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As a first example, we discuss the solution to Exercise (2.4.4). We claim
that

ΛSLnC = Z[c2, . . . , cn] = Z[c1, c2, . . . , cn]/(c1) = ΛGLnC/(c1).

To see this, note that

Mo
m,n/SLnC = {(L,ϕ) |L ⊂ C

m, and ϕ :
∧n L ∼= C},

so it is the complement of the zero section of a line bundle on Gr(n, Cm):

Mo
m,n/SLnC

∼
-

∧n S r {0}

Mo
m,n/GLnC

? ∼
- Gr(n, Cm),

?

where S ⊂ Cm
Gr is the tautological subbundle. The claim then follows from

the following topological lemma:

Lemma 1.1. Let E → X be a vector bundle of rank e, such that the map
a 7→ a · ce(E) is injective on H∗X. Then H∗(E r {0}) = H∗(X)/(ce(E)).

In fact, if multiplication by ce(E) is injective on H i+1−2eX, then H i(E r

{0}) = H iX/(ce(E) · H i−2eX). The proof is immediate from the Gysin
sequence of E.

Example 1.2. Let G = GL(V ). The GL(V )-equivariant cohomology ring
of P(V ) is

H∗
GL(V )P(V ) = Λ[ζ]/(ζn + c1ζ

n−1 + · · · + cn),
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where n = dim V , Λ = Z[c1, . . . , cn], ζ = cG
1 (O(1)), and O(1) is the dual of

the tautological subbundle O(−1) ⊂ VP(V ). To see this, use the approxima-
tions EGm = Homo(V, Cm), with diagrams

Homo(V, Cm) ×G
P(V )∼= P(S)

Homo(V, Cm)/G
?

∼=Gr(n, Cm).
?

Here S ⊂ Cm is the tautological subbundle on Gr(n, Cm), as before. The
isomorphism in the top row is given by (ϕ, ℓ) 7→ ϕ(ℓ) ⊂ im(ϕ); similarly,
there is an isomorphism

Homo(V, Cm) ×G OP(V )(−1) ∼= OP(S)(−1)

given by (ϕ, v) 7→ ϕ(v). Now the computation of H∗
GP(V ) is reduced to a

general fact about projective bundles: For any P(S) → Z, {1, ζ, . . . , ζn−1}
is a basis for H∗

P(S) over H∗Z (by the Leray-Hirsch lemma), with relation

ζn + c1(S)ζn−1 + · · · + cn(S) = 0,

since the left-hand side is cn(S ⊗ O(1)), and the inclusion O →֒ S ⊗ O(1)
implies this is zero. Finally, ci = ci(S) for large enough m.

Corollary 1.3. For G = B, or for G = (C∗)n,

H∗
GP(V ) = Λ[ζ]/(

∏n
i=1(ζ + ti)),

where Λ = Z[t1, . . . , tn].

2

Let T be a torus, so T is isomorphic to (C∗)n, but not by a given isomor-
phism. Let M = Homalg. gp.(T, C∗) be the group of characters (so M ∼= Zn),
which is naturally dual to N = Homalg. gp.(C

∗, T ), the group of 1-parameter
subgroups. For each χ ∈ M , there is an associated equivariant line bundle
Lχ on a point, so cT

1 (Lχ) ∈ H2
T (pt). We have Lχ1χ2

= Lχ1
⊗ Lχ2

, so this
map M → H2

T (pt) is a homomorphism; in fact, it is an isomorphism, as one
sees by choosing an isomorphism T ∼= (C∗)n. Therefore

Sym∗
Z M

∼
−→ H∗

T (pt) = ΛT ,

by a canonical isomorphism.
This isomorphism is natural, in following sense. A homomorphism ϕ :

T → T ′ corresponds to a homomorphism M ′ → M (and dually, to N → N ′).
Since Lχ′ pulls back to Lχ, where χ = ϕ∗χ′, the diagram

Sym∗ M ′ - Sym∗ M

ΛT ′

?

- ΛT

?

commutes.
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Example 2.1. Let T = (C∗)n/(C∗), Λ = Sym∗ M , for M = {(a1, . . . , an) ∈
Z

n |
∑

ai = 0}. So

Λ = Z[t1 − t2, . . . , tn−1 − tn] = Z[t2 − t1, . . . , tn − tn−1]

in Z[t1, . . . , tn] = Λ(C∗)n , among (infinitely many) other ways of writing this.

Example 2.2. Define a homomorphism (C∗)n → (C∗)r by

(z1, . . . , zn) 7→ (
∏n

i=1 zai1

i , . . . ,
∏n

i=1 zair

i ),

for some n × r matrix A (corresponding to a map Z
r → Z

n)). The corre-
sponding map Z[s1, . . . , sr] → Z[t1, . . . , tn] takes sj to

∑n
i=1 aijti.

Example 2.3. For the map C
∗ → C

∗ given by z 7→ z−a, corresponding
equivariant maps Cm r {0} → Cm r {0} are given by

(x1, . . . , xm) 7→ ‖x‖−a(x̄a
1, . . . , x̄

a
m),

where ‖x‖ =
∑

|xi|
2. The induced map f : Pm−1 → Pm−1 on BGm has

f∗O(1) = O(−a).

Exercise 2.4. For G = GLn, find a map EGm → EGm equivariant with
respect to the homomorphism g 7→ tg−1, where EGm = Mo

m,n is m × n

matrices of rank n. (Hint/Solution: Take A 7→ A · (tAA)−1.)

Exercise 2.5. Let T be a torus acting on a vector space V by characters
χ1, . . . , χn. Then

H∗
T P(V ) = ΛT [ζ]/ (

∏n
i=1(ζ + χi)) .

*Exercise 2.6. Compute H∗
T Pn−1 for the action of T = (C∗)n/C∗ on Pn−1.

3

Proposition 3.1. Let G be a Lie group acting on a space X.

(i) If G acts freely on X, with X → G\X a locally trivial fiber bundle,
then

H i
GX = H i(G\X).

(ii) If G acts trivially on X, then

H i
GX = H i(BG × X).

Thus H∗
GX = ΛG ⊗Z H∗X when Hk(BG) is free and finitely gen-

erated for all k.

Proof. For (i), consider the fiber square

EGm × X - X

EGm ×G X

?

- G\X,
?
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whose vertical maps are principal G-bundles, and whose horizontal maps are
EGm-bundles. By the Leray-Hirsch lemma, H i(G\X)

∼
−→ H i(EGm ×G X),

for m > m(i).
For (ii), note that EGm×G X = BGm×X. The second statement follows

from the Künneth formula. �

Proposition 3.2. If H iX = 0 for 0 < i ≤ m, then H i
G(pt) → H i

GX is an
isomorphism for i ≤ m. Thus if X is contractible, H∗

GX = ΛG.

Proof. In the diagram

EGm × X - EGm

EGm ×G X

?

- BGm,
?

the vertical maps are G-bundles, and the horizontal maps are X-bundles.
The statement follows from the Leray-Hirsch lemma, applied to the bottom
horizontal map. �

4

A space X satisfying the hypotheses of the following proposition is called
(equivariantly) formal with respect to the ring R.

Proposition 4.1. Assume H iX is finitely generated and free over R for
0 ≤ i ≤ m, and suppose there are elements xij ∈ H i

GX that restrict to
a basis for H iX. Then every element of Hm

G X has a unique expression
∑

xijcij , for cij ∈ Hm−iBG. (There is also a unique expression
∑

c′ijxij ,

for possibly different elements c′ij ∈ Hm−iBG.)

If in addition H iX = 0 for i > m, and HkBG = 0 for k odd, then H∗
GX

is finitely generated and free over ΛG, with basis {xij}. Moreover, the map

H∗
GX ⊗ΛG

R → H∗X

is an isomorphism. In fact, for any homomorphism G′ → G, the map

H∗
GX ⊗ΛG

ΛG′ → H∗
G′X

is an isomorphism.

Proof. The first statement is simply an application of the Leray-Hirsch
lemma to the fiber bundle EG ×G X → BG (or EGm ×G X → BGm),
which has fiber X.

For the second part, note that HkBG = 0 for k odd implies ΛG is a
commutative ring, so H∗

GX is a ΛG-algebra, with basis {xij} as above. In
the fiber square

EG′ ×G′

X - EG ×G X

BG′
?

- BG,
?
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the vertical maps are fiber bundles with fiber X, so the basis {xij} for H∗
GX

restricts to a basis {x′
ij} for H∗

G′X. �

5

Let G be a linear algebraic group acting on nonsingular algebraic varieties
X and Y , and let f : X → Y be a proper, G-equivariant morphism. Then
there are equivariant Gysin maps

fG
∗ : H i

GX → H i+2d
G Y,

where d = dim Y − dimX. (We will sometimes write f∗ for fG
∗ .)

These are constructed from the ordinary Gysin maps associated to the
proper morphism

EGm ×G X → EGm ×G Y

of nonsingular algebraic varieties, with the difference in dimensions being d.
Identifying H i

GX with H i(EGm×GX) for sufficiently large m, and similarly
for Y , the equivariant Gysin map is defined to be the ordinary Gysin map
H i(EGm ×G X) → H i+2d(EGm ×G Y ).

These Gysin maps have the following properties:

(i) (Functoriality) If g : Y → Z is another proper G-equivariant mor-
phism, then so is g ◦ f , and (g ◦ f)∗ = g∗ ◦ f∗.

(ii) (Projection formula) For b ∈ H∗
GY and a ∈ H∗

GX,

fG
∗ (f∗b · a) = b · fG

∗ a.

(iii) (Naturality) Given a fiber square of nonsingular varieties and G-
equivariant maps

X ′ g′
- X

Y ′

f ′

? g
- Y,

f
?

with f and f ′ proper, and dimY − dimX = dim Y ′ − dimX ′, then

g∗ ◦ fG
∗ = (f ′)G∗ ◦ (g′)∗.

(iv) (Embedding) If f : X → Y is a closed G-equivariant embedding,
its normal bundle N becomes a G-equivariant vector bundle on X,
and the composition f∗ ◦fG

∗ : H i
GX → H i+2d

G X is multiplication by

cG
d (N).

(v) If g : X ′ → Y is also G-equivariant, and g(X ′) ∩ f(X) = ∅, then
g∗ ◦ fG

∗ = 0. (This follows from property (iii).)
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(vi) If V ⊂ X is a G-invariant subvariety, and W = f(V ) ⊂ Y , then W
is a G-invariant subvariety of Y , and

fG
∗ [V ]G =

{

deg(V/W )[W ]G if dim W = dimV ;
0 if dim W < dimV.

These properties follow directly from the corresponding properties for ordi-
nary Gysin maps (see Appendix A), applied to approximation spaces. For
example, to prove (vi), apply the non-equivariant Gysin map to EGm ×G

V → EGm ×G W , which has the same degree as V → W .
Note that the ordinary version of (iii) implies that the definition of fG

∗ is
independent of the choice of EGm or EG. Indeed, if E → E′ is an equivari-
ant map of two such choices, then applying the non-equivariant version of
(iii) to the fiber square

E ×G X - E′ ×G X

E ×G Y

?

- E′ ×G Y

?

shows that the pushforwards fG
∗ for the two choices agree.

One consequence of (iv) which will be useful later is the following:

Proposition 5.1. Let Y ⊂ X be a closed G-invariant subvariety of codi-
mension d, and let p ∈ Y be a nonsingular fixed point. Then the image of

[Y ]G under the restriction map H∗
GX → H∗

G(p) is cG
d (N(p)), where N(p) is

the normal space to Y in X at p.

When f is the projection of a fiber bundle, in the non-equivariant case and
with coefficients in R, the Gysin map f∗ can be interpreted as integration
over the fiber. The equivariant Gysin map can be interpreted similarly as
integration over the fibers of EGm ×G X → EGm ×G Y .

There are generalizations of properties (iii), (iv), and (v) involving excess
normal bundles. See Appendix A, or [Ful-Mac81, §4].

A special case of the Gysin construction comes from the map X
p
−→ pt,

when X is compact. The ordinary Gysin map is p∗ : H2NX → H0(pt) = Z

(where N = dim X), while p∗(H
jX) = 0 for j 6= 2N . In the equivariant

situation, however, the map is

pG
∗ : H i

GX → H i−2N
G (pt),

which can be nonzero for i ≥ 2N . These maps are sometimes written as
a 7→

∫

X
a.

Using the equivariant pushforward to a point, we have an equivariant
version of Poincaré duality:

Proposition 5.2. Let {xα} be a (homogeneous, right) basis for H∗
GX over

ΛG, and assume X is formal with respect to the coefficient ring R. Then
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there is a unique (homogeneous, left) basis {yα} of H∗
GX over ΛG such that

p∗(yβ · xα) = δβα

in ΛG.

This follows from a general fact about fiber bundles; see Appendix A. The
bases {xα} and {yα} are sometimes called (equivariant) Poincaré dual bases.

For x, y ∈ H∗
GX, set 〈y, x〉 = p∗(y · x) ∈ ΛG. Then with {xα} and

{yβ} as in Proposition 5.2, for any y ∈ H∗
GX, we have y =

∑
cαyα, where

cα = 〈y, xα〉. Indeed, if we write y =
∑

cβyβ, then by the projection formula
we have

〈y, xα〉 =
∑

cβ 〈yβ , xα〉

=
∑

cβ δβα

= cα.

Example 5.3. Let xα = [Vα]G for G-invariant subvarieties Vα ⊂ X, and
suppose there are G-invariant subvarieties Wα such that Vα and Wα intersect
transversally in a point, and Vα ∩ Wβ = ∅ if α 6= β and codim(Vα) +

codim(Wβ) ≤ dim X. Then we can take yα = [Wα]G to form a dual basis.

Example 5.4. If X = P
n−1, G = (C∗)n, and

Va = {[∗ : · · · : ∗ : 0 : · · · : 0
︸ ︷︷ ︸

a

]} ⊂ P
n−1,

then xa = [Va]
G is a basis for H∗Pn−1, for 0 ≤ a ≤ n − 1. If we take

Wa = {[0 : · · · : 0 : ∗ : · · · : ∗
︸ ︷︷ ︸

a+1

]},

then ya = [Wa]
G is the Poincaré dual basis.
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