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As a first example, we discuss the solution to Exercise (2.4.4). We claim
that

Asp,c =Zcy, ... cnl = Zler, ca,. .. cn]/(e1) = Agr,c/(c1)-
To see this, note that
My, ,/SLyC = {(L,p)|L CC™, and ¢ : \" L = C},

so it is the complement of the zero section of a line bundle on Gr(n,C™):

M2, ./SLaC =+ A" S~ {0}

M2,,,/GL,C =~ Gr(n,C™),

where S C C7, is the tautological subbundle. The claim then follows from
the following topological lemma:

Lemma 1.1. Let E — X be a vector bundle of rank e, such that the map
a— a-c.(E) is injective on H*X. Then H*(E ~{0}) = H*(X)/(c.(E)).

In fact, if multiplication by ce(E) is injective on Ht1=2¢ X then H'(E ~
{0}) = H'X/(ce(E) - H=2¢X). The proof is immediate from the Gysin
sequence of F.

Example 1.2. Let G = GL(V). The GL(V)-equivariant cohomology ring
of P(V) is

HeonP(V) = A[¢]/(¢" + al" M),
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where n = dimV, A = Zlcy, ..., ca], ¢ = F(O(1)), and O(1) is the dual of
the tautological subbundle O(—1) C Vp(y. To see this, use the approxima-
tions EG,, = Hom®(V,C™), with diagrams

Hom°(V,C™) x“P(V)= P(S)

Hom’(V,C™)/G  =Gr(n,C™).
Here S C C™ is the tautological subbundle on Gr(n,C™), as before. The
isomorphism in the top row is given by (p,¢) — ¢(¢) C im(p); similarly,
there is an isomorphism

Hom?(V, C™) x¢ Op(yy(—1) = Op(s)(—1)

given by (p,v) — ¢(v). Now the computation of H:P(V) is reduced to a
general fact about projective bundles: For any P(S) — Z, {1,(,...,¢(" '}
is a basis for H*P(S) over H*Z (by the Leray-Hirsch lemma), with relation

"+ ()T e (S) =0,
since the left-hand side is ¢, (S ® O(1)), and the inclusion O — S ® O(1)
implies this is zero. Finally, ¢; = ¢;(S) for large enough m.

Corollary 1.3. For G = B, or for G = (C*)",

HeP(V) = A[C/(TTi= (€ + 1),
where A = Z[t1, ..., t,].

2

Let T be a torus, so T' is isomorphic to (C*)™, but not by a given isomor-
phism. Let M = Hom,g. gp (T, C*) be the group of characters (so M = Z"),
which is naturally dual to N = Homyjg op. (C*,T), the group of 1-parameter
subgroups. For each x € M, there is an associated equivariant line bundle
L, on a point, so ¢l (L,) € H2(pt). We have Ly, = Ly, @ Ly,, so this
map M — H%(pt) is a homomorphism; in fact, it is an isomorphism, as one
sees by choosing an isomorphism 7" = (C*)™. Therefore

Symy M = Hi(pt) = Ar,

by a canonical isomorphism.

This isomorphism is natural, in following sense. A homomorphism ¢ :
T — T’ corresponds to a homomorphism M’ — M (and dually, to N — N').
Since L,/ pulls back to L, where x = ¢*x’, the diagram

Sym* M’ — Sym* M

|

A Arp

comimutes.
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Example 2.1. Let T'= (C*)"/(C*), A = Sym* M, for M = {(a1,...,a,) €
Z"| > a; =0}. So

A=TZ[t1 —to, ... tne1 —tn] = Zlta — t1, ... tn — tn_1]
in Z[t1,...,ty] = Ac+)n, among (infinitely many) other ways of writing this.
Example 2.2. Define a homomorphism (C*)” — (C*)" by
(21,5 2) = (IT2 2 - T 20D

for some n x r matrix A (corresponding to a map Z" — Z")). The corre-
sponding map Z[s1, ..., s;] — Z[t1, ..., t,] takes s; to D" a;jt;.
a

Example 2.3. For the map C* — C* given by z — 2z~
equivariant maps C™ ~ {0} — C™ ~ {0} are given by

, corresponding

(xlw .. ,I‘m) = ||x‘|_a(jtll7' .- 7j$n)7

where ||z|| = 3 |z;|?>. The induced map f : P™~! — P™~! on BG,, has
frO0(1) = O(—a).

Exercise 2.4. For G = GL,, find a map EG,, — EG,, equivariant with
respect to the homomorphism ¢ — '¢~!, where EG,, = M2  is m x n

matrices of rank n. (Hint/Solution: Take A +— A - (*AA)~1) 7

Exercise 2.5. Let T be a torus acting on a vector space V by characters
X1,--+,Xn- Then

HTP(V) = Ar[¢]/ (ITTi=1 (€ + x3)) -
*Exercise 2.6. Compute HAP"~! for the action of T' = (C*)"/C* on P" 1,

3

Proposition 3.1. Let G be a Lie group acting on a space X .

(i) If G acts freely on X, with X — G\X a locally trivial fiber bundle,
then

HLX = H(G\X).

(ii) If G acts trivially on X, then
HLX = HY(BG x X).

Thus H;, X = Ag @z H*X when HF(BQ) is free and finitely gen-
erated for all k.

Proof. For (i), consider the fiber square
EGpx X — X

o

EG, x% X — G\X,
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whose vertical maps are principal G-bundles, and whose horizontal maps are
EG,,-bundles. By the Leray-Hirsch lemma, H'(G\X) = H (EG,, x¢ X),
for m > m(3).

For (ii), note that EG,, x¢ X = BG,, x X. The second statement follows
from the Kiinneth formula. O

Proposition 3.2. If H'X =0 for 0 < i < m, then Hé(pt) — HéX s an
isomorphism for i < m. Thus if X is contractible, H, X = Ag.
Proof. In the diagram

EG, x X — EG,,

S

EG,, x¢ X — BG,,,
the vertical maps are G-bundles, and the horizontal maps are X-bundles.
The statement follows from the Leray-Hirsch lemma, applied to the bottom
horizontal map. O

4

A space X satisfying the hypotheses of the following proposition is called
(equivariantly) formal with respect to the ring R.

Proposition 4.1. Assume H'X is finitely generated and free over R for
0 <4 < m, and suppose there are elements x;; € HyX that restrict to
a basis for H'X. Then every element of HFX has a unique expression
> xijcij, for ¢ij € H™"'BG. (There is qlso a unique eTpression ) ci;vij,
. . / —

for possibly dzﬁere@t elements ¢;; € H™ 'BG.)

If in addition H'X =0 fori > m, and H*BG = 0 for k odd, then HiX
is finitely generated and free over Ag, with basis {x;;}. Moreover, the map

H{X @z, R— H'X
is an 1somorphism. In fact, for any homomorphism G' — G, the map
HEX ®AG Agl — Hé;X

s an isomorphism.

Proof. The first statement is simply an application of the Leray-Hirsch
lemma to the fiber bundle EG x¢ X — BG (or EG,, x¢ X — BG,),
which has fiber X.

For the second part, note that H*BG = 0 for k odd implies Ag is a
commutative ring, so H:X is a Ag-algebra, with basis {x;;} as above. In
the fiber square

EG' x¢ X — EG x¢ X

_—

BG’ BG,
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the vertical maps are fiber bundles with fiber X, so the basis {x;;} for H5X
restricts to a basis {z},} for Hf, X. O

5

Let G be a linear algebraic group acting on nonsingular algebraic varieties
X and Y, and let f : X — Y be a proper, G-equivariant morphism. Then
there are equivariant Gysin maps

f&HEX — HE Yy,

where d = dimY — dim X. (We will sometimes write f. for f&.)
These are constructed from the ordinary Gysin maps associated to the
proper morphism

EG,, x¢ X — EG,, xCY

of nonsingular algebraic varieties, with the difference in dimensions being d.
Identifying H éX with HY(EG,, x¢ X) for sufficiently large m, and similarly
for Y, the equivariant Gysin map is defined to be the ordinary Gysin map
HY(EG,, x¢ X) — HT*(EG,, x¢Y).
These Gysin maps have the following properties:
(i) (Functoriality) If g : Y — Z is another proper G-equivariant mor-
phism, then sois go f, and (go f)« = g« © fu.
(ii) (Projection formula) For b € HY and a € HEX,

FE(fo-a)=b- fla.

(iii) (Naturality) Given a fiber square of nonsingular varieties and G-
equivariant maps

/

X’L»X

P!
v L.y,

with f and f’ proper, and dimY — dim X = dimY’ — dim X', then

g o fS = () o (g

(iv) (Embedding) If f : X — Y is a closed G-equivariant embedding,
its normal bundle N becomes a G-equivariant vector bundle on X,
and the composition f*o f&: H éX — H gFQdX is multiplication by
cG(N).

(v) If g : X’ — Y is also G-equivariant, and g(X’) N f(X) = (), then
g* o f& = 0. (This follows from property (iii).)
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(vi) If V C X is a G-invariant subvariety, and W = f(V) C Y, then W
is a G-invariant subvariety of Y, and

PG { deg(V/W)H[W]% if dimW = dim V;

* 0 if dimW < dim V.
These properties follow directly from the corresponding properties for ordi-
nary Gysin maps (see Appendix A), applied to approximation spaces. For
example, to prove (vi), apply the non-equivariant Gysin map to EGy, x &
V — EG,, x¢ W, which has the same degree as V — W.

Note that the ordinary version of (iii) implies that the definition of f& is
independent of the choice of EG,, or EG. Indeed, if E — E’ is an equivari-
ant map of two such choices, then applying the non-equivariant version of
(iii) to the fiber square

ExX —~ E' x°X

|

ExYY —«~F' x%y
shows that the pushforwards f& for the two choices agree.
One consequence of (iv) which will be useful later is the following;:

Proposition 5.1. Let Y C X be a closed G-invariant subvariety of codi-
mension d, and let p € Y be a nonsingular fized point. Then the image of
[V]® under the restriction map H} X — HE(p) is ¢§(N(p)), where N(p) is
the normal space to' Y in X at p.

When f is the projection of a fiber bundle, in the non-equivariant case and
with coefficients in R, the Gysin map f, can be interpreted as integration
over the fiber. The equivariant Gysin map can be interpreted similarly as
integration over the fibers of EG,, x¢ X — EG,, x°¢ Y.

There are generalizations of properties (iii), (iv), and (v) involving excess
normal bundles. See Appendix A, or [Ful-Mac81, §4].

A special case of the Gysin construction comes from the map X 2 pt,
when X is compact. The ordinary Gysin map is p, : H*VN X — HO(pt) = Z
(where N = dim X), while p,(H?X) = 0 for j # 2N. In the equivariant
situation, however, the map is

. oN
pe HGX — H Y (pt),
which can be nonzero for ¢ > 2N. These maps are sometimes written as

ar [ya.
Using the equivariant pushforward to a point, we have an equivariant

version of Poincaré duality:

Proposition 5.2. Let {z,} be a (homogeneous, right) basis for H5X over
Aq, and assume X is formal with respect to the coefficient ring R. Then
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there is a unique (homogeneous, left) basis {yo} of HiX over Ag such that
p*(yﬁ : 51704) = 5604

in Ag.

This follows from a general fact about fiber bundles; see Appendix A. The

bases {z,} and {y,} are sometimes called (equivariant) Poincaré dual bases.
For z,y € H{X, set (y,x) = p«(y - x) € Ag. Then with {z,} and

{ys} as in Proposition 5.2, for any y € H5X, we have y = > cqya, where

Ca = (Y, Zq). Indeed, if we write y = > cgygs, then by the projection formula

we have

(y,20) = Zcﬁ<yﬁ=xa>
205(55a
Co-

Example 5.3. Let z, = [V,]¢ for G-invariant subvarieties V,, C X, and
suppose there are G-invariant subvarieties W, such that V,, and W, intersect
transversally in a point, and Vo, " Wg = 0 if o # § and codim(V,) +
codim(W3) < dim X. Then we can take y, = [W,] to form a dual basis.
Example 5.4. If X = P! G = (C*)", and
Va:{[*:---:*:O:-":0]}CIP’”_1,

then z, = [V,]¢ is a basis for H*P"~! for 0 < a < n — 1. If we take

We={[0:--:0:%:-: %]},
a+1

then y, = [W,]% is the Poincaré dual basis.
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