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We begin with an answer to the challenge posed in the last lecture. For
a torus T acting on Pn−1 via characters χ1, . . . , χn, we have seen that
H∗

T Pn−1 = Λ[ζ]/(
∏

(ζ + χi)) has basis 1, x1, . . . , xn−1, where

xk = [{[0 : · · · : 0 : ∗ · · · : ∗]}]T (first k coordinates are 0)

=

k
∏

i=1

(ζ + χi).

Claim (D. Anderson). In this basis, multiplication is given by

xi · xj = xi+j +
∑

j≤k≤i+j

ckijxk,

where, setting r = i+ j − k,

ckij =
∑

1≤p1<···<pr≤i

r
∏

s=1

(χps
− χps+j+1−s).

This can be proved by induction on i, using

xi = x1 · xi−1 − (χ1 − χi)xi−1

and the identity

ckij = ck−1
i−1,j + (χi − χk+1)c

k
i−1,j ,

for i ≤ j ≤ k ≤ i+ j − 2.
It is also a special case of a theorem for Grassmann varieties [Knu-Tao03],

which we will see later. Even in the case of projective space, though, we do
not know a formula for ckij which makes the symmetry ckij = ckji evident.

1

Example 1.1. Let T = C∗ act on P2 with characters 0, t, 2t; that is, g ∈ T
acts by the matrix diag(1, g, g2). The fixed points are p1 = [1 : 0 : 0], p2 =
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[0 : 1 : 0], and p3 = [0 : 0 : 1]. Every closed T -invariant curve is isomorphic
to P1, containing two of these fixed points. Specifically, they are the lines

X1 = 0, with character ± t;

X2 = 0, with character ± 2t;

X3 = 0, with character ± t;

and, for all λ 6= 0, the conics

X2
2 − λX1X3 = 0, with character ± t,

passing through p1 and p3.
We have H∗

T P2 = Λ[ζ]/ζ(ζ + t)(ζ + 2t) →֒ Λ ⊕ Λ ⊕ Λ, by the map ζ 7→
(0,−t,−2t). The image consists of triples (u1, u2, u3) such that

(i) u2 − u1 is divisible by t and u3 − u1 is divisible by 2t, so u3 − u2 is
divisible by t, and

(ii) u1 − 2u2 + u3 is divisible by 2t2.

This is true for any coefficient ring R in which 2 is not a zerodivisor. (When
2 is a zerodivisor, the restriction map is not injective.) To see (i) must hold,
consider the compositions H∗

T P2 → H∗
T ({Xi = 0}) → Λ⊕3. Condition (ii) is

also part of a general story, as we will see below.

Remark 1.2. Singular curves can occur as T -invariant curves. Indeed, if
C∗ acts by characters 0, t, 3t, one has orbit closures given by the cuspidal
curves X3

2 − λX2
1X3.

If χ is a non-trivial character of T , then the action of T on P1 via χ,−χ
induces an action on the nodal curve P1/(0 ∼ ∞). Can this occur as an
invariant curve in a smooth space X? This would be useful to know: for
example, if the characters χ,−χ, χ3, . . . , χn occur at some fixed point, could
the first two characters come from a nodal T -invariant curve?

Proposition 1.3. Let X be a compact (proper) nonsingular algebraic variety
which is equivariantly formal with respect to a T -action, and assume H∗

TX

injects into H∗
TX

T . If E ⊂ X is a T -invariant curve, not contained in XT ,
then E cannot have a node.

Proof. A note p ∈ E would be a fixed point, and would be the only fixed
point on E: resolving the singularity, we get Ẽ ∼= P1, where we know the
action by ±χ has the two preimages of p for fixed points. Then [E]T 7→

χ− χ = 0 ∈ H∗
T (p), and also [E]T 7→ 0 at the other components of XT . It

follows that [E]T = 0 in H∗
TX, so [E] = 0 in H∗X.

For X proper and algebraic, this is impossible. In fact, there is always a
hypersurface H meeting E properly, so the H · E = [H] · [E] is nonzero, a
contradiction. �

Does the proposition remain true if X is a compact complex manifold?
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2. Localization (integration) formula

Proposition 2.1. Let X be a nonsingular variety, equivariantly formal with
respect to an action of a torus T , with finitely many fixed points. Let ρ :
X → pt be the projection. Then for u ∈ H∗

TX, with images up = i∗p(u) in
H∗

T (p) = Λ,

ρ∗(u) =
∑

p∈XT

up

cTtop(TpX)
.

Proof. Consider the diagram

H∗
TX

T i∗
- H∗

TX
i∗
- H∗

TX
T =

⊕

H∗
T (p)

‖
⊕

H∗
T (p) - H∗

T (pt),

ρ∗
?

where the bottom map is given by addition. The square commutes by func-
toriality of the Gysin map, for the composition p→ X → pt.

It suffices to prove the proposition after inverting
∏

cTtop(TpX), when the
top maps become isomorphisms. Thus we reduce to the case u = (ip)∗(v).
In this case, up = i∗p(ip)∗(v) = cTtop(TpX) · v, and uq = 0 for q 6= p. Since
ρ∗(u) = ρ∗(ip)∗(v) = v, the proposition follows. �

Example 2.2. LetX = Pn−1, with T acting by distinct characters χ1, . . . , χn,
so the fixed points are p1, . . . , pn, and H∗

TX = Λ[ζ]/(
∏

(ζ+χi)). Since ρ∗(ζ
k)

is 0 if k < n− 1 and 1 if k = n− 1, we the following (nonobvious) algebraic
identity:

n
∑

i=1

(−χi)
k

∏

j 6=i(χj − χi)
=

{

0 if k < n− 1;
1 if k = n− 1.

For general u ∈ H∗
TX, this says

ρ∗u =

n
∑

i=1

ui
∏

j 6=i(χj − χi)
.

In the situation of Example 1.1, where X = P2 and the characters are 0, t,
and 2t, this is

ρ∗(u) =
u1

2t2
+

u2

−t2
+
u3

2t2
=
u1 − 2u2 + u3

2t2
,

which gives another reason for the condition that u1 − 2u2 + u3 be divisible
by 2t2 (since ρ∗(u) ∈ Λ).

Say a nontrivial character χ of T has coefficient c ∈ Z>0 if, choosing
an isomorphism T ∼= (C∗)m (so M ∼= Zm), we have χ =

∑

aiti, and c =
gcd(a1, . . . , am). Thus χ = c ·η, where η is a character with ker η a subtorus,
and T ∼= ker η × C∗.
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Proposition 2.3. Let T be a torus acting on X = Pn−1 by characters
χ1, . . . , χn.

(i) XT is finite if and only if χ1, . . . , χn are distinct, and in this case
XT = {p1, . . . , pn}.

(ii) Assuming XT is finite, H∗
TX → H∗

TX
T is injective if and only if

the coefficients of the characters χi − χj are non-zerodivisors in R.

(iii) Assuming XT is finite and H∗
TX → H∗

TX
T = Λ⊕n is injective, a

tuple (u1, . . . , un) is in the image if and only if
∑

i6∈{p1,...,pr}

ui
∏

j 6∈{i,p1,...,pr}
(χj − χi)

∈ Λ,

for all 0 ≤ r ≤ n− 1 and 1 ≤ p1 < · · · < pr ≤ n. In fact, it suffices
that one such sum be in Λ for each 0 ≤ r ≤ n− 1.

Note that for r = n− 2, with {p1, . . . , pr} = {1, . . . , n} r {k, ℓ}, this says

uk

χℓ − χk
+

uℓ

χk − χℓ
∈ Λ;

that is, uk − uℓ is divisible by χk − χℓ.

Proof. We have seen (i) (in ?), and the “if” direction of (ii) (in ?). For the
converse in (ii), note that if a(χk − χℓ) = 0 for some nonzero a ∈ R, then
for u = a ·

∏

i6=ℓ(ζ + χi), ui = 0 for i 6= ℓ, and uℓ = a ·
∏

i6=ℓ(χi − χℓ) = 0,
but u 6= 0.

The “only if” part of (iii) simply says ρ∗(u ·
∏r

i=1(ζ +χpi
)) is in Λ. (This

is also the pushforward of the restriction of u to Y = {Xp1
= Xp2

= · · · =
Xpr

= 0}.)
For the converse, suppose u ∈ S−1Λ[ζ]/

∏

(ζ + χi), where S is the multi-
plicative set generated by χi−χj, and assume there exist monic polynomials
P0, . . . , Pn−1 ∈ Λ[ζ] such that degPr = r and ρ∗(u·Pr) ∈ Λ for 0 ≤ r ≤ n−1.

Then u ∈ Λ[ζ]/
∏

(ζ + χi). This is simple algebra: write u =
∑n−1

k=0 akζ
k

with ak ∈ S−1Λ, and use

ρ∗(ζ
k) =

{

1 for k = n− 1;
0 for k < n− 1

to see an−1−r = ρ∗(u ·Pr) ∈ Λ for 0 ≤ r ≤ n− 1. (In fact, the case r = n− 1
is redundant, since we assume all ui are in Λ.) �

3

One can find many theorems in the literature describing the image of the
inclusion H∗

TX →֒ H∗
TX

T when X is formal and XT is finite of cardinality at
least (and therefore equal to) the rank of H∗X. Usually X is also assumed
to be projective. For example, if S ⊂ T is a subtorus (isomorphic to (C∗)k),



EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY 5

so Y = XS is nonsingular (see [Ive72]) and T invariant; since

H∗
TX

- H∗
TX

T

H∗
TY

�

-

commutes, a class in H∗
TX

T which comes from H∗
TX must lift to H∗

TY for
each such Y (see [Cha-Skj74]).

If Y is a disjoint union of P1’s and isolated fixed points, then (up) ∈ H∗
TX

T

lifts to H∗
TY if and only if up − uq is divisible by χ whenever p and q are on

the same P1, where the action is by χ. According to [Gor-Kot-Mac98], this
condition is also sufficient for (up) be in the image ofH∗

TX, if there are only a
finite number of T -invariant curves. There are some recent generalizations of
this result, allowing infinitely many invariant curves, and using Z coefficients
[Bra-Chen-Sot07, Eva05].

Here we will give a version that is easy to prove and implies the result
of [Gor-Kot-Mac98] in the case of finitely many invariant curves. Let R be
any UFD. For a character χ with coefficient c, write χ = c · η, and say the
direction of χ is ±η. Two characters are parallel if they have the same
direction. Note that two characters are relatively prime in Λ exactly when
they are not parallel and their coefficients are relatively prime in R.

Assume T acts equivariantly formally on a smooth compact algebraic
variety X, with a finite fixed point set XT of cardinality equal to the rank
of H∗X. For any two characters χ and χ′ that occur in the tangent spaces
at fixed points, assume that

(∗) if χ and χ′ occur at the same fixed point, they are relatively prime
in Λ.

It follows that for each χ occurring at any fixed point p, there is a unique
T -invariant curve E = Eχ,p passing through p with tangent χ (see Lemma
3.2 below); such an E passes through one other fixed point q with tangent
−χ (by Exercise (4.1.8)), so Eχ,p = E−χ,q.

Theorem 3.1. With these assumptions, an element (up) ∈ H∗
T (XT ) is in

the image of H∗
TX if and only if, for each T -invariant curve E = Eχ,p =

E−χ,q, up − uq is divisible by χ.

Proof. The “only if” direction is clear. To see the condition is sufficient,
consider an irreducible factor f ∈ Λ of a character that occurs at a fixed
point, so f is either a prime in R or a character with coefficient 1. Let Y = Yf

be the union of all curves Eχ,p for all χ divisible by f and all p, together with
the isolated fixed points where f does not divide the characters. Note that
by the assumption (∗), Yf is smooth: two curves in Y cannot pass through
the same fixed point. We have maps

H∗
TX

T → H∗
TYf → H∗

TX → H∗
TYf → H∗

TX
T .(1)
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For any f , the determinant of the map H∗
TYf → H∗

TX → H∗
TYf is multipli-

cation by a product ψ of characters, all of which are relatively prime to f .
Indeed, the characters occurring in the normal bundle to Yf are the other
characters at fixed points contained in curves E in Yf , and all the characters
at isolated points, not divisible by f . The hypothesis that up − uq be divis-
ible by χ implies that (up) comes by restriction from H∗

TYf , and it follows
that

(a) ψ · (up) comes from H∗
TX (in fact, from the Gysin image of H∗

TYf ).

We also know that

(b) ϕ · (up) comes from H∗
TX (in fact, as a Gysin push-forward from

H∗
TX

T ), where ϕ is the product of all the characters at all the fixed
points.

Now simple algebra implies that ϕ is a denominator for (up), but that no
character χ occurring in ϕ is actually needed. Indeed, take a basis {eα} of
H∗

TX over Λ, and write u =
∑

rαeα, with rα in the quotient field of Λ. By
(b), the denominator of rα is a product of characters χ, but by (a), no χ
can occur. �

Lemma 3.2. Let a torus T act on a nonsingular algebraic variety, with
finitely many fixed points. If p is an isolated fixed point (so the weights
χ1, . . . , χn are nonzero), then there are finitely many T -invariant curves
through p if and only if no two of the weights at p are parallel. In this case,
there are n such curves, each nonsingular at p, and tangent to a correspond-
ing χi.

Proof. There is a neighborhood of p in X equivariantly isomorphic to a
neighborhood of 0 in TpX. (One way to see this is to find an analytic
neighborhood by using a maximal compact torus K ∼= (S1)r ⊂ T , choose
a K-invariant Hermitian metric on X, and use the exponential mapping.
Another is to find an étale neighborhood using the “étale slice theorem”:
see [GIT, p. 198].) Thus it suffices to prove the lemma for X = Cn, with T
acting by characters χ1, . . . , χn. If, say, χ1 and χ2 are parallel, one can find
infinitely many (possibly singular) T -invariant curves in the (X1,X2)-plane,
as in Example 1.1. Conversely, if no two are parallel, any point (X1, . . . ,Xn)
with two or more nonzero coordinates has a T -orbit of dimension at least 2,
so the T -invariant curves are just the n axes. �

Corollary 3.3 (GKM). Let T act equivariantly formally on a smooth com-
pact algebraic variety X, with finite fixed point set of cardinality equal to the
rank of H∗X, and a finite number of T -invariant curves. Let R be a field
containing Q. Then (up) is in the image of H∗

TX if and only if, for each
T -invariant curve E passing through fixed points p and q with character ±χ,
up − uq is divisible by χ.

Proof. It suffices to verify condition (∗); this follows from Lemma 3.2. �
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4. (Continuation, to be integrated into the above)

When a torus T acts on a nonsingular variety X, each connected compo-
nent P of XT is nonsingular. The composition

H∗
TP → H∗

TX → H∗
TP

is multiplication by the equivariant top Chern class cTd (NP/X) of the normal
bundle. This can be written as

cTd (NP/X) = χ1 · · · · · χd +

d
∑

i=1

aici,

where χ1, . . . , χd are the (nonzero) characters of T on a fiber of NP/X at any

point of P , ci ∈ H2i(P ), and ai ∈ Λi. Since the ci are nilpotent, it follows
that cTd (NP/X) is ivertible in S−1H∗

TP , where S is the multiplicative set in
Λ generated by M r {0}. Therefore

S−1H∗
TX

T → S−1H∗
TX → S−1H∗

TX
T

is an isomorphism. In particular,

Lemma 4.1. The following are equivalent:

(i) H∗
TX

T → H∗
TX becomes surjective after localizing at S.

(ii) H∗
TX

T → H∗
TX becomes an isomorphism after localizing at S.

(iii) H∗
TX → H∗

TX
T becomes injective after localizing at S.

(iv) H∗
TX → H∗

TX
T becomes an isomorphism after localizing at S.

Let f : X → Y be a proper, T -equivariant morphism of nonsingular
varieties. For each connected component P of XT , f(P ) is contained in
a unique component Q of Y T ; let fP : P → Q be the induced map. For
x ∈ H∗

TX, let x|P denote the restriction of x to H∗
TP , and similarly write

y|Q for y ∈ H∗
TY .

Proposition 4.2 (Localization formula). Assume X satisfies the conditions
of Lemma 4.1. Then for all x in H∗

TX, and all components Q of Y T ,

f∗(x)|Q = cTtop(NQ/Y )
∑

f(P )⊂Q

(fP )∗

(

x|P

cTtop(NP/X)

)

in S−1H∗
TQ.

Proof. It suffices to prove the formula for x of the form (ιP )∗(z), for z ∈
H∗

TP , P a component of XT . The LHS is ι∗Q ((ιQ)∗(fP )∗(z)), which is

cTtop(NQ/Y ) · (fP )∗(z) when f(P ) ⊂ Q, and is 0 otherwise. Since x|P =

(ιP )∗(ιP )∗(z) = cTtop(NP/X) · z, and x|P ′ = 0 for P ′ 6= P , the RHS is also

equal to cTtop(NQ/Y ) · (fP )∗(z). �

When H∗Q is torsion-free, H∗
TQ → S−1H∗

TQ is an embedding, and the
formula is an identity in H∗

TQ = Λ ⊗Z H
∗Q.
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When Y is a point, one obtains the “integration formula”

f∗(x) =
∑

P

(fP )∗

(

x|P

cTtop(NP/X)

)

.

When P is a point, cTtop(NP/X) is the product of the (nonzero) characters
of T on the tangent space to X at P .

Exercise 4.3. When f is a closed embedding, and f(P ) ⊂ Q, NP/X is a
subbundle of NQ/Y |P . If EP/Q denotes the quotient bundle, then

f∗(x)|Q =
∑

f(P )⊂Q

(fP )∗(c
T
top(EP/Q) · x|P ).
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