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As an example of the localization theorem of last lecture, consider X =
Gr(k, Cn), with the standard action of T = (C∗)n. There is a fixed point
pA = Span{ea1

, . . . , eak
} for each subset A = {a1 < · · · < ak} ⊂ {1, . . . , n},

and so

#XT = rkH∗X =

(

n

k

)

,

which can also be thought of as the number of paths from the lower-left
corner to the upper-right corner of a k by n− k box, using unit steps up or
right. insert Young diagram.

The tangent space at pA is Hom(S,Q), where S is the vector space cor-
responding to pA, and Q = Cn/S. This has basis {e∗a ⊗ eb | a ∈ A, b 6∈ A} so
the characters of the torus action are ta − tb, for a ∈ A and b 6∈ A. Given
a ∈ A and b 6∈ A, set χ = ta−tb, and let A′ = (Ar{a})∪{b}, so −χ = tb−ta
is a character at pA′ . The corresponding curve Eχ,pA

consists of points of
the form

Span({eq | q ∈ A r {a}} ∪ {sea + teb | [s : t] ∈ P
1}).

Write (uA) = (upA
) ∈ H∗

TXT . Thus the condition for (uA) to be in H∗
T X

is that uA − uA′ be divisible by ta − tb, for all A,A′ related by an exchange
as above.

Example 1.1. For X = Gr(2, 4), this can be encoded in the following
graph: insert moment graph.
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The equivariant cohomology of the Grassmannian generalizes the classi-
cal story, so we review the key facts about its ordinary cohomology first,
referring to [Ful97] for proofs and details. Let V be an n-dimensional vec-
tor space, set ℓ = n − k, and let X = Gr(k, V ). We also write X =
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2 §6 GRASSMANNIANS

Gr(k−1, P(V )) ∼= Gr(k−1, Pn−1). On X, there is the tautological sequence

0 → S → VX → Q → 0,

where S has rank k and Q has rank ℓ.

2.1. Presentation. The cohomology ring is

H∗X = Z[c1(Q), . . . , cℓ(Q)]/(ℓ relations),

where the relations are given by the vanishing of the p by p determinants
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for k < p ≤ n. (This says cp(S) = 0 for k < p ≤ n.) Equivalently, we can
write

H∗X = Z[c1(Q), . . . , cℓ(Q), c1(S), . . . , ck(S)],

modulo the relations coming from c(Q) · c(S) = c(V ) = 1.

2.2. Schubert basis. There is a basis of Schubert classes σλ. These are
indexed by partitions λ = (λ1 ≥ · · · ≥ λk ≥ 0), with λ1 ≤ ℓ; such a
partition can be identified with its Young diagram, which is the collec-
tion of boxes inside a k by ℓ rectangle, with λi boxes in the ith row. For
example, if λ = (6, 3, 1, 1, 0), the corresponding diagram is shown below.

The size of a partition is |λ| =
∑

λi, the number of boxes in its Young
diagram. The conjugate partition is the partition λ′ with λ′

j equal to the
number of boxes in the jth column of λ. Final zeroes in a partition are often
omitted.

Fix a complete flag F• in V . The classes σλ are

σλ = [Ωλ(F•)] ∈ H2|λ|X,

where Ωλ(F•) is the Schubert variety, defined by

Ωλ(F•) = {L ⊂ V | dim(L ∩ Fℓ+i−λi
) ≥ i for 1 ≤ i ≤ k}.

(One way to remember this definition is to note that |λ| is the codimension
of Ωλ, so λ = (0, 0, . . . , 0) should correspond to trivial conditions on L.) In
fact, only the “corners” of λ are needed, i.e., the conditions coming from
those i such that λi > λi+1 are sufficient.

The Schubert variety Ωλ(F•) is the closure of the set Ωo
λ(F•) where the

dimension of each intersection L ∩ Fj is as large as possible — so jumps
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in dimensions occur exactly at Fℓ+1−λ1
, Fℓ+2−λ2

, etc. By elementary linear
algebra (“echelon form”), Ωo

λ is isomorphic to affine space, so this is a cell.

2.3. “Giambelli” formula. A Schubert class can be expressed in terms of
Chern classes as follows:

σλ = sλ(c(Q)) := det(cλi+j−i)1≤i,j,≤k.

The determinant sλ(c(Q)) occuring here is a Schur determinant. (This is also
equal to sλ′(c(S∨)), where S∨ is the dual of S.) Note that this determinant
is unchanged by appending zeroes to the end of λ.

2.4. Poincaré duality. For a partition λ let λ∨ be its complement inside
the k by ℓ rectangle, so λ∨ = (ℓ−λk, ℓ−λk−1, . . . , ℓ− λ1). Poincaré duality

λ

λ∨

on X then has the following form:

〈σλ, σµ〉 =

∫

X

σλ · σµ =

{

1 if µ = λ∨;
0 otherwise.

Thus the Schubert basis is self-dual.

Remark 2.1. Schubert was one of the first to emphasize the utility of self-
dual bases in enumerative geometry. In particular, for Y ⊂ X the expansion
of the class [Y ] =

∑

aλσλ is determined by

aλ = [Y ] · σλ∨ = #(Y ∩ Ωλ∨(F•)),

for a general flag F•. Schubert used some version of this (and even of the
Künneth decomposition of the diagonal) for all the spaces he studied.

2.5. Pieri formula. For σi = σ(i,0,...,0) = ci(Q),

σi · σλ =
∑

σµ,

where the sum is over all µ obtained by adding i boxes to λ, with no two in
the same column.

(Similarly, for σ(1i) = σ(1,...,1,0,...,0) = ci(S
∨),

σ(1i) · σλ =
∑

σµ,

the sum over µ obtained by adding i boxes to λ with no two in a row.)
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2.6. Littlewood-Richardson rule. The Pieri formula is a special case of
a general rule for multiplying Schubert classes:

σλ · σµ =
∑

cν
λµσν ,

where cν
λµ is the number of ways to fill the boxes of ν r λ with µ1 1’s, µ2

2’s, etc., such that

(i) the filling is weakly increasing across rows;
(ii) the filling is strictly increasing down columns; and
(iii) when the numbers are read from right to left in rows, starting with

the first row, the numbers read up to any point satisfy

#1′s ≥ #2′s ≥ #3′s ≥ · · · .

Example 2.2. For λ = (2, 1, 1), µ = (3, 2, 1), and ν = (4, 3, 2, 1), one can
check that there are three fillings satisfying the above conditions:

1 1
1 2
2

3

1 1
1 2
3

2

1 1
2 2
3

1

Thus cν
λµ = 3. (Anders Buch’s “Littlewood-Richardson calculator”, avail-

able at http://www.math.rutgers.edu/~asbuch/lrcalc/, is very useful
for such computations.)

Remark 2.3. The Littlewood-Richardson rule was originally formulated
in the context of the representation theory of GLk (and of the symmetric
group). Here one has

Vλ ⊗ Vµ =
⊕

V
⊕cν

λµ
ν ,

where Vλ is the irreducible representation of GLk with highest weight λ.
(The original proofs of this were seriously flawed, though.)

It is somewhat mysterious that the same numbers should show up in
geometry. One reason is the role of Schur polynomials in both contexts:
the symmetric polynomial sλ(x1, . . . , xk) is the character of Vλ, and these
polynomials satisfy sλ · sµ =

∑

cν
λµsν . By the Pieri and Giambelli formulas,

there is a homomorphism from the ring of symmetric polynomials (which
has a basis of Schur polynomials) to H∗(Gr(k, n)) taking sλ to σλ.

3

Now consider equivariant cohomology H∗
GX, for G = GL(V ) and X =

Gr(k, V ). Recall that we have approximation spaces Em = Homo(V, Cm)
and Bm = Em/G = Gr(n, Cm), with

Em ×G X= Gr(k,E)

Bm

?

=Gr(n, Cm),
?
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where E ⊂ Cm
Bm

is the tautological subbundle of rank n, and the identifi-
cation in the top row is given by (Φ, L) 7→ Φ(L). Thus we are reduced to
studying a Grassmann bundle Gr(k,E) over a base variety B, instead of
just a Grassmann variety. Recall also that Λ = ΛG = Z[c1, . . . , cn].

On Gr(k,E), there is the tautological sequence

0 → Subk → EGr → Quotn−k → 0.

3.1. Presentation. We have

H∗Gr(k,E) = Λ[c1(Quot), . . . , cℓ(Quot)]/(ℓ relations),

where Λ = H∗B, and the relations say ci(Sub) = 0 for k < i ≤ n, as before.
On X, the bundles in the tautological sequence

0 → Sk → VX → Qn−k → 0

are equivariant, and V becomes the universal subbundle on Bm. In partic-
ular, we have

H∗
GX = Λ[cG

1 (Q), . . . , cG
ℓ (Q)]/(ℓ relations),

where Λ = Z[c1, . . . , cn] with ci = cG
i (V ), and the relations come from

cG(S) · cG(Q) = cG(V ) = 1 + c1 + · · · + cn.

3.2. Basis. Once again, there is an algebraic basis of the form sλ(cG(Q)),
for ℓ ≥ λ1 ≥ · · · ≥ λk ≥ 0. However, since G = GL(V ) acts transitively on
X, there are no invariant subvarieties, and we cannot do much more with
this group. If instead we consider the maximal torus T , or a Borel subgroup
B, there is more equivariant geometry available; we will see this in the next
lecture.
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