EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY

LECTURE SEVEN: EQUIVARIANT COHOMOLOGY OF GRASSMANNIANS

WILLIAM FULTON NOTES BY DAVE ANDERSON

1

In this lecture, we will see equivariant versions of the properties of Grassmannians discussed in the last lecture.

We will use the following notation (from K-theory): If A and B are vector bundles, set

$$c(B-A) = c(B)/c(A) = \frac{1+c_1(B)+c_2(B)+\cdots}{1+c_1(A)+c_2(A)+\cdots}$$

$$= 1+(c_1(B)-c_1(A))$$

$$+(c_2(B)-c_1(A)c_1(B)+c_1(A)^2-c_2(A))$$

$$+\cdots$$

and let $c_p(B-A)$ be the term of degree p.

1.1. **Presentation.** For E a vector bundle of rank n on a base B, let $X = \mathbf{Gr}(k, E) \to B$ be the Grassmann bundle. Let $\ell = n - k$. With $\Lambda = H^*B$ and tautological sequence $0 \to S \to E \to Q \to 0$, we have

$$H^*X = \Lambda[c_1(Q), \dots, c_{\ell}(Q)]/(s_{(1^r)}(c(Q-E)), \ k < r \le n).$$

Since $s_{(1^r)}(c(Q-E)) = (-1)^r c_r(E-Q)$, the relations are also generated by $c_r(E-Q)$ for $k < r \le n$. (This says $c_r(S) = 0$ for $k < r \le n$.)

For B = BGL(V) (or approximations $B = B_m$), this gives $H_G^*Gr(k, V)$ for G = GL(V). Note that S and Q come from the equivariant sub- and quotient bundles on Gr(k, V) (so $c_i(Q) = c_i^G(Q)$).

1.2. **Schubert basis.** To get more information, we must restrict to a torus. Take $V = \mathbb{C}^n$, and let T be the subgroup of diagonal matrices in $GL_n\mathbb{C}$. We have the same description of H_T^*X , where X = Gr(k, n), but now $\Lambda = \Lambda_T = \mathbb{Z}[t_1, \ldots, t_n]$ and $c(E) = \prod_{i=1}^n (1+t_i)$. Taking a T-invariant flag F_{\bullet} , we have T-invariant Schubert varieties $\Omega_{\lambda}(F_{\bullet})$. (In this section, we always assume a partition λ is contained in the k by ℓ rectangle.) In fact, the T-invariant

Date: March 18, 2007.

flags are exactly $F_{\bullet}(w)$, for $w \in \Sigma_n$, where $F_i(w) = \text{Span}\{e_{w(1)}, \dots, e_{w(i)}\}$. Thus we have classes

$$\sigma_{\lambda}(w) = [\Omega_{\lambda}(F_{\bullet}(w))]^T \in H_T^*X.$$

For any fixed w, the $\sigma_{\lambda}(w)$ form a basis for H_T^*X over Λ . The main cases will be w = id and $w = w_0$; write $F_{\bullet} = F_{\bullet}(id)$, $\widetilde{F}_{\bullet} = F_{\bullet}(w_0)$ (so $\widetilde{F}_i = \operatorname{Span}\{e_n, e_{n-1}, \dots, e_{n+1-i}\}$), $\sigma_{\lambda} = \sigma_{\lambda}(id)$, and $\widetilde{\sigma}_{\lambda} = \sigma_{\lambda}(w_0)$.

1.3. **Kempf-Laksov formula.** Generally, if there is a filtration of vector bundles $F_1 \subset \cdots \subset F_n = E$ on a base B, then in $\mathbf{Gr}(k, E) \to B$ there are loci $\Omega_{\lambda}(F_{\bullet})$ of codimension $|\lambda|$, which restrict to the usual Schubert varieties in each fiber. Equivalently, $\Omega_{\lambda}(F_{\bullet})$ is the locus where

$$\operatorname{rk}(F_{\ell+i-\lambda_i} \to Q) \le \ell - \lambda_i \text{ for } 1 \le i \le k.$$

(The kernel of the map is $F_{\ell+i-\lambda_i} \cap S$, and this says it has dimension at least i.) There is a general degeneracy locus formula for such loci, given by Kempf and Laksov (generalizing the Giambelli-Thom-Porteous formula) [Kem-Lak74]:

$$\left[\Omega_{\lambda}(F_{\bullet})\right] = \left| \begin{array}{ccc} c_{\lambda_{1}}(1) & c_{\lambda_{1}+1}(1) & \cdots \\ c_{\lambda_{2}-1}(2) & c_{\lambda_{2}}(2) & \ddots \\ \vdots & \ddots & \ddots & \\ & & & c_{\lambda_{k}}(k) \end{array} \right|,$$

where $c_p(i) = c_p(Q - F_{\ell+i-\lambda_i})$. This is similar to a Schur polynomial – and equal to one if the F_j 's have trivial Chern classes – but the rows come from different bundles. These polynomials are often called **factorial Schur polynomials**.

In the equivariant case, for $F_{\bullet}(w)$, we have $c(F_r(w)) = \prod_{i=1}^r (1 + t_{w(i)})$. Similarly, we have formulas for $\sigma_{\lambda}(w)$, for any w. In particular, $\tilde{\sigma}_{\lambda}$ is obtained from σ_{λ} by interchanging t_i and t_{n+1-i} .

1.4. **Poincaré duality.** The Poincaré dual basis to $\{\sigma_{\lambda}\}$ is $\{\widetilde{\sigma}_{\lambda^{\vee}}\}$. That is, for $\rho: X \to pt$,

$$\langle \sigma_{\lambda}, \widetilde{\sigma}_{\mu} \rangle = \rho_{*}(\sigma_{\lambda} \cdot \widetilde{\sigma}_{\mu}) = \begin{cases} 1 & \text{if } \mu = \lambda^{\vee}; \\ 0 & \text{otherwise.} \end{cases}$$

Proof. First note that if $|\lambda| + |\mu| < k\ell$, then $\langle \sigma_{\lambda}, \widetilde{\sigma}_{\mu} \rangle = 0$ by degree.

On the other hand, if $\mu \neq \lambda^{\vee}$ and $|\mu| + |\lambda| \geq k\ell$, then $\Omega_{\lambda}(F_{\bullet}) \cap \Omega_{\mu}(\widetilde{F}_{\bullet}) = \emptyset$. Indeed, if L is in both, then

$$\dim(L \cap F_{\ell+i-\lambda_i} \ge i \text{ and } \dim(L \cap \widetilde{F}_{\ell+(k+1-i)-\mu_{k+1-i}}) \ge k+1-i,$$

for $1 \leq i \leq k$. So the intersections $L \cap F_{\ell+i-\lambda_i} \cap F_{\ell+(k+1-i)-\mu_{k+1-i}}$ are nonempty; in particular, $F_{\ell+i-\lambda_i} \cap F_{\ell+(k+1-i)-\mu_{k+1-i}}$ is nonempty, so we must have

$$(\ell + i - \lambda_i) + (\ell + k + 1 - i - \mu_{k+1-i}) \ge n+1,$$

i.e., $\lambda_i + \mu_{k+1-i} \leq \ell$ for $1 \leq i \leq k$. This says $\mu \subset \lambda^{\vee}$, and since $|\lambda| + |\mu| \geq k\ell$, it implies $\mu = \lambda^{\vee}$.

When $\mu = \lambda^{\vee}$, the intersection $\Omega_{\lambda}(F_{\bullet}) \cap \Omega_{\lambda^{\vee}}(\widetilde{F}_{\bullet})$ consists of the single point $L = \text{Span}\{e_{i_1}, \dots, e_{i_k}\}$, where $i_a = \ell + a - \lambda_a$. We will see below that this is transverse.

2

Our next goal is to describe multiplication in H_T^*X . Since the classes σ_{λ} form a basis, we have

$$\sigma_{\lambda} \cdot \sigma_{\mu} = \sum c_{\lambda\mu}^{\nu} \sigma_{\nu}.$$

Here the coefficients $c_{\lambda\mu}^{\nu}$ are homogeneous polynomials in t, of degree $|\lambda| + |\mu| - |\nu|$. In particular, many more of these are nonzero than in the ordinary (non-equivariant) case.

We will see a special case of an "equivariant Pieri rule" below, as one of several key properties of the coefficients $c^{\nu}_{\lambda\mu}$. General equivariant Littlewood-Richarson rules (due to Molev-Sagan and Knutson-Tao) will be discussed in the next lecture; here we will describe a characterization of the $c^{\nu}_{\lambda\mu}$ given in [Knu-Tao03].

First we fix notation. Write $\Omega_{\lambda} = \Omega_{\lambda}(F_{\bullet})$. For a partition λ , let $I(\lambda) = \{\ell + 1 - \lambda_1, \ell + 2 - \lambda_2, \dots, \ell + k - \lambda_k\}$. (This is the sequence of "jumping numbers" for $L \in \Omega_{\lambda}^{o}$: For $i \in I$, $\dim(L \cap F_i) = \dim(L \cap F_{i-1}) + 1$.) Let $J(\lambda)$ be the complement of $I(\lambda)$ in $\{1, \dots, n\}$. One way to represent these sets is to consider identify λ with a path from the NE corner to the SW corner of the k by ℓ box; then $I(\lambda)$ (respectively, $J(\lambda)$) labels the vertical (resp., horizontal) steps in this path. An example is given below.

Set
$$\square = (1, 0, ..., 0)$$
 (so σ_{\square} is the class of a divisor in X).
Let $p_{\mu} = p_{I(\mu)} = \operatorname{Span}\{e_{\ell+1-\mu_1}, ..., e_{\ell+k-\mu_k}\}$. Observe that $p_{\mu} \in \Omega_{\lambda} \Leftrightarrow \Omega_{\mu} \subset \Omega_{\lambda} \Leftrightarrow \mu \supset \lambda$,

i.e., $\mu_i \geq \lambda_i$ for all *i*. Let us see what can be proved from the basic facts. Let $\sigma_{\lambda}|_{\mu}$ be the image of σ_{λ} in $H_T^*(p_{\mu}) = \Lambda$. From the observation above, we have

(1)
$$\sigma_{\lambda}|_{\mu} = 0 \text{ unless } \lambda \subset \mu.$$

From the Giambelli formula, we have

(2)
$$\sigma_{\square}|_{\mu} = \sum_{j \in J(\mu)} t_j - \sum_{i=1}^{\ell} t_i.$$

We will use this frequently. Note that the RHS is nonzero if $\mu \neq \emptyset$. In general, $\sigma_{\lambda}|_{\mu} = \det(c_{\lambda_i+j-i}(i))$, where

$$c(i) = \left(\prod_{j \in J(\mu)} (1 + t_j)\right) / \left(\prod_{a=1}^{\ell + a - \lambda_a} (1 + t_a)\right).$$

In principle, then, we know all of these.

(3)
$$\sigma_{\lambda}|_{\lambda} = \prod_{\substack{i \in I(\lambda) \\ j \in J(\lambda) \\ i < j}} (t_j - t_i).$$

Proof. Let $X^o = X \setminus \bigcup \Omega_{\mu}$, where the union is over all μ properly containing λ . The Schubert cell is $\Omega^o_{\lambda} = \Omega_{\lambda} \cap X^o$, with inclusion $\iota : \Omega^o_{\lambda} \to X^o$. Consider the diagram

$$H_T^*(\Omega_\lambda^o) \xrightarrow{\iota_*} H_T^*X^o \xrightarrow{\iota^*} H_T^*(\Omega_\lambda^o)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

where the first horizontal map is the Gysin pushforward, and the others are restrictions. The Gysin map takes 1 to the class $[\Omega_{\lambda}^{o}]^{T}$, which is the restriction of $[\Omega_{\lambda}]^{T}$. The composition $\iota^{*}\iota_{*}$ is multiplication by the top equivariant Chern class of the normal bundle $N = N_{\Omega^{o}/X^{o}}$, so the restriction of $[\Omega_{\lambda}]^{T}$ to $H_{T}^{*}(\Omega_{\lambda}^{o})$ is $c_{|\lambda|}^{T}(N)$.

In $H_T^*(p_\lambda)$, this restricts to the product of the weights of T on the normal space to Ω_λ^o in X^o at p_λ . To see what this is, note that the tangent space to X^o at p_λ has weights $t_j - t_i$ for $i \in I(\lambda)$ and $j \in J(\lambda)$; the tangent space to Ω_λ^o at p_λ has weights $t_j - t_i$ for those $i \in I(\lambda)$, $j \in J(\lambda)$ such that i > j. The normal space therefore has the remaining weights, as claimed.

The claims about which weights appear are evident from an example.

Example 2.1. Let $k=4, \ell=5, \lambda=(5,3,1,1)$, so $I(\lambda)=\{1,4,7,8\}$ and $J(\lambda)=\{2,3,5,6,9\}$. The Schubert cell Ω_{λ}^{o} is identified with affine space as follows:

$$\Omega_{\lambda}^{o} = \left(\begin{array}{cccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & * & * & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & * & * & 0 & * & * & 1 & 0 & 0 \\ 0 & * & * & 0 & * & * & 0 & 1 & 0 \end{array}\right).$$

An element $g = (g_1, \ldots, g_n) \in T$ acts on the entry in row a and column b via multiplication by g_b/g_a , so the corresponding weight is $t_b - t_a$.

(4)
$$c_{\lambda\mu}^{\nu} = 0 \text{ unless } \lambda \subset \nu \text{ and } \mu \subset \nu.$$

Proof. The classes σ_{α} , for $\alpha \not\supseteq \lambda$ (so $\Omega_{\alpha} \not\subset \Omega_{\lambda}$), give a basis for $H_T^*(X \setminus \Omega_{\lambda})$. Since σ_{λ} restricts to 0 in $H_T^*(X \setminus \Omega_{\lambda})$, $\sigma_{\lambda} \cdot \sigma_{\mu} \mapsto 0$ also. So only those σ_{ν} with $\nu \supset \lambda$ can appear.

$$(5) c_{\lambda\mu}^{\mu} = \sigma_{\lambda}|_{\mu}.$$

Proof. Restrict the equation $\sigma_{\lambda} \cdot \sigma_{\mu} = \sum c_{\lambda\mu}^{\nu} \sigma_{\nu}$ to p_{μ} . By (1), $\sigma_{\nu} \mapsto 0$ unless $\nu \subset \mu$, and by (4), $c_{\lambda\mu}^{\nu} = 0$ unless $\lambda, \mu \subset \nu$. Thus the only term that appears is $\nu = \mu$, and

$$\sigma_{\lambda}|_{\mu} \cdot \sigma_{\mu}|_{\mu} = c_{\lambda\mu}^{\mu} \sigma_{\mu}|_{\mu}.$$

Since $\sigma_{\mu}|_{\mu} \neq 0$ by (3), these factors cancel, and the claim follows.

(6)
$$c_{\lambda\lambda}^{\lambda} = \sigma_{\lambda}|_{\lambda} = \prod_{\substack{i \in I(\lambda) \\ j \in J(\lambda) \\ i < j}} (t_{j} - t_{i}).$$

This is immediate from (5) and (3).

The next property is a "Pieri-Monk" rule for multiplication by a divisor class:

(7)
$$\sigma_{\square} \cdot \sigma_{\lambda} = \sum_{\lambda^{+}} \sigma_{\lambda^{+}} + (\sigma_{\square}|_{\lambda}) \sigma_{\lambda},$$

the sum over partitions λ^+ obtained by adding one box to λ .

Proof. We know that the only classes σ_{ν} which can occur on the RHS are those with $\nu \supset \lambda$ and $|\nu| \leq |\lambda| + 1$ thus $\nu = \lambda^+$ or $\nu = \lambda$. For $\nu = \lambda^+$, the classical formula applies. For $\nu = \lambda$, we know $c_{\square \lambda}^{\lambda} = \sigma_{\square |\lambda}$ by (5).

(8)
$$(\sigma_{\square}|_{\lambda} - \sigma_{\square}|_{\mu})c_{\lambda\mu}^{\lambda} = \sum c_{\lambda\mu^{+}}^{\lambda},$$

the sum over μ^+ obtained from μ by adding one box.

Proof. Using (5) and commutativity $(c_{\lambda\mu}^{\lambda} = c_{\mu\lambda}^{\lambda})$, the LHS is $(\sigma_{\square}|_{\lambda} - \sigma_{\square}|_{\mu})\sigma_{\mu}|_{\lambda}$, and the RHS is $\sum \sigma_{\mu^{+}}|_{\lambda}$. The equality follows from the restriction of Pieri-Monk (7) to p_{λ} .

Finally, for any λ, μ, ν , we have

(9)
$$(\sigma_{\square}|_{\nu} - \sigma_{\square}|_{\lambda})c_{\lambda\mu}^{\nu} = \sum_{\lambda+} c_{\lambda+\mu}^{\nu} - \sum_{\mu-} c_{\lambda\mu}^{\nu^{-}},$$

the sums over λ^+ obtained by adding one box to λ , and ν^- obtained by removing one box from ν .

Proof. By the Pieri-Monk rule, we have

$$\begin{split} \sigma_{\square} \cdot (\sigma_{\lambda} \cdot \sigma_{\mu}) &= \sum_{\nu} c_{\lambda \mu}^{\nu} \, \sigma_{\square} \cdot \sigma_{\nu} \\ &= \sum_{\nu^{+}} c_{\lambda \mu}^{\nu} \, \sigma_{\nu^{+}} + \sum_{\nu} c_{\lambda \mu}^{\nu} \, (\sigma_{bx}|_{\nu}) \, \sigma_{\nu}, \end{split}$$

and

$$\begin{split} (\sigma_{\square} \cdot \sigma_{\lambda}) \cdot \sigma_{\mu} &= \sum_{\lambda^{+}} \sigma_{\lambda^{+}} \cdot \sigma_{\mu} + (\sigma_{\square}|_{\lambda}) \, \sigma_{\lambda} \cdot \sigma_{\mu} \\ &= \sum_{\lambda^{+}} c_{\lambda^{+}\mu}^{\nu} \, \sigma_{\nu} + (\sigma_{\square}|_{\lambda}) \sum_{\nu} c_{\lambda\mu}^{\nu} \, \sigma_{\nu}. \end{split}$$

Using associativity, these are equal. The claim follows by equating coefficients of σ_{ν} .

Proposition 2.2 ([Knu-Tao03]). The polynomials $c_{\lambda\mu}^{\nu}$, homogeneous of degree $|\lambda| + |\mu| - |\nu|$ in Λ , satisfy and are uniquely determined by properties (6), (8), and (9); that is,

(i)
$$c_{\lambda\lambda}^{\lambda} = \sigma_{\lambda}|_{\lambda} = \prod_{\substack{i \in I(\lambda) \\ j \in J(\lambda) \\ i < j}} (t_j - t_i);$$

(ii)
$$(\sigma_{\square}|_{\lambda} - \sigma_{\square}|_{\mu})c_{\lambda\mu}^{\lambda} = \sum c_{\lambda\mu^{+}}^{\lambda}; \quad and$$

$$(\mathrm{iii}) \ (\sigma_{\square}|_{\nu} - \sigma_{\square}|_{\lambda}) c_{\lambda\mu}^{\nu} = \sum_{\lambda^{+}} c_{\lambda^{+}\mu}^{\nu} - \sum_{\nu^{-}} c_{\lambda\mu}^{\nu^{-}}.$$

Note that each $\sigma_{\square}|_{\lambda}$ is a known linear polynomial, and

$$\sigma_{\square}|_{\lambda} - \sigma_{\square}|_{\mu} = \sum_{j \in J(\lambda)} t_j - \sum_{j \in J(\mu)} t_j$$

vanishes if and only if $\lambda = \mu$. Note also that this characterization of the coefficients includes the classical Littlewood-Richardson coefficients, but all the equations reduce to 0 = 0 when the t_i 's are set to 0!

Proof. We have seen above that (i), (ii), and (iii) are satisfied. For uniqueness, we assume the polynomials $c_{\lambda\mu}^{\nu}$ satisfy these properties, and proceed by induction.

Step 1: We claim $c_{\lambda\mu}^{\lambda} = \sigma_{\mu}|_{\lambda}$, which vanishes unless $\mu \subset \lambda$. (By the Pieri-Monk formula, the polynomials $\sigma_{\mu}|_{\lambda}$ satisfy (i) and (ii).) To see this, use induction on $|\lambda| - |\mu|$. The base case $(\lambda = \mu)$ is true by property (i).

For $\lambda \neq \mu$, use (ii) and induction, noticing that all the terms on the RHS have $|\lambda| - |\mu^+| = |\lambda| - |\mu| - 1$.

Step 2: To determine $c_{\lambda\mu}^{\nu}$, use induction on $|\nu| - |\lambda|$. (We know $c_{\lambda\mu}^{\nu} = 0$ if $|\nu| - |\lambda| > |\mu|$.) The base case $\nu = \lambda$ is done by (ii) and Step 1. If $\nu \neq \lambda$, use (iii), noticing once again that the terms on the RHS have $|\nu| - |\lambda^{+}| = |\nu^{-}| - |\lambda| = |\nu| - |\lambda| - 1$. (We also see that $c_{\lambda\mu}^{\nu} = 0$ unless λ and μ are contained in ν .)

Remark 2.3. All of the above will hold for an arbitrary Grassmann bundle $Gr(k, E) \to B$, with a flag of bundles $F_1 \subset \cdots \subset F_n = E$ on B.

Remark 2.4. The fact that $\sigma_{\lambda}|_{\mu}=0$ unless $\lambda\subset\mu$ and the expression for $\sigma_{\lambda}|_{\lambda}$ (properties (1) and (3)) can be found in [Mol-Sag99] and [Oko96]. A version of the Pieri-Monk formula (7) can be found in [Oko-Ols97]. The recursion in (9) (Property (iii) in Proposition 2.2) is due to Molev and Sagan [Mol-Sag99].

References

[Kem-Lak74] G. Kempf and D. Laksov, "The determinantal formula of Schubert calculus," Acta Math. 132 (1974), 153–162.

[Knu-Tao03] A. Knutson and T. Tao, "Puzzles and (equivariant) cohomology of Grassmannians," *Duke Math. J.* **119** (2003), no. 2, 221–260.

[Mol-Sag99] A. Molev and B. Sagan, "A Littlewood-Richardson rule for factorial Schur functions," *Trans. Amer. Math. Soc.* **351** (1999), no. 11, 4429–4443.

[Oko96] A. Okounkov, "Quantum immanants and higher Capelli identities," Transformation Groups 1 (1996), 99–126.

[Oko-Ols97] A. Okounkov and G. Olshanski, "Shifted Schur functions," St. Petersburg Math. J. 9 (1997), no. 2 ...