EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE FOUR: LOCALIZATION 1

WILLIAM FULTON NOTES BY DAVE ANDERSON

1

Recall that for $G = GL_n(\mathbb{C})$,

$$H_G^* \mathbb{P}^{n-1} = \Lambda_G[\zeta] / (\zeta^n + c_1 \zeta^{n-1} + \dots + c_n),$$

where $\zeta = c_1^G(\mathcal{O}(1))$. The following exercise gives an example of equivariant Poincaré duality.

Exercise 1.1. The Poincaré dual basis for $\{1, \zeta, \ldots, \zeta^{n-1}\}$ in $H^*_{\mathcal{G}}\mathbb{P}^{n-1}$ is

$$\{\zeta^{n-1} + c_1\zeta^{n-2} + \dots + c_{n-1}, \ \zeta^{n-2} + c_1\zeta^{n-3} + \dots + c_{n-2}, \dots, \\ \zeta^2 + c_1\zeta + c_2, \ \zeta + c_1, \ 1\}.$$

(Note that $p_*(\zeta^{n-1}) = 1$, and $p_*(\zeta^i) = 0$ for i < n - 1.)

We also saw that if a torus T acts on \mathbb{C}^n by characters χ_1, \ldots, χ_n , then $H_T^* \mathbb{P}^{n-1} = \Lambda_T[\zeta]/(\prod_{i=1}^n (\zeta + \chi_i)).$

Example 1.2. The torus $T = (\mathbb{C}^*)^n / \mathbb{C}^*$ acts on \mathbb{P}^{n-1} , but in this case $\mathcal{O}(-1)$, $\mathcal{O}(1)$, and $\mathbb{C}^n_{\mathbb{P}^{n-1}}$ are not equivariant with respect to the natural action. For $\chi \in \mathbb{Z}^n$, the line bundle L_{χ} is equivariant for T only if $\chi_i \in M = \{(a_1, \ldots, a_n) \mid \sum a_i = 0\}$. But if $\chi = (a_1, \ldots, a_n) = \sum a_i t_i$ with $\sum a_i = 1$, then

 $\mathcal{O}(1) \otimes L_{\chi}$

has a trivial \mathbb{C}^* action, so it is T-equivariant. If ζ' is its first Chern class, then

$$H_T^* \mathbb{P}^{n-1} = \Lambda[\zeta'] / \prod_{i=1}^n (\zeta' + t_i - \chi).$$

Equivalently, choose a splitting of $1 \to \mathbb{C}^* \to (\mathbb{C}^*)^n \to T \to 1$ given by such a χ ; the corresponding map $\mathbb{Z}^n \to M$ takes t_i to $t_i - \chi$. Note that

$$\mathbb{Z}[t_1,\ldots,t_n][\zeta]/\prod(\zeta+t_i)\to\Lambda[\zeta']/\prod(\zeta'+t_i-\chi)$$

is given by $t_i \mapsto t_i - \chi$ and $\zeta \mapsto \zeta'$.

Date: February 12, 2007.

§4 LOCALIZATION 1

Consider again the standard action of $T = (\mathbb{C}^*)^n$ on \mathbb{P}^{n-1} . There are invariant subvarieties $\mathbb{P}_I \subset \mathbb{P}^{n-1}$ for each subset $I \subset \{1, \ldots, n\}$, given by $\mathbb{P}_I = \{ [X_1 : \cdots : X_n] | X_i = 0 \text{ for } i \in I \}$. We claim that

$$[\mathbb{P}_I] = \prod_{i \in I} (\zeta + t_i).$$

In fact, X_i is an equivariant section of $\mathcal{O}(1) \otimes L_{t_i}$, so $[X_i = 0]^T = c_1^T(\mathcal{O}(1) \otimes L_{t_i}) = \zeta + t_i$.

Setting $I_k = \{1, 2, ..., k\}$, the classes $x_k = [\mathbb{P}_{I_k}]^T$ form a basis for $H_T^* \mathbb{P}^{n-1}$, for $0 \le k \le n-1$ (with $x_0 = 1$). This is the simplest example of a *Schubert* basis in equivariant cohomology. Note that the \mathbb{P}_{I_k} 's are in fact invariant for the group B^- of lower-triangular matrices. We will see later that this corresponds to a certain kind of positivity in the multiplication of their classes.

Challenge 1.3. What is the multiplication table in this basis? That is, writing

$$x_i \cdot x_k = \sum c_{ij}^k x_k,$$

find a formula for the polynomials $c_{ij}^k \in \Lambda$.

Since the \mathbb{P}_{I_k} are also $(\mathbb{C}^*)^n/\mathbb{C}^*$ -invariant, the coefficients must be in the corresponding Sym^{*} $M \subset \mathbb{Z}[t_1, \ldots, t_n]$.

Example 1.4. For n = 2, $H_T^* \mathbb{P}^1 = \Lambda[\zeta]/(\zeta + t_1)(\zeta + t_2)$ has basis $\{1, x_1 = \zeta + t_1\}$. We see

$$\begin{aligned} x_1^2 &= (\zeta + t_1)(\zeta + t_1) \\ &= (\zeta + t_1)((\zeta + t_2) + (t_1 - t_2)) \\ &= (t_1 - t_2)x_1. \end{aligned}$$

More generally,

$$x_1 \cdot x_p = x_{p+1} + (t_1 - t_{p+1})x_p$$

for $1 \leq p \leq n-2$,

$$x_2 \cdot x_p = x_{p+2} + (t_1 - t_{p+1} + t_2 - t_{p+2})x_{p+1} + (t_1 - t_{p+1})(t_2 - t_{p+1})x_p$$

for $2 \le p \le n-3$, and so on.

Exercise 1.5. Let $T_{\infty} = \bigcup_{n} (\mathbb{C}^{*})^{n}$ act on $\mathbb{P}^{\infty} = \bigcup_{n} \mathbb{P}^{n-1}$. Show that $\Lambda_{T_{\infty}} = \mathbb{Z}[t_{1}, t_{2}, \ldots]$, and $H^{*}_{T_{\infty}} \mathbb{P}^{\infty} = \Lambda[\zeta]$ has Λ -bases $\{1, \zeta, \zeta^{2}, \ldots\}$ and $\{1, x_{1}, x_{2}, \ldots\}$.

In the setup of the previous exercise, the challenge is to find the coefficients in the expansion $x_i \cdot x_j = \sum c_{ij}^k x_k$; this determines the coefficients in any $H_T^* \mathbb{P}^{n-1}$. **Exercise 1.6.** Let T act on \mathbb{C}^n by distinct characters χ_1, \ldots, χ_n , inducing an action on \mathbb{P}^{n-1} , so $H_T^* \mathbb{P}^{n-1} = \Lambda[\zeta]/(\prod(\zeta + \chi_i))$. The fixed points are $p_i = [0: \cdots: 0: 1: 0: \cdots: 0]$ (1 in the *i*th position). The restriction map $H_T^* \mathbb{P}^{n-1} \to H_T^*(p_i)$ takes ζ to $-\chi_i$, and the Gysin map $H_T^*(p_i) \to H_T^* \mathbb{P}^{n-1}$ takes 1 to $\prod_{j \neq i} (\zeta + t_j)$. Note that the composition

$$\Lambda^{\oplus n} = H^*_T((\mathbb{P}^{n-1})^T) \to H^*_T \mathbb{P}^{n-1} \to H^*_T((\mathbb{P}^{n-1})^T) = \Lambda^{\oplus n}$$

is diagonal.

Exercise 1.7. In the setup of the previous exercise, compute the matrix of the restriction map $H_T^* \mathbb{P}^{n-1} \to H_T^*((\mathbb{P}^{n-1})^T)$, using the basis $1, \zeta, \ldots, \zeta^{n-1}$ for $H_T^* \mathbb{P}^{n-1}$. What is its determinant?

Suppose a torus T acts on \mathbb{P}^1 with fixed points 0 and ∞ .

Exercise 1.8. The action on the open set \mathbb{C} containing 0 = [0:1] is by a character χ , so $g \cdot z = \chi(g)z$ for $g \in T$, $z \in \mathbb{C}$. If $\chi = 0$, then T acts trivially; otherwise $c_1^T(T_0\mathbb{P}^1) = \chi$ and $c_1^T(T_\infty\mathbb{P}^1) = -\chi$. The composite map

$$\Lambda_0 \oplus \Lambda_\infty \to H_T^* \mathbb{P}^1 \to \Lambda_0 \oplus \Lambda_\infty$$

has matrix $\begin{pmatrix} \chi & 0 \\ 0 & -\chi \end{pmatrix}$, and $H_T^* \mathbb{P}^1 = \Lambda[\zeta]/(\zeta + \chi)\zeta$. (Let T act on \mathbb{C}^2 by $g \cdot (z_1, z_2) = (\chi(g)z_1, z_2)$.)

At 0, the restriction map takes ζ to $-\chi$; at ∞ , ζ maps to 0. By the above exercise, the Gysin inclusion takes (1, 0) to ζ and (0, 1) to $\zeta + \chi$.

Exercise 1.9. The image of $H_T^* \mathbb{P}^1$ in $\Lambda_0 \oplus \Lambda_\infty$ consists of pairs (u_1, u_2) such that $u_2 - u_1$ is divisible by χ .

Remark 1.10. If T acts on a nonsingular curve C with exactly two fixed points, then C is isomorphic to \mathbb{P}^1 with the action described above, by an isomorphism unique up to interchanging 0 and ∞ . Thus the character $\pm \chi$ is intrinsic up to sign.

Now assume R is a UFD, and let T act on \mathbb{P}^{n-1} with weights χ_1, \ldots, χ_n . Assume these are distinct, and for each *i*, assume the n-1 weights $\chi_j - \chi_i$ are relatively prime in Λ .

Claim. The image of $H_T^* \mathbb{P}^{n-1}$ in $H_T^* ((\mathbb{P}^{n-1})^T) = \bigoplus \Lambda_{p_i}$ consists of all *n*-tuples $(u_1, \ldots, u_n) \in \Lambda^{\oplus n}$ such that for all $i \neq j$, $f_i - f_j$ is divisible by $\chi_i - \chi_j$.

To see the sufficiency of this divisibility condition, suppose (u_1, \ldots, u_n) satisfies it. Certainly $(u_1, \ldots, u_1) = u_1 \cdots (1, \ldots, 1)$ is in the image, so we can assume $u_1 = 0$. Now $(u_1, \ldots, u_n) = (0, (\chi_1 - \chi_2)v_2, \ldots, v_n)$. Since $(\chi_1 + \zeta)v_2$ maps to $(0, (\chi_1 - \chi_2)v_2, \ldots)$, we can assume $v_2 = 0$, and we have $(0, 0, (\chi_1 - \chi_3)(\chi_2 - \chi_3)w_3, \ldots, w_n)$. Subtract the image of $(\chi_1 + \zeta)(\chi_2 + \zeta)w_3$ from this to get zeros in the first three coordinates; continuing in this way, we arrive at $(0, \ldots, 0, \prod_{i=1}^{n-1} (\chi_i - \chi_n)z_n)$, which is the image of $\prod_{i=1}^{n-1} (\chi_i + \zeta)z_n$.

Exercise 1.11. Show that the condition that the $\chi_j - \chi_i$ be relatively prime is necessary: If they are not, the image is strictly smaller than predicted by the claim.

 $\mathbf{2}$

We now discuss the role of fixed points in more general situations. Assume X^G is finite, and consider the composition

$$\bigoplus_{p \in X^G} \Lambda = H^*_G X^G \xrightarrow{\text{Gysin}} H^*_G X \xrightarrow{\text{restr.}} H^*_G X^G = \bigoplus_{p \in X^G} \Lambda$$

The composite map is diagonal (by property (v) of Gysin maps), and it is given by multiplication by $c_{top}^G(T_pX)$ on the summand Λ corresponding to $p \in X^G$ (by property (iv)).

Proposition 2.1. Let T be a torus acting on X. If S is a multiplicatively closed set in the center of Λ , containing $c_{top}^T(T_pX)$ for all $p \in X^G$, then

$$S^{-1}H_T^*X \to S^{-1}H_T^*X^T$$

is surjective. Moreover, the cokernel of $H_T^*X \to H_T^*X^T$ is annihilated by $\prod_{p \in X^T} c_{top}^T(T_pX)$.

If X is equivariantly formal with respect to R, so H^*X is free over R, and if $\operatorname{rk} H^*X \leq \#X^T$, then $\operatorname{rk} H^*X = \#X^T$, and

$$S^{-1}H_T^*X \to S^{-1}H_T^*X^T$$

is an isomorphism.

Example 2.2. For $T = (\mathbb{C}^*)^n$ acting on $X = \mathbb{P}^{n-1}$, we have $X^T = \{p_1, \ldots, p_n\}$ (with p_i having all but the *i*th coordinate zero, as before), so there are $n = \operatorname{rk} H^*X$ fixed points. One sees an isomorphism as in the proposition after localizing at the multiplicative set S generated by the elements $t_i - t_j$, for $i \neq j$.

More generally, if G is a semisimple (reductive) group acting on a nonsingular variety X of dimension n, a fixed point x is isolated if and only if the corresponding representation of G on $T_x X$ does not contain the trivial representation. When G = T is a torus acting by characters χ_1, \ldots, χ_n , this means $\chi_i \neq 0$ for all i; therefore $c_n^T(T_x X) = \chi_1 \cdots \chi_n \neq 0$ (at least if $R = \mathbb{Z}$). If G is not a torus, however, one can still have $c_n^G(T_x X) = 0$.

Example 2.3 (J. de Jong). Let $G = SL_n\mathbb{C}$ act on X = G by conjugation. The fixed point set is then the center of G, which corresponds to the *n*th roots of unity, so it is finite (and in particular, isolated). The corresponding representation is the adjoint action on $\mathfrak{g} = T_e G$, which is irreducible. The diagonal torus acts trivially on its Lie algebra $\mathfrak{h} \subset \mathfrak{g}$, though, so e is not an isolated fixed point for T. Since $c_{top}^G(T_eG)$ maps to $c_{top}^T(T_eG) = 0$ under the inclusion $\Lambda_G \hookrightarrow \Lambda_T$, we see $c_{top}^G(T_eG) = 0$. **Example 2.4.** For $G = B^+$ acting on $X = \mathbb{P}^{n-1}$, $X^G = \{p_1\}$ consists of only one point, so in this case there is no isomorphism after localizing.

Remark 2.5. When X is formal, so H_T^*X is free over Λ , it follows that $H_T^*X \hookrightarrow H_T^*X^T = \bigoplus_{p \in X^T} \Lambda$ is injective when X^T is finite. We will describe the image later.

3

If X^G is not finite, and Y is a component, then the composition

$$H_G^*Y \to H_G^*X \to H_G^*Y$$

is given by multiplication by $c_d^G(N)$, where $d = \operatorname{codim}(Y, X)$ and $N = N_{Y/X}$ is the normal bundle. (This makes sense, since Y is always smooth; see [Ive72] for more general conditions.) When $H^k BG = 0$ for k odd, we have $H_G^* Y = \Lambda \otimes H^* Y$, and $c_d^G(N) = \sum_{i=0}^d c_i \otimes y_i$, with $c_i \in \Lambda^{2i}$ and $y_i \in H^{2d-2i}Y$; in fact, $y_d = 1$. Restricting to $p \in Y$, then, $c_d^G(N)$ restricts to $c_d = c_d^G(N_p)$. In fact, this is independent of the choice of p, since N is locally trivial as a G-bundle.

When G = T is a torus, we claim that if c_d is contained in a multiplicative set S in Λ , then $c_d^T(N)$ is invertible in $S^{-1}H_T^*Y$. Indeed, the elements y_i are nilpotent for i < d (under mild hypotheses on Y guaranteeing $H^jY = 0$ for $j \gg 0$, e.g., Y is an algebraic variety). As a consequence, we have the following:

Proposition 3.1. If H^*X^T is free, with $\operatorname{rk} H^*X^T \ge \operatorname{rk} H^*X$, then equality holds, and the maps

$$S^{-1}H_T^*X^T \to S^{-1}H_T^*X \to S^{-1}H_T^*X^T$$

are isomorphisms, for any S containing $c_{top}^T(N_p)$ for all $p \in X^T$.

References

- [Gor-Kot-Mac98] M. Goresky, R. Kottwitz, and R. MacPherson, "Equivariant cohomology, Koszul duality, and the localization theorem," *Invent. Math.* 131 (1998), no. 1, 25–83.
- [Ive72] B. Iversen, "A fixed point formula for action of tori on algebraic varieties," Invent. Math. 16 (1972) 229–236.