Ref: [Humphreys, LAG] $2021, 3.12$ LECTURE 22: LIE THEORY II (Semisimple groups) A Linear algebrair group ("LAG") is a Zariski-closed $subgroup$ $G \equiv GL(V)$, for some V . Equivalently (!) G is an affine algebraic group, A torus is $T\simeq (\mathbb{C}^*)^n = \text{Spec} \mathbb{C}[\times_1^{\frac{1}{2}}, \dots, \times_n^{\frac{1}{2}}]$. A maximal tarus $T \subseteq G$ is what it seems. Every LAG G has a Lie algebra og= Lie(G). This can be defined informatically, but a quick $T_{e}G = T_{e}GL(V) = End(V)$
 \vdots
 $T_{e}G = \frac{1}{2}U(V)$
 \vdots
 $T_{e}G = \frac{1}{2}U(V)$ with bracket [', '] on og induced by commutator on of (V).

G acts on og by the adjoint representation . Again, this may be defined intrinsically , but μ sing $\sigma_j \subseteq \mathcal{G}(N)$ = End (V), its $Ad(g) \cdot X = g X g^{-1}$ for ge G and $X \in \mathcal{O}_1$. In particular, a *(maximal)* torus $T \subseteq G$ acts on og by the adjoint action. So one has a weight decomposition σ = \bigoplus σ χ \leftarrow σ χ \in σ χ is where τ acts $x \in M$ $\{x \in \mathcal{X} \mid x \in \mathcal{X} \}$ by character x Defini The roots of G with respect to T are the nonzero weights for the adjoint action $s⁴$ T and \int : $R(G, T) := \left\{ x \in M \mid x \neq 0 \text{ and } \gamma_{x} \neq 0 \right\}.$

 $Ex: G = GL_n$, $T = diagonal$ torus $\cong (C^*)^n$. Basis for off = $(nx \text{ natus})$ is E_{ij} o elsewhere $M \simeq \mathbb{Z}^n$, basis $t_{1},...,t_{n}$ t_{i} $\left(\begin{bmatrix} a_{1},0 \\ 0 & a_{n} \end{bmatrix}\right) = \epsilon_{i}$ $z \cdot \overline{E_{ij}} = z \overline{E_{ij}} z^{-1} = \frac{z_i}{z_j} \overline{E_{ij}} \implies \text{weight } t_i - t_j$ $\Rightarrow R(GL_{n}, T) = \left\{ t_{i} - t_{j} \mid i \neq j \right\} (A_{n-1})$ The roots don't span
MOR = R[^] !

 $Ex: G = B = upper-triangular \subseteq GL_{n}.$
 $U' = chiagonal \approx (C*)^{n}.$ S_{s} $G = \frac{1}{s}$ G_{s} G_{s} Then $R(B,T) = \left\{ t_i - t_j \mid i < j \right\}$ N of a root system! But = R⁺ \subseteq R(A₁₋₁) !

 $Ex: G = Sp_{2n} \subseteq GL_{2n}$, preserving our std form ω . Need some basic facts about $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ A representation of a LAG is a homomorphism^{(of alg.} gps)
G -> GL (V), some v.s. V.
A representation of Og is a homomorphism^{(of Lie} algs) σ \rightarrow σ f (V). OIF GRV, fixing a vector vEV, "Think:
than the corresponding rep's of og kills v. derivative of $9eG$ $q \cdot (v \cdot w) = (q \cdot v) \cdot (q \cdot w)$ (2) V, W repins of G \Rightarrow $X=y$
 $X=y$ $Y-(y\omega x) = (X \cdot v) \omega x + v \omega (X \cdot w)$
 $Y \cdot y = (X \cdot v) \omega x + v \omega (X \cdot w)$ 3 V^* = dual nep => $(g \cdot \overline{\phi})(v) = \phi(\overline{g}^v v)$ $(X \cdot \overline{\phi})(v) = -\phi(X \cdot v)$. Ref: [Fulton-Harris, §8]

 $V^* \otimes V^*$ Now take $V = \mathbb{C}^{2n}$ $\omega \in \Lambda^2 V^*$. So
 $S_{p_{2n}} \subseteq GL_{2n}$ is the stabilizer of ω => 1pm = ogl m is subalgebra that kills w: $\mathcal{L} = \left\{ \begin{array}{c} \chi \left(\begin{array}{c} \omega \left(\chi \cdot \mathbf{v} \right) & \omega \end{array} \right) + \omega \left(\mathbf{v} \right) \chi \cdot \mathbf{w} \right) \equiv \mathbf{0} \end{array} \right\}$ $= \left\{ X \mid X^{\mathsf{t}} \left[\downarrow \downarrow^{\mathsf{t}} \right] + \left[\downarrow \downarrow^{\mathsf{t}} \right] X = 0 \right\}$ Eureve Work out the egns in block motries. $\frac{c_{x}}{x}$ $\frac{d}{dx} = \begin{bmatrix} a & b & e & f \\ c & d & g & e \\ h & i & -d & -b \\ j & h & -c & -a \end{bmatrix}$

$$
N_{G}(\top) = \{ g \in G \mid g=g^{-1} \in T \quad V \neq f \} \quad (normalize)
$$
\n
$$
\nabla
$$
\n
$$
\nabla_{G}(\top) = \{ g \in G \mid g=g^{-1} = g \quad V \neq f \} \quad (centralize)
$$

$$
W=W(G,T):=\sqrt{N_{G}(T)}{C_{G}(T)}
$$

For most of our examples,
$$
C_{G}(T) = T
$$
, so $W = \frac{N_{G}(T)}{T}$.

 $\overline{}$

$Ex:$	$G = \begin{bmatrix} \frac{1}{x} & \frac{1}{x} & 0 \\ 0 & 1 & \frac{1}{x} \end{bmatrix}$	$T = \begin{bmatrix} \frac{1}{x} & \frac{1}{x} & 0 \\ 0 & 1 & 1 \end{bmatrix}$
loss	$C_G(T) = \begin{bmatrix} \frac{1}{x} & \frac{1}{x$	

The Weyl group cuts on M=M(t):=Hom(T, C^*).
From we W, downe a lift n_win(N_c(T).
For
$$
\lambda \in M
$$
, $z \in T$.
(w.\lambda)(z) = λ (n_w¹ z n_w).

Check indepit of close of nu! (And that this a gp action.)

Person:	This	N	actions	preseves	The	roots
$R = R(G, T) \subseteq M$.						
$\frac{Pf}{T}$	Take $\alpha \in R$, $X \in \mathcal{O}_{ X}$					
$Ad(\alpha) \cdot X = \alpha(\alpha)X$						
Let	$n = n_{L}$	be	hft	He	W	
Let	$n = n_{L}$	be	hft	He	W	
The	$char$	$Ad(n) \cdot X \in \mathcal{O}_{ W(\alpha)}$				
$Compute:$	$Ad(\alpha) Ad(n) \cdot X = \alpha \left(n \times n^2 \right) \alpha^{-1}$					
$= n \left(n^{-1} \alpha n \times n^{-1} \alpha^{-1} n \right) n^{-1}$						
$= n \left(\alpha \left(n^{-1} \alpha \right) \times \right) n^{-1}$						
$= w \left(k \right) \left(\alpha \right) \cdot \left(Ad(n) \cdot X \right)$	\boxtimes					

22.10

Solveble + Unipotent groups Dete: An element x = 6 of a LAG is: servisimple if I a faithful rep's p : G W GL n
so that $\rho(x)$ is diagonal $\begin{bmatrix} * & 0 \\ 0 & * \end{bmatrix}$. unipotent if Thum (Jondan decomposition):
(1) For any $x \in G$, Il, semisimple $x_5 = x_4 x_5$
unipotent x_1 = x, $x = x_5 x_1$ 12) For any homon. $G \xrightarrow{\phi} H$, have
 $\varphi(x)_{s} = \varphi(x_{s})$ and $\varphi(x)_{u} = \varphi(x_{u}).$ [H, §15.3] (Use Familier Jordan normal form for GL_n) G is unipotent if all its elements are, Defri \overline{r} ., $x = x_{\alpha}$ for all $x \in G$.

Defy : G is solvable if the series Ga (^G, G) = ((GG) , CGG)) = . - terminates in { ^e } , where (G, G) is the commutator subgroup . Ngtc. Any subgp of ^a solvable (resp. . unipoteut) group is again solvable (resp, unipotent), Maines : { ^f ¥)} - -B s Gln solvable (B,B) ⁼ U turn If { (o :*,] } ⁼ Usain unieotent Thin : G is unipotent iff any representation ^p : G → GLCV) can be " strictly up triangulated ire , there's a basis of V so that PCG) s a =L 'o¥] .

Th<u>m ("Lie-Kolchin"):</u> A (connected) LAG G is solvable iff any representation p: G-SGL (V) can be upper-triangularized: there's a basis of V so that ρ (G) \subseteq $\left\{ \begin{bmatrix} * & * & * \\ 0 & * & * & * \end{bmatrix} \right\}$. [H, $\frac{1}{2}$ 17. 6] \geq $unipotent$ groups \iff closed subgroups of $U = \begin{bmatrix} 1, 4 \\ 0, 1 \end{bmatrix}$ solvable groups < > "Closed subgps of B = [*,*]. DEI : ^A Bored subgroup BC ^G is maximal (closed) connected solvable subgroup - · A torus is connected+solvable, so contained in some Borel · Likewise, any (connected) unipotent gp is contained in a Borel. Thin: All Borel subgroups are conjugate : if B. ^B's ^G are Barels, then $B' = xBx^{-1}$ for some xe G . $[$ Humphreys $\S 21.3$ $[$ For G=GLn: FlCC") is homogeneous! Cor: All naximal tori are conjugate (as are max'l unipotents).

 C_{Ω} , Let $T, T' \subset G$ be maximal tori. There $\begin{array}{lll} \text{max} & \text{let } \top, \top' \subset \text{C} & \text{ble maximal to} \ \text{are} & \text{isomorphisms} & M(T) & \xrightarrow{\sim} M(T) \end{array}$ ar isomarphisms M(T) ~> M(T') and $W(G,T) \stackrel{\sim}{\longrightarrow} W(G,T')$ $T' \subset G$ be
 L_{s}
 T) \cong $L(G)$
 T) \cong $L(G)$ inducing an isomorphism $R(G,T) \xrightarrow{\sim} R(G,T')$ compatible with W-actions.

(All induced by T ' \mapsto gz'g where $T = gT'g^{-1}$.

Senisimple + Reductive Groups

Now: G is connected + nontribut

Defy the radical of G is R(G) = max'l connected normal solvable subgp unique! [H, §19.5]

The unipotent radical is $R_{\mu}(\epsilon)$ = max'l connected normal unipotent subge Calso unique/

$$
\underline{Ex: R(GL_n) = scalar matrices = C^*
$$

$$
R_{\kappa}(GL_n) = \{e\} \quad \text{firiial}
$$

$$
F_{\sigma}F_{\sigma}B=R_{n}^{+}=[\begin{matrix}1\\ 0\end{matrix},\frac{1}{2}R(B)=B,\\ \begin{matrix}1\\ 0\end{matrix},\frac{1}{2}R(B)=B,\\ \begin{matrix}1\\ 0\end{matrix},\frac{1}{2}R(B)=B,\\ \begin{matrix}1\\ 0\end{matrix},\frac{1}{2}R(B)=B=F\cdot U,\\ \begin{matrix}1\\ 0\end{matrix},\frac{1}{2}R(B)=F\cdot U,\\ \begin{matrix}1\\0\end{matrix},\frac{1}{2}R(B)=F\cdot U,\\ \begin{matrix}
$$

 $E_{x}: P = \left[\begin{array}{c|c} x & x & x & x \\ x & x & x & x \\ \hline 0 & x & x & x \end{array}\right] \subset GL_{4}.$ $\Rightarrow R_{\mu}(P) = \left[\begin{array}{c|c} 1 & 0 & k & * \\ 0 & 1 & k & * \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$ $P = \left[\begin{array}{c|c} x & 0 \\ \hline 0 & x \end{array} \right] \cdot R_{\mu}(P)$ $T(f(x_n)) = \frac{1}{4} \pi r \int_{s}^{x} f(x) dx$ $Defns:$ G is semisimple if $R(G) = \{e\}$ $(ex: SL_n)$ G is reductive if $R_u(G) = \{e\}$ (exigel_n) Any semisimple group is reductive (since Ry ER abdays). If G is semisimple, its center Z(G) is finite. rotherwise the component $Z(G)^{0}$ would be comm. norm. solv.) If G is reductive, then $\overline{Z(G)}^s$ is a tarus, $Z(G)^{\circ} = R(G)$, and $(G, G) \subset G$ is semisimple. $\overline{SL_n} : (GL_nGL_n) \subset GL_n$

For any connected G, GR(G) is semisimple, $7R_1(6)$ is reductive.

 Ex : GL_n = reductive. SL_n = (GL_{n,} GL_n) semisimple $PGL_n = GL_n/2(L_n) = R(GL_n)$ is semisimple.

Pug : Let ^G be semisimple with max 't torus T. $R = R(G, T)$ is a root system λ_{α} ه می λ اھ $P_{r}p_{2}: Let$

Then $R = \frac{p_{r}}{p}$ α in $V = \begin{cases} 1 & \text{if } k = M \otimes R \\ \frac{1}{2} & \text{if } k = M \otimes R \end{cases}$ with Weyl group $W = W(G, T)$. $[H, \, 827, 1]$

Ryuk: main difference between semisimple ⁺ reductive is the requirement that V be spanned by R. For reductive G, replacing V by V' = span $(R(G,T))$ produces a root system. (Corresp to ss quotient $\frac{1}{2}(6)^{\circ}$.) $\left($ Think of $GL_{n,j}$ with $M \cong \mathbb{Z}^n$, $V \cong \mathbb{R}^n$, but R span an $(n-1)-dim'$ subsp.

Defy : G is simple if it has no nontrivial closed connected normal subgroup, and is non-commutative · non-comm. rules out trivial cases $G_m = C^4$, $G_m = C$. \cdot SL_n is simple as an LAG, though not as an abstract group. Preys : Suppose G is semisimple . Then G is simple iff RCG, T) is an irreducible root system . rank of semisimple group : = dim (max't torus). Mare on rests For semisimple G with maximal torus T,
a = R(G, T) is a character x: T- $\alpha \in \mathcal{R}(\mathbb{G},T)$ is a character $\alpha:\mathcal{T} \longrightarrow \mathbb{C}^k$. sub - torus of T $\frac{1}{2}$
b $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$ Than: $G_{\alpha} := G_{\alpha}(\ker(x)^{\circ})$ is a connected reductive gp, and (Gg, Gg) is semisimple of rank 1 $[56A3]$ or $[5p$ ringer, $66.4.7]$ Ex: $\alpha = t_2 - t_3$, $(C^*)^4 = T \longrightarrow C^*$, $|\alpha - \alpha| =$ * a $\begin{matrix} 6 & 1 \\ 1 & 1 \end{matrix}$ $\begin{array}{c|c}\n\chi & \chi \downarrow & \chi & \chi \downarrow & \chi & \chi & \chi \end{array}$

22 . ¹⁸ semisimple rank 1 groups < s root sys $\Rightarrow G = SL_2 \text{ or } PGL_2$ of type There's a corresponding map $\begin{array}{ccc} S\ell_{\text{\tiny Z}} & \longrightarrow & \left(f_{\text{\tiny X}} \text{ , } \ell_{\text{\tiny X}} \right) & \hookrightarrow & \mathcal{G}_{\text{\tiny Z}} \end{array} \longrightarrow \begin{array}{ccc} \mathcal{G}_{\text{\tiny Z}} & \hookrightarrow & \mathcal{G}_{\text{\tiny }} \end{array}$ We 'll sometimes write the composition as Sincernes write the composition as \overline{U} \overline{U} \overline{U} \overline{U} \overline{U} $\begin{array}{ccc} C^* & \stackrel{\circ}{\sim} \end{array}$ $\frac{1}{2}$ = $\begin{bmatrix} 2 & 6 \\ 0 & 2^{-1} \end{bmatrix}$ The corcot x² is this one-parametor subgroup, corcot
a^v: G² = $\alpha^v : C^{\lambda} = T_{\alpha} \longrightarrow T$ [Springer, § 7. ^I] These play an important role. Later we'll see

how they determine T-invariant curves in 413 .

classification $\frac{2 \text{Lassificat}}{1}$

In addition to root data, some topological information is needed to classify simple LAG's .

Progri: For semisimple G and max' torus T, let R ⁼ RIG, ^T) be the root system , with weight and root lettices $M_{\omega f} \geq M_{rf}$, and Ms MLT) .

Then $M_{\omega t}$ = $M > M_{\text{rt}}$, and \overline{a} $M_{\text{M}_{\text{wt}}^{\text{v}}}^{\text{max}} \longrightarrow \pi_1(G, e)$ 1 $-$ psg $\varphi:\overbrace{\mathbb{C}^{*}\longrightarrow}\overline{1}\subset G$ M_{wt} / M_{t} / M_{t} for G/C generates a based loop) W [Fulton-Harris & 23.1] → (other ref?] (Helgason ?)

Thin (1) (isom.) G, G' = simple LAG's, with max't tori T, T $^{\prime}$. max'l TOM 1, 1'.
If R(G,T) \cong R(G',T') and $\pi_1(G) \cong \pi_1(G)$ '), then^t there's an isom $G \stackrel{\sim}{\longrightarrow} G'$ taking T to T' * One exception: R (G, T) of type (D_n) , n36 even, $\begin{array}{|l|} \hline \text{[why ??]} & \text{and} & \pi_1(G) = \frac{7}{2}L & \text{.} \hline \end{array}$ Thus are

2 (existence) For R = Arred. root system with fundamental group Mwtlmrt , and any
0 $M_{\omega t}$ > $M > M_{rt}$, there's a simple LAG G with max'l tarus T such that $R(G,T) = R$ and $\pi(G) = M_{\omega}t_{\text{int}}$

Exc	most of them!					
(A_{n-1})	SL_n	($\pi_1 = ie\{$)	PU_n	($\pi_1 = \frac{2}{n\alpha}$)		
n32	(\mathbb{F}_n)	SO_{2n+1}	($\pi_1 = \frac{2}{n\alpha}$)	Spin _{2n+1}	($\pi_1 = ie\{$)	
n31	(\mathbb{F}_n)	SO_{2n}	($\pi_1 = ie\{\\$)	PSin	($\pi_1 = ie\{\\$)	
n32	(\mathbb{F}_n)	SO_{2n}	($\pi_1 = \frac{2}{n\alpha}$)	Spin _{2n}	($\pi_1 = ie\{\\$)	
...	and	SO _{2n}	($\pi_1 = \frac{2}{n\alpha}$)	Spin _{2n}	($\pi_1 = ie\{\\$)	
...	and	SO _{2n}	($\pi_1 = \frac{2}{n\alpha}$)	Spin _{2n}	Spin _{2n}	
...	and	Concidunus.				
Exr-wise	Show	Al _{2n}	Syn ²	As	Symmetric	onalus.
From	and	conclude	PGL ₂	SO ₃		
and	the	com				