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Remark 0.1. We saw that the study of cohomology and equivariant co-
homology of Grassmannians leads to interesting symmetric polynomials,
namely, the Schur polynomials s)(z) and sy(x|t). These arise in contexts
other than intersection theory and representation theory. For example,
Griffiths asked which polynomials P in ¢i(F),...,c,(FE) are positive when-
ever E is an ample vector bundle on an n-dimensional variety. (That is,
[x P(c1(E),...,en(E)) > 0; P should be homogeneous of degree n.)

Bloch showed that the Chern classes cq,..., ¢, are positive in this sense;
C1 C2 C3

Griffiths gave other examples, such as ¢? —cz, | 1 ¢ c2 |, 2 — 2co, ete.
0 1 C1

The complete answer was given by Fulton-Lazarsfeld [Ful-Laz83]. Write
P = )" aysy, where sy is the Schur polynomial det(cy,+;—;) and ay € Z.
Then P is positive if and only if ay > 0 for all A (and at least one is > 0).
(So for example ¢ — 2¢3 = (¢} — ¢3) — ¢z is not!)

1

Let V' be an n-dimensional vector space, let G = GL(V), and let X =
FI(V) be the variety of complete flags in V (so dim X = (3)). For approx-
imation spaces, take EG,, = Hom®(V,C™) and BG,, = Gr(n,C™), with
tautological bundle £ C CfZ,. We have a diagram

EG, x¢ X~ FI(E)

|

EG,, x% pt = Gr(n,C™),
where the top map is given map (¢, Le) — (im(p),¢(Le)). (So if Lo is
(L1 C - C Ly = V), then ¢(Ls) is (p(L1) C -+ C ¢(Ln) = ¢(V)).) On
FI(E), there are tautological flags of subbundles S; C --- C S,, = FE and
quotient bundles £ = Q,, — --- — @Qq, corresponding to the tautological

bundles 1 C - C S, =Vx =Qn — - — Q1 0on X. (So Q; =V/S,—;.)
Let x; = ¢ (ker(Q; — Qi—1)) = c1(ker(Q; — Q;_1)).
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Proposition 1.1. We have
HiX = Az, ...,z /(ei(2) — ¢i)i<i<n.
More generally, for any flag bundle FI(F) — B, we have
H*FI(E) = H*Blz1,...,zy]/(ei(x) — ¢i(E))i<i<n-

Proof. To see this, realize F1(E) as a sequence of projective bundles over B:
Start by forming P(E) — B, with universal subbundle U; C E; then form
P(E/U;) — P(E), with universal subbundle Uy /Uy; continue until reaching
FI(E) =P(E/U,—2) — --- — B. It is clear from this construction that the
monomials xil <o gin with i; < n — j form a basis for H*F1(E) over H*B,
and that the relations e;(z) = ¢;(F) hold. Thus H*F1(E) has rank n! over
H*B, and the proposition will follow if the ring on the RHS has the same

rank. O

Exercise 1.2. Show that the ring H*Blz1,...,2zs]/(e;(z) — ¢;(E)) also has
a basis of monomials :E’ll . azﬁgl with 7; < n — j. (Hint: use the relation

Z(—l)iei . hn—i = 0.)

Now assume V = C™, so we have F} C --- C F, = V, with F; =
Span{eq, ..., e;}. (Also write F; = Span{ey, ..., ent1-i} for the opposite
flag.) Note that the subgroup B of upper-triangular matrices preserves Fy,,
and BPP (lower-triangular matrices) preserves F,. For w € Sn, we have
B-invariant Schubert varieties in X, defined by

Qy(Fo) = {z| tk(Fp(2) — Qq(x)) <7u(g,p) for all 1 < g,p <n},

where r,,(q,p) = #{i < q|w(i) < p}.

As in the Grassmannian case, a subset of these rank conditions suffices
to define ,,. To see which, form the diagram of w, the collection of boxes
in the n x n defined as follows. Place a dot (or a 1) in row i and column
w(i), and cross out all boxes which are to the right or below a dot, including
the boxes containing dots. The diagram D(w) is the collection of boxes
which remain. Here is an example, for w =4163275. (We use “one-line”
notation and write w = w(1) w(2)--- w(n).)

Ole
°
1] |2]e
1]e
°
4 °
°

Note that r(q,p) is the number of dots in the upper-left ¢ x p rectangle.
(Some of these have been labelled in the diagram.) The conditions needed
to define Q,,(F,) are those coming from the boxes in the southwest corners
of D(w) — so in the above example, only five conditions are needed. In fact,
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this defines Q,,(F,) as a (reduced, irreducible, normal, Cohen-Macaulay)
subscheme. The codimension is

tw) = #{j <ilw(j) >w(@)}
= #(boxes in D(w)).
For details, see [Ful92].
Example 1.3. For a partition A in the k x ¢ rectangle, we have I(\) =
{il < < Zk} and J()\) = {jl < v - <jg}, with [()\) UJ()\) = {1,...,77,}.
Define w(\) € S,, by
w(A) = j1j2 - Jeir - i

Note that £(w(\)) = |A| = #{i € I(N),j € J(A)|j > i}. For example,
with k =4, ¢ =5, and A = (5,3,1,1), we have w(\) =235691478. The
diagram D(w(\)) is easy to describe in terms of \; the pattern is suggested
by this example.

The Schubert variety {2,,(x)(Fs) comes from a Schubert variety on a Grass-
mannian: there is a projection f : FI(V) — Gr(k,V), with f=1Q,\(F,) =
Qw()\) (Fo)

All of this works for flag bundles, without change. On X = F1(E) — B,
we have a flag F; C --- C F,, = Ex, and Schubert loci Q,,(F,) C X. When
B = BT, we have [Q,,(F,)] = [Q.(F)]" € H:X.

Write 0y = [Qu(Fo)]” and &, = [Qw(f.)]T. For w € S, these classes
give two bases for H.X over Ar.

Proposition 1.4. The bases {ow} and {1y, = Gu,w} are Poincaré dual;
that is,

p*(Uw : Tv) = 5wv € A7
where p is the map X — pt.

Proof. We show that if {(w) + £(v) > (3) = dim X, then Q,(F,) meets

Qv(ﬁ’.) only if v = wow, and in this case they meet transversally at the
point

Pw = (Cwn)) C (Cun) Cwm—1)) T+ C (Cw(n),- - »Cu(1))-
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(Note that at p,, the map

Fp(pw) = <617 oo 7ep> - Qq(pw) = Cn/<ew(n)a s 7ew(n+l—q)> = <ew(1)7 s 7ew(q)>
has rank r,(q,p).)

A neighborhood U, = AG) of Py in X is given by the set of matrices with
1’s in positions (i, w(i)) and arbitrary entries below. The flag associated to
such a matrix has parts spanned by the rows, reading from the bottom up.
For example, if w =4163275, then

3

g

Il
* ¥ ¥ ¥ ¥ =
¥ % % % ¥ % =

* X X =
L SR S G

1
The intersection of U, with the Schubert variety

Qu(F2) = {Lo| dim(F, N Ly) = p— #{i < | w(i) < p}}
is given by setting entries to the right of 1’s to 0:
1

—~
5
~
I

* X X X X =

* ¥ O
* % O O x O
S ¥ OO

O =

(Note that there are ¢(w) such entries.)
The situation for €,(F,) is the same, but with the matrices reflected

from left to right. Thus pu,» € Q2y(Fe), and the intersection of Qu(F,)
with Uy, is given by setting entries to the left of 1’s equal to 0. For
v = wow, we see that Qy,(Fy) and Qo (F.) intersect transversally at the
origin (as coordinate planes in U,). Also, we see that if Q,(Fy) N Q,(F,) is
nonempty, then w(i) < wov(i) for all i, so £(w) < L(wov) = (3) — £(v), i.e.,
t(w) + L(v) < (5). O

Note that p, is a smooth point of ,(F,), and since Q¢ is an affine
space, it is easy to compute T}, €. The torus T' = (C*)" acts with weight
tw(i) — tw(j) ON an entry in position (j,w(i)) with i < j and w(i) < w(j).

2

We now consider the equivariant Giambelli formula for Schubert varieties
in X. This is given by the double Schubert polynomials &, (x|y) of Lascoux
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and Schiitzenberger [Las-Sch82]. Here w € S,, is a permutation, and z =
(1,...,2y) and y = (y1,...,Yyn) are two sets of variables.
These are defined as follows. For F' € Z[x,y] and 1 < i < n — 1, define
the divided difference operator 0; = 07 by
F(ryy) = F( w1, m, .. 5y)  F = s(F)

o0 F = = .
Ti — Ti4+1 Ty — Ti+1

(Here s; = (i,i+1) is the simple transposition exchanging i and i+ 1.) Note
that 0; ignores the y variables, and 9; F' = 0 iff F' is symmetric in x; and x;11.
For w € Sy, write w = wq s;, - -+ s;, with £ minimal, so ¢ = () — £(w). (To
do this, successively swap adjacent entries of w to reach wg. For example,

w=31524 2235124 2%, 35214 3435241
28,35421 2553421 22, 54321 = wy
shows w = wy $2 $1 3 S4 3 S2.)

Definition 2.1. With notation as above, the double Schubert polyno-
mial is defined by

Gw($|y) :aigo"'08i1 H (:L'Z_y])
i+j<n
This is independent of the choice of the expression for w; as for many such
assertions, there are algebraic proofs (see [Mac91]) and geometric proofs.

Note that the y variables act as “scalars” here. In fact, there is a “Leibniz
rule”

Oi(F - G) = (0iF) G + (siF)(9:G),

so any function £’ which is symmetric in the x variables is a scalar for the
action of the divided difference operators.

Example 2.2. The Schubert polynomials for n = 3 are as follows:

G321 = (1 —y1)(@1 — y2) (w2 — Y1)

61 82
Goz1 = (z1 —y1) (@2 — 11) G312 = (z1 — y1) (21 — y2)
021 all
Goiz=a1— 11 Sz =21 +T2—y1 — Y2
61 82
Gio3 = 1.

Specializing the y variables to 0, we obtain the (single) Schubert poly-
nomials &,,(z) = &,,(z|0). These also be defined similarly as 9;, o --- o
Dy (x77 - 2,_1). In fact, one can write G, (z) = Y azzl .-z, with
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ij <n—jand a; > 0. There are nice combinatorial formulas for the co-
efficients ay; see [Bil-Joc-Sta93], [Win02]. One can read the top monomial
(with respect to a certain term order) of &, (x) from the diagram D(w): this
is Hazf)(w)i, where D(w); is the number of boxes in the ith row of D(w).
As w varies over So, = |J,, Sn, the Schubert polynomials &,,(z) form a

linear basis for Z[z1, xo,...]. In fact, &, (x) is symmetric in x and xgq iff
w(k) < w(k +1) iff 0,6, = 0. Thus the polynomials &,, with w(n + 1) <
w(n+2) < --- form a basis for Z[z1,...,zy].

Theorem 2.3. With x; = ¢l (ker(Q; — Qi_1)) as above, we have
ow = Gy(xl|t).

Equivalently, given bundles Fy C ---F, = FE on a base B, and X = F1(FE)
with universal quotient bundles E — Qp_1 — -+ — @1, we have

Q] = Gu(2ly),

where Qy, is the locus defined by rk(F, — Qq) < ry(q,p), z; = c1(ker(Q; —
Qi-1)), and y; = c1(F;/Fi—1).

Proof. First consider the case w = wg. Then €, is the locus where F}, —
Qn—p vanishes for all p, i.e., S, = F},, where S, is the tautological subbundle.
(It is also the image of the canonical section B — X corresponding to the
flag Fy on B.) One way to compute its class is as follows. The locus
where F} — @,—1 vanishes has class (1 — y1) - (zp—1 — y1). On this
locus, the vanishing of (the restriction of) Fy/F; — Q,—2 has class (z; —
y2) - -+ (xn—2 —y2). Continuing in this way and using the projection formula,
we see [Qy,] = Hi+j§n(mi —Yj)-

Now suppose we know the formula for some w. If w(k) > w(k + 1), let
v =w - Sg. The theorem will follow from the following:

Claim . [©2,] = 0;[Q].

In fact, we will also show that 0k [Q,,] = 0 when w(k) < w(k + 1). (Note
that Jf is well-defined on Afz1,. .., z,]/(€ei(z) —e;i(t))1<i<n; this follows from
the Leibniz formula.)

To prove the claim, let Y, = Fl(1,2,...,n; k,...,n;E),sop: X =Yy
is a P-bundle: X = P(S,,_4+1/Sn_r_1). Form the fiber product

Zy,
VN
X X
NA
Yk7

so Z = {(Le, L, | L; = L] for i # n — k}.
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Exercise 2.4. (i) If w(k) > w(k + 1), p1 maps p, '€, birationally
onto €2, with v = w sy,.
(ii) If w(k) < w(k+1), pi(py ' Qu) C Q-
(i) (p1)« o p5 = p* 0 px = 0.

Note that the assertions in (i) and (ii) are local, so they can be reduced to
the case of a point. The third statement is a general fact about P!-bundles:
If P(W) — Y is a P'-bundle, with tautological quotient W — @Q — 0, and
x = c1(Q), then p(x) =1 € H*Y.

Therefore we have

Q] = (p1)+p3[Qu] = (p1)«p36w = Gy = G,
when w(k) > w(k + 1). On the other hand, if w(k) < w(k + 1), we have
0= (p1)«p2[Quw] = (P1):P26w = 04Gy.

O

The fact that the definition of &,, is independent of choices follows, since
by choosing a suitable base B with F of sufficiently large rank, one can
assume the z’s and y’s are independent up to any given degree.

Remark 2.5. Schubert polynomials are characterized by the fact that for
a general map of flagged vector bundles

RC-CF,5E,— - —E,
with degeneracy locus
Qu(p) = {z| tk(Fy(z) — E4(v)) < 1wlg,p)}s
we have
[Qu(p)] = Gu(zly),
where x; = ¢1(ker(Q; — Qi—1)) and y; = ¢1(F;/F;—1). See [Ful92].

Many other algebraic properties of Schubert polynomials can be proven
geometrically.

Proposition 2.6. &, (y|z) = (—1)"“&,,-1(z]y).
Proof. Replacing the sequence
FLC-+CF,1CE—Qp1—  —O
with
QI C  CQu CE = F — = F,

interchanges z; and —y;, and w and w™!. O
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Corollary 2.7. One can compute Schubert polynomials using divided dif-
ference operators acting on the y variables. If w = s;,---s; wo, with £
minimal, then

Gu(zly) = (=)™ 000! ] (2 —yy).
+j<n
Remark 2.8. Computationally, it is hard to compute the polynomials &,,
from the definition. For example, &, is a linear polynomial, but to use the
definition, one has to start from the top and apply (g) — 1 divided differ-

ence operators. However, by the above symmetry it is enough to compute
Ss, (x) = G5, (2|0), and this is easy: the fact that 0;8;, (z) = 0;; implies

Gs,(zly) =1+ -+ — (1 +- -+ yk).
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