EQUIVARIANT COHOMOLOGY IN ALGEBRAIC GEOMETRY LECTURE NINE: FLAG VARIETIES

WILLIAM FULTON NOTES BY DAVE ANDERSON

Remark 0.1. We saw that the study of cohomology and equivariant cohomology of Grassmannians leads to interesting symmetric polynomials, namely, the Schur polynomials $s_{\lambda}(x)$ and $s_{\lambda}(x|t)$. These arise in contexts other than intersection theory and representation theory. For example, Griffiths asked which polynomials P in $c_1(E), \ldots, c_n(E)$ are positive whenever E is an ample vector bundle on an n-dimensional variety. (That is, $\int_X P(c_1(E), \ldots, e_n(E)) > 0$; P should be homogeneous of degree n.)

Bloch showed that the Chern classes c_1, \ldots, c_n are positive in this sense; Griffiths gave other examples, such as $c_1^2 - c_2$, $\begin{vmatrix} c_1 & c_2 & c_3 \\ 1 & c_1 & c_2 \\ 0 & 1 & c_1 \end{vmatrix}$, $c_1^2 - 2c_2$, etc.

The complete answer was given by Fulton-Lazarsfeld [Ful-Laz83]. Write $P = \sum a_{\lambda}s_{\lambda}$, where s_{λ} is the Schur polynomial $\det(c_{\lambda_i+j-i})$ and $a_{\lambda} \in \mathbb{Z}$. Then P is positive if and only if $a_{\lambda} \geq 0$ for all λ (and at least one is > 0). (So for example $c_1^2 - 2c_2 = (c_1^2 - c_2) - c_2$ is not!)

1

Let V be an n-dimensional vector space, let G = GL(V), and let X = Fl(V) be the variety of complete flags in V (so dim $X = \binom{n}{2}$). For approximation spaces, take $EG_m = \text{Hom}^o(V, \mathbb{C}^m)$ and $BG_m = Gr(n, \mathbb{C}^m)$, with tautological bundle $E \subset \mathbb{C}_{Gr}^m$. We have a diagram

where the top map is given map $(\varphi, L_{\bullet}) \mapsto (\operatorname{im}(\varphi), \varphi(L_{\bullet}))$. (So if L_{\bullet} is $(L_1 \subset \cdots \subset L_n = V)$, then $\varphi(L_{\bullet})$ is $(\varphi(L_1) \subset \cdots \subset \varphi(L_n) = \varphi(V))$.) On **Fl**(*E*), there are tautological flags of subbundles $\mathbb{S}_1 \subset \cdots \subset \mathbb{S}_n = E$ and quotient bundles $E = \mathbb{Q}_n \to \cdots \to \mathbb{Q}_1$, corresponding to the tautological bundles $S_1 \subset \cdots \subset S_n = V_X = Q_n \to \cdots \to Q_1$ on *X*. (So $Q_i = V/S_{n-i}$.)

Let $x_i = c_1^G(\ker(Q_i \to Q_{i-1})) = c_1(\ker(\mathbb{Q}_i \to \mathbb{Q}_{i-1})).$

Date: April 5, 2007.

Proposition 1.1. We have

 $H_G^*X = \Lambda_G[x_1, \dots, x_n]/(e_i(x) - c_i)_{1 \le i \le n}.$

More generally, for any flag bundle $\mathbf{Fl}(E) \to B$, we have

$$H^* \mathbf{Fl}(E) = H^* B[x_1, \dots, x_n] / (e_i(x) - c_i(E))_{1 \le i \le n}.$$

Proof. To see this, realize $\mathbf{Fl}(E)$ as a sequence of projective bundles over B: Start by forming $\mathbb{P}(E) \to B$, with universal subbundle $U_1 \subset E$; then form $\mathbb{P}(E/U_1) \to \mathbb{P}(E)$, with universal subbundle U_2/U_1 ; continue until reaching $\mathbf{Fl}(E) = \mathbb{P}(E/U_{n-2}) \to \cdots \to B$. It is clear from this construction that the monomials $x_1^{i_1} \cdots x_n^{i_n}$ with $i_j \leq n-j$ form a basis for $H^*\mathbf{Fl}(E)$ over H^*B , and that the relations $e_i(x) = c_i(E)$ hold. Thus $H^*\mathbf{Fl}(E)$ has rank n! over H^*B , and the proposition will follow if the ring on the RHS has the same rank. \Box

Exercise 1.2. Show that the ring $H^*B[x_1, \ldots, x_n]/(e_i(x) - c_i(E))$ also has a basis of monomials $x_1^{i_1} \cdots x_n^{i_n}$ with $i_j \leq n - j$. (Hint: use the relation $\sum (-1)^i e_i \cdot h_{n-i} = 0$.)

Now assume $V = \mathbb{C}^n$, so we have $F_1 \subset \cdots \subset F_n = V$, with $F_i = \text{Span}\{e_1, \ldots, e_i\}$. (Also write $\tilde{F}_i = \text{Span}\{e_n, \ldots, e_{n+1-i}\}$ for the **opposite flag**.) Note that the subgroup B of upper-triangular matrices preserves F_{\bullet} , and B^{opp} (lower-triangular matrices) preserves \tilde{F}_{\bullet} . For $w \in S_n$, we have B-invariant Schubert varieties in X, defined by

$$\Omega_w(F_\bullet) = \{ x \mid \operatorname{rk}(F_p(x) \to Q_q(x)) \le r_w(q, p) \text{ for all } 1 \le q, p \le n \},\$$

where $r_w(q, p) = \#\{i \le q \mid w(i) \le p\}.$

As in the Grassmannian case, a subset of these rank conditions suffices to define Ω_w . To see which, form the **diagram** of w, the collection of boxes in the $n \times n$ defined as follows. Place a dot (or a 1) in row *i* and column w(i), and cross out all boxes which are to the right or below a dot, including the boxes containing dots. The diagram D(w) is the collection of boxes which remain. Here is an example, for w = 4163275. (We use "one-line" notation and write $w = w(1) w(2) \cdots w(n)$.)

		0	•			
•						
		1		2	•	
	1	•				
	•					
				4		•
				•		

Note that $r_w(q, p)$ is the number of dots in the upper-left $q \times p$ rectangle. (Some of these have been labelled in the diagram.) The conditions needed to define $\Omega_w(F_{\bullet})$ are those coming from the boxes in the southwest corners of D(w) – so in the above example, only five conditions are needed. In fact, this defines $\Omega_w(F_{\bullet})$ as a (reduced, irreducible, normal, Cohen-Macaulay) subscheme. The codimension is

$$\ell(w) = \#\{j < i \,|\, w(j) > w(i)\} \\ = \#(\text{boxes in } D(w)).$$

For details, see [Ful92].

Example 1.3. For a partition λ in the $k \times \ell$ rectangle, we have $I(\lambda) =$ $\{i_1 < \dots < i_k\}$ and $J(\lambda) = \{j_1 < \dots < j_\ell\}$, with $I(\lambda) \cup J(\lambda) = \{1, \dots, n\}$. Define $w(\lambda) \in S_n$ by

$$w(\lambda) = j_1 \, j_2 \cdots j_\ell \, i_1 \cdots i_k$$

Note that $\ell(w(\lambda)) = |\lambda| = \#\{i \in I(\lambda), j \in J(\lambda) | j > i\}$. For example, with $k = 4, \ell = 5$, and $\lambda = (5, 3, 1, 1)$, we have $w(\lambda) = 235691478$. The diagram $D(w(\lambda))$ is easy to describe in terms of λ ; the pattern is suggested by this example.

	•							
		•						
				•				
					•			
								•
•								
			•					
						•		
							•	

The Schubert variety $\Omega_{w(\lambda)}(F_{\bullet})$ comes from a Schubert variety on a Grassmannian: there is a projection $f: Fl(V) \to Gr(k, V)$, with $f^{-1}\Omega_{\lambda}(F_{\bullet}) =$ $\Omega_{w(\lambda)}(F_{\bullet}).$

All of this works for flag bundles, without change. On $\mathbf{X} = \mathbf{Fl}(E) \to B$, we have a flag $\mathbb{F}_1 \subset \cdots \subset \mathbb{F}_n = E_{\mathbf{X}}$, and Schubert loci $\Omega_w(\mathbb{F}_{\bullet}) \subset \mathbf{X}$. When

B = BT, we have $[\mathbf{\Omega}_w(\mathbb{F}_{\bullet})] = [\mathbf{\Omega}_w(F_{\bullet})]^T \in H_T^*X$. Write $\sigma_w = [\mathbf{\Omega}_w(F_{\bullet})]^T$ and $\tilde{\sigma}_w = [\mathbf{\Omega}_w(\tilde{F}_{\bullet})]^T$. For $w \in S_n$, these classes give two bases for H_T^*X over Λ_T .

Proposition 1.4. The bases $\{\sigma_w\}$ and $\{\tau_w = \tilde{\sigma}_{w_0 w}\}$ are Poincaré dual; that is,

$$\rho_*(\sigma_w \cdot \tau_v) = \delta_{w\,v} \in \Lambda,$$

where ρ is the map $X \to pt$.

Proof. We show that if $\ell(w) + \ell(v) \geq \binom{n}{2} = \dim X$, then $\Omega_w(F_{\bullet})$ meets $\Omega_v(F_{\bullet})$ only if $v = w_0 w$, and in this case they meet transversally at the point

$$p_w = \langle e_{w(n)} \rangle \subset \langle e_{w(n)}, e_{w(n-1)} \rangle \subset \cdots \subset \langle e_{w(n)}, \dots, e_{w(1)} \rangle.$$

(Note that at p_w , the map

$$F_p(p_w) = \langle e_1, \dots, e_p \rangle \to Q_q(p_w) = \mathbb{C}^n / \langle e_{w(n)}, \dots, e_{w(n+1-q)} \rangle = \langle e_{w(1)}, \dots, e_{w(q)} \rangle$$
has rank $r_w(q, p)$.)

A neighborhood $U_w \cong \mathbb{A}^{\binom{n}{2}}$ of p_w in X is given by the set of matrices with 1's in positions (i, w(i)) and arbitrary entries below. The flag associated to such a matrix has parts spanned by the rows, reading from the bottom up.

For example, if w = 4163275, then

$$U_w = \begin{pmatrix} & 1 & & \\ 1 & & * & & \\ * & & * & 1 & \\ * & 1 & * & * & \\ * & 1 & * & * & * & \\ * & * & * & * & * & 1 \\ * & * & * & * & 1 & * & * \end{pmatrix}.$$

The intersection of U_w with the Schubert variety

$$\Omega_w(F_{\bullet}) = \{ L_{\bullet} \mid \dim(F_p \cap L_q) \ge p - \#\{i \le q \mid w(i) \le p\} \}$$

is given by setting entries to the right of 1's to 0:

$$\Omega_w^o(F_{\bullet}) = \begin{pmatrix} 1 & & \\ 1 & 0 & & \\ * & * & 1 & \\ * & 1 & 0 & 0 & \\ * & 1 & 0 & 0 & 0 & \\ * & * & * & * & 1 & \\ * & * & * & * & 1 & 0 & 0 \end{pmatrix}$$

(Note that there are $\ell(w)$ such entries.)

The situation for $\Omega_v(\tilde{F}_{\bullet})$ is the same, but with the matrices reflected from left to right. Thus $p_{w_0 v} \in \Omega_v(\tilde{F}_{\bullet})$, and the intersection of $\Omega_v(\tilde{F}_{\bullet})$ with $U_{w_0 v}$ is given by setting entries to the left of 1's equal to 0. For $v = w_0 w$, we see that $\Omega_w(F_{\bullet})$ and $\Omega_{w_0 w}(\tilde{F}_{\bullet})$ intersect transversally at the origin (as coordinate planes in U_w). Also, we see that if $\Omega_w(F_{\bullet}) \cap \Omega_v(\tilde{F}_{\bullet})$ is nonempty, then $w(i) \leq w_0 v(i)$ for all i, so $\ell(w) \leq \ell(w_0 v) = \binom{n}{2} - \ell(v)$, i.e., $\ell(w) + \ell(v) \leq \binom{n}{2}$.

Note that p_w is a smooth point of $\Omega_w(F_{\bullet})$, and since Ω_w^o is an affine space, it is easy to compute $T_{p_w}\Omega_w$. The torus $T = (\mathbb{C}^*)^n$ acts with weight $t_{w(i)} - t_{w(j)}$ on an entry in position (j, w(i)) with i < j and w(i) < w(j).

We now consider the equivariant Giambelli formula for Schubert varieties in X. This is given by the *double Schubert polynomials* $\mathfrak{S}_w(x|y)$ of Lascoux

4

and Schützenberger [Las-Sch82]. Here $w \in S_n$ is a permutation, and x = (x_1,\ldots,x_n) and $y = (y_1,\ldots,y_n)$ are two sets of variables.

These are defined as follows. For $F \in \mathbb{Z}[x, y]$ and $1 \leq i \leq n - 1$, define the divided difference operator $\partial_i = \partial_i^x$ by

$$\partial_i F = \frac{F(x;y) - F(\dots, x_{i+1}, x_i, \dots; y)}{x_i - x_{i+1}} = \frac{F - s_i(F)}{x_i - x_{i+1}}.$$

(Here $s_i = (i, i+1)$ is the simple transposition exchanging i and i+1.) Note that ∂_i ignores the y variables, and $\partial_i F = 0$ iff F is symmetric in x_i and x_{i+1} . For $w \in S_n$, write $w = w_0 s_{i_1} \cdots s_{i_\ell}$ with ℓ minimal, so $\ell = \binom{n}{2} - \ell(w)$. (To do this, successively swap adjacent entries of w to reach w_0 . For example,

$$w = 31524 \xrightarrow{s_2} 35124 \xrightarrow{s_3} 35214 \xrightarrow{s_4} 35241$$
$$\xrightarrow{s_3} 35421 \xrightarrow{s_1} 53421 \xrightarrow{s_2} 54321 = w_0$$

shows $w = w_0 s_2 s_1 s_3 s_4 s_3 s_2$.)

Definition 2.1. With notation as above, the **double Schubert polynomial** is defined by

$$\mathfrak{S}_w(x|y) = \partial_{i_\ell} \circ \cdots \circ \partial_{i_1} \left(\prod_{i+j \le n} (x_i - y_j) \right).$$

This is independent of the choice of the expression for w; as for many such assertions, there are algebraic proofs (see [Mac91]) and geometric proofs. Note that the y variables act as "scalars" here. In fact, there is a "Leibniz rule"

$$\partial_i (F \cdot G) = (\partial_i F) G + (s_i F) (\partial_i G),$$

so any function F which is symmetric in the x variables is a scalar for the action of the divided difference operators.

Example 2.2. The Schubert polynomials for n = 3 are as follows:

Specializing the y variables to 0, we obtain the (single) Schubert poly**nomials** $\mathfrak{S}_w(x) = \mathfrak{S}_w(x|0)$. These also be defined similarly as $\partial_{i_\ell} \circ \cdots \circ$ $\partial_{i_1}(x_1^{n-1}\cdots x_{n-1})$. In fact, one can write $\mathfrak{S}_w(x) = \sum a_I x_1^{i_1}\cdots x_n^{i_n}$, with

§9 FLAG VARIETIES

 $i_j \leq n-j$ and $a_I \geq 0$. There are nice combinatorial formulas for the coefficients a_I ; see [Bil-Joc-Sta93], [Win02]. One can read the top monomial (with respect to a certain term order) of $\mathfrak{S}_w(x)$ from the diagram D(w): this is $\prod x_i^{D(w)_i}$, where $D(w)_i$ is the number of boxes in the *i*th row of D(w).

As w varies over $S_{\infty} = \bigcup_n S_n$, the Schubert polynomials $\mathfrak{S}_w(x)$ form a linear basis for $\mathbb{Z}[x_1, x_2, \ldots]$. In fact, $\mathfrak{S}_w(x)$ is symmetric in x_k and x_{k+1} iff w(k) < w(k+1) iff $\partial_k \mathfrak{S}_w = 0$. Thus the polynomials \mathfrak{S}_w with $w(n+1) < w(n+2) < \cdots$ form a basis for $\mathbb{Z}[x_1, \ldots, x_n]$.

Theorem 2.3. With $x_i = c_1^T(\ker(Q_i \to Q_{i-1}))$ as above, we have

 $\sigma_w = \mathfrak{S}_w(x|t).$

Equivalently, given bundles $F_1 \subset \cdots F_n = E$ on a base B, and $\mathbf{X} = \mathbf{Fl}(E)$ with universal quotient bundles $E \to Q_{n-1} \to \cdots \to Q_1$, we have

$$[\mathbf{\Omega}_w] = \mathfrak{S}_w(x|y),$$

where Ω_w is the locus defined by $\operatorname{rk}(F_p \to Q_q) \leq r_w(q, p), x_i = c_1(\operatorname{ker}(Q_i \to Q_{i-1})))$, and $y_i = c_1(F_i/F_{i-1})$.

Proof. First consider the case $w = w_0$. Then Ω_{w_0} is the locus where $F_p \to Q_{n-p}$ vanishes for all p, i.e., $S_p = F_p$, where S_{\bullet} is the tautological subbundle. (It is also the image of the canonical section $B \to \mathbf{X}$ corresponding to the flag F_{\bullet} on B.) One way to compute its class is as follows. The locus where $F_1 \to Q_{n-1}$ vanishes has class $(x_1 - y_1) \cdots (x_{n-1} - y_1)$. On this locus, the vanishing of (the restriction of) $F_2/F_1 \to Q_{n-2}$ has class $(x_1 - y_2) \cdots (x_{n-2} - y_2)$. Continuing in this way and using the projection formula, we see $[\mathbf{\Omega}_{w_0}] = \prod_{i+j \le n} (x_i - y_j)$.

Now suppose we know the formula for some w. If w(k) > w(k+1), let $v = w \cdot s_k$. The theorem will follow from the following:

Claim . $[\mathbf{\Omega}_v] = \partial_k [\mathbf{\Omega}_w].$

In fact, we will also show that $\partial_k[\mathbf{\Omega}_w] = 0$ when w(k) < w(k+1). (Note that ∂_k is well-defined on $\Lambda[x_1, \ldots, x_n]/(e_i(x) - e_i(t))_{1 \le i \le n}$; this follows from the Leibniz formula.)

To prove the claim, let $Y_k = \mathbf{Fl}(1, 2, \dots, n - k, \dots, n; E)$, so $p : \mathbf{X} \to Y_k$ is a \mathbb{P}^1 -bundle: $\mathbf{X} = \mathbb{P}(S_{n-k+1}/S_{n-k-1})$. Form the fiber product

so $Z_k = \{ (L_{\bullet}, L'_{\bullet} | L_i = L'_i \text{ for } i \neq n - k \}.$

(i) If w(k) > w(k+1), p_1 maps $p_2^{-1} \Omega_w$ birationally Exercise 2.4. onto $\mathbf{\Omega}_v$, with $v = w s_k$.

- (ii) If $w(k) < w(k+1), p_1(p_2^{-1}\Omega_w) \subset \Omega_w$. (iii) $(p_1)_* \circ p_2^* = p^* \circ p_* = \partial_k$.

Note that the assertions in (i) and (ii) are local, so they can be reduced to the case of a point. The third statement is a general fact about \mathbb{P}^1 -bundles: If $\mathbb{P}(W) \to Y$ is a \mathbb{P}^1 -bundle, with tautological quotient $W \to Q \to 0$, and $x = c_1(Q)$, then $p_*(x) = 1 \in H^*Y$.

Therefore we have

$$[\mathbf{\Omega}_v] = (p_1)_* p_2^* [\mathbf{\Omega}_w] = (p_1)_* p_2^* \mathfrak{S}_w = \partial_k \mathfrak{S}_w = \mathfrak{S}_v$$

when w(k) > w(k+1). On the other hand, if w(k) < w(k+1), we have

$$0 = (p_1)_* p_2^* [\mathbf{\Omega}_w] = (p_1)_* p_2^* \mathfrak{S}_w = \partial_k \mathfrak{S}_w.$$

The fact that the definition of \mathfrak{S}_w is independent of choices follows, since by choosing a suitable base B with E of sufficiently large rank, one can assume the x's and y's are independent up to any given degree.

Remark 2.5. Schubert polynomials are characterized by the fact that for a general map of flagged vector bundles

$$F_1 \subset \cdots \subset F_n \xrightarrow{\varphi} E_n \to \cdots \to E_1,$$

with degeneracy locus

$$\Omega_w(\varphi) = \{ x \mid \operatorname{rk}(F_p(x) \to E_q(x)) \le r_w(q, p) \},\$$

we have

$$[\Omega_w(\varphi)] = \mathfrak{S}_w(x|y),$$

where $x_i = c_1(\ker(Q_i \to Q_{i-1}))$ and $y_i = c_1(F_i/F_{i-1})$. See [Ful92].

Many other algebraic properties of Schubert polynomials can be proven geometrically.

Proposition 2.6.
$$\mathfrak{S}_w(y|x) = (-1)^{\ell(w)} \mathfrak{S}_{w^{-1}}(x|y).$$

Proof. Replacing the sequence

$$F_1 \subset \cdots \subset F_{n-1} \subset E \to Q_{n-1} \to \cdots \to Q_1$$

with

$$Q_1^{\vee} \subset \dots \subset Q_{n-1}^{\vee} \subset E^{\vee} \to F_{n-1}^{\vee} \to \dots \to F_1^{\vee},$$

interchanges x_i and $-y_i$, and w and w^{-1} .

Corollary 2.7. One can compute Schubert polynomials using divided difference operators acting on the y variables. If $w = s_{i_{\ell}} \cdots s_{i_1} w_0$, with ℓ minimal, then

$$\mathfrak{S}_w(x|y) = (-1)^{\ell(w)} \partial_{i_\ell}^y \circ \cdots \circ \partial_{i_1}^y \prod_{i+j \le n} (x_i - y_j).$$

Remark 2.8. Computationally, it is hard to compute the polynomials \mathfrak{S}_w from the definition. For example, \mathfrak{S}_{s_k} is a linear polynomial, but to use the definition, one has to start from the top and apply $\binom{n}{2} - 1$ divided difference operators. However, by the above symmetry it is enough to compute $\mathfrak{S}_{s_k}(x) = \mathfrak{S}_{s_k}(x|0)$, and this is easy: the fact that $\partial_i \mathfrak{S}_{s_k}(x) = \delta_{ik}$ implies

$$\mathfrak{S}_{s_k}(x|y) = x_1 + \dots + x_k - (y_1 + \dots + y_k).$$

References

- [Bil-Joc-Sta93] S. Billey, W. Jockusch, and R. P. Stanley, "Some combinatorial properties of Schubert polynomials," J. Algebraic Combin. 2 (1993), no. 4, 345–374.
- [Dem74] M. Demazure, "Désingularisation des variétés de Schubert généralisées," Ann. Sci. cole Norm. Sup. (4) 7 (1974), 53–88.
- [Ful92] W. Fulton, "Flags, Schubert polynomials, degeneracy loci, and determinantal formulas," Duke Math. J. 65 (1992), no. 3, 381–420.
- [Ful97] W. Fulton, Young Tableaux, Cambridge Univ. Press, 1997.
- [Ful-Laz83] W. Fulton and R. Lazarsfeld, "Positive polynomials for ample vector bundles," Ann. Math. 118, No. 1 (1983), 35–60.
- [Las-Sch82] A. Lascoux and M.-P. Schtzenberger, "Polynômes de Schubert," C.R. Acad. Sci. Paris Sér. I Math. 294 (1982), 447–450.
- [Mac91] I. G. Macdonald, Notes on Schubert Polynomials, Publ. LACIM 6, Univ. de Québec à Montréal, Montréal, 1991.
- [Win02] R. Winkel, "A derivation of Kohnert's algorithm from Monk's rule," Sém. Lothar. Combin. 48 (2002), Art. B48f.