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Remark 0.1. We saw that the study of cohomology and equivariant co-
homology of Grassmannians leads to interesting symmetric polynomials,
namely, the Schur polynomials sλ(x) and sλ(x|t). These arise in contexts
other than intersection theory and representation theory. For example,
Griffiths asked which polynomials P in c1(E), . . . , cn(E) are positive when-
ever E is an ample vector bundle on an n-dimensional variety. (That is,∫
X

P (c1(E), . . . , en(E)) > 0; P should be homogeneous of degree n.)
Bloch showed that the Chern classes c1, . . . , cn are positive in this sense;

Griffiths gave other examples, such as c2
1 − c2,

∣∣∣∣∣∣

c1 c2 c3

1 c1 c2

0 1 c1

∣∣∣∣∣∣
, c2

1 − 2c2, etc.

The complete answer was given by Fulton-Lazarsfeld [Ful-Laz83]. Write
P =

∑
aλsλ, where sλ is the Schur polynomial det(cλi+j−i) and aλ ∈ Z.

Then P is positive if and only if aλ ≥ 0 for all λ (and at least one is > 0).
(So for example c2

1 − 2c2 = (c2
1 − c2) − c2 is not!)
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Let V be an n-dimensional vector space, let G = GL(V ), and let X =
Fl(V ) be the variety of complete flags in V (so dim X =

(
n
2

)
). For approx-

imation spaces, take EGm = Homo(V, Cm) and BGm = Gr(n, Cm), with
tautological bundle E ⊂ Cm

Gr. We have a diagram

EGm ×G X
∼

- Fl(E)

EGm ×G pt

?
∼
- Gr(n, Cm),

?

where the top map is given map (ϕ,L•) 7→ (im(ϕ), ϕ(L•)). (So if L• is
(L1 ⊂ · · · ⊂ Ln = V ), then ϕ(L•) is (ϕ(L1) ⊂ · · · ⊂ ϕ(Ln) = ϕ(V )).) On
Fl(E), there are tautological flags of subbundles S1 ⊂ · · · ⊂ Sn = E and
quotient bundles E = Qn → · · · → Q1, corresponding to the tautological
bundles S1 ⊂ · · · ⊂ Sn = VX = Qn → · · · → Q1 on X. (So Qi = V/Sn−i.)

Let xi = cG
1 (ker(Qi → Qi−1)) = c1(ker(Qi → Qi−1)).
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Proposition 1.1. We have

H∗
GX = ΛG[x1, . . . , xn]/(ei(x) − ci)1≤i≤n.

More generally, for any flag bundle Fl(E) → B, we have

H∗Fl(E) = H∗B[x1, . . . , xn]/(ei(x) − ci(E))1≤i≤n.

Proof. To see this, realize Fl(E) as a sequence of projective bundles over B:
Start by forming P(E) → B, with universal subbundle U1 ⊂ E; then form
P(E/U1) → P(E), with universal subbundle U2/U1; continue until reaching
Fl(E) = P(E/Un−2) → · · · → B. It is clear from this construction that the

monomials xi1
1 · · · xin

n with ij ≤ n − j form a basis for H∗Fl(E) over H∗B,
and that the relations ei(x) = ci(E) hold. Thus H∗Fl(E) has rank n! over
H∗B, and the proposition will follow if the ring on the RHS has the same
rank. �

Exercise 1.2. Show that the ring H∗B[x1, . . . , xn]/(ei(x)− ci(E)) also has

a basis of monomials xi1
1 · · · xin

n with ij ≤ n − j. (Hint: use the relation∑
(−1)iei · hn−i = 0.)

Now assume V = Cn, so we have F1 ⊂ · · · ⊂ Fn = V , with Fi =

Span{e1, . . . , ei}. (Also write F̃i = Span{en, . . . , en+1−i} for the opposite
flag.) Note that the subgroup B of upper-triangular matrices preserves F•,

and Bopp (lower-triangular matrices) preserves F̃•. For w ∈ Sn, we have
B-invariant Schubert varieties in X, defined by

Ωw(F•) = {x | rk(Fp(x) → Qq(x)) ≤ rw(q, p) for all 1 ≤ q, p ≤ n},

where rw(q, p) = #{i ≤ q |w(i) ≤ p}.
As in the Grassmannian case, a subset of these rank conditions suffices

to define Ωw. To see which, form the diagram of w, the collection of boxes
in the n × n defined as follows. Place a dot (or a 1) in row i and column
w(i), and cross out all boxes which are to the right or below a dot, including
the boxes containing dots. The diagram D(w) is the collection of boxes
which remain. Here is an example, for w = 416 3 2 7 5. (We use “one-line”
notation and write w = w(1)w(2) · · · w(n).)

•
•

•
•

•
•

•

0

1 2
1

4

Note that rw(q, p) is the number of dots in the upper-left q × p rectangle.
(Some of these have been labelled in the diagram.) The conditions needed
to define Ωw(F•) are those coming from the boxes in the southwest corners
of D(w) – so in the above example, only five conditions are needed. In fact,
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this defines Ωw(F•) as a (reduced, irreducible, normal, Cohen-Macaulay)
subscheme. The codimension is

ℓ(w) = #{j < i |w(j) > w(i)}

= #(boxes in D(w)).

For details, see [Ful92].

Example 1.3. For a partition λ in the k × ℓ rectangle, we have I(λ) =
{i1 < · · · < ik} and J(λ) = {j1 < · · · < jℓ}, with I(λ) ∪ J(λ) = {1, . . . , n}.
Define w(λ) ∈ Sn by

w(λ) = j1 j2 · · · jℓ i1 · · · ik.

Note that ℓ(w(λ)) = |λ| = #{i ∈ I(λ), j ∈ J(λ) | j > i}. For example,
with k = 4, ℓ = 5, and λ = (5, 3, 1, 1), we have w(λ) = 2 3 5 6 9 1 4 7 8. The
diagram D(w(λ)) is easy to describe in terms of λ; the pattern is suggested
by this example.

•
•

•
•

•
•

•
•
•

The Schubert variety Ωw(λ)(F•) comes from a Schubert variety on a Grass-

mannian: there is a projection f : Fl(V ) → Gr(k, V ), with f−1Ωλ(F•) =
Ωw(λ)(F•).

All of this works for flag bundles, without change. On X = Fl(E) → B,
we have a flag F1 ⊂ · · · ⊂ Fn = EX, and Schubert loci Ωw(F•) ⊂ X. When

B = BT , we have [Ωw(F•)] = [Ωw(F•)]
T ∈ H∗

TX.

Write σw = [Ωw(F•)]
T and σ̃w = [Ωw(F̃•)]

T
. For w ∈ Sn, these classes

give two bases for H∗
TX over ΛT .

Proposition 1.4. The bases {σw} and {τw = σ̃w0 w} are Poincaré dual;

that is,

ρ∗(σw · τv) = δw v ∈ Λ,

where ρ is the map X → pt.

Proof. We show that if ℓ(w) + ℓ(v) ≥
(
n
2

)
= dimX, then Ωw(F•) meets

Ωv(F̃•) only if v = w0 w, and in this case they meet transversally at the
point

pw = 〈ew(n)〉 ⊂ 〈ew(n), ew(n−1)〉 ⊂ · · · ⊂ 〈ew(n), . . . , ew(1)〉.
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(Note that at pw, the map

Fp(pw) = 〈e1, . . . , ep〉 → Qq(pw) = Cn/〈ew(n), . . . , ew(n+1−q)〉 = 〈ew(1), . . . , ew(q)〉

has rank rw(q, p).)

A neighborhood Uw
∼= A(n

2
) of pw in X is given by the set of matrices with

1’s in positions (i, w(i)) and arbitrary entries below. The flag associated to
such a matrix has parts spanned by the rows, reading from the bottom up.
For example, if w = 416 3 2 7 5, then

Uw =




1
1 ∗
∗ ∗ 1
∗ 1 ∗ ∗
∗ 1 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ 1 ∗ ∗




.

The intersection of Uw with the Schubert variety

Ωw(F•) = {L• | dim(Fp ∩ Lq) ≥ p − #{i ≤ q |w(i) ≤ p}}

is given by setting entries to the right of 1’s to 0:

Ωo
w(F•) =




1
1 0
∗ ∗ 1
∗ 1 0 0
∗ 1 0 0 0
∗ ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ 1 0 0




.

(Note that there are ℓ(w) such entries.)

The situation for Ωv(F̃•) is the same, but with the matrices reflected

from left to right. Thus pw0 v ∈ Ωv(F̃•), and the intersection of Ωv(F̃•)
with Uw0 v is given by setting entries to the left of 1’s equal to 0. For

v = w0 w, we see that Ωw(F•) and Ωw0 w(F̃•) intersect transversally at the

origin (as coordinate planes in Uw). Also, we see that if Ωw(F•)∩Ωv(F̃•) is
nonempty, then w(i) ≤ w0v(i) for all i, so ℓ(w) ≤ ℓ(w0v) =

(
n
2

)
− ℓ(v), i.e.,

ℓ(w) + ℓ(v) ≤
(
n
2

)
. �

Note that pw is a smooth point of Ωw(F•), and since Ωo
w is an affine

space, it is easy to compute Tpw
Ωw. The torus T = (C∗)n acts with weight

tw(i) − tw(j) on an entry in position (j, w(i)) with i < j and w(i) < w(j).

2

We now consider the equivariant Giambelli formula for Schubert varieties
in X. This is given by the double Schubert polynomials Sw(x|y) of Lascoux
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and Schützenberger [Las-Sch82]. Here w ∈ Sn is a permutation, and x =
(x1, . . . , xn) and y = (y1, . . . , yn) are two sets of variables.

These are defined as follows. For F ∈ Z[x, y] and 1 ≤ i ≤ n − 1, define
the divided difference operator ∂i = ∂x

i by

∂iF =
F (x; y) − F (. . . , xi+1, xi, . . . ; y)

xi − xi+1
=

F − si(F )

xi − xi+1
.

(Here si = (i, i+1) is the simple transposition exchanging i and i+1.) Note
that ∂i ignores the y variables, and ∂iF = 0 iff F is symmetric in xi and xi+1.
For w ∈ Sn, write w = w0 si1 · · · siℓ with ℓ minimal, so ℓ =

(
n
2

)
− ℓ(w). (To

do this, successively swap adjacent entries of w to reach w0. For example,

w = 315 2 4
s2−→ 3 5 1 2 4

s3−→ 3 5 2 1 4
s4−→ 3 5 2 4 1

s3−→ 3 5 4 2 1
s1−→ 5 3 4 2 1

s2−→ 5 4 3 2 1 = w0

shows w = w0 s2 s1 s3 s4 s3 s2.)

Definition 2.1. With notation as above, the double Schubert polyno-
mial is defined by

Sw(x|y) = ∂iℓ ◦ · · · ◦ ∂i1




∏

i+j≤n

(xi − yj)


 .

This is independent of the choice of the expression for w; as for many such
assertions, there are algebraic proofs (see [Mac91]) and geometric proofs.
Note that the y variables act as “scalars” here. In fact, there is a “Leibniz
rule”

∂i(F · G) = (∂iF )G + (siF )(∂iG),

so any function F which is symmetric in the x variables is a scalar for the
action of the divided difference operators.

Example 2.2. The Schubert polynomials for n = 3 are as follows:

S321 = (x1 − y1)(x1 − y2)(x2 − y1)

S231 = (x1 − y1)(x2 − y1)

∂1

�

S312 = (x1 − y1)(x1 − y2)

∂2

-

S213 = x1 − y1

∂2
?

S132 = x1 + x2 − y1 − y2

∂1
?

S123 = 1.

∂2
�

∂1 -

Specializing the y variables to 0, we obtain the (single) Schubert poly-
nomials Sw(x) = Sw(x|0). These also be defined similarly as ∂iℓ ◦ · · · ◦

∂i1(x
n−1
1 · · · xn−1). In fact, one can write Sw(x) =

∑
aIx

i1
1 · · · xin

n , with
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ij ≤ n − j and aI ≥ 0. There are nice combinatorial formulas for the co-
efficients aI ; see [Bil-Joc-Sta93], [Win02]. One can read the top monomial
(with respect to a certain term order) of Sw(x) from the diagram D(w): this

is
∏

x
D(w)i

i , where D(w)i is the number of boxes in the ith row of D(w).
As w varies over S∞ =

⋃
n Sn, the Schubert polynomials Sw(x) form a

linear basis for Z[x1, x2, . . .]. In fact, Sw(x) is symmetric in xk and xk+1 iff
w(k) < w(k + 1) iff ∂kSw = 0. Thus the polynomials Sw with w(n + 1) <
w(n + 2) < · · · form a basis for Z[x1, . . . , xn].

Theorem 2.3. With xi = cT
1 (ker(Qi → Qi−1)) as above, we have

σw = Sw(x|t).

Equivalently, given bundles F1 ⊂ · · ·Fn = E on a base B, and X = Fl(E)
with universal quotient bundles E → Qn−1 → · · · → Q1, we have

[Ωw] = Sw(x|y),

where Ωw is the locus defined by rk(Fp → Qq) ≤ rw(q, p), xi = c1(ker(Qi →
Qi−1)), and yi = c1(Fi/Fi−1).

Proof. First consider the case w = w0. Then Ωw0
is the locus where Fp →

Qn−p vanishes for all p, i.e., Sp = Fp, where S• is the tautological subbundle.
(It is also the image of the canonical section B → X corresponding to the
flag F• on B.) One way to compute its class is as follows. The locus
where F1 → Qn−1 vanishes has class (x1 − y1) · · · (xn−1 − y1). On this
locus, the vanishing of (the restriction of) F2/F1 → Qn−2 has class (x1 −
y2) · · · (xn−2−y2). Continuing in this way and using the projection formula,
we see [Ωw0

] =
∏

i+j≤n(xi − yj).

Now suppose we know the formula for some w. If w(k) > w(k + 1), let
v = w · sk. The theorem will follow from the following:

Claim . [Ωv] = ∂k[Ωw].

In fact, we will also show that ∂k[Ωw] = 0 when w(k) < w(k + 1). (Note
that ∂k is well-defined on Λ[x1, . . . , xn]/(ei(x)−ei(t))1≤i≤n; this follows from
the Leibniz formula.)

To prove the claim, let Yk = Fl(1, 2, . . . , ˆn − k, . . . , n;E), so p : X → Yk

is a P1-bundle: X = P(Sn−k+1/Sn−k−1). Form the fiber product

Zk

X

p1

�

X

p2
-

Yk,

p
�

p -

so Zk = {(L•, L
′
• |Li = L′

i for i 6= n − k}.
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Exercise 2.4. (i) If w(k) > w(k + 1), p1 maps p−1
2 Ωw birationally

onto Ωv, with v = w sk.
(ii) If w(k) < w(k + 1), p1(p

−1
2 Ωw) ⊂ Ωw.

(iii) (p1)∗ ◦ p∗2 = p∗ ◦ p∗ = ∂k.

Note that the assertions in (i) and (ii) are local, so they can be reduced to
the case of a point. The third statement is a general fact about P1-bundles:
If P(W ) → Y is a P1-bundle, with tautological quotient W → Q → 0, and
x = c1(Q), then p∗(x) = 1 ∈ H∗Y .

Therefore we have

[Ωv] = (p1)∗p
∗
2[Ωw] = (p1)∗p

∗
2Sw = ∂kSw = Sv

when w(k) > w(k + 1). On the other hand, if w(k) < w(k + 1), we have

0 = (p1)∗p
∗
2[Ωw] = (p1)∗p

∗
2Sw = ∂kSw.

�

The fact that the definition of Sw is independent of choices follows, since
by choosing a suitable base B with E of sufficiently large rank, one can
assume the x’s and y’s are independent up to any given degree.

Remark 2.5. Schubert polynomials are characterized by the fact that for
a general map of flagged vector bundles

F1 ⊂ · · · ⊂ Fn
ϕ
−→ En → · · · → E1,

with degeneracy locus

Ωw(ϕ) = {x | rk(Fp(x) → Eq(x)) ≤ rw(q, p)},

we have

[Ωw(ϕ)] = Sw(x|y),

where xi = c1(ker(Qi → Qi−1)) and yi = c1(Fi/Fi−1). See [Ful92].

Many other algebraic properties of Schubert polynomials can be proven
geometrically.

Proposition 2.6. Sw(y|x) = (−1)ℓ(w)
Sw−1(x|y).

Proof. Replacing the sequence

F1 ⊂ · · · ⊂ Fn−1 ⊂ E → Qn−1 → · · · → Q1

with

Q∨
1 ⊂ · · · ⊂ Q∨

n−1 ⊂ E∨ → F∨
n−1 → · · · → F∨

1 ,

interchanges xi and −yi, and w and w−1. �
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Corollary 2.7. One can compute Schubert polynomials using divided dif-

ference operators acting on the y variables. If w = siℓ · · · si1 w0, with ℓ
minimal, then

Sw(x|y) = (−1)ℓ(w)∂y
iℓ
◦ · · · ◦ ∂y

i1

∏

i+j≤n

(xi − yj).

Remark 2.8. Computationally, it is hard to compute the polynomials Sw

from the definition. For example, Ssk
is a linear polynomial, but to use the

definition, one has to start from the top and apply
(
n
2

)
− 1 divided differ-

ence operators. However, by the above symmetry it is enough to compute
Ssk

(x) = Ssk
(x|0), and this is easy: the fact that ∂iSsk

(x) = δik implies

Ssk
(x|y) = x1 + · · · + xk − (y1 + · · · + yk).
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