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In this lecture, we will see equivariant versions of the properties of Grass-
mannians discussed in the last lecture.

We will use the following notation (from K-theory): If A and B are vector
bundles, set

¢(B—A)=c(B)/c(A)
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and let ¢,(B — A) be the term of degree p.

1.1. Presentation. For E a vector bundle of rank n on a base B, let X =
Gr(k,E) — B be the Grassmann bundle. Let £ = n — k. With A = H*B
and tautological sequence 0 — S — E — () — 0, we have

H*X = Alc1(Q), - -, ce(Q)]/(sry(c(Q — E)), k <7 <n).

Since s(ry(c(@Q — F)) = (=1)"c,(E — @), the relations are also generated by
(B — Q) for k < r <mn. (This says ¢.(5) =0 for k <r <n.)

For B = BGL(V) (or approximations B = By,), this gives H:Gr(k, V)
for G = GL(V). Note that S and @ come from the equivariant sub- and
quotient bundles on Gr(k, V) (so ¢;(Q) = ¢(Q)).

1.2. Schubert basis. To get more information, we must restrict to a torus.
Take V = C", and let T be the subgroup of diagonal matrices in GL,,C. We
have the same description of H}. X, where X = Gr(k,n), but now A = Ap =
Zlt1,. .., tp] and ¢(E) =[] (1+¢;). Taking a T-invariant flag F,, we have
T-invariant Schubert varieties ) (F,). (In this section, we always assume
a partition A is contained in the k by ¢ rectangle.) In fact, the T-invariant
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2 §7 EQUIVARIANT COHOMOLOGY OF GRASSMANNIANS

flags are exactly Fo(w), for w € X, where Fi(w) = Span{e, (1), - -, €uw() }-
Thus we have classes

ox(w) = [ (Fo(w))])" € H}X.
For any fixed w, the o)(w) form a basis for H}.X over A. The main cases
will be w = id and w = wg; write Fy = F,(id), Fo = Fo(wp) (so F; =
Span{en, en—1,...,ent1-i}), ox = ox(id), and gy = o) (wp).

1.3. Kempf-Laksov formula. Generally, if there is a filtration of vector
bundles F; C --- C F,, = E on a base B, then in Gr(k, EF) — B there are
loci Q2 (F,) of codimension |\|, which restrict to the usual Schubert varieties
in each fiber. Equivalently, Q)(F,) is the locus where

tk(Fypyioy, = Q) <l — X\ for 1 <i<k.

(The kernel of the map is Fyi,—y, NS, and this says it has dimension at
least i.) There is a general degeneracy locus formula for such loci, given
by Kempf and Laksov (generalizing the Giambelli-Thom-Porteous formula)
[Kem-Lak74]:

e (1) en+(1)

[Q\(F,)] = en-1(2)  on(2) . |

Chg (k)

where ¢,(1) = ¢p(Q — Fyyi—y,). This is similar to a Schur polynomial —
and equal to one if the F}’s have trivial Chern classes — but the rows come
from different bundles. These polynomials are often called factorial Schur
polynomials.

In the equivariant case, for Fe(w), we have c¢(Fy(w)) = [[i_; (1 + ty@))-
Similarly, we have formulas for o)(w), for any w. In particular, o) is ob-
tained from o by interchanging t; and t,,41—;.

1.4. Poincaré duality. The Poincaré dual basis to {o)} is {g\v}. That is,
for p: X — pt,
1 if p=\Y;

(ox,0u) = px(or-0p) = { 0 otherwise.

Proof. First note that if |A\| 4+ |u| < k¢, then (o), 0,) = 0 by degree.
On the other hand, if 11 # A and |p|+|A| > k¢, then Q) (Fo)NQ,(F,) = 0.
Indeed, if L is in both, then

dim(L N Fg_,_i_)\z. > 1 and dim(L N va—l—(k+1—i)—,uk+1,i) >k+1—1,

for 1 < ¢ < k. So the intersections L N Fypi—x, N Foy(kq1—i)—pyy,_; ar€
nonempty; in particular, Fpyi—x, N Fypp o1 is nonempty, so we
must have

—Hk4+1—14

U+i—XN)+l+k+1—i—prr1-) >n+1,
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ie, N+ ppr1—; < Lfor1 <i<k. Thissays u C AV, and since |\|+ |u| > k¢,
it implies pu = V. N

When p = AV, the intersection Qy(F,) N Qv (F,) consists of the single
point L = Span{e;,,...,e;, }, where i, = ¢+ a — \,. We will see below that
this is transverse. ]

2

Our next goal is to describe multiplication in H7.X. Since the classes o
form a basis, we have

N0y = Z CKHO'V.
Here the coefficients c5,, are homogeneous polynomials in ¢, of degree |A| +
|| = [v|. In particular, many more of these are nonzero than in the ordinary
(non-equivariant) case.

We will see a special case of an “equivariant Pieri rule” below, as one of
several key properties of the coefficients c§ - General equivariant Littlewood-
Richarson rules (due to Molev-Sagan and Knutson-Tao) will be discussed in
the next lecture; here we will describe a characterization of the ciu given in
[Knu-Tao03].

First we fix notation. Write Q) = Qy(F,). For a partition A, let I(\) =
{{+1—=X,0+2—NXg,....,0 +k— A}. (This is the sequence of “jumping
numbers” for L € QS: For i € I, dim(LNF;) = dim(LNFj_1)+1.) Let J(\)
be the complement of I(\) in {1,...,n}. One way to represent these sets
is to consider identify A with a path from the NE corner to the SW corner
of the k by ¢ box; then I(\) (respectively, J(A)) labels the vertical (resp.,
horizontal) steps in this path. An example is given below.

| A=(531,1), k=4,(=5
I(\) ={1,4,7,8}
J(\) = {2,3,5,6,9}

Set = (1,0,...,0) (so o is the class of a divisor in X).
Let p, = pr(u) = Span{esi1—py,- - - €ork—p, b Observe that

puGQ)\@QuCQ)\@uD)\,

i.e., u; > \; for all i. Let us see what can be proved from the basic facts.
Let 0|, be the image of oy in H}.(p,) = A. From the observation above,
we have

(1) oxly =0 unless X C p.
From the Giambelli formula, we have

l
(2) oqle= Y =)t
) =1

Jj€J (1
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We will use this frequently. Note that the RHS is nonzero if u # ().
In general, 0|, = det(cy,+;—i(7)), where

l+a—MNg
c@i)y=| [[ @+t /( 11 (1+ta)>.

JeJ (1) a=1

In principle, then, we know all of these.

(3) o= II ¢ —t)
ieI(n)
jeJ(N)
i<j

Proof. Let X = X \|J 2, where the union is over all u properly containing
A. The Schubert cell is 2§ = €2, N X, with inclusion ¢ : QO — X°. Consider
the diagram

*

L oy L .
Hp () — HrX® — Hp(03)

HT X,
where the first horizontal map is the Gysin pushforward, and the others are
restrictions. The Gysin map takes 1 to the class [Qf\]T, which is the restric-
tion of [ ,\]T. The composition ¢t*t, is multiplication by the top equivariant
Chern class of the normal bundle N = Nqo/xo, so the restriction of (a7
to H7(€9) is cf;‘(N).

In H(py), this restricts to the product of the weights of T' on the normal
space to QF in X at py. To see what this is, note that the tangent space
to X at py has weights t; —t; for i € I(\) and j € J(X); the tangent space
to Q% at py has weights t; — t; for those i € I(\), j € J(A) such that i > j.
The normal space therefore has the remaining weights, as claimed. O

The claims about which weights appear are evident from an example.

Example 2.1. Let k =4, { =5, A = (5,3,1,1), so I(\) = {1,4,7,8} and
J(A) ={2,3,5,6,9}. The Schubert cell €2 is identified with affine space as
follows:

1 000 0 O0O0OO0OTDO
00 — 0O 1 00 O0O0O0
A 0 « « 0 « = 1 0O
0 « = 0 = = 0 1 0
An element g = (g1,...,9,) € T acts on the entry in row a and column b

via multiplication by gy/ga, so the corresponding weight is t; — t,.
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(4) 5, =0 unless A Cvand p C v.

Proof. The classes 04, for a 7 X (so Qo ¢ ), give a basis for H7.(X \ Q).
Since o restricts to 0 in H} (X \ ), oy - 0, — 0 also. So only those o,
with ¥ D A can appear. O

(5) CKM = O’)\’M.
Proof. Restrict the equation -0y, = >~ c5 00 to py. By (1), 0, +— 0 unless
v C p, and by (4), ciu = 0 unless A\, 4 C v. Thus the only term that appears
isv=pu, and

oAl oulp = Cﬁuau‘u'

Since o, # 0 by (3), these factors cancel, and the claim follows. O

(6) A== [] t;—t)
iel(\)
jeJ ()
1<j
This is immediate from (5) and (3).

The next property is a “Pieri-Monk” rule for multiplication by a divisor
class:

(7) O’D'O')\:ZO')\++(O'D‘)\)O')\,
2t
the sum over partitions A* obtained by adding one box to .
Proof. We know that the only classes ¢, which can occur on the RHS are

those with v D X and || < |A| +1 thus v = AT or v = A. For v =A™, the
classical formula applies. For v = A, we know cg)\ = olx by (5). O

(8) (UD’A D’u CAH ZcAuﬂ

the sum over u* obtained from p by adding one box.

Proof. Using (5) and commutativity (C:\\u = cﬁ)\), the LHS is (oA —0|u)oulx,
and the RHS is ) ] o+ [x. The equality follows from the restriction of Pieri-
Monk (7) to py. O

Finally, for any A, u, v, we have

) (ogly —oglex, = Zcﬁu Zcxw
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the sums over AT obtained by adding one box to \, and v~ obtained by
removing one box from v.

Proof. By the Pieri-Monk rule, we have
o (ox-0u) = ZCKHO'D’O'V
v
= Z X Ot + Z s (Obalv) v,
vt v

and

(o o\ o = ZO’)\Jr cop+(ogla) on - op
+

- ZCKW oy + (o) ZCKH Ov-
At v

Using associativity, these are equal. The claim follows by equating coeffi-
cients of o,,. O

Proposition 2.2 ([Knu-Tao03]). The polynomials c¥,, homogeneous of de-

gree |\ + |u| — |v| in A, satisfy and are uniquely determined by properties
(6), (8), and (9); that is,

() dy=obr= [] t;—t);
ieI(N)
jeJ(\)
1<J

(i) (oglx —oplu)edy = D i and

(ii) (oly — ogla)eXy = Zcxm Zcxu-
Note that each O'D| » is a known linear polynomial, and

o =ogle= D ti— Dt
JEI(N) J€J (1)
vanishes if and only if A = u. Note also that this characterization of the

coefficients includes the classical Littlewood-Richardson coefficients, but all
the equations reduce to 0 = 0 when the ¢;’s are set to 0!

Proof. We have seen above that (i), (ii), and (iii) are satisfied. For unique-
ness, we assume the polynomials ciu satisfy these properties, and proceed
by induction.

Step 1: We claim cﬁu = 0y|x, which vanishes unless ¢ C A. (By the
Pieri-Monk formula, the polynomials o[y satisfy (i) and (ii).) To see this,
use induction on |A| — |p|. The base case (A = u) is true by property (i).
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For A # p, use (ii) and induction, noticing that all the terms on the RHS
have [A] — |p*| = [A| = [u] = 1.

Step 2: To determine c§ ,, use induction on |v| — [A|. (We know c§ , =0
if |v] — |A| > |p|.) The base case v = X is done by (ii) and Step 1. If v # A,
use (iii), noticing once again that the terms on the RHS have |v| — |\T| =
[ = Al = [v| = [A] = 1. (We also see that c§, = 0 unless A and p are
contained in v.) O

Remark 2.3. All of the above will hold for an arbitrary Grassmann bundle
Gr(k,E) — B, with a flag of bundles F} C --- C F,, = E on B.

Remark 2.4. The fact that o,|, = 0 unless A C p and the expression
for oy|x (properties (1) and (3)) can be found in [Mol-Sag99] and [Oko96].
A version of the Pieri-Monk formula (7) can be found in [Oko-Ols97]. The
recursion in (9) (Property (iii) in Proposition 2.2) is due to Molev and Sagan
[Mol-Sag99].
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