EQUIVARIANT COHOMOLOGY IN ALGEBRAIC
GEOMETRY
LECTURE FIVE: PROJECTIVE SPACE; LOCALIZATION II

WILLIAM FULTON
NOTES BY DAVE ANDERSON

We begin with an answer to the challenge posed in the last lecture. For
a torus T acting on P"! via characters xi,...,Xn, we have seen that
H3P"1 = A[C]/(TT(C + xi)) has basis 1,21, .., 2,_1, where

zp, = [{[0:--:0:%---: %} (first k coordinates are 0)
k
= H(C + Xi)-
i=1

Claim (D. Anderson). In this basis, multiplication is given by
T Xj = Titj+ Z cfjwk,
J<k<ity

where, setting r =i+ j — k,

T
ij = Z H(Xps = Xpsti+1-s)-

1<p1<-<pr<i s=1
This can be proved by induction on %, using
T =1 e — (X1 — Xi)Ti-1

and the identity

ko k-1 k
cij = ¢i1;+ (i — Xk+1)¢i15

fori<j<k<i+j—2.
It is also a special case of a theorem for Grassmann varieties [Knu-Tao03],
which we will see later. Even in the case of projective space, though, we do

not know a formula for cfj which makes the symmetry cfj = c?i evident.
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Example 1.1. Let T = C* act on P? with characters 0,¢,2¢t; that is, g € T
acts by the matrix diag(1,g,g?). The fixed points are p; = [1:0: 0], po =
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[0:1:0], and p3 =[0:0:1]. Every closed T-invariant curve is isomorphic
to P!, containing two of these fixed points. Specifically, they are the lines

X1 =0, with character +t;
Xo =0, with character =+ 2t;
X3 =0, with character = ¢;

and, for all A # 0, the conics
X22 — AX1 X3 =0, with character +t¢,

passing through p; and ps.
We have HiP? = A[¢]/¢(¢ +)(C +2t) — A ® A @ A, by the map ¢
(0, —t, —2t). The image consists of triples (uj,usg,us) such that
(i) ug —uy is divisible by ¢ and us — w; is divisible by 2t, so usz — us is
divisible by ¢, and
(ii) w1 — 2ug + ug is divisible by 2¢2.
This is true for any coefficient ring R in which 2 is not a zerodivisor. (When
2 is a zerodivisor, the restriction map is not injective.) To see (i) must hold,
consider the compositions H3P? — H%({X; = 0}) — A®3. Condition (ii) is
also part of a general story, as we will see below.

Remark 1.2. Singular curves can occur as T-invariant curves. Indeed, if
C* acts by characters 0,t,3t, one has orbit closures given by the cuspidal
curves Xj — AX?X3.

If x is a non-trivial character of T, then the action of T on P! via x, —x
induces an action on the nodal curve P!/(0 ~ 0o). Can this occur as an
invariant curve in a smooth space X? This would be useful to know: for
example, if the characters x, —x, x3, - - - , Xn Occur at some fixed point, could
the first two characters come from a nodal T-invariant curve?

Proposition 1.3. Let X be a compact (proper) nonsingular algebraic variety
which is equivariantly formal with respect to a T-action, and assume Hp X
injects into H}XT. If E C X is a T-invariant curve, not contained in X7,
then E cannot have a node.

Proof. A note p € E would be a fixed point, and would be the only fixed
point on E: resolving the singularity, we get E = P!, where we know the
action by 4y has the two preimages of p for fixed points. Then [E]T —
X —Xx =0¢€ Hj(p), and also [E]" — 0 at the other components of X7. It
follows that [E]” =0 in H:X, so [E] =0 in H*X.

For X proper and algebraic, this is impossible. In fact, there is always a
hypersurface H meeting E properly, so the H - E = [H] - [E] is nonzero, a
contradiction. O

Does the proposition remain true if X is a compact complex manifold?
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2. LOCALIZATION (INTEGRATION) FORMULA

Proposition 2.1. Let X be a nonsingular variety, equivariantly formal with
respect to an action of a torus T, with finitely many fixed points. Let p :
X — pt be the projection. Then for u € H7.X, with images u, = iy(u) in
Hip(p) = A,
Up
u) =

peXT Ctop

Proof. Consider the diagram

Hy X" —» HiX — Hi X" = P Hi(p)

| P*l
D Hi(p) — Hi(pt),

where the bottom map is given by addition. The square commutes by func-
toriality of the Gysin map, for the composition p — X — pt.

It suffices to prove the proposition after inverting [ cg;p(TpX ), when the
top maps become isomorphisms. Thus we reduce to the case u = (ip)«(v).
In this case, up = iy (ip)«(v) = cg,p(TpX) -v, and ug = 0 for ¢ # p. Since
p«(u) = ps(ip)«(v) = v, the proposition follows. O

Example 2.2. Let X = P"~! with T acting by distinct characters x1, .. ., Xn,
so the fixed points are py, ..., pn, and H5X = A[C]/(TT(¢+x:)). Since p.(CF)
isOif k<n—1and1if k=n—1, we the following (nonobvious) algebraic
identity:

Z B {0 if k<n—1;
mej Xz) 1 ifk=n—1

For general u € HTX this says
PxU =
Z H];éz )

In the situation of Example 1.1, where X = P? and the characters are 0, t,
and 2t, this is
+—5+ =5

px(u) = 2t2 2% 22 ’

which gives another reason for the condition that u; — 2us + uz be divisible
by 2t2 (since p.(u) € A).

U3 Uy — 2uo + ug

Say a nontrivial character x of T has coefficient ¢ € Z- if, choosing
an isomorphism 7" = (C*)™ (so M = Z™), we have x = ) a;t;, and ¢ =
ged(ag, ..., am). Thus x = ¢-n, where 7 is a character with ker 7 a subtorus,
and T = kern x C*.
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Proposition 2.3. Let T be a torus acting on X = P"! by characters
X1y+++5 Xn-

(i) X7T is finite if and only if x1,...,Xxn are distinct, and in this case

X" =A{p1,...,pn}-
(i) Assuming X7 is finite, Hp X — H}XT is injective if and only if
the coefficients of the characters x; — x; are non-zerodivisors in R.

(iii) Assuming X7 is finite and H3X — HAZXT = A®" is injective, a
tuple (u1,...,u,) is in the image if and only if

Us

€ A,

ig{p17”'7pr} H]f{lvplvvpf}(xj o XZ)

forall0<r<mn—1and1l <p; <---<p, <n. In fact, it suffices
that one such sum be in A for each 0 <r <n — 1.
Note that for » =n — 2, with {p1,...,p.} ={1,...,n} ~ {k, ¢}, this says
u u
LA d eA;
Xe — Xk Xk — Xt

that is, ux — uy is divisible by xx — x¢-

Proof. We have seen (i) (in 7), and the “if” direction of (ii) (in ?). For the
converse in (ii), note that if a(xx — x¢) = 0 for some nonzero a € R, then
foru:a']_[i#(C—l—xi), u; = 0 for i # £, and uy :a'Hi#(Xi—Xé) =0,
but u # 0.

The “only if” part of (iii) simply says p.(u-[[;_;(C+ xp,;)) is in A. (This
is also the pushforward of the restriction of u to Y = {X,, = X, =--- =
Xp, =0}

For the converse, suppose u € STA[C]/ (¢ + x:), where S is the multi-
plicative set generated by x; — x;, and assume there exist monic polynomials
Py, ..., Py—1 € A[(] such that deg P, = r and p,(u-P,) € Afor0 <r <n-—1.
Then u € A[C]/T1(C 4 xi). This is simple algebra: write u = 3 7 —g axC*
with a;, € S~'A, and use

g | 1 fork=n—-1;

p+(< )_{ 0 fork<n-—1
tosee ap—1—p = ps(u-P.) € Afor 0 <r <n—1. (In fact, the case r =n—1
is redundant, since we assume all u; are in A.) (]

3

One can find many theorems in the literature describing the image of the
inclusion H%X — H4XT when X is formal and X7 is finite of cardinality at
least (and therefore equal to) the rank of H*X. Usually X is also assumed
to be projective. For example, if S C T is a subtorus (isomorphic to (C*)¥),
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so Y = X* is nonsingular (see [Ive72]) and T invariant; since

HiX HiXT

N

HLYY

commutes, a class in H7.X T which comes from H7X must lift to H}Y for
each such Y (see [Cha-Skj74]).

If Y is a disjoint union of P!’s and isolated fixed points, then (u,) € H5XT
lifts to H}.Y if and only if u, — u, is divisible by x whenever p and ¢ are on
the same P!, where the action is by x. According to [Gor-Kot-Mac98], this
condition is also sufficient for () be in the image of H}.X, if there are only a
finite number of T-invariant curves. There are some recent generalizations of
this result, allowing infinitely many invariant curves, and using Z coeflicients
[Bra-Chen-Sot07, Eva05].

Here we will give a version that is easy to prove and implies the result
of [Gor-Kot-Mac98] in the case of finitely many invariant curves. Let R be
any UFD. For a character y with coefficient ¢, write x = ¢ -7, and say the
direction of x is £71. Two characters are parallel if they have the same
direction. Note that two characters are relatively prime in A exactly when
they are not parallel and their coefficients are relatively prime in R.

Assume T acts equivariantly formally on a smooth compact algebraic
variety X, with a finite fixed point set X7 of cardinality equal to the rank
of H*X. For any two characters y and x’ that occur in the tangent spaces
at fixed points, assume that

(x) if x and x’ occur at the same fixed point, they are relatively prime
in A.
It follows that for each y occurring at any fixed point p, there is a unique
T-invariant curve E = E, , passing through p with tangent x (see Lemma
3.2 below); such an E passes through one other fixed point ¢ with tangent
—x (by Exercise (4.1.8)), so Ey, = E_y 4.

Theorem 3.1. With these assumptions, an element (u,) € HA(XT) is in
the image of H} X if and only if, for each T-invariant curve E = E, , =
E_, 4, up —ug is divisible by x.

Proof. The “only if” direction is clear. To see the condition is sufficient,
consider an irreducible factor f € A of a character that occurs at a fixed
point, so f is either a prime in R or a character with coefficient 1. Let Y =Y}
be the union of all curves E, , for all x divisible by f and all p, together with
the isolated fixed points where f does not divide the characters. Note that
by the assumption (x), Y} is smooth: two curves in Y cannot pass through
the same fixed point. We have maps

(1) Hy X" — HYY; — HpX — HyY; — Hp X7,
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For any f, the determinant of the map H.Y; — H7X — H7Yy is multipli-
cation by a product v of characters, all of which are relatively prime to f.
Indeed, the characters occurring in the normal bundle to Y} are the other
characters at fixed points contained in curves E in Y}, and all the characters
at isolated points, not divisible by f. The hypothesis that u, — u, be divis-
ible by x implies that (u,) comes by restriction from H7}.Y}, and it follows
that

(a) ¥+ (up) comes from H7X (in fact, from the Gysin image of H}.Y7).

We also know that

(b) ¢ - (up) comes from H}X (in fact, as a Gysin push-forward from
HiLX T, where ¢ is the product of all the characters at all the fixed
points.

Now simple algebra implies that ¢ is a denominator for (u,), but that no
character x occurring in ¢ is actually needed. Indeed, take a basis {e,} of
H3X over A, and write u = )  rqo€q, with r, in the quotient field of A. By
(b), the denominator of 7, is a product of characters x, but by (a), no x
can occur. O

Lemma 3.2. Let a torus T act on a nonsingular algebraic variety, with
finitely many fixed points. If p is an isolated fixed point (so the weights
X1s---5Xn are nonzero), then there are finitely many T-invariant curves
through p if and only if no two of the weights at p are parallel. In this case,
there are n such curves, each nonsingular at p, and tangent to a correspond-
ing Xi-

Proof. There is a neighborhood of p in X equivariantly isomorphic to a
neighborhood of 0 in 7,X. (One way to see this is to find an analytic
neighborhood by using a maximal compact torus K = (S')" C T, choose
a K-invariant Hermitian metric on X, and use the exponential mapping.
Another is to find an étale neighborhood using the “étale slice theorem”:
see [GIT, p. 198].) Thus it suffices to prove the lemma for X = C", with T
acting by characters x1, ..., xn. If, say, x1 and xs are parallel, one can find
infinitely many (possibly singular) T-invariant curves in the (X7, X2)-plane,
as in Example 1.1. Conversely, if no two are parallel, any point (X7,...,X})
with two or more nonzero coordinates has a T-orbit of dimension at least 2,
so the T-invariant curves are just the n axes. O

Corollary 3.3 (GKM). Let T act equivariantly formally on a smooth com-
pact algebraic variety X, with finite fized point set of cardinality equal to the
rank of H*X, and a finite number of T-invariant curves. Let R be a field
containing Q. Then (up) is in the image of H1. X if and only if, for each
T-invariant curve E passing through fixed points p and q with character ty,
up — uq 18 divisible by x.

Proof. 1t suffices to verify condition (x); this follows from Lemma 3.2. O
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4. (CONTINUATION, TO BE INTEGRATED INTO THE ABOVE)

When a torus T acts on a nonsingular variety X, each connected compo-
nent P of X7 is nonsingular. The composition

H}P — H}X — H}P

is multiplication by the equivariant top Chern class cg(N p/x) of the normal
bundle. This can be written as

d
ci(Npjx) =x1---xa+ ) aici,
i=1
where X1, ..., Xxq are the (nonzero) characters of T' on a fiber of Np,yx at any

point of P, ¢; € H*(P), and a; € A’. Since the ¢; are nilpotent, it follows
that ¢l (Np /x) is ivertible in S ~LHXP, where S is the multiplicative set in
A generated by M ~ {0}. Therefore

ST HAXT - ST HAX — STTHRXT
is an isomorphism. In particular,

Lemma 4.1. The following are equivalent:
(i) H}XT — H5X becomes surjective after localizing at S.
(ii) H3XT — H:X becomes an isomorphism after localizing at S.
(ili) H3 X — H:’FXT becomes injective after localizing at S.
(iv) Hp X — Hp X T becomes an isomorphism after localizing at S.

Let f : X — Y be a proper, T-equivariant morphism of nonsingular
varieties. For each connected component P of X7, f(P) is contained in
a unique component Q of Y7; let fp : P — @ be the induced map. For
x € H; X, let z|p denote the restriction of x to H}P, and similarly write
ylg for y € HLY.

Proposition 4.2 (Localization formula). Assume X satisfies the conditions
of Lemma 4.1. Then for all x in H3.X, and all components Q) of YT,

o = T (N Y
f«(@)|Q = ciop( Q/Y)f(g):CQ(fp) <Cg;p(NP/X)>

n S‘lH}Q.

Proof. Tt suffices to prove the formula for x of the form (tp).(2), for z €
H%P, P a component of X7. The LHS is v ((L@)«(fP)«(2)), which is
op(Ngyy) - (fP)«(2) when f(P) C @, and is 0 otherwise. Since z|p =
(tp)*(tp)+(2) = ¢ly(Np/x) - 2, and x|pr = 0 for P’ # P, the RHS is also
equal to ¢y, (Ng/y) - (fp)«(2). O

When H*Q) is torsion-free, H7.() — S_lHr}Q is an embedding, and the
formula is an identity in H7.Q = A ®z H*Q.
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When Y is a point, one obtains the “integration formula”

fulw) = S () [ E

Ja) Cg;p(NP/X)

When P is a point, cg;p(N p/x) is the product of the (nonzero) characters
of T" on the tangent space to X at P.

Exercise 4.3. When f is a closed embedding, and f(P) C Q, Np/x is a
subbundle of Ny y|p. If Ep/q denotes the quotient bundle, then

fe(@)lg = Z (fP)+(ctop(Epsq) - z|p).
f(P)cQ
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