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Recall that for G = GLn(C),

H∗
GP

n−1 = ΛG[ζ]/(ζn + c1ζ
n−1 + · · · + cn),

where ζ = cG
1 (O(1)). The following exercise gives an example of equivariant

Poincaré duality.

Exercise 1.1. The Poincaré dual basis for {1, ζ, . . . , ζn−1} in H∗
GP

n−1 is

{ζn−1 + c1ζ
n−2 + · · · + cn−1, ζn−2 + c1ζ

n−3 + · · · + cn−2, . . . ,

ζ2 + c1ζ + c2, ζ + c1, 1}.

(Note that p∗(ζ
n−1) = 1, and p∗(ζ

i) = 0 for i < n − 1.)

We also saw that if a torus T acts on C
n by characters χ1, . . . , χn, then

H∗
T P

n−1 = ΛT [ζ]/(
∏n

i=1(ζ + χi)).

Example 1.2. The torus T = (C∗)n/C
∗ acts on P

n−1, but in this case
O(−1), O(1), and C

n
Pn−1 are not equivariant with respect to the natural

action. For χ ∈ Z
n, the line bundle Lχ is equivariant for T only if χi ∈ M =

{(a1, . . . , an) |
∑

ai = 0}. But if χ = (a1, . . . , an) =
∑

aiti with
∑

ai = 1,
then

O(1) ⊗ Lχ

has a trivial C
∗ action, so it is T -equivariant. If ζ ′ is its first Chern class,

then

H∗
T P

n−1 = Λ[ζ ′]/
∏n

i=1(ζ
′ + ti − χ).

Equivalently, choose a splitting of 1 → C
∗ → (C∗)n → T → 1 given by

such a χ; the corresponding map Z
n → M takes ti to ti − χ. Note that

Z[t1, . . . , tn][ζ]/
∏

(ζ + ti) → Λ[ζ ′]/
∏

(ζ ′ + ti − χ)

is given by ti 7→ ti − χ and ζ 7→ ζ ′.
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Consider again the standard action of T = (C∗)n on P
n−1. There are

invariant subvarieties PI ⊂ P
n−1 for each subset I ⊂ {1, . . . , n}, given by

PI = {[X1 : · · · : Xn] |Xi = 0 for i ∈ I}. We claim that

[PI ] =
∏

i∈I

(ζ + ti).

In fact, Xi is an equivariant section of O(1)⊗Lti , so [Xi = 0]T = cT
1 (O(1)⊗

Lti) = ζ + ti.

Setting Ik = {1, 2, . . . , k}, the classes xk = [PIk
]T form a basis for H∗

T P
n−1,

for 0 ≤ k ≤ n− 1 (with x0 = 1). This is the simplest example of a Schubert

basis in equivariant cohomology. Note that the PIk
’s are in fact invariant

for the group B− of lower-triangular matrices. We will see later that this
corresponds to a certain kind of positivity in the multiplication of their
classes.

Challenge 1.3. What is the multiplication table in this basis? That is,
writing

xi · xk =
∑

ck
ijxk,

find a formula for the polynomials ck
ij ∈ Λ.

Since the PIk
are also (C∗)n/C

∗-invariant, the coefficients must be in the
corresponding Sym∗ M ⊂ Z[t1, . . . , tn].

Example 1.4. For n = 2, H∗
T P

1 = Λ[ζ]/(ζ + t1)(ζ + t2) has basis {1, x1 =
ζ + t1}. We see

x2
1 = (ζ + t1)(ζ + t1)

= (ζ + t1)((ζ + t2) + (t1 − t2))

= (t1 − t2)x1.

More generally,

x1 · xp = xp+1 + (t1 − tp+1)xp

for 1 ≤ p ≤ n − 2,

x2 · xp = xp+2 + (t1 − tp+1 + t2 − tp+2)xp+1 + (t1 − tp+1)(t2 − tp+1)xp

for 2 ≤ p ≤ n − 3, and so on.

Exercise 1.5. Let T∞ =
⋃

n(C∗)n act on P
∞ =

⋃

n P
n−1. Show that

ΛT∞
= Z[t1, t2, . . .], and H∗

T∞

P
∞ = Λ[ζ] has Λ-bases {1, ζ, ζ2, . . .} and

{1, x1, x2, . . .}.

In the setup of the previous exercise, the challenge is to find the coefficients
in the expansion xi · xj =

∑

ck
ijxk; this determines the coefficients in any

H∗
T P

n−1.
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Exercise 1.6. Let T act on C
n by distinct characters χ1, . . . , χn, inducing

an action on P
n−1, so H∗

T P
n−1 = Λ[ζ]/(

∏

(ζ + χi)). The fixed points are
pi = [0 : · · · : 0 : 1 : 0 : · · · : 0] (1 in the ith position). The restriction map
H∗

T P
n−1 → H∗

T (pi) takes ζ to −χi, and the Gysin map H∗
T (pi) → H∗

T P
n−1

takes 1 to
∏

j 6=i(ζ + tj). Note that the composition

Λ⊕n = H∗
T ((Pn−1)T ) → H∗

T P
n−1 → H∗

T ((Pn−1)T ) = Λ⊕n

is diagonal.

Exercise 1.7. In the setup of the previous exercise, compute the matrix of
the restriction map H∗

T P
n−1 → H∗

T ((Pn−1)T ), using the basis 1, ζ, . . . , ζn−1

for H∗
T P

n−1. What is its determinant?

Suppose a torus T acts on P
1 with fixed points 0 and ∞.

Exercise 1.8. The action on the open set C containing 0 = [0 : 1] is by a
character χ, so g ·z = χ(g)z for g ∈ T , z ∈ C. If χ = 0, then T acts trivially;
otherwise cT

1 (T0P
1) = χ and cT

1 (T∞P
1) = −χ. The composite map

Λ0 ⊕ Λ∞ → H∗
T P

1 → Λ0 ⊕ Λ∞

has matrix
(

χ 0
0 −χ

)

, and H∗
T P

1 = Λ[ζ]/(ζ + χ)ζ. (Let T act on C
2 by

g · (z1, z2) = (χ(g)z1, z2).)

At 0, the restriction map takes ζ to −χ; at ∞, ζ maps to 0. By the above
exercise, the Gysin inclusion takes (1, 0) to ζ and (0, 1) to ζ + χ.

Exercise 1.9. The image of H∗
T P

1 in Λ0⊕Λ∞ consists of pairs (u1, u2) such
that u2 − u1 is divisible by χ.

Remark 1.10. If T acts on a nonsingular curve C with exactly two fixed
points, then C is isomorphic to P

1 with the action described above, by an
isomorphism unique up to interchanging 0 and ∞. Thus the character ±χ
is intrinsic up to sign.

Now assume R is a UFD, and let T act on P
n−1 with weights χ1, . . . , χn.

Assume these are distinct, and for each i, assume the n− 1 weights χj − χi

are relatively prime in Λ.

Claim . The image of H∗
T P

n−1 in H∗
T ((Pn−1)T ) =

⊕

Λpi
consists of all

n-tuples (u1, . . . , un) ∈ Λ⊕n such that for all i 6= j, fi − fj is divisible by
χi − χj.

To see the sufficiency of this divisibility condition, suppose (u1, . . . , un)
satisfies it. Certainly (u1, . . . , u1) = u1 · · · (1, . . . , 1) is in the image, so we
can assume u1 = 0. Now (u1, . . . , un) = (0, (χ1 − χ2)v2, . . . , vn). Since
(χ1 + ζ)v2 maps to (0, (χ1 −χ2)v2, . . .), we can assume v2 = 0, and we have
(0, 0, (χ1−χ3)(χ2−χ3)w3, . . . , wn). Subtract the image of (χ1+ζ)(χ2+ζ)w3

from this to get zeros in the first three coordinates; continuing in this way, we
arrive at (0, . . . , 0,

∏n−1
i=1 (χi −χn)zn), which is the image of

∏n−1
i=1 (χi + ζ)zn.
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Exercise 1.11. Show that the condition that the χj−χi be relatively prime
is necessary: If they are not, the image is strictly smaller than predicted by
the claim.
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We now discuss the role of fixed points in more general situations. Assume
XG is finite, and consider the composition

⊕

p∈XG

Λ = H∗
GXG Gysin

−−−→ H∗
GX

restr.
−−−→ H∗

GXG =
⊕

p∈XG

Λ.

The composite map is diagonal (by property (v) of Gysin maps), and it is
given by multiplication by cG

top(TpX) on the summand Λ corresponding to

p ∈ XG (by property (iv)).

Proposition 2.1. Let T be a torus acting on X. If S is a multiplicatively

closed set in the center of Λ, containing cT
top(TpX) for all p ∈ XG, then

S−1H∗
TX → S−1H∗

T XT

is surjective. Moreover, the cokernel of H∗
TX → H∗

T XT is annihilated by
∏

p∈XT cT
top(TpX).

If X is equivariantly formal with respect to R, so H∗X is free over R,

and if rkH∗X ≤ #XT , then rkH∗X = #XT , and

S−1H∗
TX → S−1H∗

T XT

is an isomorphism.

Example 2.2. For T = (C∗)n acting on X = P
n−1, we have XT =

{p1, . . . , pn} (with pi having all but the ith coordinate zero, as before), so
there are n = rkH∗X fixed points. One sees an isomorphism as in the propo-
sition after localizing at the multiplicative set S generated by the elements
ti − tj, for i 6= j.

More generally, if G is a semisimple (reductive) group acting on a non-
singular variety X of dimension n, a fixed point x is isolated if and only if
the corresponding representation of G on TxX does not contain the trivial
representation. When G = T is a torus acting by characters χ1, . . . , χn, this
means χi 6= 0 for all i; therefore cT

n (TxX) = χ1 · · ·χn 6= 0 (at least if R = Z).
If G is not a torus, however, one can still have cG

n (TxX) = 0.

Example 2.3 (J. de Jong). Let G = SLnC act on X = G by conjugation.
The fixed point set is then the center of G, which corresponds to the nth
roots of unity, so it is finite (and in particular, isolated). The corresponding
representation is the adjoint action on g = TeG, which is irreducible. The
diagonal torus acts trivially on its Lie algebra h ⊂ g, though, so e is not an
isolated fixed point for T . Since cG

top(TeG) maps to cT
top(TeG) = 0 under the

inclusion ΛG →֒ ΛT , we see cG
top(TeG) = 0.



EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY 5

Example 2.4. For G = B+ acting on X = P
n−1, XG = {p1} consists of

only one point, so in this case there is no isomorphism after localizing.

Remark 2.5. When X is formal, so H∗
T X is free over Λ, it follows that

H∗
TX →֒ H∗

T XT =
⊕

p∈XT Λ is injective when XT is finite. We will describe
the image later.

3

If XG is not finite, and Y is a component, then the composition

H∗
GY → H∗

GX → H∗
GY

is given by multiplication by cG
d (N), where d = codim(Y,X) and N = NY/X

is the normal bundle. (This makes sense, since Y is always smooth; see
[Ive72] for more general conditions.) When HkBG = 0 for k odd, we have

H∗
GY = Λ⊗H∗Y , and cG

d (N) =
∑d

i=0 ci⊗yi, with ci ∈ Λ2i and yi ∈ H2d−2iY ;

in fact, yd = 1. Restricting to p ∈ Y , then, cG
d (N) restricts to cd = cG

d (Np).
In fact, this is independent of the choice of p, since N is locally trivial as a
G-bundle.

When G = T is a torus, we claim that if cd is contained in a multiplicative
set S in Λ, then cT

d (N) is invertible in S−1H∗
T Y . Indeed, the elements yi

are nilpotent for i < d (under mild hypotheses on Y guaranteeing HjY = 0
for j ≫ 0, e.g., Y is an algebraic variety). As a consequence, we have the
following:

Proposition 3.1. If H∗XT is free, with rkH∗XT ≥ rkH∗X, then equality

holds, and the maps

S−1H∗
T XT → S−1H∗

T X → S−1H∗
TXT

are isomorphisms, for any S containing cT
top(Np) for all p ∈ XT .
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