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As before, let X = Gr(k, n), let ℓ = n−k, and let 0 → S → C
n
X → Q → 0

be the tautological sequence on X. We saw that H∗
T X has a basis of Schubert

classes

σλ = [Ωλ(F•)]
T ,

where Fi = Span{e1, . . . , ei} and

Ωλ(F•) = {L | dim(L ∩ Fℓ+i−λi
) ≥ i for 1 ≤ i ≤ k}.

We also saw how to express σλ in terms of (equivariant) Chern classes, using
the Kempf-Laksov formula:

σλ = |cT
λi+j−i(Q − Fℓ+i−λi

)|1≤i,j≤k.

These determinants are variations of Schur polynomials, which we will
call double Schur polynomials1 and denote sλ(x|y), where the two sets
of variables are x = (x1, . . . , xk) and y = (y1, . . . , yn). (Here k ≤ n, and
the length of λ is at most k.) Setting the y variables to 0, one recovers the
ordinary Schur polynomials: sλ(x|0) = sλ(x). In fact, sλ(x|y) is symmetric
in the x variables.

Here we give three descriptions of these double Schur polynomials, gen-
eralizing those for ordinary Schur polynomials. Set (xi|y)p = (xi − y1)(xi −
y2) · · · (xi − yp).

(i) Generalizing the “bialternant” definition of Schur polynomials, we
have

sλ(x|y) =

∣∣(xi|y)λj+k−j
∣∣

|(xi|y)k−j |
.

Date: March 18, 2007.
1The terms “multi-Schur” and “factorial Schur” are also found in the literature, as well

as several other variations.
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(ii) Generalizing the tableaux definition, we have

sλ(x|y) =
∑

T∈SSY T (λ)

∏

(i,j)∈λ

(xT (i,j) − yT (i,j)+j−i),

where the sum is over semistandard (column-strict) tableaux with
entries in {1, . . . , k}.

(iii) Generalizing the Jacobi-Trudi formula,

sλ(x|y) =
∣∣hλi+j−i(x|τ

1−jy)
∣∣
1≤i,j≤k

,

where

hp(x|y) = s(p)(x|y) =
∑

1≤i1≤···≤ip≤k

(xi1 − yi1) · · · (xip − yip+p−1)

and (τpy)i = yi+p. We also have

sλ(x|y) =
∣∣∣eλ′

i
+j−i(x|τ

j−1y)
∣∣∣
1≤i,j≤ℓ

,

where λ′ is the conjugate partition to λ, and

ep(x|y) = s(1p)(x|y) =
∑

1≤i1<···<ip≤k

(xi1 − yi1) · · · (xip − yip+1−p).

See [Mac92] for more. (The term “generalized factorial Schur function”
comes from the fact that the specialization y = (k − 1, k − 2, . . . , 1, 0) was
studied first.)

The following has been well-known for some time, but it is hard to cite
an original and complete source. (Thanks to L. Mihalcea and A. Molev for
providing simple proofs, which we sketch below.)

Proposition 1.1. (i) Let y1, . . . , yk be Chern roots for S∨, i.e., cT (S) =∏k
i=1(1 − yi). Let ui = −tn+1−i. Then

σλ = sλ(y|u).

(ii) Let cT (Q) =
∏ℓ

i=1(1 + xi). Then

σλ = sλ′(x|t).

To prove the first part, verify that

hr+j−i(y|τ
1−ju) = cT

r+j−i(Q − Fℓ+i−r).

Indeed, we have

hr+j−i(y|τ
1−ju) =

∑

a+b=r+j−i

ha(y1, . . . , yk)(−1)aeb(u1, . . . , uk+r−i)

and

cT
r+j−i(Q − Fℓ+i−r) = cT

r+j−i(F̃k−i+r − S).

(This comes from the exact sequences 0 → Fp → C
n → F̃n−p → 0 and

0 → S → C
n
X → Q → 0.) The RHS’s are equal.
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The second formula can be proved dually. It can also be deduced geomet-
rically, using Grassmann duality. A point of Gr(k, n) is L = im(A) = ker(B)
for an n × k matrix A and an ℓ × n matrix B such that B · A = 0. The
isomorphism

ϕ : Gr(k, n) → Gr(ℓ, n)

takes L to ϕ(L) = ker(tA) = im(tB). The group G = GLn(C) acts by
L 7→ g · L, so A 7→ g · A and B 7→ B · g−1. Therefore ϕ is equivariant with
respect to the homomorphism G → G given by g 7→ (tg)−1. Restricting to
the torus, the map T → T is (g1, . . . , gn) 7→ (g−1

1 , . . . , g−1
n ), so the weights

are mapped by ti 7→ −ti.

Exercise 1.2. For λ ⊂ (kℓ), ϕ maps Ωλ(F•) isomorphically onto Ωλ′(F̃•).
(We will see a generalization of this later.) It follows that ϕ∗σλ = σ̃λ′ .

Note that the duality map ϕ takes 0 → S → C
n
Gr(k,n) → Q → 0 to

0 → Q∨ → C
n
Gr(ℓ,n) → S∨ → 0, so σλ(x1, . . . , xk, t1, . . . , tn) maps to

σλ′(y1, . . . , yℓ,−tn, . . . ,−t1). Also, passing from F• to F̃• interchanges ti
and tn+1−i. As a consequence, we have the following:

Corollary 1.3. cν′

λ′µ′ is obtained from cν
λµ by interchanging ti and −tn+1−i

(as well as k and ℓ).

Molev and Sagan [Mol-Sag99] give a nice combinatorial formula for mul-
tiplying double Schur polynomials: for

sλ(y|u) · sµ(y|u) =
∑

cν
λµsν(y|u),

they express the degree (|λ|+|µ|−|ν|) polynomials cν
λµ as sums of products of

factors (ti − tj), indexed by tableau-like objects, in the spirit of the classical
Littlewood-Richardson rule. Since these double Schur functions represent
equivariant Schubert classes by Proposition 1.1, the Molev-Sagan rule gives
a formula for multiplying Schubert classes in H∗

T Gr(k, n).
The degree 0 terms in the Molev-Sagan rule are easily identified with

Littlewood-Richardson coefficients. For higher-order terms, though, there is
cancellation. We refer to [Mol-Sag99] for the formulation of the rule, but
here is an example.

Example 1.4. For k = 2 and ℓ = 3 (so n = 5), λ = (2), and µ = ν = (2, 1),
the Molev-Sagan formula gives

cν
λµ = (u4 − u1)(u4 − u2) + (u4 − u1)(u2 − u3) + (u2 − u2)(u2 − u3)

= (u4 − u1)(u4 − u3)

= (t5 − t2)(t3 − t2).

The result is positive in tj − ti (for i < j), but the original sum has terms
which are positive, negative, and zero in these variables.
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In this example, since µ = ν, we know c
µ
λµ = σλ|µ, with σλ = s(1,1)(x|t), so

we can check the above formula. The three tableaux on (1, 1) using entries
in {1, 2, 3} give

σλ = s(1,1)(x|t) = (x1 − t1)(x2 − t1) + (x1 − t1)(x3 − t2) + (x2 − t2)(x3 − t2).

Since J(µ) = {1, 3, 5} the restriction to pµ is given by x1 7→ t1, x2 7→ t3,
x3 7→ t5. Thus

σλ|µ = (t1 − t1)(t3 − t1) + (t1 − t1)(t5 − t2) + (t3 − t2)(t5 − t2)

= (t3 − t2)(t5 − t2),

as predicted.

2

We now describe the Knutson-Tao rule for equivariant Schubert calculus.
First, recall the characterization from Lecture 7:

Proposition 2.1. The polynomials cν
λµ, homogeneous of degree |λ|+|µ|−|ν|

in Λ, satisfy and are uniquely determined by the following properties:

(i) cλ
λλ = σλ|λ =

∏

i∈I(λ)

j∈J(λ)

i<j

(tj − ti);

(ii) (σ |λ − σ |µ)cλ
λµ =

∑
cλ
λµ+ ; and

(iii) (σ |ν − σ |λ)cν
λµ =

∑

λ+

cν
λ+µ −

∑

ν−

cν−

λµ .

Our goal is to find a positive formula for cν
λµ in Z≥0[t2 − t1, . . . , tn − tn−1].

First we introduce some notation. Partitions λ fitting inside the r × (n− r)
box correspond bijectively to sequences of r 1’s and n − r 0’s, as follows.
Starting in the northeast corner of the box, trace the border of λ; record a
0 for each step left, and a 1 for each step down. For example, the partition
λ = (5, 3, 1, 1) corresponds to the sequence 1 0 0 1 0 0 1 1 0:

Equivalently, the 1’s in this sequence appear in positions I(λ), and the 0’s
appear in positions J(λ). (Note that this encoding depends not only on λ,
but also on n and k.)

A puzzle of type ∆ν
λµ is described as follows. Write the sequences corre-

sponding to λ, µ, and ν around the border of an equilateral triangle of side
length n as indicated in Figure 1: λ is written along the northwest edge
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from SW to NE, µ is written along the northeast edge from NW to SE, and
ν is written along the bottom edge from left to right. To complete the puz-

Figure 1.

zle, fill the triangle with the pieces shown in Figures 2 and 3, in a “jigsaw”
fashion: shared edges must share the same label (0 or 1). The “classical
pieces” of Figure 2 may be rotated; the “equivariant piece” of Figure 3 may
only appear in the displayed orientation. An equivariant piece is said to

Figure 2. Classical puzzle pieces.

be in position (i, j) if a line drawn SW from the piece meets the bottom
edge i units from the left, and a line drawn SE from the piece meets the
bottom edge j units from the left, as in Figure 4. The weight of a puzzle is∏

(tj − ti), the product being taken over all (i, j) with an equivariant piece
in position (i, j).

The main theorem of [Knu-Tao03] is the following:

Theorem 2.2. The polynomial cν
λµ is the sum of the weights of all puzzles

of type ∆ν
λµ:

cν
λµ =

∑

puzzles

∏

equivariant

pieces

(tj − ti).

Figure 3. The equivariant puzzle piece.
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Figure 4. An equivariant piece in position (i, j).

Figure 5. A puzzle of type ∆10010
01001,01010 and weight t3 − t1.

Example 2.3. The puzzle in Figure 5 contributes t3 − t1 to the coefficient
of σ(3,1) in σ(2) · σ(2,1).

Exercise 2.4. Show that

σ2 · σ(2,1) = σ(3,2) + (t5 − t4 + t3 − t2)σ(2,2)

+(t5 − t4 + t4 − t3 + t3 − t1)σ(3,1)

+(t3 − t2)(t5 − t4 + t3 − t2)σ(2,1).

As indicated, there are eight puzzles computing this product, but there is
cancellation in the result. (E.g., the coefficient of σ(3,1) reduces to (t5 − t1).)

Exercise 2.5. Use the puzzle rule to deduce the formula given in Lecture
5 for the structure constants ck

ij , in H∗
T P

n−1.

To prove Theorem 2.2, one shows that the puzzle formula satisfies (i), (ii),
and (iii) of Proposition 2.1. This involves some very pretty combinatorics.
We refer to [Knu-Tao03] for the details, but we will sketch some of the ideas
here.

The commutativity cν
λµ = cν

µλ is far from obvious in the puzzle rule. On
the other hand, another symmetry is clear: If one flips a puzzle left to right,
and interchanges 0’s and 1’s, the result is again a puzzle. Note that swapping
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0’s and 1’s corresponds to interchanging λ and λ′, and flipping the puzzle
left to right sends tj − ti to tn+i−i− tn+1−j. This is just what we know about

cν
λµ and cν′

µ′λ′ (= cν′

λ′µ′) from Grassmann duality. Knutson and Tao use this
fact in lieu of commutativity.

To show (i) holds, use a “Green’s theorem” argument. For a given puz-
zle, consider the (classical) rhombi which are oriented as . For each
such rhombus, draw lines southeast from the south and southeast edges; if
these lines meet the bottom of the puzzle in positions j and j + 1, assign a
“discrepancy” tj+1 − tj to this piece.

Claim . The sum of the discrepancies of all ’s in a given puzzle is equal
to σ |ν − σ |λ.

Proof. To each edge labelled 1 of each piece in the puzzle, assign a “flux”
as follows. Draw a line southeast from the edge, and suppose it meets the
bottom of the puzzle in the jth position. If the edge is on the north or
northwest side of the piece, its flux is tj; if it is on the south or southeast
side, its flux is −tj; otherwise, the flux is 0. Let the total flux of a puzzle
piece be the sum of the fluxes of its edges; one easily checks that the only
piece with nonzero total flux is , which has flux equal to its discrepancy
tj+1 − tj . Note that the fluxes of internal edges in the puzzle cancel, so
the summing the total flux of each piece gives the sum of the fluxes of the
boundary edges, which one calculates to be σ |ν − σ |λ, as desired. �

The situation is similar for pieces oriented as . Several interesting
facts follow immediately:

Corollary 2.6. There must be the same number of 1’s on all three sides of
the boundary.

(Set tj = 1.)

Corollary 2.7. The number of pieces in a puzzle is |ν| − |λ|, and the
number of pieces is |ν| − |µ|.

(Set ti = n + 1 − i.)

Corollary 2.8. There are no puzzles with boundary given by λ, µ and ν

unless λ ⊂ ν and µ ⊂ ν.

(ν ⊃ λ if and only if σ |ν − σ |λ is positive.)

Corollary 2.9. Property (i) holds for puzzles.

Since λ = µ = ν, there are no or pieces. One then finds a unique
puzzle with λ on each boundary side, and checks that its weight is as re-
quired.

The next step is to show that Property (ii) follows from Property (iii) and
two facts which we have seen:

• cν
λµ = 0 unless λ and µ are contained in ν;
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• Grassmann duality, relating cν
λµ and cν′

λ′µ′ .

It remains to prove Property (iii) for puzzles. Knutson and Tao do this by
introducing puzzles with “gashes” – edges where the adjoining puzzle pieces
have different labels – and seeing how to propagate and remove gashes.

Remark 2.10. In the nonequivariant case, Vakil constructed a sequence of

degenerations, starting with “Ωλ(F•) · Ωµ(F̃•)” and ending with “Ωλ(F•) ·
Ωµ(F•)”, from which one can see directly a contribution from each (nonequiv-
ariant) puzzle [Vak03]. Vakil and Coskun [Cos-Vak06] have a conjectured
procedure to do the same in the equivariant setting. At their best, the
combinatorics and geometry serve each other here.
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