EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE SIX: GRASSMANNIANS

WILLIAM FULTON NOTES BY DAVE ANDERSON

1

As an example of the localization theorem of last lecture, consider $X = Gr(k, \mathbb{C}^n)$, with the standard action of $T = (\mathbb{C}^*)^n$. There is a fixed point $p_A = \text{Span}\{e_{a_1}, \ldots, e_{a_k}\}$ for each subset $A = \{a_1 < \cdots < a_k\} \subset \{1, \ldots, n\}$, and so

$$\#X^T = \operatorname{rk} H^*X = \binom{n}{k},$$

which can also be thought of as the number of paths from the lower-left corner to the upper-right corner of a k by n - k box, using unit steps up or right. insert Young diagram.

The tangent space at p_A is Hom(S, Q), where S is the vector space corresponding to p_A , and $Q = \mathbb{C}^n/S$. This has basis $\{e_a^* \otimes e_b \mid a \in A, b \notin A\}$ so the characters of the torus action are $t_a - t_b$, for $a \in A$ and $b \notin A$. Given $a \in A$ and $b \notin A$, set $\chi = t_a - t_b$, and let $A' = (A \setminus \{a\}) \cup \{b\}$, so $-\chi = t_b - t_a$ is a character at $p_{A'}$. The corresponding curve E_{χ,p_A} consists of points of the form

 $\operatorname{Span}(\{e_q \mid q \in A \smallsetminus \{a\}\} \cup \{se_a + te_b \mid [s:t] \in \mathbb{P}^1\}).$

Write $(u_A) = (u_{p_A}) \in H_T^* X^T$. Thus the condition for (u_A) to be in $H_T^* X$ is that $u_A - u_{A'}$ be divisible by $t_a - t_b$, for all A, A' related by an exchange as above.

Example 1.1. For X = Gr(2, 4), this can be encoded in the following graph: insert moment graph.

2

The equivariant cohomology of the Grassmannian generalizes the classical story, so we review the key facts about its ordinary cohomology first, referring to [Ful97] for proofs and details. Let V be an n-dimensional vector space, set $\ell = n - k$, and let X = Gr(k, V). We also write X =

Date: March 5, 2007.

 $\mathbb{G}r(k-1,\mathbb{P}(V)) \cong \mathbb{G}r(k-1,\mathbb{P}^{n-1}).$ On X, there is the tautological sequence $0 \to S \to V_X \to Q \to 0,$

where S has rank k and Q has rank ℓ .

2.1. **Presentation.** The cohomology ring is

$$H^*X = \mathbb{Z}[c_1(Q), \dots, c_\ell(Q)]/(\ell \text{ relations}),$$

where the relations are given by the vanishing of the p by p determinants

for $k . (This says <math>c_p(S) = 0$ for k .) Equivalently, we can write

,

$$H^*X = \mathbb{Z}[c_1(Q), \dots, c_\ell(Q), c_1(S), \dots, c_k(S)],$$

modulo the relations coming from $c(Q) \cdot c(S) = c(V) = 1$.

2.2. Schubert basis. There is a basis of Schubert classes σ_{λ} . These are indexed by partitions $\lambda = (\lambda_1 \geq \cdots \geq \lambda_k \geq 0)$, with $\lambda_1 \leq \ell$; such a partition can be identified with its Young diagram, which is the collection of boxes inside a k by ℓ rectangle, with λ_i boxes in the *i*th row. For example, if $\lambda = (6, 3, 1, 1, 0)$, the corresponding diagram is shown below.

The **size** of a partition is $|\lambda| = \sum \lambda_i$, the number of boxes in its Young diagram. The **conjugate** partition is the partition λ' with λ'_j equal to the number of boxes in the *j*th column of λ . Final zeroes in a partition are often omitted.

Fix a complete flag F_{\bullet} in V. The classes σ_{λ} are

$$\sigma_{\lambda} = [\Omega_{\lambda}(F_{\bullet})] \in H^{2|\lambda|}X,$$

where $\Omega_{\lambda}(F_{\bullet})$ is the **Schubert variety**, defined by

$$\Omega_{\lambda}(F_{\bullet}) = \{ L \subset V \mid \dim(L \cap F_{\ell+i-\lambda_i}) \ge i \text{ for } 1 \le i \le k \}.$$

(One way to remember this definition is to note that $|\lambda|$ is the codimension of Ω_{λ} , so $\lambda = (0, 0, ..., 0)$ should correspond to trivial conditions on L.) In fact, only the "corners" of λ are needed, i.e., the conditions coming from those *i* such that $\lambda_i > \lambda_{i+1}$ are sufficient.

The Schubert variety $\Omega_{\lambda}(F_{\bullet})$ is the closure of the set $\Omega_{\lambda}^{o}(F_{\bullet})$ where the dimension of each intersection $L \cap F_{j}$ is as large as possible — so jumps

in dimensions occur exactly at $F_{\ell+1-\lambda_1}$, $F_{\ell+2-\lambda_2}$, etc. By elementary linear algebra ("echelon form"), Ω^o_{λ} is isomorphic to affine space, so this is a cell.

2.3. "Giambelli" formula. A Schubert class can be expressed in terms of Chern classes as follows:

$$\sigma_{\lambda} = s_{\lambda}(c(Q)) := \det(c_{\lambda_i+j-i})_{1 \le i,j,\le k}.$$

The determinant $s_{\lambda}(c(Q))$ occuring here is a *Schur determinant*. (This is also equal to $s_{\lambda'}(c(S^{\vee}))$), where S^{\vee} is the dual of S.) Note that this determinant is unchanged by appending zeroes to the end of λ .

2.4. **Poincaré duality.** For a partition λ let λ^{\vee} be its complement inside the k by ℓ rectangle, so $\lambda^{\vee} = (\ell - \lambda_k, \ell - \lambda_{k-1}, \dots, \ell - \lambda_1)$. Poincaré duality

on X then has the following form:

$$\langle \sigma_{\lambda}, \sigma_{\mu} \rangle = \int_{X} \sigma_{\lambda} \cdot \sigma_{\mu} = \begin{cases} 1 & \text{if } \mu = \lambda^{\vee}; \\ 0 & \text{otherwise.} \end{cases}$$

Thus the Schubert basis is self-dual.

Remark 2.1. Schubert was one of the first to emphasize the utility of selfdual bases in enumerative geometry. In particular, for $Y \subset X$ the expansion of the class $[Y] = \sum a_{\lambda} \sigma_{\lambda}$ is determined by

$$a_{\lambda} = [Y] \cdot \sigma_{\lambda^{\vee}} = \#(Y \cap \Omega_{\lambda^{\vee}}(F_{\bullet})),$$

for a general flag F_{\bullet} . Schubert used some version of this (and even of the Künneth decomposition of the diagonal) for all the spaces he studied.

2.5. Pieri formula. For $\sigma_i = \sigma_{(i,0,\ldots,0)} = c_i(Q)$,

$$\sigma_i \cdot \sigma_\lambda = \sum \sigma_\mu,$$

where the sum is over all μ obtained by adding *i* boxes to λ , with no two in the same column.

(Similarly, for $\sigma_{(1^i)} = \sigma_{(1,\dots,1,0,\dots,0)} = c_i(S^{\vee}),$

$$\sigma_{(1^i)} \cdot \sigma_\lambda = \sum \sigma_\mu,$$

the sum over μ obtained by adding *i* boxes to λ with no two in a row.)

2.6. Littlewood-Richardson rule. The Pieri formula is a special case of a general rule for multiplying Schubert classes:

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \sum c_{\lambda\mu}^{\nu} \sigma_{\nu},$$

where $c_{\lambda\mu}^{\nu}$ is the number of ways to fill the boxes of $\nu \smallsetminus \lambda$ with μ_1 1's, μ_2 2's, etc., such that

- (i) the filling is weakly increasing across rows;
- (ii) the filling is strictly increasing down columns; and
- (iii) when the numbers are read from right to left in rows, starting with the first row, the numbers read up to any point satisfy

$$\#1's \ge \#2's \ge \#3's \ge \cdots$$

Example 2.2. For $\lambda = (2, 1, 1)$, $\mu = (3, 2, 1)$, and $\nu = (4, 3, 2, 1)$, one can check that there are three fillings satisfying the above conditions:

Thus $c_{\lambda\mu}^{\nu} = 3$. (Anders Buch's "Littlewood-Richardson calculator", available at http://www.math.rutgers.edu/~asbuch/lrcalc/, is very useful for such computations.)

Remark 2.3. The Littlewood-Richardson rule was originally formulated in the context of the representation theory of GL_k (and of the symmetric group). Here one has

$$V_{\lambda} \otimes V_{\mu} = \bigoplus V_{\nu}^{\oplus c_{\lambda\mu}^{\nu}},$$

where V_{λ} is the irreducible representation of GL_k with highest weight λ . (The original proofs of this were seriously flawed, though.)

It is somewhat mysterious that the same numbers should show up in geometry. One reason is the role of *Schur polynomials* in both contexts: the symmetric polynomial $s_{\lambda}(x_1, \ldots, x_k)$ is the character of V_{λ} , and these polynomials satisfy $s_{\lambda} \cdot s_{\mu} = \sum c_{\lambda\mu}^{\nu} s_{\nu}$. By the Pieri and Giambelli formulas, there is a homomorphism from the ring of symmetric polynomials (which has a basis of Schur polynomials) to $H^*(Gr(k, n))$ taking s_{λ} to σ_{λ} .

3

Now consider equivariant cohomology $H^*_G X$, for G = GL(V) and X = Gr(k, V). Recall that we have approximation spaces $E_m = \text{Hom}^o(V, \mathbb{C}^m)$ and $B_m = E_m/G = Gr(n, \mathbb{C}^m)$, with

where $E \subset \mathbb{C}_{B_m}^m$ is the tautological subbundle of rank n, and the identification in the top row is given by $(\Phi, L) \mapsto \Phi(L)$. Thus we are reduced to studying a Grassmann bundle $\mathbf{Gr}(k, E)$ over a base variety B, instead of just a Grassmann variety. Recall also that $\Lambda = \Lambda_G = \mathbb{Z}[c_1, \ldots, c_n]$.

On $\mathbf{Gr}(k, E)$, there is the tautological sequence

$$0 \to Sub^k \to E_{\mathbf{Gr}} \to Quot^{n-k} \to 0.$$

3.1. **Presentation.** We have

$$H^*\mathbf{Gr}(k, E) = \Lambda[c_1(Quot), \dots, c_\ell(Quot)]/(\ell \text{ relations}),$$

where $\Lambda = H^*B$, and the relations say $c_i(Sub) = 0$ for $k < i \le n$, as before. On X, the bundles in the tautological sequence

$$0 \to S^k \to V_X \to Q^{n-k} \to 0$$

are equivariant, and V becomes the universal subbundle on B_m . In particular, we have

$$H_G^*X = \Lambda[c_1^G(Q), \dots, c_\ell^G(Q)]/(\ell \text{ relations}),$$

where $\Lambda = \mathbb{Z}[c_1, \ldots, c_n]$ with $c_i = c_i^G(V)$, and the relations come from $c^G(S) \cdot c^G(Q) = c^G(V) = 1 + c_1 + \cdots + c_n$.

3.2. **Basis.** Once again, there is an algebraic basis of the form $s_{\lambda}(c^G(Q))$, for $\ell \geq \lambda_1 \geq \cdots \geq \lambda_k \geq 0$. However, since G = GL(V) acts transitively on X, there are no invariant subvarieties, and we cannot do much more with this group. If instead we consider the maximal torus T, or a Borel subgroup B, there is more equivariant geometry available; we will see this in the next lecture.

References

[Ful97] W. Fulton, Young Tableaux, Cambridge Univ. Press, 1997.