aα(x′)y′ + sα(x′)Aα(y′).

Since Aα(y′) = Dα(y(sα)) = 1, this reads

sα(x′) = Aα(x′y′) −Aα(x′)y′.

This implies the first displayed formula of the corollary, and proves that
H∗

TX →֒ F (W,Λ) id preserved by the action of W . �

4. Uniqueness of structure constants

Proposition 4.1. The coefficients pw
uv in the formula y(u)·y(v) =

∑

pw
uvy(w)

satisfy and are uniquely determined by three properties:

(1) pu
uu =

∏

β∈u(R−)∩R+

β;
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(2) y(sα)|u − y(sα)|v) p
u
uv =

∑

v+

cα(v, v+) pu
u v+ ; and

(3) (y(sα)|w − y(sα)|u)pw
uv =

∑

u+

cα(u, u+) pw
u+ v −

∑

w−

cα(w−, w) pw−

uv ,

the sums over u+ with ℓ(u+) = ℓ(u) + 1 and w− with ℓ(w−) = ℓ(w) − 1.

Proof. As in the type A case, (3) follows from associativity of the product
y(sα) ·y(u) ·y(v), and (2) follows from (3), commutativity, and the fact that
pw

uv = 0 if ℓ(u) > ℓ(w) (in fact, unless u ≤ w and v ≤ w).
The proof of the uniqueness statement is also the same as in the type A

case, using Corollary 14.4.6. �

5. Duality

Consider first the variety G/B−. This has Schubert varieties X(w) =

B− p(w), where p(w) = nwB
−/B−, and Y (w) = B p(w), with classes

x(w) ∈ H2N−2ℓ(w)(G/B−) and y(w) ∈ H2ℓ(w)(G/B−), for w ∈ W . For
clarity, in this section we will write y(w)|p(v), etc., in place of y(w)|v . The

entire discussion for G/B goes through for G/B−, except that each root
gets replaced by its negative. For example,

y(w)|p(w) =
∏

β∈w(R−)∩R+

(−β) = (−1)ℓ(w)y(w)|p(w).

Let τ : Λ → Λ be the graded involution that is multiplication by (−1)r

on Symr M ; τ is induced by the involution of M that takes each root to its
negative.

Proposition 5.1. We have

(a) y(w)|p(v) = τ(y(w)|p(v));

(b) y(u) · y(v) =
∑

τ(pw
uv) y(w).

Proof. Part (a), in this and the following propositions, follows from the
functoriality of pullbacks. Part (b) follows from what we have just seen, or
by applying Proposition 4.1. �

There is a canonical G-equivariant isomorphism Φ : G/B → G/B−, de-
fined by

Φ(gB/B) = gn0B
−/B−,

where n0 ∈ N(T ) is any representative of w0. (This is the isomorphism
obtained by identifying each of G/B and G/B− with the space of Borel
subgroups of G, since gBg−1 = gn0B

−(gn0)
−1.) Since Φ(p(ww0)) = e(w),

we see that Φ maps X(ww0) to Y (w), and Y (ww0) to X(w). Thus Φ∗y(w) =
x(ww0), and Φ∗x(w) = y(ww0), so we have the following:

Proposition 5.2. (a) x(w)|p(v) = y(ww0)|p(vw0) = τ(y(ww0)|p(vw0));
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(b) x(uw0) · x(vw0) =
∑

τ(pw
uv)x(ww0).

Consider next the mapping Ψ : G/B → G/B given by left multiplication
by a representative n0 for w0; i.e., Ψ(gB/B) = n0gB/B. This map Ψ is
equivariant with respect to the homomorphism ψ : G→ G, ψ(g) = n0gn

−1
0 .

Since Ψ maps p(w) to p(w0w), p(w0w) to p(w), and sends X(w0w) to Y (w),
we have Ψ∗y(w) = x(w0w) and Ψ∗(x(w)) = y(w0w)). Note that ψ∗ : Λ → Λ
is induced by the map from M to M that takes a weight λ to w0(λ); let

τ0 = ψ∗ : Λ → Λ

be this involution. Note that τ0 also takes a product of positive weights to
a product of negative weights. Applying the homomorphism Ψ∗, we find

Proposition 5.3. (a) x(w0w)|p(w0v) = τ0(y(w)|p(v));

(b) x(w0u) · x(w0v) =
∑

τ0(p
w
uv)x(w0w).

Finally, Φ ◦ Ψ : G/B → G/B− is equivariant with respect to ψ, taking
Y (w0ww0) to X(ww0) to Y (w), so we have

Proposition 5.4. (a) y(w0ww0)|p(w0vw0) = τ0τ(y(w)|p(v));

(b) y(w0uw0) · y(w0vw0) =
∑

τ0τ(p
w
uv) y(w0ww0).

Note that τ0τ = ττ0 preserves products of positive roots.
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Math. 85 (1986), no. 1, 39–52.

[Ber-Gel-Gel73] I. Bernstein, I. Gelfand, and S. Gelfand, “Schubert cells and cohomology
of the spaces G/P ,” Russian Math. Surveys 28 (1973), 1–26.

[Bil97] S. Billey, “Kostant polynomials and the cohomology ring for G/B,” Duke Math.
J. 96 (1999), no. 1, 205–224.

[Bil-Lak00] S. Billey and V. Lakshmibai, Singular loci of Schubert varieties, Birkhäuser,
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[Bri00] M. Brion, “Poincaré duality and equivariant (co)homology,” Michigan Math. J.
48 (2000), 77–92.
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