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For a Lie group G, we are looking for a right principal G-bundle EG →
BG, with EG contractible. Such a bundle is universal in the topological
setting: if E → B is any principal G-bundle, then there is a map B → BG,
unique up to homotopy, such that E is isomorphic to the pullback of EG.
See [Hus75] for the existence of these universal principal bundles; we will
not need the general story here.

We will also find principal G-bundles EGm → BGm, with πi(EGm) = 0
(and H i(EGm) = 0) for 0 < i < k(m), where k(m) goes to infinity as m
grows. For such bundles, we have

H i
GX := H i(EG×G X) = H i(EGm ×

G X)

for i < k(m). To see this, we need the following proposition:

Proposition 1.1. If E → B and E′ → B′ are two principal right G-
bundles, and H i(E) = H i(E′) = 0 for 0 < i < k, then there is a canonical
isomorphism

H i(E ×G X) ∼= H i(E′ ×G X)

for i < k.

Proof. Let G act diagonally on E × E′, so there is a diagram

E ×X � E × E′ ×X - E′ ×X

E ×G X

?

� (E × E′)×G X

?

- E′ ×G X.

?

(1)

Here the vertical maps are G-bundles, the horizontal maps to the left are
E-bundles, and the horizontal maps to the right are E′-bundles (all locally
trivial). We claim that the maps

H i(E ×G X)→ H i((E ×E′)×G X)← H i(E′ ×G X)

are isomorphisms. This is a general fact about fiber bundles; in fact, it
follows from the “Leray-Hirsch” lemma below. �
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Lemma 1.2. Let E
π
−→ B be a locally trivial fiber bundle, with fiber F .

Let R be a commutative ring (with unit), and consider cohomology with
coefficients in R. For m ≥ 0 and 0 ≤ i ≤ m, suppose there are a finite
number of elements xij ∈ H i(E) whose retrictions to H i(F ) form a basis
over R. Then every element in Hm(E) can be uniquely expressed in the
form

∑

ij cijxij with cij ∈ Hm−i(B). (Similarly, each element can be written

uniquely as
∑

ij xijc
′
ij .)

Corollary 1.3. If H iF = 0 for 0 < i ≤ m, then H iB → H iE is an
isomorphism for i ≤ m.

Proposition 1.1 is an immediate consequence.

Remark 1.4. One might expect to find Lemma 1.2 in standard topology
books or papers that cover spectral sequences, but all references we know
include extra hypotheses (e.g., that R is a Dedekind ring, B is simply con-
nected, or other conditions on the spaces). The statement of the Leray-
Hirsch theorem given in [Hat02, Thm 4D.1] is very close, and the proof
given there adapts easily to prove Lemma 1.2. One can also adapt the
discussion in [Spa66, §5.7].

Exercise 1.5. Check compatibility of the isomorphism in Proposition 1.1
with a third principal G-bundle E′′ → B′′.

Example 1.6. As in Lecture 1, for G = C
∗, take EGm = C

m
r {0}, so

BGm = Pm−1. We have ΛC∗ = Z[t], with t = c1(O(−1)). We claimed that
t = cG

1 (L), where L is the equivariant line bundle C on a point, with action
g · z = gz.

To see this, recall cG
1 (L) the (ordinary) first Chern class of the line bun-

dle EGm ×
G L → BGm. Note that (z1, . . . , zm) × z 7→ [z1, . . . , zm] ×

(z1z, . . . , zmz) maps EGm × L to the trivial bundle C
m
Pm−1 , and its image

is the tautological subbundle O(−1) ⊂ C
m
Pm−1 . This maps passes to the

quotient by C
∗, since (z1g, . . . , zmg)× z and (z1, . . . , zm)× gz have the same

image, (z1gz, . . . , zmgz). Thus we get an isomorphism

EGm ×
G L

∼
- O(−1)

BGm

? ∼
- P

m−1.
?

For G = (C∗)n, take EGm = (Cm r {0})m, so BGm = (Pm−1)n. Then
ΛG = Z[t1, . . . , tn], where ti = c1(p

∗
iO(−1)). Note that p∗iO(−1) is isomor-

phic to the line bundle Lχi
, where χi is the character χ(z1, . . . , zn) = zi.
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For G = GLnC, take EGm = Mo
m,n, the set of m× n matrices of rank n

(for m ≥ n), with G acting on the right by matrix multiplication.
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Proposition 2.1. πi(M
o
m,n) = 0 for 0 < i ≤ 2(m− n).

This follows from some general facts.

Lemma 2.2. If Zr ⊂Mm,n is the set of matrices of rank less than or equal
to r, then Zr is an irreducible subvariety of codimension (m− r)(n− r).

Exercise 2.3. Prove this.

Lemma 2.4. If Z ⊂ C
N is a Zariski-closed set, of codimension d, then

πi(C
N

rZ) = 0 for 0 < i ≤ 2d−2. This is always sharp: π2d−1(C
N

rZ) 6= 0
if Z is nonempty.

In our case, Mo
m,n = Mm,n r Zn−1, and codim Zn−1 = m− n + 1, so the

proposition follows.

Remark 2.5. Again, we do not know a reference where this sharp bound
is proved. See Appendix A.

Note that BGm = Mo
m,n/G is isomorphic to Gr(n, Cm), by mapping a matrix

A to its image im(A) ⊂ C
m.

More intrinsically, for G = GL(V ), let EGm = Homo(V, Cm) be the space
of embeddings of V in C

m, with G acting on the right by (ϕ ·g)(v) = ϕ(g ·v).
Then BGm = Gr(n, Cm), by ϕ 7→ im(ϕ).

Let E ⊂ C
m
Gr(n,Cm) be the tautological subbundle of rank n. Then it

is a basic fact that H∗(Gr(n, V )) is generated by c1(E), . . . , cn(E), with
relations in degrees m − n + 1, . . . ,m. (We will prove this below; see also
[Mil-Sta74].) Therefore

Λ = ΛGL(V ) = ΛGLn
= Z[c1, . . . , cn].

(In topology, one sees this by computing the cohomology of Gr(n, C∞).)
We obtain an equivariant vector bundle on a point from the action of G

on V .

Lemma 2.6. The class ci is the ith equivariant Chern class of this bundle.

Proof. As before, we have an isomorphism

EGm ×
G V

∼
- E ⊂ - C

m
Gr

BGm

? ∼
- Gr(n, Cm),

?

where the map is given by ϕ× v 7→ ϕ(v) ∈ im(ϕ), noting that ϕ · g × v and
ϕ× gv both map to ϕ(gv). �

Remark 2.7. There is an irreducible representation Vλ of GL(V ) ∼= GLnC

for each partition λ = (λ1 ≥ · · · ≥ λn). (E.g., for λ = (k, 0, . . . , 0), the

corresponding representation is Vλ = Symk V ; for λ = (

k
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0), it
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is Vλ =
∧k V .) Thus there are classes cG

r (Vλ ∈ Z[c1, . . . , cn], for 1 ≤ r ≤
dimVλ.

The total Chern class can be expressed as

cG(Vλ) =
∏

T∈SSY T (λ)

(

1 +
∑

i∈T

ti

)

,

where the product is over all semistandard Young tableaux with shape λ, and
ci is identified with the ith elementary symmetric polynomial in t1, . . . , tn
(so ci is the Chern class cT

i (Vλ), for T = (C∗)n ⊂ G).1

In fact, cG
r (Vλ) can be written as a positive linear combination of Schur

polynomials sµ; these are given by

sµ =
∑

T∈SSY T (λ)

∏

i∈T

ti = det(cµ′

i
+j−i),

where µ′ is the partition conjugate to µ. The proof uses the Hard Lefschetz
Theorem [Ful-Laz83].

Lascoux gave formulas for cG
r (
∧2 V ) and cG

r (Sym2 V ) [Lascoux]. Beyond
this, however, few explicit general formulas for these polynomials are known.
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For any subgroup G ⊂ GLnC, we can use the same approximation spaces
EGm = Mo

m,n, so we have all we need for linear algebraic groups, as well as
for compact Lie groups such as U(n).

Remark 3.1. For G = PGLnC, on the other hand, H∗
G(pt) is only partly

understood. Recent work of Vezzosi and Vistoli has led to a presentation of
the ring H∗(BPGL3), as well as a description of the additive structure of
H∗(BPGLp), for p prime. See [Vis05] for these results, and a summary of
what else is known.

For G = (C∗)n, we have seen two choices for EGm: we can take

(Cm
r {0})n = {A ∈Mm,n |no column of A is 0},

or the smaller space Mo
m,n consisting of those matrices with independent

columns; the two choices give the same answer for H∗
GX. Note that using

EGm = Mo
m,n, we get

BGm = Mo
m,n/(C∗)n =

{
L ⊂ C

m of dimension n,with a decomposition
L = L1 ⊕ · · · ⊕ Ln

}

.

This space could be called the split Grassmannian, Grsplit(n, Cm). It comes
equipped with tautological line bundles L1, . . . , Ln, and ti = c1(Li).

1See [Ful97] or Appendix (to be written) for basic facts about Young tableaux and
Schur polynomials.
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For G = B = B+, the upper-triangular matrices in GLnC, we have

Mo
m,n/G = {L ⊂ C

m with a filtration L1 ⊂ L2 ⊂ · · · ⊂ Ln = L}

= Fl(1, 2, . . . , n; Cm),

by mapping a matrix A to (L1 ⊂ · · · ⊂ Ln), with Li the span of the first
i columns of A. There is a tautological sequence of bundles S1 ⊂ · · ·Sn ⊂
Cm

Fl, and the cohomology ring H∗(Fl(1, . . . , n; Cm) is generated by t1, . . . , tn,
where ti = c1(Si/Si−1). As in with the Grassmannian, this has relations in
degrees m − n + 1, . . . ,m, so ΛB = Z[t1, . . . , tn]. Thus H∗

B(pt) = H∗
T (pt).

(This is a general fact, but here we see it explicitly.)

Exercise 3.2. For ti = c1(Si/Si−1), show that ti = c1(Lχi
), where χi :

B → C
∗ is the character which picks out the ith coordinate on the diagonal

(extending χi from T to B).
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Equivariant cohomology H∗
GX is functorial in both X and G. Specifically,

let G act on X and G′ act on X ′, let ϕ : G→ G′ be a continuous homomor-
phism of Lie groups, and let f : X → X ′ be continuous and equivariant

with respect to ϕ; that is,

f(g · x) = ϕ(g) · f(x)

for x ∈ X, g ∈ G. Then there is a degree-preserving ring homomorphism

H∗
G′X ′ → H∗

GX,(2)

and this is functorial for compositions. In fact, one can find a continuous
map EG→ EG′, equivariant for the right actions of G and G′, so there is a
commutative diagram

EG - EG′

BG
?

- BG′.
?

These maps are well-defined up to homotopy (see [Hus75]). Thus we get an
induced map

EG×G X → EG′ ×G′

X ′,

and the map of (2) is the cohomology pullback for this.
More generally, suppose E → B is a right principal G-bundle and E′ → B′

is a right principal G′-bundle, such that πi(E) = πi(E
′) = 0 for 0 < i < k,

and suppose we have an equivariant map E → E′.

Claim . In this situation, the corresponding map

H i(E′ ×G′

X ′)→ H i(E ×G X)(3)

is the same as the map in (2), for i < k.
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This shows that one can use approximation spaces to see the functorial maps
in (2).

To prove the claim, form products to obtain a commutative diagram

E ×X � E × EG×X - EG×X

E′ ×X ′
?

� E × EG′ ×X ′
?

- EG′ ×X ′,
?

(4)

and then take quotients to get a commutative diagram

E ×G X � (E × EG)×G X - EG×G X

E′ ×G′

X ′

?

� (E′ × EG′)×G′

X ′

?

- EG′ ×G′

X ′.

?

(5)

(The principal bundle maps between these two diagrams look like the di-
agram (1).) As in Proposition 1.1, the cohomology maps induced by the
horizontal arrows in (5) are canonical isomorphisms, so the claim follows.

For the cases we need, we will construct explicit maps EGm → EG′
m on

approximation spaces.
Two important special cases are the following:

(i) Given G→ G′, an action of G′ on X ′ induces an action of G on X ′,
so we get a map H∗

G′X ′ → H∗
GX ′. (In particular, there is a map

ΛG′ → ΛG.)
In practice, it may help to change the group in either direction.

The smaller group G should have more fixed points, which may help
in calculation; the larger group G′ may reveal more structure.

(ii) The map X → pt gives H∗
GX the structure of a ΛG-algebra, via the

induced map ΛG = H∗
G(pt)→ H∗

GX.

Example 4.1. The inclusions (C∗)n ⊂ B+ ⊂ GLnC give rise to a sequence
ΛGLn

→ ΛB+ → Λ(C∗)n , i.e.,

Z[c1, . . . , cn]→ Z[t1, . . . , tn]→ Z[t1, . . . , tn],

where the first map sends ci to the ith elementary symmetric polynomial
ei(t1 . . . , tn), and the second map is the identity.

Exercise 4.2. If T = (C∗)n ⊂ B = B+, and B acts on X, then show that
H∗

BX → H∗
T X is an isomorphism. (In fact, ETm → EBm is a fiber bundle

with contractible fibers, and the same is true for ETm×
T X → EBm×

B X.)

Exercise 4.3. The inclusions of compact subgroups (S1)n ⊂ (C∗)n and
U(n) ⊂ GLnC give isomorphisms of equivariant cohomology rings.

Exercise 4.4. What is ΛSLnC?
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