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In this lecture, we will see equivariant versions of the properties of Grass-
mannians discussed in the last lecture.

We will use the following notation (from K-theory): If A and B are vector
bundles, set

c(B − A) = c(B)/c(A) =
1 + c1(B) + c2(B) + · · ·

1 + c1(A) + c2(A) + · · ·

= 1 + (c1(B) − c1(A))

+(c2(B) − c1(A)c1(B) + c1(A)2 − c2(A))

+ · · · ,

and let cp(B − A) be the term of degree p.

1.1. Presentation. For E a vector bundle of rank n on a base B, let X =
Gr(k,E) → B be the Grassmann bundle. Let ℓ = n − k. With Λ = H∗B
and tautological sequence 0 → S → E → Q → 0, we have

H∗X = Λ[c1(Q), . . . , cℓ(Q)]/(s(1r)(c(Q − E)), k < r ≤ n).

Since s(1r)(c(Q−E)) = (−1)rcr(E −Q), the relations are also generated by
cr(E − Q) for k < r ≤ n. (This says cr(S) = 0 for k < r ≤ n.)

For B = BGL(V ) (or approximations B = Bm), this gives H∗
GGr(k, V )

for G = GL(V ). Note that S and Q come from the equivariant sub- and
quotient bundles on Gr(k, V ) (so ci(Q) = cG

i (Q)).

1.2. Schubert basis. To get more information, we must restrict to a torus.
Take V = C

n, and let T be the subgroup of diagonal matrices in GLnC. We
have the same description of H∗

T X, where X = Gr(k, n), but now Λ = ΛT =
Z[t1, . . . , tn] and c(E) =

∏n
i=1(1+ ti). Taking a T -invariant flag F•, we have

T -invariant Schubert varieties Ωλ(F•). (In this section, we always assume
a partition λ is contained in the k by ℓ rectangle.) In fact, the T -invariant

Date: March 18, 2007.

1
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flags are exactly F•(w), for w ∈ Σn, where Fi(w) = Span{ew(1), . . . , ew(i)}.
Thus we have classes

σλ(w) = [Ωλ(F•(w))]T ∈ H∗
T X.

For any fixed w, the σλ(w) form a basis for H∗
T X over Λ. The main cases

will be w = id and w = w0; write F• = F•(id), F̃• = F•(w0) (so F̃i =
Span{en, en−1, . . . , en+1−i}), σλ = σλ(id), and σ̃λ = σλ(w0).

1.3. Kempf-Laksov formula. Generally, if there is a filtration of vector
bundles F1 ⊂ · · · ⊂ Fn = E on a base B, then in Gr(k,E) → B there are
loci Ωλ(F•) of codimension |λ|, which restrict to the usual Schubert varieties
in each fiber. Equivalently, Ωλ(F•) is the locus where

rk(Fℓ+i−λi
→ Q) ≤ ℓ − λi for 1 ≤ i ≤ k.

(The kernel of the map is Fℓ+i−λi
∩ S, and this says it has dimension at

least i.) There is a general degeneracy locus formula for such loci, given
by Kempf and Laksov (generalizing the Giambelli-Thom-Porteous formula)
[Kem-Lak74]:

[Ωλ(F•)] =

∣∣∣∣∣∣∣∣∣

cλ1
(1) cλ1+1(1) · · ·

cλ2−1(2) cλ2
(2)

. . .
...

. . .
. . .

cλk
(k)

∣∣∣∣∣∣∣∣∣

,

where cp(i) = cp(Q − Fℓ+i−λi
). This is similar to a Schur polynomial –

and equal to one if the Fj ’s have trivial Chern classes – but the rows come
from different bundles. These polynomials are often called factorial Schur

polynomials.
In the equivariant case, for F•(w), we have c(Fr(w)) =

∏r
i=1(1 + tw(i)).

Similarly, we have formulas for σλ(w), for any w. In particular, σ̃λ is ob-
tained from σλ by interchanging ti and tn+1−i.

1.4. Poincaré duality. The Poincaré dual basis to {σλ} is {σ̃λ∨}. That is,
for ρ : X → pt,

〈σλ, σ̃µ〉 = ρ∗(σλ · σ̃µ) =

{
1 if µ = λ∨;
0 otherwise.

Proof. First note that if |λ| + |µ| < kℓ, then 〈σλ, σ̃µ〉 = 0 by degree.

On the other hand, if µ 6= λ∨ and |µ|+|λ| ≥ kℓ, then Ωλ(F•)∩Ωµ(F̃•) = ∅.
Indeed, if L is in both, then

dim(L ∩ Fℓ+i−λi
≥ i and dim(L ∩ F̃ℓ+(k+1−i)−µk+1−i

) ≥ k + 1 − i,

for 1 ≤ i ≤ k. So the intersections L ∩ Fℓ+i−λi
∩ Fℓ+(k+1−i)−µk+1−i

are
nonempty; in particular, Fℓ+i−λi

∩ Fℓ+(k+1−i)−µk+1−i
is nonempty, so we

must have

(ℓ + i − λi) + (ℓ + k + 1 − i − µk+1−i) ≥ n + 1,
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i.e., λi+µk+1−i ≤ ℓ for 1 ≤ i ≤ k. This says µ ⊂ λ∨, and since |λ|+ |µ| ≥ kℓ,
it implies µ = λ∨.

When µ = λ∨, the intersection Ωλ(F•) ∩ Ωλ∨(F̃•) consists of the single
point L = Span{ei1 , . . . , eik}, where ia = ℓ + a− λa. We will see below that
this is transverse. �

2

Our next goal is to describe multiplication in H∗
T X. Since the classes σλ

form a basis, we have

σλ · σµ =
∑

cν
λµσν .

Here the coefficients cν
λµ are homogeneous polynomials in t, of degree |λ| +

|µ|− |ν|. In particular, many more of these are nonzero than in the ordinary
(non-equivariant) case.

We will see a special case of an “equivariant Pieri rule” below, as one of
several key properties of the coefficients cν

λµ. General equivariant Littlewood-

Richarson rules (due to Molev-Sagan and Knutson-Tao) will be discussed in
the next lecture; here we will describe a characterization of the cν

λµ given in

[Knu-Tao03].
First we fix notation. Write Ωλ = Ωλ(F•). For a partition λ, let I(λ) =

{ℓ + 1 − λ1, ℓ + 2 − λ2, . . . , ℓ + k − λk}. (This is the sequence of “jumping
numbers” for L ∈ Ωo

λ: For i ∈ I, dim(L∩Fi) = dim(L∩Fi−1)+1.) Let J(λ)
be the complement of I(λ) in {1, . . . , n}. One way to represent these sets
is to consider identify λ with a path from the NE corner to the SW corner
of the k by ℓ box; then I(λ) (respectively, J(λ)) labels the vertical (resp.,
horizontal) steps in this path. An example is given below.

λ = (5, 3, 1, 1), k = 4, ℓ = 5

I(λ) = {1, 4, 7, 8}

J(λ) = {2, 3, 5, 6, 9}

Set = (1, 0, . . . , 0) (so σ is the class of a divisor in X).

Let pµ = pI(µ) = Span{eℓ+1−µ1
, . . . , eℓ+k−µk

}. Observe that

pµ ∈ Ωλ ⇔ Ωµ ⊂ Ωλ ⇔ µ ⊃ λ,

i.e., µi ≥ λi for all i. Let us see what can be proved from the basic facts.
Let σλ|µ be the image of σλ in H∗

T (pµ) = Λ. From the observation above,
we have

σλ|µ = 0 unless λ ⊂ µ.(1)

From the Giambelli formula, we have

σ |µ =
∑

j∈J(µ)

tj −
ℓ∑

i=1

ti.(2)
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We will use this frequently. Note that the RHS is nonzero if µ 6= ∅.
In general, σλ|µ = det(cλi+j−i(i)), where

c(i) =



∏

j∈J(µ)

(1 + tj)


 /

(
ℓ+a−λa∏

a=1

(1 + ta)

)
.

In principle, then, we know all of these.

σλ|λ =
∏

i∈I(λ)

j∈J(λ)

i<j

(tj − ti).(3)

Proof. Let Xo = Xr
⋃

Ωµ, where the union is over all µ properly containing
λ. The Schubert cell is Ωo

λ = Ωλ∩Xo, with inclusion ι : Ωo
λ → Xo. Consider

the diagram

H∗
T (Ωo

λ)
ι∗- H∗

T Xo ι∗- H∗
T (Ωo

λ)

H∗
T X,

6

where the first horizontal map is the Gysin pushforward, and the others are
restrictions. The Gysin map takes 1 to the class [Ωo

λ]T , which is the restric-

tion of [Ωλ]T . The composition ι∗ι∗ is multiplication by the top equivariant

Chern class of the normal bundle N = NΩo/Xo , so the restriction of [Ωλ]T

to H∗
T (Ωo

λ) is cT
|λ|(N).

In H∗
T (pλ), this restricts to the product of the weights of T on the normal

space to Ωo
λ in Xo at pλ. To see what this is, note that the tangent space

to Xo at pλ has weights tj − ti for i ∈ I(λ) and j ∈ J(λ); the tangent space
to Ωo

λ at pλ has weights tj − ti for those i ∈ I(λ), j ∈ J(λ) such that i > j.
The normal space therefore has the remaining weights, as claimed. �

The claims about which weights appear are evident from an example.

Example 2.1. Let k = 4, ℓ = 5, λ = (5, 3, 1, 1), so I(λ) = {1, 4, 7, 8} and
J(λ) = {2, 3, 5, 6, 9}. The Schubert cell Ωo

λ is identified with affine space as
follows:

Ωo
λ =




1 0 0 0 0 0 0 0 0
0 ∗ ∗ 1 0 0 0 0 0
0 ∗ ∗ 0 ∗ ∗ 1 0 0
0 ∗ ∗ 0 ∗ ∗ 0 1 0


 .

An element g = (g1, . . . , gn) ∈ T acts on the entry in row a and column b
via multiplication by gb/ga, so the corresponding weight is tb − ta.
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cν
λµ = 0 unless λ ⊂ ν and µ ⊂ ν.(4)

Proof. The classes σα, for α 6⊃ λ (so Ωα 6⊂ Ωλ), give a basis for H∗
T (X rΩλ).

Since σλ restricts to 0 in H∗
T (X r Ωλ), σλ · σµ 7→ 0 also. So only those σν

with ν ⊃ λ can appear. �

cµ
λµ = σλ|µ.(5)

Proof. Restrict the equation σλ ·σµ =
∑

cν
λµσν to pµ. By (1), σν 7→ 0 unless

ν ⊂ µ, and by (4), cν
λµ = 0 unless λ, µ ⊂ ν. Thus the only term that appears

is ν = µ, and

σλ|µ · σµ|µ = cµ
λµσµ|µ.

Since σµ|µ 6= 0 by (3), these factors cancel, and the claim follows. �

cλ
λλ = σλ|λ =

∏

i∈I(λ)

j∈J(λ)

i<j

(tj − ti).(6)

This is immediate from (5) and (3).
The next property is a “Pieri-Monk” rule for multiplication by a divisor

class:

σ · σλ =
∑

λ+

σλ+ + (σ |λ)σλ,(7)

the sum over partitions λ+ obtained by adding one box to λ.

Proof. We know that the only classes σν which can occur on the RHS are
those with ν ⊃ λ and |ν| ≤ |λ| + 1 thus ν = λ+ or ν = λ. For ν = λ+, the
classical formula applies. For ν = λ, we know cλ

λ = σ |λ by (5). �

(σ |λ − σ |µ)cλ
λµ =

∑
cλ
λµ+ ,(8)

the sum over µ+ obtained from µ by adding one box.

Proof. Using (5) and commutativity (cλ
λµ = cλ

µλ), the LHS is (σ |λ−σ |µ)σµ|λ,

and the RHS is
∑

σµ+ |λ. The equality follows from the restriction of Pieri-
Monk (7) to pλ. �

Finally, for any λ, µ, ν, we have

(σ |ν − σ |λ)cν
λµ =

∑

λ+

cν
λ+µ −

∑

ν−

cν−

λµ ,(9)
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the sums over λ+ obtained by adding one box to λ, and ν− obtained by
removing one box from ν.

Proof. By the Pieri-Monk rule, we have

σ · (σλ · σµ) =
∑

ν

cν
λµ σ · σν

=
∑

ν+

cν
λµ σν+ +

∑

ν

cν
λµ (σbx|ν)σν ,

and

(σ · σλ) · σµ =
∑

λ+

σλ+ · σµ + (σ |λ)σλ · σµ

=
∑

λ+

cν
λ+µ σν + (σ |λ)

∑

ν

cν
λµ σν .

Using associativity, these are equal. The claim follows by equating coeffi-
cients of σν . �

Proposition 2.2 ([Knu-Tao03]). The polynomials cν
λµ, homogeneous of de-

gree |λ| + |µ| − |ν| in Λ, satisfy and are uniquely determined by properties
(6), (8), and (9); that is,

(i) cλ
λλ = σλ|λ =

∏

i∈I(λ)

j∈J(λ)

i<j

(tj − ti);

(ii) (σ |λ − σ |µ)cλ
λµ =

∑
cλ
λµ+ ; and

(iii) (σ |ν − σ |λ)cν
λµ =

∑

λ+

cν
λ+µ −

∑

ν−

cν−

λµ .

Note that each σ |λ is a known linear polynomial, and

σ |λ − σ |µ =
∑

j∈J(λ)

tj −
∑

j∈J(µ)

tj

vanishes if and only if λ = µ. Note also that this characterization of the
coefficients includes the classical Littlewood-Richardson coefficients, but all
the equations reduce to 0 = 0 when the ti’s are set to 0!

Proof. We have seen above that (i), (ii), and (iii) are satisfied. For unique-
ness, we assume the polynomials cν

λµ satisfy these properties, and proceed
by induction.

Step 1: We claim cλ
λµ = σµ|λ, which vanishes unless µ ⊂ λ. (By the

Pieri-Monk formula, the polynomials σµ|λ satisfy (i) and (ii).) To see this,
use induction on |λ| − |µ|. The base case (λ = µ) is true by property (i).
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For λ 6= µ, use (ii) and induction, noticing that all the terms on the RHS
have |λ| − |µ+| = |λ| − |µ| − 1.

Step 2: To determine cν
λµ, use induction on |ν| − |λ|. (We know cν

λµ = 0

if |ν| − |λ| > |µ|.) The base case ν = λ is done by (ii) and Step 1. If ν 6= λ,
use (iii), noticing once again that the terms on the RHS have |ν| − |λ+| =
|ν−| − |λ| = |ν| − |λ| − 1. (We also see that cν

λµ = 0 unless λ and µ are

contained in ν.) �

Remark 2.3. All of the above will hold for an arbitrary Grassmann bundle
Gr(k,E) → B, with a flag of bundles F1 ⊂ · · · ⊂ Fn = E on B.

Remark 2.4. The fact that σλ|µ = 0 unless λ ⊂ µ and the expression
for σλ|λ (properties (1) and (3)) can be found in [Mol-Sag99] and [Oko96].
A version of the Pieri-Monk formula (7) can be found in [Oko-Ols97]. The
recursion in (9) (Property (iii) in Proposition 2.2) is due to Molev and Sagan
[Mol-Sag99].
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