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Abstract. We define degeneracy loci for vector bundles with structure
group G2, and give formulas for their cohomology (or Chow) classes in terms
of the Chern classes of the bundles involved. When the base is a point,
such formulas are part of the theory for rational homogeneous spaces devel-
oped by Bernstein–Gelfand–Gelfand and Demazure. This has been extended
to the setting of general algebraic geometry by Giambelli–Thom–Porteous,
Kempf–Laksov, and Fulton in classical types; the present work carries out
the analogous program in type G2. We include explicit descriptions of the G2

flag variety and its Schubert varieties, and several computations, including
one that answers a question of W. Graham.

In appendices, we collect some facts from representation theory and com-
pute the Chow rings of quadric bundles, correcting an error in [Ed-Gr].
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1. Introduction

Let V be an n-dimensional vector space. The flag variety Fl(V ) parametrizes
all complete flags in V , i.e., saturated chains of subspaces E• = (E1 ⊂ E2 ⊂
· · · ⊂ En = V ) (with dimEi = i). Fixing a flag F• allows one to define Schubert
varieties in Fl(V ) as the loci of flags satisfying certain incidence conditions with
F•; there is one such Schubert variety for each permutation of {1, . . . , n}. This
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generalizes naturally to the case where V is a vector bundle and F• is a flag of
subbundles. Here one has a flag bundle Fl(V ) over the base variety, whose fibers
are flag varieties, with Schubert loci defined similarly by incidence conditions.
Formulas for the cohomology classes of these Schubert loci, as polynomials in
the Chern classes of the bundles involved, include the classical Thom–Porteous–
Giambelli and Kempf–Laksov formulas (see [Fu1]).

The above situation is “type A,” in the sense that Fl(V ) is isomorphic to the
homogeneous space SLn/B (with B the subgroup of upper-triangular matrices).
There are straightforward generalizations to the other classical types (B, C,
D): here the vector bundle V is equipped with a symplectic or nondegenerate
symmetric bilinear form, and the flags are required to be isotropic with respect
to the given form. Schubert loci are defined as before, with one for each element
of the corresponding Weyl group. The problem of finding formulas for their
cohomology classes has been studied by Harris–Tu [Ha-Tu], Józefiak–Lascoux–
Pragacz [Jó-La-Pr], and Fulton [Fu2, Fu3], among others.

One is naturally led to consider the analogous problem in the five remain-
ing Lie types. In exceptional types, however, it is not so obvious how the
Lie-theoretic geometry of G/B generalizes to the setting of vector bundles in
algebraic geometry. The primary goal of this article is to carry this out for type
G2.

To give a better idea of the difference between classical and exceptional types,
let us describe the classical problem in slightly more detail. The flag bundles are
the universal cases of general degeneracy locus problems in algebraic geometry.
Specifically, let V be a vector bundle of rank n on a variety X, and let ϕ :
V ⊗ V → k be a symplectic or nondegenerate symmetric bilinear form (or the
zero form). If E• and F• are general flags of isotropic subbundles of V , the
problem is to find formulas in H∗X for the degeneracy locus

Dw = {x ∈ X | dim(Fp(x) ∩ Eq(x)) ≥ rw w0(q, p)},

in terms of the Chern classes of the line bundles Eq/Eq−1 and Fp/Fp−1, for all p
and q. (Here w is an element of the Weyl group, considered as a permutation via
an embedding in the symmetric group Sn; w0 is the longest element, correspond-
ing to the permutation n n − 1 · · · 1; and rw(q, p) = #{i ≤ q |w(i) ≤ p} is a
nonnegative integer depending on w, p, and q.) Such formulas have a wide range
of applications: for example, they appear in the theory of special divisors and
variation of Hodge structure on curves in algebraic geometry [Ha-Tu, Pa-Pr],
and they are used to study singularities of smooth maps in differential geom-
etry (work of Fehér and Rimányi, e.g., [Fe-Ri]). They are also of interest in
combinatorics (e.g., work of Lascoux–Schützenberger, Fomin–Kirillov, Pragacz,
Kresch–Tamvakis). See [Fu-Pr] for a more detailed account of the history.

In this article, we pose and solve the corresponding problem in type G2:

Let V → X be a vector bundle of rank 7, equipped with a nondegener-
ate alternating trilinear form γ :

∧3 V → L, for a line bundle L. Let
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E• and F• be general flags of γ-isotropic subbundles of V , and let

Dw = {x ∈ X | dim(Fp(x) ∩ Eq(x)) ≥ rw w0(q, p)},

where w is an element of the Weyl group for G2 (the dihedral group
with 12 elements). Find a formula for [Dw] in H∗X, in terms of the
Chern classes of the bundles involved.

The meaning of “nondegenerate” and “γ-isotropic” will be explained below
(§§2.1–2.2), as will the precise definition of Dw (§2.5). In order to establish
the relation between group theory and geometry, we give descriptions of the
G2 flag variety and its Schubert subvarieties which appear to be new, although
they will not surprise the experts (§4, §A.4). This is done in such a way as to
make the transition to flag bundles natural. We then give presentations of the
cohomology rings of these flag bundles, including ones with integer coefficients
(Theorem 5.4). Finally, we prove formulas for the classes of Schubert varieties in
flag bundles (§6); the formulas themselves are given in [An1, Appendix D.2]. We
also discuss alternative formulas, answer a question of William Graham about
the integrality of a certain rational cohomology class, and prove a result giving
restrictions on candidates for “G2 Schubert polynomials” (§7).

We also need a result on the integral cohomology of quadric bundles, which
were studied in [Ed-Gr]. Appendix B corrects a small error in that article.

Various constructions of exceptional-type flag varieties have been given using
techniques from algebra and representation theory; those appearing in [La-Ma],
[Il-Ma], and [Ga] have a similar flavor to the one presented here. A key feature
of our description is that the data parametrized by the G2 flag variety naturally
determine a complete flag in a 7-dimensional vector space, much as isotropic flags
in classical types determine complete flags by taking orthogonal complements.
The fundamental facts that make this work are Proposition 2.2 and its cousins,
Corollary 3.12 and Propositions 3.15 and 3.16.

Formulas for degeneracy loci are closely related to Giambelli formulas for
equivariant classes of Schubert varieties in the equivariant cohomology of the
corresponding flag variety. We will usually use the language of degeneracy loci,
but we discuss the connection with equivariant cohomology in §2.6. In brief,
the two perspectives are equivalent when detV and L are trivial line bundles.

Another notion of degeneracy loci is often useful, where one is given a map of
vector bundles ϕ : E → F on X, possibly possessing some kind of symmetry, and
one is interested in the locus where ϕ drops rank. This is the situation considered
in [Ha-Tu], for example, with F = E∗ and symmetric or skew-symmetric maps.
We investigate the G2 analogue of this problem in [An2].

When the base X is a point, so V is a vector space and the flag bundle is
just the flag variety G/B, most of the results have been known for some time;
essentially everything can be done using the general tools of Lie theory. For
example, a presentation of H∗(G/B, Z) was given by Bott and Samelson [Bo-Sa],
and (different) formulas for Schubert classes in H∗(G/B, Q) appear in [BGG].
Since this article also aims to present a concrete, unified perspective on the
G2 flag variety, accessible to general algebraic geometers, we wish to emphasize
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geometry over Lie theory: we are describing a geometric situation from which
type-G2 groups arise naturally. Reflecting this perspective, we postpone the
Lie- and representation-theoretic arguments to Appendix A. We shall use some
of the notation and results of this appendix throughout the article, though, so
the reader less familiar with Lie theory is advised to skim at least §A.1, §A.3,
and §A.5.

Notation and conventions. Unless otherwise indicated, the base field k will have
characteristic not 2 and be algebraically closed (although a quadratic extension
of the prime field usually suffices). When char(k) = 2, several of our defini-
tions and results about forms and octonions break down. However, most of
the other main results hold in arbitrary characteristic, including the descrip-
tion of the G2 flag variety and its cohomology, the degeneracy locus formulas,
and the parametrizations of Schubert cells; see [An1, Chapter 6] for details in
characteristic 2.

Angle brackets denote the span of enclosed vectors: 〈x, y, z〉 := span{x, y, z}.
For a vector bundle V on X and a point x ∈ X, V (x) denotes the fiber over

x. If X → Y is a morphism and V is a vector bundle on Y , we will often write
V for the vector bundle pulled back to X. If V is a vector space and E is a
subspace, [E] denotes the corresponding point in an appropriate Grassmannian.

We generally use the notation and language of (singular) cohomology, but
this should be read as Chow cohomology for ground fields other than C. (Since
the varieties whose cohomology we compute are rational homogeneous spaces
or fibered in homogeneous spaces, the distinction is not significant.)

Acknowledgements. This work is part of my Ph. D. thesis, and it is a pleasure to
thank William Fulton for his encouragement in this project and careful readings
of earlier drafts. Conversations and correspondence with many people have ben-
efitted me; in particular, I would like to thank Robert Bryant, Skip Garibaldi,
William Graham, Sam Payne, and Ravi Vakil. Thanks also to an anonymous
referee for comments on the manuscript.

2. Overview

We begin with an overview of our description of the G2 flag variety and
statements of the main results. Proofs and details are given in later sections.

2.1. Compatible forms. Let V be a k-vector space. Let β be a nondegenerate
symmetric bilinear form on V , and let γ be an alternating trilinear form, i.e.,
γ :

∧3 V → k. Write v 7→ v† for the isomorphism V → V ∗ defined by β,
and ϕ 7→ ϕ† for the inverse map V ∗ → V . (Explcitly, these are defined by
v†(u) = β(v, u) and ϕ(u) = (ϕ†, u) for any u ∈ V .) Our constructions are based
on the following definitions:

Definition 2.1. Call the forms γ and β compatible if

2 γ(u, v, γ(u, v, ·)†) = β(u, u)β(v, v) − β(u, v)2(2.1)
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for all u, v ∈ V . An alternating trilinear form γ :
∧3 V → k is nondegenerate

if there exists a compatible nondegenerate symmetric bilinear form on V .

The meaning of the strange-looking relation (2.1) will be explained in §3;
see Proposition 3.3. (The factor of 2 is due to our convention that a quadratic
norm and corresponding bilinear form are related by β(u, u) = 2N(u).) A pair
of compatible forms is equivalent to a composition algebra structure on k ⊕ V
(see §3). Since a composition algebra must have dimension 1, 2, 4, or 8 over k
(by Hurwitz’s theorem), it follows that nondegenerate trilinear forms exist only
when V has dimension 1, 3, or 7. In each case, there is an open dense GL(V )-

orbit in
∧3 V ∗ consisting of nondegenerate forms. When dimV = 1, the only

alternating trilinear form is zero, and any nonzero bilinear form is compatible
with it. When dimV = 3, an alternating trilinear form is a scalar multiple of
the determinant, and given a nondegenerate bilinear form, it is easy to show
that there is a unique compatible trilinear form up to sign.

When dimV = 7, it is less obvious that
∧3 V ∗ has an open GL(V )-orbit,

especially if char(k) = 3, but it is still true (Proposition A.1). The choice of γ
determines β uniquely up to scalar — in fact, up to a cube root of unity (see
Proposition A.3).

Associated to any alternating trilinear form γ on a seven-dimensional vector
space V , there is a canonical map Bγ : Sym2 V →

∧7 V ∗, determining (up
to scalar) a bilinear form βγ . We will give the formula for char(k) 6= 3 here.
Following Bryant [Br], we define Bγ by

Bγ(u, v) = −
1

3
γ(u, ·, ·) ∧ γ(v, ·, ·) ∧ γ,(2.2)

where γ(u, ·, ·) :
∧2 V → k is obtained by contracting γ with u. Choosing an

isomorphism
∧7 V ∗ ∼= k yields a symmetric bilinear form βγ . If βγ is nondegen-

erate, then a scalar multiple of it is compatible with the trilinear form γ; thus
γ is nondegenerate if and only if βγ is nondegenerate. The form βγ is defined in
characteristic 3, as well, and the statement still holds (see Lemma 3.9 and its
proof).

2.2. Isotropic spaces. For the rest of this section, assume dim V = 7. Given
a nondegenerate trilinear form γ on V , say a subspace F of dimension at least
2 is γ-isotropic if γ(u, v, ·) ≡ 0 for all u, v ∈ F . (That is, the map F ⊗F → V ∗

induced by γ is zero.) Say a vector or a 1-dimensional subspace is γ-isotropic if
it is contained in a 2-dimensional γ-isotropic space. If β is a compatible bilinear
form, every γ-isotropic subspace is also β-isotropic (Lemma 3.5); as usual, this
means β restricts to zero on the subspace. Since β is nondegenerate, a maximal
β-isotropic subspace has dimension 3.

Proposition 2.2. For any (nonzero) isotropic vector u ∈ V , the space

Eu = {v | 〈u, v〉 is γ-isotropic}

is three-dimensional and β-isotropic. Moreover, every two-dimensional γ-isotropic
subspace of Eu contains u.
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The proof is given at the end of §3.2. The proposition implies that a maximal
γ-isotropic subspace has dimension 2, and motivates the central definition:

Definition 2.3. A γ-isotropic flag (or G2 flag) in V is a chain

F1 ⊂ F2 ⊂ V

of γ-isotropic subspaces, of dimensions 1 and 2. The variety parametrizing γ-
isotropic flags is called the γ-isotropic flag variety (or G2 flag variety), and
denoted Flγ(V ).

The γ-isotropic flag variety is a smooth, six-dimensional projective variety
(Proposition 4.1). See §A.4 for its description as a homogeneous space.

Proposition 2.2 shows that a γ-isotropic flag has a unique extension to a com-
plete flag in V : set F3 = Eu for u spanning F1, and let F7−i be the orthogonal
space F⊥

i , with respect to a compatible form β. (Since a compatible form is
unique up to scalar, this is independent of the choice of β.) This defines a
closed immersion Flγ(V ) →֒ Flβ(V ) ⊂ Fl(V ), where Flβ(V ) and Fl(V ) are the
(classical) type B and type A flag varieties, respectively.

From the definition, there is a tautological sequence of vector bundles on
Flγ(V ),

S1 ⊂ S2 ⊂ V,

and this extends to a complete γ-isotropic flag of bundles

S1 ⊂ S2 ⊂ S3 ⊂ S4 ⊂ S5 ⊂ S6 ⊂ V

by the proposition. Similarly, there are universal quotient bundles Qi = V/S7−i.

2.3. Bundles. Now let V → X be a vector bundle of rank 7, and let L be a line
bundle on X. An alternating trilinear form γ :

∧3 V → L is nondegenerate

if it is locally nondegenerate on fibers. Equivalently, we may define the Bryant
form Bγ : Sym2 V → det V ∗ ⊗L⊗3 by Equation (2.2), and γ is nondegenerate if
and only if Bγ is (so Bγ defines an isomorphism V ∼= V ∗ ⊗ detV ∗ ⊗ L⊗3).

A subbundle F of V is γ-isotropic if each fiber F (x) is γ-isotropic in V (x); for
F of rank 2, this is equivalent to requiring that the induced map F⊗F → V ∗⊗L
be zero. If F1 ⊂ V is γ-isotropic, the bundle EF1 = ker(V → F ∗

1 ⊗ V ∗ ⊗ L)
has rank 3 and is isotropic for Bγ . (If u is a vector in a fiber F1(x), then
EF1(x) = Eu, in the notation of §2.2.)

Given a nondegenerate form γ on V , there is a γ-isotropic flag bundle

Flγ(V ) → X, with fibers Flγ(V (x)). This comes with universal γ-isotropic
subbundles Si and quotient bundles Qi, as before.

2.4. Chern class formulas. In the setup of §2.3, one has Schubert loci Ωw ⊆
Flγ(V ) indexed by the Weyl group. There is an embedding of W = W (G2) in
the symmetric group S7 such that the permutation corresponding to w ∈ W is
determined by its first two values. We identify w with this pair of integers, so
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w = w(1)w(2); see §A.3 for more on the Weyl group. As in classical types, we
set

rw(q, p) = #{i ≤ q |w(i) ≤ p}.(2.3)

Given a fixed γ-isotropic flag F• on X, the Schubert loci are defined by

Ωw = {x ∈ Flγ(V ) | rk(Fp → Qq) ≤ rw(q, p) for 1 ≤ p ≤ 7, 1 ≤ q ≤ 2}.

These are locally trivial fiber bundles, whose fibers are Schubert varieties in
Flγ(V (x)).

The G2 divided difference operators ∂s and ∂t act on Λ[x1, x2], for any
ring Λ, by

∂s(f) =
f(x1, x2) − f(x2, x1)

x1 − x2
;(2.4)

∂t(f) =
f(x1, x2) − f(x1, x1 − x2)

−x1 + 2x2
.(2.5)

If w ∈ W has reduced word w = s1 · s2 · · · sℓ (where si is the simple reflection s
or t), then define ∂w to be the composition ∂s1 ◦ · · · ◦ ∂sℓ

. This is independent
of the choice of word; see §A.5. (As mentioned in §A.3, each w ∈ W (G2) has
a unique reduced word, with the exception of w0, so independence of choice is
actually lack of choice in this case.) These formulas also define operators on
H∗Flγ(V ). (See §6.)

Let V be a vector bundle of rank 7 on X equipped with a nondegenerate
form γ :

∧3 V → kX , and assume detV is trivial. Let F1 ⊂ F2 ⊂ · · · ⊂ V
be a complete γ-isotropic flag in V . Set y1 = c1(F1), y2 = c1(F2/F1). Let
Flγ(V ) → X be the flag bundle, and set x1 = −c1(S1) and x2 = −c1(S2/S1),
where S1 ⊂ S2 ⊂ V are the tautological bundles.

Theorem 2.4. We have

[Ωw] = Gw(x; y),

where Gw = ∂w0 w−1Gw0 , and

Gw0(x; y) =
1

2
(x3

1 − 2x2
1 y1 + x1 y2

1 − x1 y2
2 + x1 y1 y2 − y2

1 y2 + y1 y2
2)

×(x2
1 + x1 y1 + y1 y2 − y2

2)(x2 − x1 − y2).

in H∗(Flγ(V ), Z). (Here w0 is the longest element of the Weyl group.)

The proof is given in §6, along with a discussion of alternative formulas, includ-
ing ones where γ takes values in M⊗3 for an arbitrary line bundle M .

2.5. Degeneracy loci. Returning to the problem posed in the introduction, let
V be a rank 7 vector bundle on a variety X, with nondegenerate form γ and two
(complete) γ-isotropic flags of subbundles F• and E•. The first flag, F•, allows
us to define Schubert loci in the flag bundle Flγ(V ) as in §2.4. The second flag,
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E•, determines a section s of Flγ(V ) → X, and we define degeneracy loci as
scheme-theoretic inverse images under s:

Dw = s−1Ωw ⊂ X.

When X is Cohen-Macaulay and Dw has expected codimension (equal to the
length of w; see §A.3), we have

[Dw] = s∗[Ωw] = Gw(x; y)(2.6)

in H∗X, where xi = −c1(Ei/Ei−1) and yi = c1(Fi/Fi−1). More generally, this
polynomial defines a class supported on Dw, even without assumptions on the
singularities of X or the genericity of the flags F• and E•; see [Fu1] or [Fu-Pr,
App. A] for the intersection-theoretic details.

2.6. Equivariant cohomology. Now return to the case where V is a 7-dimensional
vector space. One can choose a basis f1, . . . , f7 such that Fi = 〈f1, . . . , fi〉 forms
a complete γ-isotropic flag in V , and let T = (k∗)2 act on V ∼= k7 by

(z1, z2) 7→ diag(z1, z2, z1z
−1
2 , 1, z−1

1 z2, z
−1
2 , z−1

1 ).

Write t1 and t2 for the corresponding weights. Then T preserves γ and acts on
Flγ(V ). The total equivariant Chern class of V is cT (V ) = (1 − t21)(1 − t22)(1 −
(t1 − t2)

2), so we have

H∗
T (Flγ(V ), Z[12 ]) = Z[12 ][x1, x2, t1, t2]/(r2, r4, r6),

with the relations r2i = ei(x
2
1, x2

2, (x1 − x2)
2) − ei(t

2
1, t22, (t1 − t2)

2). A pre-
sentation with Z coefficients can be deduced from Theorem 5.4; see Remark
5.5.

Theorem 2.4 yields an equivariant Giambelli formula:

[Ωw]T = Gw(x; t) in H∗
T Flγ .

In fact, this formula holds with integer coefficients: the Schubert classes form
a basis for H∗

T (Flγ , Z) over Z[t1, t2], so in particular there is no torsion, and

H∗
T (Flγ , Z) includes in H∗

T (Flγ , Z[12 ]).

The equivariant geometry of Flγ is closely related to the degeneracy loci
problem; we briefly describe the connection. In the setup of §2.5, assume V
has trivial determinant and γ has values in the trivial bundle, so the structure
group is G = G2. The data of two γ-isotropic flags in V gives a map to the
classifying space BB ×BG BB, where B ⊂ G is a Borel subgroup, and there
are universal degeneracy loci Ωw in this space. On the other hand, there is an
isomorphism BB ×BG BB ∼= EB ×B (G/B), carrying Ωw to EB ×B Ωw. Since
H∗

T (Flγ) = H∗(EB ×B (G/B)), and [Ωw]T = [EB ×B Ωw], a Giambelli formula

for [Ωw]T is equivalent to a degeneracy locus formula for this situation. One may
then use equivariant localization to verify a given formula; this is essentially the
approach taken in [Gr2].



CHERN CLASS FORMULAS FOR G2 SCHUBERT LOCI 9

2.7. Other types. It is reasonable to hope for a similar degeneracy locus story
in some of the remaining exceptional types. Groups of type F4 and E6 are
closely related to Albert algebras, and bundle versions of these algebras have been
defined and studied over some one-dimensional bases [Pu]. Concrete realizations
of the flag varieties have been given for types F4 [La-Ma], E6 [Il-Ma], and E7

[Ga]. Part of the challenge is to produce a complete flag from one of these
realizations, and this seems to become more difficult as the dimension of the
minimal irreducible representation increases with respect to the rank.

3. Octonions and compatible forms

Any description of G2 geometry is bound to be related to octonion algebras,
since the simple group of type G2 may be realized as the automorphism group
of an octonion algebra; see Proposition 3.2 below. For an entertaining and wide-
ranging tour of the octonions (also known as the Cayley numbers or octaves),
see [Ba].

The basic linear-algebraic data can be defined as in §2, without reference
to octonions, but the octonionic description is equivalent and sometimes more
concrete. In this section, we collect the basic facts about octonions that we
will use, and establish their relationship with the notion of compatible forms
introduced in §2.1. Most of the statements hold over an arbitrary field, but we
will continue to assume k is algebraically closed of characteristic not 2.

While studying holonomy groups of Riemannian manifolds, Bryant proved
several related facts about octonions and representations of (real forms of) G2.
In particular, he gives a way of producing a compatible bilinear form associated
to a given trilinear form; we will use a version of this construction for forms on
vector bundles. See [Br] or [Ha] for a discussion of the role of G2 in differential
geometry.

As far as I am aware, the results in §§3.2–3.3 have not appeared in the litera-
ture in this form, although related ideas about trilinear forms on a 7-dimensional
vector space can be found in [Br, §2].

3.1. Standard facts. Here we list some well-known facts about composition
algebras, referring to [Sp-Ve, §1] for proofs of any non-obvious assertions.

Definition 3.1. A composition algebra is a k-vector space C with a nonde-
generate quadratic norm N : C → k and an algebra structure m : C ⊗ C → C,
with identity e, such that N(uv) = N(u)N(v).

Denote by β′ the symmetric bilinear form associated to N , defined by

β′(u, v) = N(u + v) − N(u) − N(v).

(Notice that β′(u, u) = 2N(u).) Since N(u) = N(eu) = N(e)N(u) for all u ∈ C,
it follows that N(e) = 1 and β′(e, e) = 2.

The possible dimensions for C are 1, 2, 4, and 8. A composition algebra
of dimension 4 is called a quaternion algebra, and one of dimension 8 is an
octonion algebra; octonion algebras are neither associative nor commutative.
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If there is a nonzero vector u ∈ C with N(u) = 0, then C is split. (Otherwise C
is a normed division algebra.) Any two split composition algebras of the same
dimension are isomorphic. Over an algebraically closed field, C is always split,
so in this case there is only one composition algebra in each possible dimension,
up to isomorphism.

Define conjugation on C by u = β′(u, e)e−u. Every element u ∈ C satisfies
a quadratic minimal equation

u2 − β′(u, e)u + N(u)e = 0,(3.1)

so

uu = uu = N(u)e.(3.2)

Write V = e⊥ ⊂ C for the imaginary subspace. For u ∈ V , u = −u, so
u2 = −N(u)e, that is, N(u) = −1

2β′(u2, e). For u, v ∈ V , we have

β′(u, v)e = N(u + v)e − N(u)e − N(v)e

= −uv − vu.(3.3)

Although C may not be associative, we always have u(uv) = (uu)v = N(u)v
and (uv)v = u(vv) = N(v)u for any u, v ∈ C. Also, for u, v,w ∈ C we have

β′(uv,w) = β′(v, uw) = β′(u,wv).(3.4)

A nonzero element u ∈ C is a zerodivisor if there is a nonzero v such that
uv = 0. We have 0 = u(uv) = (uu)v = N(u)v, so

u is a zerodivisor iff N(u) = 0.(3.5)

The relevance to G2 geometry comes from the following:

Proposition 3.2 ([Sp-Ve, §2]). Let C be an octonion algebra over any field k.
Then the group G = Aut(C) of algebra automorphisms of C is a simple group
of type G2, defined over k. In fact, G ⊂ SO(V, β) ⊂ SO(C, β′), where V = e⊥.
If char(k) 6= 2, G acts irreducibly on V . �

3.2. Forms. The algebra structure on C corresponds to a trilinear form

γ′ : C ⊗ C ⊗ C → k,

using β′ to identify C with C∗. Specifically, we have

γ′(u, v,w) = β′(uv,w).(3.6)

Restricting γ′ to V , we get an alternating form which we will denote by γ. (This
follows from (3.4) and the fact that u = −u for u ∈ V .) Also, β′ restricts to a
nondegenerate form β on V , defining an isomorphism V → V ∗.

The multiplication map m : C ⊗C → C, with C = k⊕V , is characterized by

m(u, v) = −
1

2
β(u, v)e + γ(u, v, ·)† for u, v ∈ V ;(3.7)

m(u, e) = m(e, u) = u for u ∈ V ;(3.8)

m(e, e) = e.(3.9)
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Conversely, given a trilinear form γ ∈
∧3 V ∗ and a nondegenerate bilinear

form β ∈ Sym2 V ∗, extend β orthogonally to C = k ⊕ V and define a multipli-
cation m according to formulas (3.7)–(3.9) above.

Proposition 3.3. This multiplication makes C into a composition algebra with
norm N(u) = 1

2β′(u, u) if and only if γ and β are compatible, in the sense of
Definition 2.1.

Proof. This is a simple computation: For u, v ∈ V , we have

N(uv) =
1

2
β′(uv, uv)

=
1

2
β′(−

1

2
β(u, v)e,−

1

2
β(u, v)e) +

1

2
β′(γ(u, v, ·)†, γ(u, v, ·)†)

=
1

4
β(u, v)β(u, v) +

1

2
γ(u, v, γ(u, v, ·)†),

and

N(u)N(v) =
1

4
β(u, u)β(v, v). �

Remark 3.4. Similar characterizations of octonionic multiplication have been
given, usually in terms of a cross product on V . See [Br, §2] or [Ha, §6].

Lemma 3.5. Suppose γ and β are compatible forms on V , defining a composi-
tion algebra structure on C = k ⊕ V . Then L ⊂ V is γ-isotropic iff uv = 0 in
C for all u, v ∈ L. In particular, any γ-isotropic subspace is also β-isotropic.

Proof. Let γ′ and β′ be the forms corresponding to the algebra structure. One
implication is trivial: If uv = 0 for all u, v ∈ L, then β′(uv, ·) = γ′(u, v, ·) ≡ 0
on C, so γ(u, v, ·) ≡ 0 on V and L is γ-isotropic.

Conversely, suppose L is γ-isotropic. First we show L is β-isotropic. Given
any u ∈ L, choose a nonzero v ∈ u⊥ ∩ L. Since L is γ-isotropic, γ(u, v, ·)† = 0,
so u and v are zerodivisors:

uv = −
1

2
β(u, v) e + γ(u, v, ·)† = 0.

Therefore N(u) = N(v) = 0, so N and β are zero on L. By (3.7), this also
implies uv = 0 for all u, v ∈ L. �

Finally, it will be convenient to use certain bases for C and V . We need a
well-known lemma:

Lemma 3.6 ([Sp-Ve, (1.6.3)]). There are elements a, b, c ∈ C such that

e, a, b, ab, c, ac, bc, (ab)c

forms an orthogonal basis for C. Such a triple is called a basic triple for C.

In fact, given any a ∈ V = e⊥ with N(a) = 1, we can choose b and c so
that a, b, c is an orthonormal basic triple; similarly, if a and b are orthonormal
vectors generating a quaternion subalgebra, we can find c so that a, b, c is an
orthonormal basic triple.
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If a, b, c are an orthonormal basic triple, let {e0 = e, e1, . . . , e7} be the cor-
responding basis (in the same order as in Lemma 3.6). This is a standard

orthonormal basis for C. With respect to the basis {e1, . . . , e7} for the imag-
inary octonions V , we have β(ep, eq) = 2 δpq, and

γ = 2 (e∗123 + e∗257 − e∗167 − e∗145 − e∗246 − e∗347 − e∗356),(3.10)

where e∗pqr = e∗p ∧ e∗q ∧ e∗r. (Here e∗p is the map eq 7→ δpq.)

Remark 3.7. Note that for p > 0, e2
p = −e. This standard orthonormal basis

is analogous to the standard basis “1, i, j, k” for the quaternions. Conventions
for defining the octonionic product in terms of a standard basis vary widely in
the literature, though — Coxeter [Co, p. 562] calculates 480 possible variations!
A choice of convention corresponds to a labelling and orientation of the Fano
arrangement of 7 points and 7 lines; the one we use agrees with that of [Fu-Ha,
p. 363]. (Coincidentally, our choice of γ very nearly agrees with the one used in
[Br, §2]: there the signs of e∗347 and e∗356 are positive, and the common factor of
2 is absent.)

We will most often use a different basis. Define

f1 = 1
2(e1 + i e2)

f2 = 1
2(e5 + i e6)

f3 = 1
2(e4 + i e7)

f4 = i e3

f5 = −1
2(e4 − i e7)

f6 = −1
2(e5 − i e6)

f7 = −1
2(e1 − i e2),

(3.11)

and call this the standard γ-isotropic basis for V . (Here i is a fixed square
root of −1 in k.) With respect to this basis, the bilinear form is given by

β(fp, f8−q) = −δpq, for p 6= 4 or q 6= 4;

β(f4, f4) = −2.
(3.12)

The trilinear form is given by

γ = f∗
147 + f∗

246 + f∗
345 − f∗

237 − f∗
156.(3.13)

(As above, f∗
p denotes fq 7→ δpq.)

Example 3.8. We can use the expression (3.13) to compute the octonionic
product f2 f3. By (3.7)–(3.9), this is

f2 f3 = −
1

2
β(f2, f3) e + γ(f2, f3, ·)

†

= γ(f2, f3, ·)
†.

Since γ(f2, f3, fj) = −δ7,j = β(f1, fj), we see γ(f2, f3, ·)
† = f1. Therefore

f2 f3 = f1.
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We use computations in the f basis to prove another characterization of
nondegenerate forms.

Lemma 3.9. Let γ :
∧3 V → k be a trilinear form, and let βγ be a symmetric

bilinear form defined as in (2.2) (for char(k) 6= 3), by composing

(u, v) 7→ −
1

3
γ(u, ·, ·) ∧ γ(v, ·, ·) ∧ γ

with an isomorphism
∧7 V ∗ ∼= k. Then γ is nondegenerate if and only if βγ

is nondegenerate. (In fact, βγ is also defined if char(k) = 3, and the same
conclusion holds.)

Proof. Let U ⊂
∧3 V ∗ be the set of nondegenerate forms, and let U ′ ⊂

∧3 V ∗

be the set of forms γ such that βγ is nondegenerate; we want to show U = U ′.
(By Proposition A.1, U is open and dense.)

First suppose γ is nondegenerate. Since U is a GL(V )-orbit in
∧3 V ∗, we

may choose a basis {fj} so that γ has the expression (3.13). Computing in

this basis, and using f∗
1234567 to identify

∧7 V ∗ with k, we find βγ = β, i.e.,
βγ(fp, f8−q) = −δpq for p, q 6= 4, and βγ(f4, f4) = −2. Indeed, we have

γ(f1, ·, ·) ∧ γ(f7, ·, ·) ∧ γ = (f∗
47 − f∗

56) ∧ (f∗
14 − f∗

23) ∧ γ

= 3f∗
1234567.

The others are similar. In particular, with this choice of isomorphism
∧7 V ∗ ∼= k,

γ and βγ are compatible forms. (For an arbitrary choice of isomorphism, βγ is
a scalar multiple of a compatible form.)

To see this works in characteristic 3, one can avoid division by 3. Let VZ be
a rank 7 free Z-module, fix a basis f1, . . . , f7, and let γZ :

∧3 VZ → Z be given
by (3.13). The same computation shows that

γZ(fp, ·, ·) ∧ γZ(f8−q, ·, ·) ∧ γZ = 3 δpq f∗
1234567

for p, q 6= 4, and

γZ(f4, ·, ·) ∧ γZ(f4, ·, ·) ∧ γZ = 6 f∗
1234567,

so one can define βγ over Z. (For nondegeneracy, one still needs char(k) 6= 2
here.)

For the converse, note that the terms in the compatibility relation (2.1) make
sense for all γ in U ′, since here γ(u, v, ·)† is well-defined. We have seen that the
relation holds on the dense open subset U ⊂ U ′, so it must hold on all of U ′.
Therefore every γ in U ′ has a compatible bilinear form, i.e., γ is in U . �

The following two lemmas prove Proposition 2.2:

Lemma 3.10. If u ∈ V is a nonzero isotropic vector, then

Eu = {v ∈ V |uv = 0}

= {v ∈ V | γ(u, v, ·) ≡ 0}

is a three-dimensional β-isotropic subspace.
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Proof. By definition, Eu consists of zero-divisors, so it is β-isotropic by (3.5).
Since β is nondegenerate on V , we know dim Eu ≤ 3.

In fact, it is enough to observe that G = Aut(C) acts transitively on the
set of isotropic vectors (up to scalar); this follows from Proposition A.5. Thus
for any u, we can find g ∈ G such that g · u = λf1 for some λ 6= 0. Clearly
g · Eu = Eg·u = Ef1, and one checks that f1f2 = f1f3 = 0. �

Lemma 3.11. Let u ∈ V be a nonzero isotropic vector, and let v,w ∈ Eu be
such that {u, v,w} is a basis. Then vw = λu for some nonzero λ ∈ k.

Proof. First note that vw = −wv, since −vw−wv = β(v,w)e = 0. If {u, v′, w′}
is another basis, with v′ = a1u + a2v + a3w and w′ = b1u + b2v + b3w, then
a2b3 − a3b2 6= 0, so

v′w′ = (a2b3)vw + (a3b2)wv = (a2b3 − a3b2)vw

is a nonzero multiple of vw. Now it suffices to check this for the standard
γ-isotropic basis, and indeed, we computed f2f3 = f1 in Example 3.8. �

Corollary 3.12. Let V = L1 ⊕ · · · ⊕ L7 be a splitting into one-dimensional
subspaces such that L1 is γ-isotropic, and L1 ⊕ L2 ⊕ L3 = Eu for a generator
u ∈ L1. Then the map V ⊗V → V ∗ ∼= V induced by γ restricts to a G-equivariant
isomorphism L2 ⊗ L3

∼
−→ L1. �

Finally, the following lemma is verified by a straightforward computation:

Lemma 3.13. Let T = (k∗)2 act on V via the matrix

diag(z1, z2, z1z
−1
2 , 1, z−1

1 z2, z
−1
2 , z−1

1 )

(in the f -basis). Then T preserves the forms β and γ of (3.12) and (3.13). �

The corresponding weights for this torus action are {t1, t2, t1 − t2, 0, t2 −
t1,−t2,−t1}.

3.3. Octonion bundles. Let X be a variety over k. The notion of composition
algebra can be globalized:

Definition 3.14. A composition algebra bundle over X is a vector bun-
dle C → X, equipped with a nondegenerate quadratic norm N : C → kX , a
multiplication m : C ⊗ C → C, and an identity section e : kX → C, such that
N respects composition. (Equivalently, for each x ∈ X, the fiber C(x) is a
composition algebra over k.)

Since char(k) 6= 2, there is a corresponding nondegenerate bilinear form β′

on C. We will also allow composition algebras whose norm takes values in a

line bundle M⊗2; here the multiplication is C ⊗ C
m
−→ C ⊗ M , and the identity

is M
e
−→ C. Here a little care is required in the definition. The composition

C⊗M
id⊗e
−−−→ C⊗C

m
−→ C⊗M should be the identity, and the other composition
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(m ◦ (e⊗ id)) should be the canonical isomorphism. The compatibility between
m and N is encoded in the commutativity of the following diagram:

C ⊗ C
m

- C ⊗ M

M⊗4.
N ⊗ (N ◦ e)�N ⊗ N

-

The norm of e is the quadratic map M → M⊗2 corresponding to M⊗2 β′

−→ M⊗2.

Replacing C with C̃ = C ⊗M∗, one obtains a composition algebra whose norm
takes values in the trivial bundle.

Many of the properties of composition algebras discussed above have straight-
forward generalizations to bundles; we mention a few without giving proofs.

Using β′ to identify C with C∗ ⊗ M⊗2, the multiplication map corresponds
to a trilinear form γ′ : C ⊗ C ⊗ C → M⊗3. The imaginary subbundle V is
the orthogonal complement to e in C, so C = M ⊕ V . The bilinear form β′

restricts to a nondegenerate form β on V , and γ′ restricts to an alternating form
γ :

∧3 V → M⊗3. As before, the multiplication on M ⊕ V can be recovered
from the forms β and γ on V , and there is an analogue of Proposition 3.3.

The analogues of Proposition 2.2 and Corollary 3.12 can be proved using
octonion bundles and reducing to the local case:

Proposition 3.15. Let γ :
∧3 V → M⊗3 and β : Sym2 V → M⊗2 be (locally)

compatible forms. Let F1 ⊂ V be a γ-isotropic line bundle, and let ϕ : V →
F ∗

1 ⊗ V ∗ ⊗ M⊗3 be the map defined by γ. Then the bundle

EF1 = ker(ϕ)

has rank 3 and is β-isotropic. �

Proposition 3.16. Let V be as in Proposition 3.15, and suppose there is a
splitting V = L1 ⊕ · · · ⊕ L7 into line bundles such that L1 is γ-isotropic, and
L1 ⊕L2 ⊕L3 = EL1 . Then the map V ⊗ V → V ∗ ∼= V ⊗M induced by γ and β

restricts to an isomorphism L2 ⊗ L3
∼
−→ L1 ⊗ M . �

Remark 3.17. Composition algebras may defined over an arbitrary base scheme
X; in fact, as with Azumaya algebras, one is mainly interested in cases where
X is defined over a non-algebraically closed field or a Dedekind ring. Petersson
has classified such composition algebra bundles in the case where X is a curve of
genus zero [Pe]. Since then, some work has been done over other one-dimensional
bases, but the theory remains largely undeveloped.

4. Topology of G2 flags

There are two “γ-isotropic Grassmannians” parametrizing γ-isotropic sub-
spaces of dimensions 1 or 2, which we write as Q or G, respectively; thus Flγ
embeds in Q×G. Since γ-isotropic vectors are just those v such that β(v, v) = 0,
Q is the smooth 5-dimensional quadric hypersurface in P(V ).
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Proposition 4.1. The γ-isotropic flag variety is a smooth, 6-dimensional pro-
jective variety. Moreover, both projections Flγ → Q and Flγ → G are P1-
bundles.

Proof. The quadric Q comes with a tautological line bundle S1 ⊂ VQ. By
Proposition 2.2, the form γ also equips Q with a rank-3 bundle S3 ⊂ VQ, with
fiber S3([u]) = Eu, the space swept out by all γ-isotropic 2-spaces containing u.
Thus S1 ⊂ S3, and from the definitions we have Flγ(V ) = P(S3/S1) → Q. (We
use the convention that P(E) parametrizes lines in the vector bundle E.)

Similarly, if S2 is the tautological bundle on G, we have Flγ(V ) = P(S2) → G.
This also shows that G is smooth of dimension 5. �

Remark 4.2. The definition of Flγ(V ) can be reformulated as follows. Let
Fl = Fl(1, 2;V ) be the two-step partial flag variety. The nondegenerate form

γ is also a section of the trivial vector bundle
∧3 V ∗ on Fl. By restriction it

gives a section of the rank 5 vector bundle
∧2 S∗

2 ⊗ Q∗
5, where S1 ⊂ S2 ⊂ V is

the tautological flag on Fl and Q5 = V/S2. Then Flγ ⊂ Fl is defined by the
vanishing of this section.

Remark 4.3. Projectively, Flγ parametrizes data (p ∈ ℓ), where ℓ is a γ-
isotropic line in Q, and p ∈ ℓ is a point. Thus Proposition 2.2 says that the
union of such ℓ through a fixed p is a P2 in Q, and conversely, given such a P2

one can recover p (as the intersection of any two γ-isotropic lines in the P2).

4.1. Fixed points. Let {f1, f2, . . . , f7} be the standard γ-isotropic basis for V ,
and let T = (k∗)2 act as in Lemma 3.13, via the matrix diag(z1, z2, z1z

−1
2 , 1, z−1

1 z2, z
−1
2 , z−1

1 ).
Write e(i j) for the two-step flag 〈fi〉 ⊂ 〈fi, fj〉.

Proposition 4.4. This action of T defines an action on Flγ(V ), with 12 fixed
points:

e(1 2), e(1 3), e(2 1), e(2 5), e(3 1), e(3 6),

e(5 2), e(5 7), e(6 3), e(6 7), e(7 5), e(7 6).

Proof. Since T preserves β, it acts on Q, fixing the 6 points [f1], [f2], [f3], [f5],
[f6], [f7]. Since T preserves γ, it acts on Flγ , and the projection Flγ → Q is
T -equivariant. The T -fixed points of Flγ lie in the fibers over the fixed points
of Q. Since each of these 6 fibers is a P1 with nontrivial T -action, there must
be 2 · 6 = 12 fixed points.

To see the fixed points are as claimed, note that the bundle S3 on Q is
equivariant, and the fibers S3(x) = Ex at each of the fixed points are as follows:

Ef1 = 〈f1, f2, f3〉

Ef2 = 〈f2, f1, f5〉

Ef3 = 〈f3, f1, f6〉

Ef5 = 〈f5, f2, f7〉

Ef6 = 〈f6, f3, f7〉

Ef7 = 〈f7, f5, f6〉.
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Indeed, one simply checks that in each triple, the (octonionic) product of the first
vector with either the second or the third is zero. (Alternatively, one can com-
pute directly using the form (3.13).) Now the T -fixed lines in S3([fi])/S1([fi])
are [fj], where fj is the second or third vector in the triple beginning with fi.
Thus the 12 points are e(i j), where fi is the first vector and fj is the second or
third vector in one of the above triples. �

In general, the T -fixed points of a flag variety are indexed by the correspond-
ing Weyl group W , which for type G2 is the dihedral group with 12 elements. We
will write elements as w = w(1)w(2), for w(1) and w(2) such that e(w(1)w(2))
is a T -fixed point, as in Proposition 4.4. We fix two simple reflections generating
W , s = 21 and t = 13. See §A.3 for more details on the Weyl group and its
embedding in S7.

4.2. Schubert varieties. Fix a (complete) γ-isotropic flag F• in V . Each T -
fixed point is the center of a Schubert cell, which is defined by

Xo
w = {E• ∈ Flγ | dim(Fp ∩ Eq) = rw(q, p) for 1 ≤ q ≤ 2, 1 ≤ p ≤ 7},

where rw(q, p) = #{i ≤ q |w(i) ≤ p}, just as in the classical types. Also as in
classical types, these can be parametrized by matrices, where Ei is the span of
the first i rows. For example, the big cell is

Xo
7 6 =

(
X a b c d e 1

Y Z S T f 1 0

)
∼= A6,

where lowercase variables are free, and X,Y,Z, S, T are given by

X = −ae − bd − c2

Y = −a − bf + cd − cef

Z = −cf − d2 + def

S = c + de − e2f

T = −d + ef.

(These equations can be obtained by octonionic multiplication; considering the
two row vectors as imaginary octonions, the condition is that their product be
zero. In fact, X,Y,Z are already determined by β-isotropicity.) Parametriza-
tions of the other 11 cells are given in [An1, Appendix D.1].

The Schubert varieties Xw are the closures of the Schubert cells; equiva-
lently,

Xw = {E• ∈ Flγ | dim(Fp ∩ Eq) ≥ rw(q, p) for 1 ≤ q ≤ 2, 1 ≤ p ≤ 7}.

From the parametrizations of cells, we see dimXw = ℓ(w). To get Schubert
varieties with codimension ℓ(w), define

Ωw = Xw w0 .

These can also be described using the tautological quotient bundles:

Ωw = {x ∈ Flγ | rk(Fp(x) → Qq(x)) ≤ rw(q, p)}.
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Schubert varieties in Q and G are defined by the same conditions. (Note that
w and w s define the same varieties in G, and w and w t define the same variety
in Q. Write w for the corresponding equivalence class.) With the exception of
X1 2, all Schubert varieties in Flγ are inverse images of Schubert varieties in Q
or G:

Proposition 4.5. Let p : Flγ → Q and q : Flγ → G be the projections. Then
Xw = p−1Xw if w(1) < w(2) (except when w = 12), and Xw = q−1Xw if
w(1) > w(2).

The proof is immediate from the definitions. For instance, Xtst = X36 is a P2

in Q: it parametrizes all 1-dimensional subspaces of a fixed isotropic 3-space.
Its inverse image in Flγ is p−1Xtst = Xtst = Ωsts.

5. Cohomology of flag bundles

5.1. Compatible forms on bundles. Let V be a rank 7 vector bundle on a
variety X, equipped with a nondegenerate form γ :

∧3 V → L, and let Bγ :

Sym2 V → detV ∗⊗L⊗3 be the Bryant form (§2.1, §2.3). Assume there is a line
bundle M such that

det V ∗ ⊗ L⊗3 ∼= M⊗2.(5.1)

(For example, this holds if V has a maximal Bγ-isotropic subbundle F , for then

we can take M = F⊥/F . There exist Zariski-locally trivial bundles V without
this property, though — see [Ed-Gr, p. 293].)

Lemma 5.1. In this setup, L ∼= M⊗3 ⊗ T , for some line bundle T such that
T⊗3 is trivial. If L has a cube root, then T is trivial and M ∼= det V ⊗ (L∗)⊗2.

The proof is straightforward; see [An1, Lemma 3.2.1] for details.
From now on, we will assume V has a maximal Bγ-isotropic subbundle F =

F3 ⊂ V . We also assume L has a cube root on X, so L ∼= M⊗3. (By a theorem
of Totaro, one can always assume this so long as 3-torsion is ignored in Chow
groups (or cohomology); see [Fu2]. In the case at hand, Lemma 5.1 gives a
direct reason.)

5.2. A splitting principle. For the next three subsections, we assume the line
bundle M is trivial; this implies detV is also trivial. The case for general M
will be described in §5.5.

In this context, the relevant version of the splitting principle is the following:

Lemma 5.2. Assume V is equipped with a nondegenerate trilinear form γ :∧3 V → kX . There is a map f : Z → X such that f∗ : H∗X → H∗Z is
injective, and f∗V ∼= L1 ⊕ L2 ⊕ · · · ⊕ L7, with Ei = L1 ⊕ · · · ⊕ Li forming a
complete γ-isotropic flag in f∗V .

The proof is given in [An1, Lemma 3.2.2].
Given such a splitting, we can use β to identify L8−i with L∗

i , and Proposition
3.16 implies L3

∼= L1 ⊗ L∗
2. Thus

V ∼= L1 ⊕ L2 ⊕ (L1 ⊗ L∗
2) ⊕ kX ⊕ (L∗

1 ⊗ L2) ⊕ L∗
2 ⊕ L∗

1.(5.2)
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Alternatively, using only a γ-isotropic flag of subbundles F1 ⊂ F2 ⊂ V , we have

V ∼= F2 ⊕ (F1 ⊗ (F2/F1)
∗) ⊕ kX ⊕ (F ∗

1 ⊗ (F2/F1)) ⊕ F ∗
2 .

Since V is recovered from the data of L1 and L2, the universal base for V
(with the assumed restrictions) is BGL1 × BGL1.

5.3. Chern classes. We continue to assume the line bundle M is trivial, and
let F1 ⊂ F2 ⊂ F3 ⊂ V be a γ-isotropic flag in V . It follows from (5.2) that

c(V ) = (1 − y2
1)(1 − y2

2)(1 − (y1 − y2)
2),(5.3)

where yi = c1(Li), and also that

c1(F3) = 2 c1(F1).

Let Q(V ) → X be the quadric bundle, with its tautological bundles S1 ⊂ S3 ⊂
V . Set x1 = −c1(S1) and α = [P(F3)] in H∗Q(V ). The classes 1, x1, x2

1, α, x1 α, x2
1 α

form a basis for H∗Q(V ) over H∗X; see Appendix B.

Lemma 5.3. We have

c1(S3) = −2x1, and

c2(S3) = 2x2
1 + c2(F3) − 2 c1(F1)

2.

Proof. The expression for c1(S3) follows from (5.2). We have V/F⊥
3

∼= F ∗
3 and

V/S⊥
3
∼= S∗

3 , so c(V ) = c(F3) · c(F
∗
3 ) = c(S3) · c(S

∗
3). In particular,

c2(V ) = 2 c2(F3) − c1(F3)
2 = 2 c2(S3) − c1(S3)

2

= 2(c2(F3) − 2 c1(F1)
2) = 2(c2(S3) − 2x2

1).

Up to 2-torsion, then, the formula for c2(S3) holds. Since the classifying space
for this setup is BGL1 × BGL1, and there is no torsion in its cohomology, it
follows that the formula also holds with integer coefficients. �

5.4. Presentations. Using the fact that Flγ(V ) is a P1-bundle over a quadric
bundle, we can give a presentation of its integral cohomology. First recall the
presentation for H∗Q(V ) (Theorem B.1). We continue to assume M is trivial,
and hence also detV . Fix F1 ⊂ F3 ⊂ V as before, and let S1 ⊂ S3 ⊂ V be the
tautological bundles on Q(V ). Let x1 = −c1(S1) and α = [P(F3)] in H∗Q(V ).
Then

H∗(Q(V ), Z) = (H∗X)[x1, α]/I,

where I is generated by

2α = x3
1 − c1(F3)x2

1 + c2(F3)x1 − c3(F3),

α2 = (c3(V/F3) + c1(V/F3)x2
1)α.

Theorem 5.4. With notation as above, we have Flγ(V ) = P(S3/S1) → Q(V ) →
X. Let x2 = −c1(S2/S1) be the hyperplane class for this P1-bundle. Then

H∗(Flγ(V ), Z) = (H∗X)[x1, x2, α]/J,
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where J is generated by the three relations

2α = x3
1 − c1(F3)x2

1 + c2(F3)x1 − c3(F3),(5.4)

α2 = (c3(V/F3) + c1(V/F3)x2
1)α,(5.5)

x2
1 + x2

2 − x1x2 = 2 c1(F1)
2 − c2(F3).(5.6)

In fact, α is the Schubert class [Ωsts], defined in §6 below.

Proof. Since Flγ(V ) = P(S3/S1) → Q(V ), we have

H∗Flγ = (H∗Q)[x2]/(x
2
2 + c1(S3/S1)x2 + c2(S3/S1)).

One easily checks c1(S3/S1) = −x1, and

c2(S3/S1) = c2(S3) − x2
1 = x2

1 + c2(F3) − 2 c1(F1)
2

by Lemma 5.3. This gives the third relation, and the first two relations come
from the relations on H∗Q.

Finally, it is not hard to see that the 12 elements

1, x1, x
2
1, α, x1 α, x2

1 α, x2, x1 x2, x2
1 x2, x2 α, x1 x2 α, x2

1 x2 α

form a basis for the ring on the RHS over H∗X, and we know they form a basis
for H∗Flγ over H∗X. �

Remark 5.5. To obtain a presentation for H∗
T (Flγ , Z), set α = [Ωsts]

T , xi =
−cT

1 (Si/Si−1), ci(F3) = (−1)ici(V/F3) = ei(t1, t2, t1 − t2), and c1(F1) = t1.

If we take coefficients in Z[12 ], the cohomology ring has a simpler presentation
similar to that for classical groups:

Proposition 5.6. Suppose V has a splitting as in (5.2), with M trivial. Let
Λ = H∗X. Then H∗(Flγ(V ), Z[12 ]) ∼= Λ[x1, x2]/(r2, r4, r6), where

r2i = ei(x
2
1, x

2
2, (x1 − x2)

2) − ei(y
2
1, y

2
2 , (y1 − y2)

2).

Proof. The relations must hold, by (5.3). Monomials in x1 and x2 are global
classes on Flγ that restrict to give a basis for the cohomology of each fiber, so
the claim follows from the Leray–Hirsch theorem. �

Taking X to be a point, these presentations specialize to give well-known
presentations of H∗Flγ (cf. [Bo-Sa]):

Corollary 5.7. Let Flγ be the γ-isotropic flag variety, and let p : Flγ → Q be
the projection to the quadric. Set α = [Ωsts] ∈ H∗(Flγ , Z). Then we have

H∗(Flγ , Z) = Z[x1, x2, α]/(x2
1 + x2

2 − x1x2, 2α − x3
1, α2),

and

H∗(Flγ , Z[12 ]) = Z[12 ][x1, x2]/(ei(x
2
1, x

2
2, (x1 − x2)

2))i=1,2,3

= Z[12 ][x1, x2]/(x
2
1 + x2

2 − x1x2, x6
1).
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5.5. Twisting. Now we allow γ to take values in L ∼= M⊗3 for an arbitrary
line bundle M on X, so det V ∼= M⊗7 and the corresponding bilinear form has
values in M⊗2.

The splitting principle (Lemma 5.2) holds as stated for γ :
∧3 V → M⊗3.

The compatible bilinear form β now identifies L8−i with L∗
i ⊗ M⊗2, and we

have L3
∼= L1 ⊗ L∗

2 ⊗ M . Thus

V ∼= L1 ⊕ L2 ⊕ (L1 ⊗ L∗
2 ⊗ M) ⊕ M

⊕(L∗
1 ⊗ L2 ⊗ M) ⊕ (L∗

2 ⊗ M⊗2) ⊕ (L∗
1 ⊗ M⊗2).(5.7)

Since V is recovered from the data of L1, L2, and M , the universal base for V
is (BGL1)

3. This space has no torsion in cohomology; it follows that we may
deduce integral formulas using rational coefficients.

As described in [Fu2], this situation reduces to the case where L is trivial.

Let Ṽ = V ⊗ M∗, so γ :
∧3 V → L determines a form γ̃ :

∧3 Ṽ → kX . If

V = L1 ⊕ · · · ⊕ L7 is a γ-isotropic splitting as in Lemma 5.2, we have Ṽ =

L̃1 ⊕ · · · ⊕ L̃7, where L̃i = Li ⊗ M∗. Thus

c(Ṽ ) = (1 − ỹ2
1)(1 − ỹ2

2)(1 − ỹ2
3),

where v = c1(M), ỹi = yi−v, so ỹ3 = ỹ1−ỹ2 = y1−y2. Note that y1−y2 = y3−v,
since using γ and β there is an isomorphism L2 ⊗ L3

∼= L1 ⊗ M .

A rank 2 subbundle E ⊂ V is γ-isotropic if and only if Ẽ = E ⊗ M∗ ⊂ Ṽ is
γ̃-isotropic (a map is zero iff it is zero after twisting by a line bundle), so we have

an isomorphism Flγ(V ) ∼= Fleγ(Ṽ ), and the tautological subbundles are related

by S̃i = Si ⊗ M∗. Therefore x̃i = −c1(S̃i/S̃i−1) = xi + v. The presentation for
H∗Flγ(V ) is obtained from Proposition 5.6 by replacing yi with yi − v and xi

with xi + v.

6. Divided difference operators and Chern class formulas

For now, assume γ takes values in the trivial bundle. Given V → X with
a (complete) γ-isotropic flag of subbundles F•, Schubert loci Ωw ⊂ Flγ(V ) are
defined by rank conditions as in §2.4. (These are the same conditions as in §4.2
when X is a point.) As usual, there are two steps to producing formulas for
these Schubert loci: first find a formula for the most degenerate locus (the case
w = w0), and then apply divided difference operators to obtain formulas for all
w ≤ w0. Theorem 6.1 and Lemma 6.3 prove Theorem 2.4.

Theorem 6.1. Assume M is trivial, and let F1 ⊂ F2 ⊂ F3 ⊂ V be a γ-isotropic
flag. Then [Ωw0 ] ∈ H∗Flγ(V ) is given by

[Ωw0] =
1

2
(x3

1 − c1(F3)x2
1 + c2(F3)x1 − c3(F3))

×(x2
1 + c1(F1)x1 + c2(F3) − c1(F1)

2)(x2 − x1 − c1(F3/F1)).
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Setting y1 = c1(F1) and y2 = c1(F2/F1), we have c(F3) = (1+ y1)(1+ y2)(1+
y1 − y2), so this formula becomes [Ωw0] = Gw0(x; y), where

Gw0(x; y) =
1

2
(x3

1 − 2x2
1 y1 + x1 y2

1 − x1 y2
2 + x1 y1 y2 − y2

1 y2 + y1 y2
2)

×(x2
1 + x1 y1 + y1 y2 − y2

2)(x2 − x1 − y2).

Proof. Let p : Flγ = P(S3/S1) → Q be the projection. The locus where S1 = F1

is p−1P(F1), so its class is p∗[P(F1)]. On P(F1) ⊂ Q, we have S1 = F1 and
S3 = F3; thus on p−1P(F1), the locus where S2 = F2 is defined by the vanishing
of the composed map F2/F1 = F2/S1 → S3/S1 → S3/S2. This class is given by
c1((F2/F1)

∗⊗S3/S2) = x2−x1−c1(F2/F1), so pushing forward by the inclusion
p−1P(F1) →֒ Flγ , we have

[Ωw0] = p∗[P(F1)] · (x2 − x1 − c1(F2/F1)).

To determine [P(F1)] in H∗Q, we first find the class in H∗P(F3) and then
push forward. By [Fu4, Ex. 3.2.17], this is x2

1 + c1(F3/F1)x1 + c2(F3/F1), and
pushing forward is multiplication by α = [P(F3)]. Using the relation given in
§5.4, we have

[P(F1)] = α · (x2
1 + c1(F1)x1 + c2(F3) − c1(F1)

2)

=
1

2
(x3

1 − c1(F3)x2
1 + c2(F3)x1 − c3(F3))(x

2
1 + c1(F1)x1 + c2(F3) − c1(F1)

2).

�

Recall that the divided difference operators for G2 are defined as in §2.4,
using the formulas (2.4) and (2.5) for the operators ∂s and ∂t corresponding to
simple reflections. These operators may be constructed geometrically, using a
correspondence as described in [Fu1]. Let Q(V ) and G(V ) be the quadric bundle
and bundle of γ-isotropic 2-planes in V , respectively, and set Zs = Flγ(V )×G(V )

Flγ(V ) and Zt = Flγ(V ) ×Q(V ) Flγ(V ), with projections ps
i : Zs → Flγ and

pt
i : Zt → Flγ . The proofs of the following two lemmas are the same as in

classical types; see [An1, §4.1] for details.

Lemma 6.2. As maps H∗Flγ → H∗Flγ ,

∂s = (ps
1)∗ ◦ (ps

2)
∗ and

∂t = (pt
1)∗ ◦ (pt

2)
∗.

Lemma 6.3. We have

∂s[Ωw] =

{
[Ωw s] if ℓ(w s) < ℓ(w);

0 otherwise;

and

∂t[Ωw] =

{
[Ωw t] if ℓ(w t) < ℓ(w);

0 otherwise.
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By making the substitutions xi 7→ xi + v and yi 7→ yi − v, we obtain formulas
for the more general case, where γ has values in M⊗3 for arbitrary M .

Theorem 6.4. Let γ :
∧3 V → M⊗3 be a nondegenerate form, with a γ-

isotropic flag F• ⊂ V . Let v = c1(M). Let ∂s be defined as above, and let
∂t be given by

∂t(f) =
f(x1, x2) − f(x1, x1 − x2 − v)

−x1 + 2x2 + v
.(6.1)

Then

[Ωw] = Gw(x; y; v),

where Gw = ∂w0 w−1Gw0 , and

Gw0(x; y; v) =
1

2
(x3

1 − 2x2
1 y1 + x1 y2

1 − x1 y2
2 + x1 y1 y2 − y2

1 y2 + y1 y2
2

+5x2
1 v − 7x1 y1 v + x1 y2 v + 2 y2

1 v + y1 y2 v − 2 y2
2 v

+8x1 v2 − 6 y1 v2 + 2 y2 v2 + 4 v3)

×(x2
1 + x1 y1 + y1 y2 − y2

2 + x1 v + y2 v)(x2 − x1 − y2 + v).

7. Variations

Any formula for the class of a degeneracy locus depends on a choice of repre-
sentative modulo the ideal defining the cohomology ring; here we discuss some
alternative formulas. In type A, the Schubert polynomials of Lascoux and
Schützenberger are generally accepted as the best polynomial representatives
for Schubert classes and degeneracy loci: they have many remarkable geometric
and combinatorial (and aesthetic) properties. In other classical types, several
choices have been proposed — see, e.g., [Bi-Ha, La-Pr, Kr-Ta, Fo-Ki, Fu2] —
but Fomin and Kirillov [Fo-Ki] gave examples showing that no choice can satisfy
all the properties possessed by the type A polynomials, if one insists on having
polynomials in the Chern roots of the tautological bundles. We suggest that an
investigation of alternative G2 formulas could shed some light on the problem
for classical types, and vice versa. On one hand, possibilities for G2 formulas
impose some limitations on what one might hope to find for general Lie types;
on the other hand, one can use known formulas for type B3, together with the
embedding of Flγ in Flβ, to obtain new G2 formulas. We explore the latter
point of view at the end of this section, using the polynomials of [Bi-Ha].

Proposition 7.1 (cf. [Gr1]). Let

G̃w0(x; y) =
1

54
(2x1 − x2 − y1 + 2 y2)(2x1 − x2 − y1 − y2)(x1 − 2x2 + y1 + y2)

×(2x3
1 − 3x2

1x2 − 3x1x
2
2 + 2x3

2 − 2 y3
1 + 3 y2

1y2 + 3 y1y
2
2 − 2 y3

2).

Then [Ωw0] = G̃w0(x; y) in H∗Flγ(V ).
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Proof. Up to a change of variables, this is proved in [Gr1]. (To recover Graham’s
notation, set

ξ1 = 1
3 (2x1 − x2), η1 = −1

3(2y1 − y2),

ξ2 = 1
3 (−x1 + 2x2), η2 = −1

3(−y1 + 2y2),

ξ3 = −1
3(x1 + x2), η3 = 1

3 (y1 + y2),

(7.1)

and replace ξ, η with x, y.) �

Remark 7.2. In Graham’s notation, G̃w0 = −27
2 (ξ1−η2)(ξ1−η3)(ξ2−η3)(ξ1ξ2ξ3+

η1η2η3). This led him to suggest that 1
2(ξ1ξ2ξ3 + η1η2η3) might be an integral

class. In fact, only 27 times this class is integral: Taking [Ωw]T = G̃w(x; t) =

∂w0w−1G̃w0(x; t), we compute

1

2
(ξ1ξ2ξ3 + η1η2η3) = −

1

27

(
3[Ωtst]

T + 3(t1 + t2)[Ωst]
T + (t1 + t2)(2t1 − t2)[Ωt]

T
)

in H∗
T (Flγ , Q); here the t’s are related to the η’s as in (7.1). (In fact, the

two sides are equal as polynomials, not just as classes.) Since the equivariant
Schubert classes [Ωw]T form a basis for H∗

T (Flγ , Z) over H∗
T (pt, Z) = Z[t1, t2],

the right-hand side cannot be integral.
It is interesting to note that the integral class −27

2 (ξ1ξ2ξ3 +η1η2η3) is positive
in the sense of [Gr2, Theorem 3.2]: the coefficients in its Schubert expansion
are nonnegative combinations of monomials in the positive roots. It is therefore
natural to ask whether this is the equivariant class of a T -invariant subvariety
of Flγ . In fact, it is the class of a T -equivariant embedding of SL3/B.1

Remark 7.3. Graham’s polynomial yields a simpler formula for the case where
γ takes values in the trivial bundle, but det V = M is not necessarily trivial.
(In this case, recall that M⊗3 is trivial.) Making the substitutions xi 7→ xi + v
and yi 7→ yi − v, with 3 v = 0, we obtain

[Ωw0] =
1

54
(2x1 − x2 − y1 + 2 y2)(2x1 − x2 − y1 − y2)(x1 − 2x2 + y1 + y2)

×(2x3
1 − 3x2

1x2 − 3x1x
2
2 + 2x3

2 − 2 y3
1 + 3 y2

1y2 + 3 y1y
2
2 − 2 y3

2 + v3).

There is a more transparent choice of polynomial representative for [Ωw0] ∈
H∗Flγ (i.e., the case where the base is a point): The class of a point in the
5-dimensional quadric Q is 1

2x5
1. Since Flγ is a P1 bundle over Q, and x2 is

the Chern class of the universal quotient bundle, the class of a point in Flγ is
[Ωw0] = 1

2x5
1x2.

Starting from Gw0 = 1
2x5

1x2, one can compute polynomials Gw for Schubert
classes [Ωw] using divided difference operators. The resulting formulas are dis-
played in Table 1.

1This embedding projects to a P2 ⊂ G. It is different from the embeddings of SL3/B
corresponding to the inlcusion of Lie algebras sl3 ⊂ g2, which project to P2’s in Q.
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w Gw

w0
1
2x5

1x2

ststs 1
2x5

1

tstst 1
2(x3

1 + x2x
2
1 + x2

2x1 + x3
2)x1x2

tsts 1
2(4x2

1 − 3x1x2 + 3x2
2)x

2
1

stst 1
2(x4

1 + x3
1x2 + x2

1x
2
2 + x1x

3
2 + x4

2)

sts 1
2(4x2

1 − 3x1x2 + 3x2
2)x1

tst 2x3
1 + 1

2x2
1x2 + 1

2x1x
2
2 + 2x3

2

ts 3x2
1 − 2x1x2 + 2x2

2

st 2x2
1 − x1x2 + 2x2

2

s x1

t x1 + x2

id 1.

Table 1. Schubert polynomials for Flγ .

The polynomials Gw computed from Gw0 = 1
2x5

1x2 have negative coefficients.
In fact, it is impossible to find a system of positive polynomials using divided
difference operators. In this respect, the problem of “G2 Schubert polynomials”
is worse than the situation for types B and C: they cannot even satisfy two of
Fomin-Kirillov’s conditions [Fo-Ki].2 Specifically, we have the following:

Proposition 7.4. Let {Pw |w ∈ W} be a set of homogeneous polynomials in
the variables x1 and x2, with deg Pw = ℓ(w). Suppose

∂sPw =

{
Pws when ℓ(w s) < ℓ(w);

0 when ℓ(w s) > ℓ(w)

and

∂tPw =

{
Pwt when ℓ(w t) < ℓ(w);

0 when ℓ(w t) > ℓ(w).

Then for some w, Pw has both positive and negative coefficients.

2To be precise, the conditions we consider are [Fo-Ki, (3)] and a stronger version of [Fo-Ki,
(1)].
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Proof. One just calculates, starting from Pid = 1, and finds that the positivity
requirement leaves no choice in the polynomials up to degree 4:

Pw0 = ?

Pststs =?

Ptstst =?

Ptsts =?

Pstst =
1

2
x2

1x
2
2

Psts =
1

2
x3

1

Ptst =
1

2
(x2

1x2 + x1x
2
2)

Pts = x2
1

Pst =
1

2
(x2

1 + x1x2 + x2
2)

Ps = x1

Pt = x1 + x2

Pid = 1.

However, no degree 4 polynomial P = Ptsts satisfies all the hypotheses. (Indeed,
if P = ax4

1+bx3
1x2+· · ·+ex4

2, then ∂tP = 0 implies d = −2e and b+c+d+e = 0,
hence d = e = b = c = 0. On the other hand, ∂sP = 1

2(x2
1x2 + x1x

2
2) requires

a = e and b − d = 1
2 , which is inconsistent with b = c = d = e = 0.) �

In spite of this, one might look for polynomials which are positive in some
other set of variables. One natural choice is to use x2 and x3 = x1 − x2; in fact,
the polynomials computed from Gw0 = 1

2x5
1x2 = 1

2 (x2 + x3)
5x2 are positive in

these variables.
Finally, we consider an approach to G2 Schubert polynomials using the poly-

nomials BBH
w defined for type B flag varieties by Billey and Haiman [Bi-Ha]. The

Billey–Haiman polynomials involve a plethystic substitution, and the geometric
meaning of the new variables is not altogether clear. The change of variables
has considerable advantages, though: the resulting polynomials are canonically
defined, and they satisfy the conditions of [Fo-Ki] for the classical types.

Using the embedding of Flγ(V ) in Flβ(V ), one can restrict the Billey–Haiman
polynomials for type B3 to obtain classes in H∗Flγ . In fact, the polynomial

BBH
2 3 1

restricts to the class [Ωw0], and applying the G2 divided difference op-
erators yields the appealing formulas displayed in Table 2; note that they are
positive, have integral coefficients, and involve combinations of symmetric func-
tions and type A Schubert polynomials.3 However, they do not multiply exactly

3One of the other five degree 6 type B3 polynomials also restricts to [Ωw0
], namely BBH

21 3
,

but the resulting formulas are not positive. The remaining four polynomials restrict to zero in
H∗F lγ .
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as Schubert classes, as one sees by comparing GBH
s ·GBH

t with GBH
ts +GBH

st . (The
difference lies in the ideal defining H∗Flγ .)

To interpret these formulas, set z1 = x2 − x1 and z2 = −x2. For a strict

partition λ, Pλ = Pλ(X̃) is the Schur P -function in a new set of variables X̃ =

(x̃1, x̃2, . . .), related to Z = (z1, z2, . . .) by the substitution pk(X̃) = −pk(Z)/2.
One can compute the table using an analogue of [Bi-Ha, Corollary 4.5] to expand
∂sPλ.

w GBH
w

w0 P42 + P32z1

ststs P32

tstst 2P41 + (P4 + 2P31)z1 + P3z
2
1

tsts P4 + 2P31 + P3(z1 + z2)

stst 2P31 + (P3 + 2P21)z1 + P2z
2
1

sts P3 + 2P21 + P2(z1 + z2)

tst 3P3 + 4P21 + 4P2z1 + 2P2(z1 + z2) + 4P1z
2
1 + 2P1z1z2 + z3

1 + z2
1z2

ts 4P2 + 4P1(z1 + z2) + (z1 + z2)
2

st 3P2 + 2P1z1 + 2P1(z1 + z2) + z2
1 + z1z2

s 2P1 + (z1 + z2)

t 4P1 + z1 + 2(z1 + z2)

id 1

Table 2. Type G2 “Billey–Haiman” polynomials, computed
from GBH

w0
= BBH

2 3 1
.

Appendix A. Lie theory

In this appendix, we recall general facts about representation theory and ho-
mogeneous spaces for linear algebraic groups, and apply them show the above
description of the G2 flag variety agrees with the Lie-theoretic one. Proposi-
tions A.1 and A.3 are the basic representation-theoretic facts relating G2 to
compatible forms; their proofs are given in [An1, Appendix A]. Proposition A.5
identifies the γ-isotropic flag variety Flγ with the homogeneous space G2/B.
All the remaining facts are standard, and can be found in e.g. [Fu-Ha], [Hu1],
[Hu2], [De].

A.1. General facts. Let G be a simple linear algebraic group, fix a maximal
torus and Borel subgroup T ⊂ B ⊂ G, and let W = N(T )/T be the Weyl group.
Let R, R+, and ∆ be the corresponding roots, positive roots, and simple roots,
respectively. For α ∈ ∆, let sα ∈ W be the corresponding simple reflection, and
also write sα ∈ N(T ) for a choice of lift; nothing in what follows will depend on
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the choice. For a subset S ⊂ ∆, let PS be the parabolic subgroup generated by
B and {sα |α ∈ S}. (Such parabolic subgroups are called standard.) Write ı̂ =
∆r{si}, so Pbı is the maximal parabolic in which the ith simple root is omitted.
(For example, SL5/Pb2

∼= Gr(2, 5).) Write g, b, t, p, for the corresponding Lie
algebras.

The length of an element w ∈ W is the least number ℓ = ℓ(w) such that
w = s1 · · · sℓ (with sj = sαj

for some αj ∈ ∆); such a minimal expression for
w is called a reduced expression. Let w0 be the (unique) longest element of
W . The Bruhat order on W is defined by setting v ≤ w if there are reduced
expressions v = sβ1 · · · sβℓ(v)

and w = sα1 · · · sαℓ(w)
such that the β’s are among

the α’s.
For each w ∈ W , there is a Schubert cell Xo

w = BwB/B in G/B, of
dimension ℓ(w). The Schubert varieties Xw are the closures of cells, and
Xv ⊆ Xw iff v ≤ w.

The irreducible representations of G are indexed by dominant weights; write
Vλ for the representation corresponding to the dominant weight λ. In charac-
teristic 0, if pλ ∈ P(Vλ) is the point corresponding to a highest weight vector,
then G ·pλ is the unique closed orbit, and is identified with G/PS(λ), where S(λ)
is the set of simple roots orthogonal to λ with respect to a W -invariant inner
product. In positive characteristic, G/PS(λ) can still be embedded in P(V ) for
some representation with highest weight λ, but V need not be irreducible. (See
[Hu2, §31] for these facts about representations in arbitrary characteristic.)

A.2. Representation theory of G2. The root system of type G2 has simple
roots α1 and α2 (with α2 the long root), and positive roots α1, α2, α1+α2, 2α1+
α2, 3α1 + α2, 3α1 + 2α2. The lattice of abstract weights is the same as the root
lattice (cf. [Hu2, §A.9]); it follows that up to isomorphism, there is only one
simple group of type G2 (over the algebraically closed field k). From now on,
let G denote this group, and fix T ⊂ B ⊂ G corresponding to the root data. By
Proposition 3.2, G ∼= Aut(C), where C is the unique octonion algebra over k.
Let V = e⊥ ⊆ C be the imaginary subspace.

The dominant Weyl chamber for this choice of positive roots is the cone
spanned by α4 and α6; denote these fundamental weights by ω1 and ω2, re-
spectively. One checks that V has highest weight ω1, and is irreducible for
char(k) 6= 2, so V = Vω1 is the minimal irreducible representation, called the
standard representation of G.4 The adjoint representation g has highest weight
ω2. (This is irreducible if char(k) = 0, but not if char(k) = 3.) Over any field,

one has g ⊆
∧2 V .

Let γ be the alternating trilinear form on V ⊂ C induced by the multi-
plication, let {f1, . . . , f7} be the standard γ-isotropic basis (3.11). From the
description of G as the automorphisms of C, it is clear that G preserves γ. In
fact, the converse is almost true:

4If char(k) = 2, the representation V = e⊥ ⊂ C contains an invariant subspace spanned by
e. In this case, the irreducible representation Vω1

= V/(k · e) is 6-dimensional [Sp-Ve, §2.3].
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Proposition A.1. Choose a basis {f1, . . . , f7} for V , and let γ ∈
∧3 V ∗ be

given by

γ = f∗
147 + f∗

246 + f∗
345 − f∗

156 − f∗
237,

as in (3.13). Let G(γ) ⊂ GL(V ) be the stabilizer of γ under the natural action,
and let SG(γ) = G(γ) ∩ SL(V ). Then SG(γ) is simple of type G2, and G(γ) =

µ3 × SG(γ). Moreover, the orbit GL(V ) · γ is open in
∧3 V ∗.

For k = C, this is well known; see [Br, §2] or [Fu-Ha, §22]. For arbitrary fields,
see [An1, Propositions 6.1.4 and A.2.2], and compare [As, (3.4)].

The proof of this proposition also shows the following:

Corollary A.2. Let V , γ, and SG(γ) be as in Proposition A.1. Then SG(γ)
acts irreducibly on V . �

Note that w0 ∈ W acts on the weight lattice by multiplication by −1. This
implies that every irreducible representation of G is isomorphic to its dual. Using
Schur’s lemma, there is a unique (up to scalar) G-invariant bilinear form on each
irreducible representation [Hu2, §31.6]. In particular, we have the following:

Proposition A.3. Let V be a 7-dimensional vector space, with nondegenerate
trilinear form γ :

∧3 V → k. Then γ determines a compatible form β uniquely
up to scaling by a cube root of unity. �

Remark A.4. In characteristic 0, the description of G2 (or g2) as the stabilizer
of a generic alternating trilinear form is due to Engel, who also found an invariant
symmetric bilinear form. For a history of some of the early constructions of G2,
see [Ag].

A.3. The Weyl group. The Weyl group of type G2 is the dihedral group with
12 elements. Let α1 and α2 be the simple roots, and let s = sα1 and t = sα2

be the corresponding simple reflections generating W = W (G2). Thus W has a
presentation 〈s, t | s2 = t2 = (st)6 = 1〉. With the exception of w0, each element
of W (G2) has a unique reduced expression. The Hasse diagram for Bruhat order
is as follows:

w0 = 76 (tststs = ststst)

(ststs) 7 5 6 7 (tstst)

(tsts) 6 3 5 7 (stst)

(sts) 5 2 3 6 (tst)

(ts) 3 1 2 5 (st)

(s) 2 1 1 3 (t)

id = 12

The indexing w = w(1)w(2), for 1 ≤ w(1), w(2) ≤ 7, arises as follows. There
is an embedding W (G2) →֒ W (A6) = S7, given by s 7→ τ12τ35τ67 and t 7→ τ23τ56,
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where τij is the permutation transposing i and j. (This also factors through
W (B3).) Thus each w is identified with a permutation w(1)w(2) · · ·w(7), and
in fact, the full permutation is determined by w(1)w(2).

This inclusion of Weyl groups corresponds to the inclusion G2 →֒ SL7 deter-
mined by the basis {f1, . . . , f7} for V = Vω1 and the trilinear form γ of (3.13),
together with the inclusion of tori (z1, z2) 7→ (z1, z2, z1z

−1
2 , 1, z−1

1 z2, z
−1
2 , z−1

1 ).
Thus a natural way to extend w ∈ W to a full permutation is as follows. Given
w(1)w(2), let w(3) be the number such that Efw(1)

= 〈fw(1), fw(2), fw(3)〉 as in

§4.1. Then define w(4), . . . , w(7) by requiring w(i)+w(8− i) = 8. For example,
6 3 extends to 6 3 7 4 1 5 2. Note that (w · w0)(i) = 8 − w(i).

All this can be summarized in the following diagram:

1 2

3 4 5

6 7

1 2 2 1
1 3 2 5

3 1 5 2

3 6 5 7

6 3 7 5
6 7 7 6

st

A.4. Homogeneous spaces. We can now identify the homogeneous spaces for
G2. We take G = Aut(C) for an octonion algebra C, as above, and let β and
γ be the corresponding compatible forms on the imaginary subspace V ⊂ C.
From the root data, one sees dim G = 14, dim B = 8, dimPb1 = dim Pb2 = 9, and
dim T = 2. Thus dim G/B = 6 and dimG/Pb1 = dimG/Pb2 = 5.

Proposition A.5. Let Flγ, Q, and G be as in §4. Then Q ∼= G/Pb1, G
∼= G/Pb2,

and Flγ ∼= G/B.

Proof. The homogeneous spaces G/Pb1 and G/Pb2 are the closed orbits in P(V )
and P(g), respectively. Since G preserves β, G/Pb1 must be contained in the
quadric hypersurface Q ⊂ P(V ), but dimG/Pb1 = 5, so it is all of Q.

To see G/Pb2 = G, note that G/Pb2 ⊂ P(g) ⊂ P(
∧2 V ), so G/Pb2 ⊂ Gr(2, 7).

Since G preserves γ, we must have G/Pb2 ⊆ G; thus it will suffice to show G is
irreducible and 5-dimensional. For this, consider

Flγ = {(p, ℓ) | p ∈ ℓ} ⊂ Q× G,

and notice that the first projection identifies Flγ with the P1-bundle P(S3/S1) →
Q, so Flγ is smooth and irreducible of dimension 6. On the other hand, the
second projection is obviously a P1-bundle.

Finally, since Flγ is a 6-dimensional G-invariant subvariety of G/Pb1 ×G/Pb2,
it follows that Flγ = G/B. �

Remark A.6. A similar description of G/Pb2, among others, can be found in
[La-Ma].
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Proposition A.7. Let i : G →֒ G′ be an inclusion of semisimple algebraic
groups, and let B ⊂ G and B′ ⊂ G′ be Borel subgroups with i(B) ⊂ B′. Also
denote by i the induced inclusions of flag varieties G/B →֒ G′/B′ and Weyl
groups W →֒ W ′. Then for each w ∈ W , the Schubert cells are related by
BwB/B = (B′i(w)B′/B′) ∩ (G/B).

More generally, let P ⊂ G and P ′ ⊂ G′ be parabolic subgroups such that
P = P ′ ∩ G. Then the same conclusion holds for G/P →֒ G′/P ′, that is,
BwP/P = (B′i(w)P ′/P ′) ∩ (G/P ) for all w ∈ W .

A.5. The Borel map and divided differences. Let M ⊂ t∗ be the weight
lattice. For general G/B, there is a Borel map

c : Sym∗ M → H∗(G/B)

induced by the Chern class map c1 : M → H2(G/B), where M ⊂ t∗ is the
weight lattice. More precisely, this map is defined as follows. Identify M with
the character group of B, and associate to χ ∈ M the line bundle Lχ = G ×B

C. Then c1(χ) is defined to be c1(Lχ). (See [BGG, De].) In fact, c1 is an
isomorphism, and this induces an action of W in the evident way: for w ∈ W
and x = c1(χ) ∈ H2(G/B), define w · x = c1(w · χ).

The Borel map becomes surjective after extending scalars to Q, and defines
an isomorphism

H∗(G/B, Q) ∼= Sym∗ MQ/I,

where I = (Sym∗ MQ)W+ is the ideal of positive-degree Weyl group invariants.
For a simple root α, define the divided difference operator ∂α on H∗(G/B)

by

∂α(f) =
f − sα · f

α
.(A.1)

These act on Schubert classes as follows [De]:

∂α[Ωw] =

{
[Ωw sα ] when ℓ(w sα) < ℓ(w);

0 when ℓ(w sα) > ℓ(w).
(A.2)

In particular, [Ωsα ] can be identified with the weight at the intersection of the
hyperplanes orthogonal to α and the (affine) hyperplane bisecting α.

In the case of G2 flags, we know [Ωs] = x1 and [Ωt] = x1 + x2. Looking at
the root diagram, then, we see x1 = α4 and x2 = α3. Therefore

α1 = x1 − x2, α2 = −x1 + 2x2,

and

s · x1 = x2, s · x2 = x1, t · x1 = x1, t · x2 = x1 − x2.

With these substitutions, the operators of (A.1) agree with those defined in §6
((2.4) and (2.5)).
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Appendix B. Integral Chow rings of quadric bundles

In this appendix, we consider schemes over an arbitrary field k, and use the
language of Chow rings rather than cohomology. We prove the following fact
about odd-rank quadric bundles:

Theorem B.1. Let V be a vector bundle of rank 2n + 1 on a scheme X, and
suppose V is equipped with a nondegenerate quadratic form. Assume there is

a maximal (rank n) isotropic subbundle F ⊂ V . Let Q
p
−→ X be the quadric

bundle of isotropic lines in V , let h ∈ A∗Q be the hyperplane class (restricted
from H = c1(O(1)) ∈ A∗P(V )), and let f = [P(F )] ∈ A∗Q. Then

A∗Q = A∗X[h, f ]/I,

where the ideal I is generated by the two relations

2f = hn − c1(F )hn−1 + · · · + (−1)ncn(F ),(B.1)

f2 = (cn(V/F ) + cn−2(V/F )h2 + · · · ) f.(B.2)

(Here h and f have degrees 1 and n, respectively.)

A similar presentation for even-rank quadrics was first given by Edidin and
Graham [Ed-Gr, Theorem 7]; in fact, the second of the two relations is the same
as theirs. Our purpose here is to correct a small error in the statement of the
second half of their theorem (which concerned odd-rank quadrics).

Before giving the proof, we recall two basic formulas for Chern classes. Let L
be a line bundle. For a vector bundle E of rank n, we have (cf. [Fu4, Ex. 3.2.2])

cn(E ⊗ L) =

n∑

i=0

ci(E) c1(L)n−i.(B.3)

Also, if

0 → L → E → E′ → 0

is an exact sequence of vector bundles, then inverting the Whitney formula gives

ck(E
′) = ck(E) − ck−1(E) c1(L) + · · · + (−1)kc1(L)k.(B.4)

Proof. The classes h, h2, . . . , hn−1, f, f h, . . . , f hn−1 form a basis of A∗Q as an
A∗X-module, since they form a basis when restricted to a fiber. It is easy to
see that these elements also form a basis of the ring A∗X[h, f ]/I. Therefore it
suffices to establish that the relations generating I hold in A∗Q.

Let i : Q →֒ P(V ) be the inclusion of the quadric in the projective bundle.
By [Fu4, Ex. 3.2.17], we have

i∗f = [P(F )] =
n+1∑

i=0

ci Hn+1−i

in A∗P(V ), where ci = ci(V/F ). (Following the common abuse of notation, we
have written ci for p∗ci.) On the other hand, Q ⊂ P(V ) is cut out by a section
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of OP(V )(2), so [Q] = 2H in A∗P(V ). Therefore i∗i∗f = 2h f , and we have

2h f = hn+1 + c1 hn + · · · + cn+1.(B.5)

(Up to this point, we are repeating the argument of [Ed-Gr].)
To prove the first relation, expand hn in the given basis:

hn = a0 f + a1 hn−1 + · · · + an,(B.6)

with ak ∈ AkX. Our goal is to show a0 = 2, and ak = (−1)k+1ck(F ) for k > 0.
That a0 = 2 can be seen by restricting to a fiber: the Chow ring of an

odd-dimensional quadric in projective space is given by Z[h, f ]/(hn − 2f, f2).
Multiplying (B.6) by h and expanding in the basis, we have

hn+1 = 2h f + 2 a1 f + (a2 + a2
1)hn−1 + · · · + (an + a1 an−1)h + a1 an.

On the other hand, if we rearrange and expand (B.5), we obtain

hn+1 = 2h f − 2 c1 f − (c2 + c1 a1)h
n−1 − · · · − (cn + c1 an−1)h − (cn+1 + c1 an).

Comparing coefficients, we have

2 a1 = −2 c1;

ak = −ck − ak−1(a1 + c1) (2 ≤ k ≤ n);

a1 an = −cn+1 − c1 a1.

From the first of these equations, we see

a1 + c1 = τ,

for some τ ∈ A1X such that 2 τ = 0. (Note that τ = 0 only if cn+1(V/F ) = 0,
which need not be true in general.) The remaining equations give

ak = −ck + ck−1 τ − ck−2 τ2 + · · · − (−1)kτk (1 ≤ k ≤ n),(B.7)

and −cn+1 = an τ . (Of course, the signs on powers of τ make no difference, but
we will include them as a visual aid.)

We claim τ = c1(F
⊥/F ). This can be proved in the universal case. Specifying

the maximal isotropic subbundle F ⊂ V reduces the structure group from O2n+1

to a parabolic subgroup whose Levi factor is GLn ×Z/2Z, so the universal base
is (an affine bundle over) BG = BGLn×BZ/2Z. Every such maximal isotropic

subbundle F ⊂ V on X is pulled back from a universal subbundle F̃ ⊂ Ṽ on the
classifying space BG. More precisely, one should use Totaro’s algebraic model

for BG; to ensure V is pulled back from the corresponding Ṽ on the algebraic
model, one may have to replace X by an affine bundle or Chow envelope, as in
[Gr1, p. 486].

Now A∗(BGLn ×BZ/2Z) ∼= Z[c1, . . . , cn, t]/(2t), so there is only one nonzero

2-torsion class of degree 1, namely t. Since t = c1(F̃
⊥/F̃ ), it pulls back to

c1(F
⊥/F ), so the claim is proved. (The meaning of the Chow ring of BG is

explained in [To], as is its computation. To see that t = c1(F̃
⊥/F̃ ), note that

the inclusion GLn × Z/2Z ⊂ O2n+1 ⊂ GL2n+1 also factors as GLn × Z/2Z ⊂

GLn × Gm ⊂ GL2n+1, corresponding to the splitting Ṽ ∼= F̃ ⊕ (F̃⊥/F̃ ) ⊕ F̃ ∗.)
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Using the exact sequence 0 → F⊥/F → V/F → V/F⊥ → 0 and Formula
(B.4), Equation (B.7) implies

ak = −ck(V/F⊥).

Since V/F⊥ ∼= F ∗, we obtain ak = (−1)k+1ck(F ), as desired.

The second relation is proved by the argument given in [Ed-Gr]. Let j :
P(F ) →֒ Q be the inclusion, and let NP(F )/Q be the normal bundle. By the self-

intersection formula, j∗cn(NP(F )/Q) = f2. On the other hand, using NQ/P(V ) =
O(2) and NP(F )/P(V ) = V/F ⊗O(1), and tensoring with O(−1), we have

0 → O(1) → V/F → NP(F )/Q ⊗O(−1) → 0

on P(F ); thus NP(F )/Q = ((V/F )/O(1)) ⊗O(1). By Formulas (B.3) and (B.4),
we have

cn(NP(F )/Q) = cn(V/F ) + cn−2(V/F )h2 + · · · .

The relation (B.2) follows after applying j∗. �
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