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Abstract

The problem of counting numbers of tilings of certain regions has long interested re-
searchers in a variety of disciplines. In recent years, many beautiful results have been
obtained related to the enumeration of tilings of particular regions called Aztec diamonds.
Problems currently under investigation include counting the tilings of related regions with
holes and describing the behavior of random tilings.

Here we derive a recurrence relation for the number of domino tilings of Aztec rectan-
gles with squares removed along one or both of the long edges. Through an interpretation
of a sequence of alternating sign matrix rows as a family of nonintersecting lattice paths,
we relate this enumeration to that of lozenge tilings of trapezoids, and use the Lindström-
Gessel-Viennot theorem to express the number in terms of determinants.
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Figure 1: A domino tiling of the order-4 Aztec diamond and the corresponding matching
of the Aztec diamond graph

1 Introduction

A tiling of a region R is a set of non-overlapping tiles whose union is R, where a tile
may be any closed connected region in R

2. For certain choices of regions and tiles, a
tiling is equivalent to a perfect matching of a related graph. Given a bipartite graph G, a
perfect matching of G is a set of pairs of adjacent vertices such that each vertex of G is
in exactly one pair. (In the following we will frequently say “matching” to mean “perfect
matching,” the distinction not being relevant for our purposes.) For some time, the
problem of enumerating the matchings of a graph has interested physicists and chemists.
Chemists are typically concerned with the honeycomb lattice, since graphite and benzene
rings bond in hexagonal configurations; physicists consider matchings of subsets of the
infinite grid graph in studying dimer models in statistical mechanics.

In 1980, Grensing, Carlsen, and Zapp first considered one such family of subgraphs of
the infinite grid, now known as Aztec diamond graphs [GCZ]. The Aztec diamond of
order n is the union of unit squares lying entirely within the region {(x, y) : |x| + |y| ≤
n+1}, and an Aztec diamond graph is the graph dual to this region, with vertices replacing
squares, and an edge connecting two vertices if the squares they replace share an edge. It
is not hard to see that matchings of Aztec diamond graphs correspond to tilings of Aztec
diamonds by dominoes (i.e., 1×2 or 2×1 rectangles), as shown in Figure 1. Similarly, if
we define a lozenge as the rhombus formed by the union of two equilateral unit triangles
sharing an edge, a matching on a subset of the honeycomb graph is equivalent to a lozenge
tiling of a hexagon (Figure 2).
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Figure 2: A lozenge tiling of the (2, 2, 2) hexagon and the corresponding matching of the
honeycomb graph

More recently, the combinatorial properties of matchings on certain graphs (and tilings
of related regions) have attracted the attention of mathematicians. In the late 1980s,
Elkies, Kuperberg, Larsen, and Propp examined domino tilings of Aztec diamonds, and
proved by four distinct methods that the number of tilings is 2n(n+1)/2 [EKLP]. Since
then, a number of interesting results have been obtained concerning domino tilings of
Aztec diamonds, lozenge tilings of hexagons, tilings of regions with holes, and random
tilings. See [P] for a more detailed history with references.

In the present paper, we shall examine tilings of subsets of Aztec diamonds called
Aztec rectangles, and discuss the relationship between domino tilings of these regions and
lozenge tilings of trapezoids (considered as subsets of hexagons). Related to both regions
are combinatorial objects called alternating sign matrices, and these will appear in two
separate connections.

An Aztec rectangle is an (n − k) × n subset of an order-n Aztec diamond, where
the dimensions refer to the number of squares along the diagonal boundaries. (More
precisely, it is the union of unit squares lying in {(x, y) : |x| + |y| ≤ n + 1} and above
the line y = x − (n + 1 − 2k).) An (a, b, a) trapezoid is a trapezoid with side lengths
(counterclockwise from top) a, b, a, a + b. (See Figure 3.) An alternating sign matrix
(ASM) of order n is an n × n square matrix whose entries are all 0, 1, or -1, nonzero
entries alternate in sign along rows and columns, and the row sums and column sums are
equal to 1. Finally, an (n − k) × n partial ASM is an (n − k) by n matrix that can be
obtained from an ASM by removing the last k rows. Let us denote the set of all order-n
ASMs by A(n), and the set of all (n − k) × n partial ASMs by A(n, k).
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Figure 3: The Aztec rectangle AR4×7(2, 0, 1, 1) and the trapezoid TR4,3,4(2, 0, 1, 1)

Note that for k > 0, an Aztec rectangle is not tileable: if the squares are colored in
checkerboard fashion, we find that there are k more squares of one color than the other.
Removing k of the dominant-colored squares from the bottom right edge, however, allows
the region to be tiled, and these are the regions we shall consider in the following. There
are ( n

k ) ways of removing squares, so we introduce some notation to describe the boundary
of an Aztec rectangle.

The boundary condition can be represented as a (k +1)-tuple of nonnegative integers,
adding to n−k. Reading along the lower right edge from south to east, count the number
of squares that remain in the rectangle between each square that is removed, including
those before the first removed square and after the last. Thus the 4 × 7 rectangle in
Figure 3 has boundary configuration (2,0,1,1); let us indicate this region by the notation
AR4×7(2, 0, 1, 1). For convenience we will also use this notation to indicate the number of
domino tilings of the region.

Similarly, an (a, b, a) trapezoid is not tileable unless exactly b triangles are present on
the right edge. Let TRa,b,a(P ) be the number of lozenge tilings of the (a, b, a) trapezoid,
where the entries of P count the number of triangles removed from the right edge between
triangles present (reading from bottom to top).

Our main result is a recurrence relation on the number of domino tilings of Aztec
rectangles. We adapt one of the proof methods of [EKLP] to obtain the following:
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Theorem 3.1 For Aztec rectangles, we have the following recurrence relation on the

numbers of domino tilings:

AR(n−k)×n(P ) = 2n−k
∑

ri

AR((n−1)−k)×(n−1)(P − ri),

where the sum is taken over all order-(k+1) ASM rows ri, P is the (k+1)-tuple specifying

the configuration of the larger rectangle, and we define AR(n−k)×n(Q) = 0 if Q has any

negative entries.

For example, consider AR3×5(1, 0, 2). The theorem claims

AR3×5(1, 0, 2) = 8 × [AR2×4(0, 0, 2) + AR2×4(1,−1, 2) + AR2×4(1, 0, 1) + AR2×4(0, 1, 1)].

Taking the second term on the RHS to be zero (as prescribed by the theorem), we can
count the tilings of each rectangle to verify this equality. (For small n, there are compu-
tational methods that quickly count numbers of tilings.) Also, note that in the diamond
case we have k = 0, P = (n), and the only ASM row is r = (1), so we recover the
recurrence relation of [EKLP].

It follows that we can enumerate the tilings of an Aztec rectangle in terms of lattice
paths in R

k+1 whose steps are rows of ASMs. An ASM-path is a sequence of points
v1, v2, . . . in Z

k+1 such that vi+1 = vi + ri, where ri is a row of an order-(k + 1) ASM. We
have

AR(n−k)×n(P ) = 2(n−k)[(n−k)+1]/2 × #(Π(P )),

where Π(P ) is the set of ASM-paths from the origin to P that remain in the nonnegative
orthant.

The enumeration of domino tilings of Aztec rectangles with squares missing along one
edge is not new; nor is that of lozenge tilings of trapezoids. A product formula for the
former can be found in [HG] (Section 4 of [EKLP] also contains a proof using monotone
triangles), and a similar formula for the latter appears in [CLP] and [HG]. Here, though,
we emphasize the role of ASM-paths and the connection between Aztec rectangles and
trapezoids.

In Section 2, we describe the height functions introduced in [EKLP] and their role in
relating alternating sign matrices to tilings of Aztec rectangles. We prove Theorem 3.1 in
Section 3, first rehearsing the proof of the case k = 0 given in Section 3 of [EKLP]. There
we also express the number of tilings of Aztec rectangles in terms of ASM-paths. In Section
4, we relate ASM-paths to tilings of trapezoids and use the Lindström-Gessel-Viennot
theorem to obtain an expression in terms of determinants. In Section 5, we generalize
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Figure 4: A height function on AR3×5(1, 0, 2)

Theorem 3.1 to rectangles with squares removed from both long edges (Theorem 5.1),
and introduce the related double-trapezoids (called “butterflies”). Finally, in Section 6
we mention some possibilities for future investigation.

2 Alternating sign matrices and height functions

The main idea of the proof of Theorem 3.1 is to draw a correspondence between partial
ASMs and height functions on an Aztec rectangle. A height function, as defined in
[EKLP], is a map that assigns nonnegative integer values to the vertices of the grid,
subject to certain constraints. It can be shown that tilings of an Aztec rectangle are in
one-to-one correspondence with height functions on its vertices. Roughly, one colors the
squares checkerboard fashion (as in Figure 4) and stipulates that the heights of vertices
increase by 1 as one follows the outline of a domino clockwise around a white square
(or counterclockwise around a black square), and decrease by 1 going counterclockwise
around a white square (or clockwise around a black square); for details see [EKLP]. (The
origin of the name is more apparent if one looks at a lozenge tiling of a hexagon as a
visual representation of a stack of boxes. In this context a height function describes the
relative heights of the boxes. See Figure 2.)

A height function on an Aztec rectangle gives rise to two interlaced rectangular arrays
of numbers – one containing the values of the height function on vertices (x, y) with (x+y)

5



odd, and one containing the values on vertices with (x+ y) even. Each array contains the
values of diagonally adjacent vertices; since the values of horizontally or vertically adjacent
vertices always differ by an odd number, the values of diagonally adjacent vertices are
always of the same parity. Thus the values in the first array ((x + y) odd) are all even,
and the values in the second are all odd. If we form matrices from each of these arrays, a
height function on an (n−k)×n Aztec rectangle yields one [(n − k) + 2]× (n+2) matrix
(with even entries) and one [(n − k) + 1] × (n + 1) matrix (with odd entries). Call the
former an (n, k)-even matrix and denote the set of all such matrices by E(n, k); likewise
call the latter (n, k)-odd and denote the set by O(n, k). For example, the (5, 2)-even and
-odd matrices associated with the height function in Figure 4 are

E =




0 2 4 6 8 10 12
2 4 2 4 6 8 10
4 6 4 6 8 6 8
6 8 6 8 6 8 6
8 6 8 6 4




, D =




1 3 5 7 9 11
3 5 3 5 7 9
5 7 5 7 5 7
7 5 7 9 7 5


 .

Notice that the even matrix has entries missing from its bottom row, corresponding to
the squares removed from the Aztec rectangle. A few other observations are worth noting
at this point:

i. All horizontally or vertically adjacent entries differ by 2.

ii. In particular, the entries increase by 2 along the top row and left column, and
decrease by 2 along the right column.

iii. In the bottom row of the odd matrix, the entries increase by 2 where a removed
square separates the corresponding vertices of the rectangle, and otherwise decrease
by 2.

iv. The bottom two rows of the even matrix exhibit the following general pattern:

(
. . . . . . . . . . . bi+1 . . . bi+l . . . . . . . . . .

a0 · · · ai ∅ · · · ∅ ai+l+1 · · ·

)
,

where adjacent aj decrease by 2, adjacent bj increase by 2, and for any group of l

consecutive missing entries, ai = bi+1 and ai+l+1 = bi+l. A missing entry at position
j of the bottom row of the matrix corresponds to a removed square in position j on
the bottom-right edge of the rectangle.
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All these facts are consequences of the definition of a height function.
Facts (i) and (ii) allow us to construct a bijection between A(n, k) and (n, k)-odd

matrices, and something like a bijection between A(n+1, k) and (n, k)-even matrices. To
see the connection between height functions and ASMs, we introduce the skew-summation
operation described in [EKLP].

Given a partial ASM A = (aij) ∈ A(n, k), define the skew-summation of A to be
A∗ = (a∗

ij), where

a∗
ij = i + j − 2

(
i∑

i′=1

j∑

j′=1

ai′j′

)
,

for 0 ≤ i ≤ n − k, 0 ≤ j ≤ n. Thus if

A =




0 1 0 0 0
0 0 0 1 0
1 −1 0 0 1


 ,

we have

A∗ =




0 1 2 3 4 5
1 2 1 2 3 4
2 3 2 3 2 3
3 2 3 4 3 2


 .

Conversely, given a matrix B whose entries differ by 1 along rows and columns, increase
along the first row and column, and decrease along the last column, we can invert this
operation to obtain a partial ASM. Let the inverse skew-summation B̃ be the matrix
obtained by replacing each submatrix of B of the form

(
bi−1,j−1 bi−1,j

bi,j−1 bi,j

)

with the entry
1

2
(bi−1,j + bi,j−1 − bi−1,j−1 − bi,j).

Facts (i) and (ii) above ensure that if we take an (n, k)-odd matrix, subtract one from
each entry and divide by 2, we can perform the inverse skew-summation operation to
obtain a partial ASM. If D is an (n, k)-odd matrix, call the (n−k)×n partial ASM obtained

in this way the inverse skew-sum of D, and denote it by D̃; similarly for E ∈ E(n, k).
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(Note, however, that the missing entries in the bottom row of E will result in missing

entries in the bottom row of Ẽ, so Ẽ is not a proper partial ASM.)
Facts (iii) and (iv) will be important in proving Theorem 3.1, since they tell us how to

read the boundary configuration of an Aztec rectangle from the height function matrices.
The entries of P count the number of decreasing steps between each increasing step in the
bottom row of an odd matrix; they also count the number of present entries between each
missing entry in the bottom row of an even matrix (excluding the first and last entries,
which are always present). If we wish to denote the set of (n, k)-even or -odd matrices
that determine a given configuration P , we will write E(n, k; P ) or O(n, k; P ). (Warning:
these sets no longer correspond bijectively with A(n, k) or A(n + 1, k), but only with
particular subsets.)

3 A recurrence relation for Aztec rectangles

We restate our main result:

Theorem 3.1 For Aztec rectangles, we have the following recurrence relation on the

numbers of domino tilings:

AR(n−k)×n(P ) = 2n−k
∑

ri

AR((n−1)−k)×(n−1)(P − ri), (1)

where the sum is taken over all order-(k+1) ASM rows ri, P is the (k+1)-tuple specifying

the configuration of the larger rectangle, and we define AR(n−k)×n(Q) = 0 if Q has any

negative entries.

Before proving Theorem 3.1, we recount the proof of the case k = 0, as given in
Section 3 of [EKLP]. The argument is clearer in this case, and it will serve to highlight
the differences between the diamond and rectangular cases. We shall denote the number
of domino tilings of the order-n Aztec diamond by ADn = ARn×n(n).

Theorem 3.2 (Diamond case) The following recurrence relation holds on tilings of

Aztec diamonds:

ADn = 2n × ADn−1.

Proof. Since a tiling of ADn corresponds to a height function on its vertices, it yields
a pair of matrices: one containing the even heights, and one containing the odd heights.

8



Conversely, any “compatible” pair of matrices satisfying conditions (i) and (ii) from page
6 determine a tiling of the diamond. The pair must be compatible in the sense that when
superimposed on the grid, they give a legal height function on the diamond. In fact, given
an odd matrix D, the rules of height functions determine the entries of a compatible even
matrix E, except where D has a submatrix of form

(
ai−1,j−1 ai−1,j

ai,j−1 ai,j

)
=

(
2m − 1 2m + 1
2m + 1 2m − 1

)
;

there the compatible even entry bi,j may be either 2m + 2 or 2m − 2. This submatrix

maps to a 1 in the inverse skew-sum D̃, so for every 1 in D̃, we have a choice between two
compatible even matrices – and therefore two tilings of the diamond. Thus we obtain the
enumeration

ADn =
∑

eD

2N+( eD),

where N+(D̃) is the number of 1’s in the ASM D̃, and the sum is taken over all D̃ such that
D is an n-odd matrix. In the diamond case, D is square and the inverse skew-summation
maps the set of all D to the set of all order-n ASMs, so in fact we have

ADn =
∑

A∈A(n)

2N+(A). (2)

Similar consideration applies to the even matrices. Here we find that for an n-even ma-
trix E, ambiguity in the choice of a compatible odd matrix corresponds to the occurrence
of a −1 in Ẽ. As before, we have

ADn =
∑

eE

2N−( eE),

and hence, since in the diamond case E is square and is missing no entries,

ADn =
∑

B∈A(n+1)

2N−(A). (3)

In any row of an ASM, there must be one more +1 than there are −1’s, so for A ∈ A(n),
N+(A) = N−(A) + n. Thus (2) becomes

ADn =
∑

A∈A(n)

2N−(A)+n

= 2n
∑

A∈A(n)

2N−(A). (4)
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Finally, if we relabel in (3) by n → n − 1 and B → A, and substitute into (4), we obtain
the desired relation.

We now proceed to prove the recurrence relation (1) for general k.
Proof of Theorem 3.1. As in the diamond case, a tiling of AR(n−k)×n(P ) is equivalent to a
compatible pair of matrices, one from E(n, k; P ) and one from O(n, k; P ). The argument
proceeds identically as above to obtain

AR(n−k)×n(P ) =
∑

eD

2N+( eD), (5)

summing over all D̃ such that D ∈ O(n, k; P ).

Since entries are missing from the bottom row of E, the bottom row of Ẽ is undeter-
mined. However, in specifying the boundary configuration P , we have already ruled out
any ambiguity in the bottom row of the compatible odd matrix, so we ignore the bottom
row of Ẽ anyway. Just counting −1’s in the rest of the matrix, we get

AR(n−k)×n(P ) =
∑

eE

2N ′

−
( eE), (6)

for E ∈ E(n, k; P ), where N ′
−(Ẽ) is the number of −1’s in the partial ASM Ẽ, excluding

the bottom row.
In analogy with the proof of the diamond case, we want an expression for the number

of tilings of [(n − 1) − k] × (n − 1) rectangles in terms of elements of A(n, k). Using

N+(D̃) = N−(D̃) + (n − k), we can manipulate Equation (5) to obtain

AR(n−k)×n(P ) =
∑

eD |D∈O(n,k;P )

2N−( eD)+(n−k)

=
∑

eD |D∈O(n,k;P )

2N ′

−
( eD)+(number of -1’s in bottom row of eD)+(n−k)

= 2n−k
∑

eD |D∈O(n,k;P )

2N ′

−
( eD)2(number of -1’s in bottom row of eD), (7)

which already looks good, except for the noisome extra power of 2 inside the sum.
To find an expression for numbers of tilings of [(n − 1) − k] × (n − 1) rectangles in

the RHS of (7), we must rewrite the sum index in terms of (n − 1, k)-even matrices, as
in (6). Let ED be the [(n − k) + 1]× (n + 1) matrix obtained by subtracting 1 from each
entry of D. While all its entries are even, ED is not a proper (n − 1, k)-even matrix
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because no entries are missing from its bottom row. We can remove entries to form a
proper even matrix, but there may be more than one way to do this in compliance with
the requirement of Fact (iv) on page 6. For example, if

D =




1 3 5 7 9 11
3 5 3 5 7 9
5 7 5 7 5 7
7 5 7 9 7 5


 , ED =




0 2 4 6 8 10
2 4 2 4 6 8
4 6 4 6 4 6
6 4 6 8 6 4


 ,

then we can make two different (n − 1, k)-even matrices from ED:



0 2 4 6 8 10
2 4 2 4 6 8
4 6 4 6 4 6
6 6 6 4


 or




0 2 4 6 8 10
2 4 2 4 6 8
4 6 4 6 4 6
6 4 6 4


 .

This is significant, as these two matrices describe Aztec rectangles with different boundary
conditions (AR2×4(0, 1, 1) and AR2×4(1, 0, 1), respectively).

Another way of viewing this ambiguity is to notice that the partial ASM ẼD has a −1
in its bottom row, so there is an ambiguity in the corresponding bottom-row entry of a
compatible (n − 1, k)-odd matrix:




0 2 4 6 8 10
2 4 2 4 6 8
4 6 4 6 4 6
6 4 6 8 6 4


→




1 3 5 7 9
3 . . . . . . . 7
5 7 5 7 5


 or




1 3 5 7 9
3 . . . . . . . 7
5 3 5 7 5


 .

Let us say that these different odd bottom rows are compatible with ED, and since each
odd bottom row determines the boundary configuration Pi of an [(n − 1) − k] × (n − 1)
rectangle, we can also say these Pi are compatible with ED. Finally, D determines a
configuration P for an (n − k) × n rectangle, so we say Pi is compatible with P if Pi is
compatible with ED, for some D ∈ O(n, k; P ).

Evidently, there are 2(number of -1’s in bottom row of gED) different odd bottom rows compat-
ible with ED, and hence this many configurations Pi compatible with ED. This explains
the power of 2 in (7), since ẼD = D̃ (recall the definition of D̃ on page 7). Now we can
write

AR(n−k)×n(P ) = 2n−k
∑

Pi compatible with P

∑

eE |E∈E(n−1,k;Pi)

2N ′

−
( eE). (8)

The power of 2 has been absorbed by double-counting: the same partial ASM may appear
in different terms of the outer sum, in the guise of different bottom-row configurations,
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when multiple Pi’s are compatible with the same ED (with D ∈ O(n, k; P )). Using the
expression from (6), we have

AR(n−k)×n(P ) = 2n−k
∑

Pi compatible with P

AR((n−1)−k)×(n−1)(Pi). (9)

All that remains is to show that the Pi which are compatible with a given P are
exactly those obtained by subtracting an ASM row from P . Consider the configuration
P = (e1, . . . , ek+1). According to Fact (iii) on page 6, the bottom row of the corresponding
(n, k)-odd matrix is

(a0 ,
−2

a1 ,
−2

. . . ,
−2︸ ︷︷ ︸

e1

aj1 ,
+2

aj1+1 ,
−2

. . . ,
−2︸ ︷︷ ︸

e2

aj2 ,
+2

aj2+1 ,
−2

. . . ,
−2︸ ︷︷ ︸

e3

aj3 , . . .); (10)

i.e., the entries decrease by ei consecutive steps between each increase.
Before we remove entries, the (n − 1, k)-even bottom row will have the same form,

with bi = ai − 1. Fact (iv) on page 6 says that in the bottom row of a proper (n − 1, k)-
even matrix, adjacent entries must always decrease by 2. It follows from the condition
on the penultimate row that in general, if bottom-row entries bj and bj+l+1 are separated
by l consecutive removed entries, then bj+l+1 = bj + 2(l − 1). We want to know all ways
of removing k entries such that this rule is satisfied. Since there are exactly k places
where the entries increase by 2, we must simply remove an entry to the left or right of
the increase. That is, wherever bj = bj−1 + 2, remove either bj or bj−1. An even matrix
bottom row looks like this:

(b0, b1, . . . , bi1−1︸ ︷︷ ︸
f1

, ∅, bi1+1, . . . , bi2−1︸ ︷︷ ︸
f2

, ∅, bi2+1, . . .︸ ︷︷ ︸
f3

, ∅, . . .), (11)

for configuration (f1, f2, . . . , fk+1). Comparing (10) and (11), we see that configurations
(f1, . . . , fk+1) obtained by removing entries at jumps correspond to configurations ob-
tained by subtracting a row of an order-(k + 1) ASM from (e1, . . . , ek+1). (Moving from
left to right, a 1 in the ASM row tells us to remove from the right side of a jump, a -1 says
to remove from the left side, and a 0 says to remove from the same side as the previous
removal.)

Finally, because of the pattern of +2 and −2 steps shown in (10), removing an entry
anywhere other than at the jumps violates the requirement that the entries increase by
2(l − 1) across a gap of l removed entries.

The base of the recurrence relation (1) is the n = k case AR0×k(0, 0, . . . , 0). In this
trivial case, there is exactly one tiling: all squares must be removed, and no dominoes

12



+(0,0,1)+(1,0,0) +(1,−1,1)

(0,0,0)

(0,0,1)(1,0,0) (0,1,0)

(0,1,1)(1,0,1)(0,0,2)

(1,0,2)

Figure 5: The evolution of AR3×5(1, 0, 2) from the base case AR0×2(0, 0, 0)

are used. Theorem 3.1 thus says that every order-(k + 1) ASM-path from the origin to P

represents a sequence of counts of tilings of smaller rectangles, and each path contributes
a factor of 2i at the ith step to AR(n−k)×n(P ). (Figure 5 retraces a rectangle to the base
case. An ASM-path from the origin to (1, 0, 2) corresponds to a path following the arrows
from bottom to top.) If we let Π(P ) be the set of all ASM-paths in the nonnegative
orthant from the origin to P , we have

Corollary 3.3 The number of domino tilings of the Aztec rectangle AR(n−k)×n(P ) is

AR(n−k)×n(P ) =

(
n−k∏

i=1

2i

)
× #(Π(P ))

= 2(n−k)[(n−k)+1]/2 × #(Π(P )). (12)
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Figure 6: The trapezoid TR3,2,3(1, 0, 2) and a family of nonintersecting lattice paths
corresponding to the ASM-path (0, 1, 0) + (0, 0, 1) + (1,−1, 1)

4 ASM-paths and trapezoids

An ASM-path in the nonnegative orthant, considered as a series of ASM rows, can
be interpreted as a family of nonintersecting lattice paths. From bottom to top, let
t
(0)
0 , t

(0)
1 , . . . , t

(0)
k+1 be points aligned vertically in the plane, each separated by a distance at

least 1. From each t
(0)
j , take a step by either (1, 1

2
) or (1,−1

2
) to get t

(1)
j . For 1 ≤ j ≤ k+1,

let d
(i)
j = t

(i)
j −t

(i)
j−1. If we stipulate that t

(0)
0 steps down and t

(0)
k+1 steps up, the (k+1)-tuple

of integers
(d

(1)
1 − d

(0)
1 , d

(1)
2 − d

(0)
2 , . . . , d

(1)
k+1 − d

(0)
k+1)

is a row of an ASM.
Such families of nonintersecting lattice paths correspond to lozenge tilings of (n −

k, k, n − k) trapezoids, as shown in Figure 6. Consider the dual graph, and remove all
but the horizontal edges (solid lines). Now, starting from the k vertices on the left, draw
nonintersecting paths connecting the endpoints of the edges (dotted lines). The set of all
diagonal edges of the paths and all horizontal edges not included in any path constitutes
a matching on the graph, and hence a lozenge tiling of the trapezoid. If we also imagine
paths along the upper and lower boundaries of the trapezoid, we see that this construction
of nonintersecting paths is equivalent to the above interpretation of an ASM-path. Thus,
every order-(k + 1) ASM-path in the nonnegative orthant from the origin to the point P

corresponds to a lozenge tiling of TRn−k,k,n−k(P ), and we have

14



Corollary 4.1 Let ADn be the number of domino tilings of the order-n Aztec diamond.

Then

AR(n−k)×n(P ) = 2(n−k)[(n−k)+1]/2 × TRn−k,k,n−k(P )

= ADn−k × TRn−k,k,n−k(P ).

Also, since

#(Π(P )) =
∑

ri

#(Π(P − ri)),

we have an analogue to Theorem 3.1:

Theorem 4.2 The following recurrence relation holds on lozenge tilings of trapezoids:

TRn−k,k,n−k(P ) =
∑

ri

TR(n−1)−k,k,(n−1)−k(P − ri), (13)

where the sum is taken over all order-(k + 1) ASM rows ri.

We can express this enumeration of tilings in terms of a determinant. In the graph
dual to the trapezoid TRn−k,k,n−k(P ), call the left-most vertices u1, . . . , uk (from bottom
to top), and call the right-most vertices v1, . . . , vn – including removed vertices. If P =
(x0, . . . , xk), the right-most present vertices will be vl1 , . . . , vlk , where lj = j +

∑j−1
m=0 xm.

One version of the Lindström-Gessel-Viennot theorem [L, GV] says that the number of
families of nonintersecting lattice paths from {u1, . . . , uk} to {vl1, . . . , vlk} is det(aij)

m
i,j=1,

where aij is the number of lattice paths from ui to vlj . The number of paths from ui to
vlj is a binomial coefficient: a path takes (n− k) steps, and exactly (lj − i) of them must
move upward. Thus,

aij =

(
n − k

lj − i

)
,

where we use the convention

(
x

y

)
= 0 if y < 0 or y > x. In terms of entries of P , we

can write

n − k =

k∑

m=0

xm = X

and

lj − i = (j − i) +

j−1∑

m=0

xm = Yij,

15
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Figure 7: The Aztec rectangle AR3×6(2, 3; 2, 1, 1) and the butterfly B3,3,3(2, 3; 2, 1, 1)

so we have

TRn−k,k,n−k(P ) =

∣∣∣∣
(

X

Yij

)∣∣∣∣
k

i,j=1

, (14)

and by Corollary 4.1,

AR(n−k)×n(P ) = 2(n−k)[(n−k)+1]/2

∣∣∣∣
(

X

Yij

)∣∣∣∣
k

i,j=1

. (15)

5 Butterflies and more Aztec rectangles

The proof of Theorem 3.1 extends naturally to include the case of an (n − k) × n Aztec
rectangle with squares removed from both long edges. If we let P represent the configura-
tion on the South → East edge (as before), and let Q represent the configuration on the
West → North edge, denote the rectangle (and the number of tilings) by AR(n−k)×n(Q; P ).
Note that P has k1 + 1 entries and Q has k2 + 1 entries, with k = k1 + k2; the entries of
P sum to n − k1 and the entries of Q sum to n − k2. We can generalize the recurrence
relation (1):

16



Theorem 5.1 For Aztec rectangles with removed squares in configuration P on the bot-

tom edge and configuration Q on the top edge, we have

AR(n−k)×n(Q; P ) = 2n−k
∑

ri,sj

AR((n−1)−k)×(n−1)(Q − sj ; P − ri), (16)

taking the sum over all order-(k1 + 1) ASM rows ri and order-(k2 + 1) ASM rows sj.

Proof. Simply apply the argument in the proof of Theorem 3.1 to both sides. We need
to expand the definition of an (n − k) × n partial ASM to include matrices obtained by
removing the first k2 rows, as well as the last k1 rows, from order-n ASMs. The proof
follows as a straightforward generalization.

The base of the recurrence is not trivial in this case. As in the one-sided case, we
have a 0 × k rectangle in which all k squares are removed – but we consider k1 of them
to be removed from the “bottom” and k2 removed from the “top.” Instead of starting
at the origin, then, the recurrence starts at a pair of configurations (O2; O1) specifying
which squares are removed from the top and which from the bottom. (Obviously, O1 and
O2 must specify complementary configurations, since a given square can be removed only
once. Also, the entries of O1 sum to k2, and the entries of O2 sum to k1.) The statement
analogous to Corollary 3.3 is therefore

Corollary 5.2 The number of domino tilings of the Aztec rectangle AR(n−k)×n(Q; P ) is

AR(n−k)×n(Q; P ) = 2(n−k)[(n−k)+1]/2
∑

pairs (O2;O1)

#(Π(O1, P )) × #(Π(O2, Q)), (17)

where Π(X, Y ) is the set of ASM-paths in the nonnegative orthant from X to Y .

Once again, there is an interpretation of the RHS of (17) in terms of lozenge tilings.
We define the butterfly Ba,b,a(Q; P ) as follows: Take the trapezoid TRa,b,a(P ) and the
mirror image of TRa,b,a(Q), and identify the edges of length b. For purposes of tiling,
the b pairs of triangles adjacent along this identified edge should be considered identified,
as well. (The circles in Figure 7 are meant to symbolize this identification.) A tiling of
Ba,b,a(Q; P ) corresponds to a pair of families of nonintersecting lattice paths, as shown in
Figure 8, so the number of tilings is

Bn−k,k,n−k(Q; P ) =
∑

pairs (O2;O1)

#(Π(O1, P )) × #(Π(O2, Q)). (18)
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Figure 8: A pair of families of nonintersecting lattice paths on B3,3,3(2, 3; 2, 1, 1)

We can use the Lindström-Gessel-Viennot theorem to write

Bn−k,k,n−k(Q; P ) =
∑

(O2;O1)

det(aij)
k1

i,j=1 × det(bij)
k2

i,j=1, (19)

where aij is the number of paths from the ith triangle specified by O1 to the jth triangle
specified by P , and bij is the number of paths from the ith triangle specified by O2 to the
jth triangle specified by Q. Finally, we summarize Eqs. (17), (18), and (19) as

AR(n−k)×n(Q; P ) = ADn−k × Bn−k,k,n−k(Q; P ) (20)

AR(n−k)×n(Q; P ) = 2(n−k)[(n−k)+1]/2
∑

(O2;O1)

det(aij)
k1

i,j=1 × det(bij)
k2

i,j=1. (21)

6 Closing remarks

We have results relating domino tilings of Aztec diamonds, lozenge tilings of trapezoids
and butterflies, and lattice paths whose steps are ASM rows. Corollary 4.1 is particularly
suggestive of a connection between domino tilings and lozenge tilings, but more illuminat-
ing would be a bijective proof giving a 2(n−k)[(n−k)+1]/2-to-1 mapping from tilings of Aztec
rectangles to tilings of trapezoids. However, it is not obvious that such a mapping exists,
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since a given tiling of an Aztec rectangle may correspond to more than one ASM-path
(and therefore to more than one lozenge tiling of the trapezoid).

It might also be interesting to consider tilings of the entire plane (or half-plane) by
dominoes or lozenges. Is it possible to find a relation transforming a tiling of the Aztec
half-plane (i.e., the union of all unit squares lying above y = x − 1, with some squares
removed along the lower-right boundary) to a tiling of the trapezoid half-plane ({(x, y) :
x ≤ 0}, with triangles removed along the right boundary)? The methods used in deriving
Corollary 4.1 work locally, so perhaps a transformation can be found even if a bijective
proof is not forthcoming.
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