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The purpose of this note is to explain the geometry underlying a certain
identity of Schubert polynomials, namely,

Sw(x; y) =
∑

v−1u=w

Su(x)Sv(−y),(1)

where the sum is over those u, v ∈ Sn such that v−1u = w and ℓ(u)+ ℓ(v) =
ℓ(w). (See [LS],[M, (6.3)].) This implies an identity in the cohomology
ring of a product of two flag varieties, when the variables are specialized to
appropriate Chern classes of universal bundles on Fl × Fl:

[Ωw] =
∑

v−1u=w

[Ωu] × [Ωw0 v w0
].(2)

Here Ωw is a certain degeneracy locus in Fl × Fl, which we will call a
double Schubert variety, since it describes pairs of flags in special position
with respect to one another; the degeneracy locus formula of [F1] gives
[Ωw] = Sw(x; y).

The geometric formula (2) is a priori a weaker statement than (1), since
it takes place in H∗(Fl × Fl), a quotient of the polynomial ring Z[x, y].
However, the strong stability property of Schubert polynomials [M, (6.5)]
allows one to deduce (1) from (2). See Corollary 3.3 below for a precise
formulation.

Our main result is a geometric proof that (2) holds in all Lie types, when
the left-hand side is suitably defined. The key ingredient is a simple descrip-
tion of the tangent space to a double Schubert variety at a smooth point
(Proposition 2.1). We apply this in Propostion 3.1 to show that Ωw inter-

sects X̃w0 u w0
× Xv transversally in a single point, where X̃w0 u w0

× Xv is a
product of Schubert varieties whose class is Poincaré dual to [Ωu]×[Ωw0 v w0

].
The identity (2) is an immediate consequence.

The formulas we prove here are certainly known to experts. In fact,
they are implicit in [G, Prop. 4.2], [B, §3.1], and [K, Lemma 1]. (Each
of these discusses only the diagonal case, where w = w0; one can deduce
(2) by applying divided difference operators.) However, to the best of my
knowledge, they have not appeared in the form we present them. In any
case, one may regard this note as giving a Lie-theoretic proof of (2). We
also discuss a generalization to flag bundles.
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For the most part, we will leave aside questions concerning polynomial
representatives for Schubert classes in types other than A, focusing instead
on the geometric classes; we note one application, though. In other types,
one cannot expect to find polynomials which satisfy all the remarkable prop-
erties of the type A Schubert polynomials: for example, Fomin and Kirillov
have shown that it is impossible to find polynomials which (1) represent
type B Schubert varieties, (2) multiply according to the structure constants
of the cohomology ring, and (3) have non-negative integer coefficients [FK].
(Several choices of representatives have been proposed, each with its own
merits and disadvantages; see [F2, F3, FK, KT].) However, once candidate
polynomials have been chosen, one could in principle use (1) to define dou-
ble Schubert polynomials. The identity established in (2) can be taken as
confirmation that this approach makes good geometric sense. In particu-
lar, for any choice of polynomials Pw(x) representing Schubert varieties, the
corresponding double polynomials Pw(x; y) will represent degeneracy loci.

Acknowledgements. I thank Allen Knutson for pointing me to the relevant
parts of [B] and [K], and William Fulton for helpful discussions and com-
ments on the manuscript.

1. Setup

In this section, we set up notation, fix conventions, and recall basic facts
about Schubert varieties. All of this is standard, but worth reviewing, as
there are many choices for conventions in common use.

1.1. Lie groups and root systems. Let G be a complex simple Lie group,
with Lie algebra g. Fix a maximal torus T and a Borel subgroup B ⊃ T ; let
t and b be the Lie algebras of T and B, respectively. Write B− = w0 B w0

for the opposite Borel subgroup. Let W = N(T )/T be the Weyl group
of G, and choose representatives for W in G. For our purposes, nothing
depends on this choice of representatives, so we will use the same notation
for elements of W and their lifts, following a common abuse.

Write Φ ⊂ t∗ for the set of roots for g, and let Φ+ be the set of positive
roots corresponding to B. The Weyl group acts by reflections on the set
of Weyl chambers, and hence on the sets of corresponding positive roots;
write Φ+

w = w · Φ+. Thus Φ+
w0

= w0 · Φ+ = Φ−. For α ∈ Φ, write Eα for
the corresponding root vector in g, and λα : C

∗ → G for the one-parameter
subgroup of G obtained by exponentiating the root space gα.

1.2. Schubert varieties and fixed points. Let X = G/B be the flag
variety of G. The torus T acts on X with fixed points pw = wB/B for
w ∈ W . The Schubert cells are the B-orbits Xo

w = BwB/B; the Schubert

varieties Xw = Xo
w are the orbit closures. Write X̃w = w0 · Xw for the

opposite Schubert variety ; this is the B−-orbit of the T -fixed point pw0 w.
We will also use the notation Ωw = Xw w0

. Thus if ℓ(w) is the length of
w ∈ W , ℓ(w) = dimXw = codim Ωw.
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The set of T -fixed points in Xw is {pu |u ≤ w}, where “≤” denotes Bruhat
order on W ; the fixed points in Ωw are {pu w0

|u ≥ w}, and the fixed points

in X̃w are {pw0 u |u ≤ w}.
Each Borel subgroup of G can be regarded as the stabilizer of some flag

in X; write Bw = w B w−1 for the stabilizer of the T -fixed point pw. Note
that Φ+

w is exactly the set of roots such that λα ⊂ Bw, i.e., λα fixes pw.

1.3. Cohomology of flag varieties. The cohomology ring H∗(X; Z) has
an additive basis of Schubert classes, the classes of Schubert varieties. This
basis is self-dual under Poincaré duality: if w, v ∈ W are such that ℓ(w) =
ℓ(v), then [Ωw] · [Ωw0 v] = [Ωw] · [Xw0 v w0

] = δw,v[pt]. This fact can be

easily seen by looking at intersections of Schubert cells: Ωo
w and X̃o

w0 v w0
are

disjoint unless v = w, in which case they intersect transversally in the point
pw w0

.

1.4. Double Schubert varieties. We define the double Schubert cells and
double Schubert varieties in X × X by

Ωo
w = {(g, h) ∈ X × X |h−1g ∈ Ωo

w};

and

Ωw = {(g, h) ∈ X × X |h−1g ∈ Ωw},

where g denotes the image of g in X = G/B. Note that the “double Schubert
cells” are not topological cells: they are affine bundles over X via either
projection. In classical types, Ωw is the set of pairs of flags which meet each
other according to conditions determined by w. It is also the degeneracy
locus corresponding to the sequence π∗

2S• → π∗
1Q•, where S• and Q• are

the tautological subbundles and quotient bundles on X, and π1, π2 are the
projections:

Ωw = {x | rk(π∗
2Sp → π∗

1Qq) ≤ #(i ≤ q |w(i) ≤ p)}.

(This description depends on an embedding of the Weyl group in a symmet-
ric group; see [FP, §6] for details.)

The torus T acts diagonally on X × X, with fixed points (pu, pv), for
u, v ∈ W . The T -fixed points in the double Schubert cells and varieties are

{fixed points in Ωo
w} = {(pu w0

, pv) | v
−1u = w};

{fixed points in Ωw} = {(pu w0
, pv) | v

−1u ≥ w}.

2. Tangent spaces at fixed points

The tangent space to X at pw0
is w0 · g/b, and thus has a basis indexed

naturally by Φ+. For any p ∈ X, we will abuse notation by writing Eα for
the vector in TpX which is the image of Eα ∈ g under the quotient and
translation maps; thus Tpw0

X has basis {Eα |α ∈ Φ+}.
More generally, the tangent space to Xw at pw ∈ Xo

w has a basis indexed
by Φ+ ∩ Φ−

w ; in particular, #(Φ+ ∩ Φ−
w) = dim Xw = ℓ(w). Moreover, the
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map t 7→ λα(t) · pw parametrizes a curve in Xw exactly when λα ⊂ B and
λα does not fix pw. (See, e.g., [BL], §4-5.)

We now obtain a similar description of the tangent space to a T -fixed
point of a double Schubert cell.

Proposition 2.1. Let p = (pu w0
, pv) ∈ X × X, and let w = v−1u. The

tangent space TpΩ
o
w = TpΩw ⊆ Tp(X × X) has basis

B = {(Eα, 0) |α ∈ Φ+
v ∩ Φ−

u w0
} ∪ {(0, Eβ) |β ∈ Φ+

u w0
∩ Φ−

v }

∪ {(Eγ , Eγ) | γ ∈ Φ−
u w0

∩ Φ−
v }.

Proof. First we check that the curves obtained by exponentiating the vectors
in B lie in Ωw, so B ⊂ TpΩw. Now, {λα(t) · pu w0

} × {pv} is a curve in Ωw

exactly when

(1) λα(t) does not fix pu w0
(so the curve is nontrivial), and

(2) (v B)−1λα(t)uw0 B ⊂ B w w0 B.

Since v−1u = w, these two conditions are equivalent to

(1) λα 6⊂ Bu w0
, and

(2) λα ⊂ Bu w0
∪ Bv.

That is, λα ⊂ Bv rBu w0
, so α ∈ Φ+

v ∩Φ−
u w0

. The case of curves of the form
{pu w0

} × {λβ(t) · pv} is analogous. For curves of the form {λγ(t) · pu w0
} ×

{λγ(t) · pv}, the conditions are

(1) λγ(t) fixes neither pu w0
nor pv, and

(2) (λγ(t) v B)−1λγ(t)uw0 B ⊂ B w w0 B.

The first condition is just the condition γ ∈ Φ−
u w0

∩ Φ−
v , and the second

condition is always satisfied, since

B−1 v−1 λγ(−t)λγ(t)uw0 B = B v−1 uw0 B

= B w w0 B.

The elements of B are clearly independent, so to prove the proposition it
suffices to show #B = dimΩw = 2dim X − ℓ(w). Let

S = (Φ+
u w0

∩ Φ−
v ) ∪̇ (Φ−

u w0
∩ Φ+

v ) ∪̇ (Φ−
u w0

∩ Φ−
v )

be the set of roots indexing B. Note that #Φ = 2dim X, and Φ can be
written as a disjoint union S ∪̇ (Φ+

u w0
∩ Φ+

v ). Therefore

#B = #S = 2dim X − #(Φ+
u w0

∩ Φ+
v ).

Multiplying by v−1, we see

#(Φ+
u w0

∩ Φ+
v ) = #(Φ+

w w0
∩ Φ+) = #(Φ−

w0 w w0
∩ Φ+)

= ℓ(w0 w w0) = ℓ(w),

and the proposition follows. �
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3. The class of Ωw

Proposition 3.1. Let u, v,w ∈ W be such that ℓ(u) + ℓ(v) = ℓ(w). Then

Ωw and X̃w0 u w0
× Xv are disjoint unless v−1u = w, in which case they

intersect transversally in the point p = (pu w0
, pv).

Proof. The Borel fixed point theorem implies that when a torus acts on a
(nonempty) projective variety, it must have fixed points. We have noted
that the T -fixed points in Ωw are

{(pa w0
, pb) | b

−1a ≥ w},

and the fixed points in X̃w0 u w0
× Xv are

{(pa w0
, pb) | a ≤ u, b ≤ v}.

We use the following basic properties of Bruhat order (see [Hu]): b ≤ v if
and only if b−1 ≤ v−1; ℓ(uv) ≤ ℓ(u)+ℓ(v); and a ≤ u, b ≤ v implies ab ≤ uv.

If (pa w0
, pb) lies in both Ωw and X̃w0 u w0

× Xv, then, we must have

ℓ(w) ≤ ℓ(b−1 a) ≤ ℓ(v−1 u) ≤ ℓ(v−1) + ℓ(u) = ℓ(v) + ℓ(u) = ℓ(w).

Thus there are equalities ℓ(a) = ℓ(u), ℓ(b) = ℓ(v), and ℓ(v−1 u) = ℓ(w). It
follows that a = u, b = v, and v−1 u = w; the only fixed point in the intersec-
tion is therefore (pu w0

, pv), and the intersection is empty unless v−1u = w.
It remains to check that the intersection is transversal. For this, we

compare the tangent spaces of the two varieties at p = (pu w0
, pv). The

tangent space to X̃w0 u w0
× Xv at p has basis

{(Eγ , 0) | γ ∈ Φ− ∩ Φ−
u w0

} ∪ {(0, Eγ ) | γ ∈ Φ+ ∩ Φ−
v }.(3)

The roots γ appearing in (3) are exactly those appearing in

{(Eγ , Eγ) | γ ∈ Φ−
u w0

∩ Φ−
v } ⊆ B;

that is, Φ−
u w0

∩ Φ−
v = (Φ− ∩ Φ−

u w0
) ∪̇ (Φ+ ∩ Φ−

v ). To see this, write

U = Φ− ∩ Φ−
u w0

,

V = Φ+ ∩ Φ−
v ,

A− = (Φ−
u w0

∩ Φ−
v ) ∩ Φ−, and

A+ = (Φ−
u w0

∩ Φ−
v ) ∩ Φ+,

so Φ−
u w0

∩ Φ−
v = A− ∪̇ A+. Note A− ⊆ U and A+ ⊆ V , so #A− ≤ #U and

#A+ ≤ #V . The proof of Proposition 2.1 shows that #(Φ−
u w0

∩Φ−
v ) = ℓ(w),

so

#A− + #A+ = ℓ(w) = ℓ(u) + ℓ(v) = #U + #V.

It follows that A− = U and A+ = V . �

The formula given in (2) for the class of a double Schubert variety is an
immediate consequence:
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Theorem 3.2. In H∗(X × X), we have

[Ωw] =
∑

[Ωu] × [Ωw0 v w0
],

where the sum is over u, v such that v−1u = w and ℓ(u) + ℓ(v) = ℓ(w).

Proof. Indeed, by Proposition 3.1,
∫

[Ωw] · ([X̃w0 u w0
] × [Xv ]) =

{
1 if v−1u = w and ℓ(u) + ℓ(v) = ℓ(w);
0 otherwise,

and [X̃w0 u w0
]× [Xv] = [Ωw0 u]× [Ωv w0

] is Poincaré dual to [Ωu]× [Ωw0 v w0
].
�

When X = Fl(V ) is the variety of (type A) flags in an n-dimensional
vector space V , the identity (1) can be deduced from Theorem 3.2:

Corollary 3.3. For w ∈ Sn, there is an identity of polynomials

Sw(x; y) =
∑

v−1u=w

Su(x)Sv(−y),

summing over those u, v ∈ Sn such that v−1u = w and ℓ(u) + ℓ(v) = ℓ(w).

Proof. Let X be as above, and consider the sequence

π∗
2S1 ⊂ · · · ⊂ π∗

2Sn = V = π∗
1Qn → · · · → π∗

1Q1

of universal sub- and quotient bundles on X × X. Letting

xi = c1(ker(Qi → Qi−1))

and

yi = c1(Si/Si−1),

the degeneracy locus formula of [F1] gives [Ωw] = Sw(x; y), so the left-hand
sides of (1) and (2) are equal in the quotient ring H∗(X ×X). On the other
hand, [Ωu] × 1 = Su(x), and one can show that 1 × [Ωw0 v w0

] = Sv(−y).
(For the latter, use the dualizing map D : X → X given by

D : (F1 ⊂ F2 ⊂ · · · ⊂ Fn = V ) 7→ ((V/Fn−1)
∨ ⊂ (V/Fn−2)

∨ ⊂ · · · ⊂ V ∨).

One checks that D∗(yi) = −yn+1−i, and D−1(Ωv) = Ωw0 v w0
. With the

conventions as described above, we have 1 × [Ωv] = Sv(yn, . . . , y1), so

1 × [Ωw0 v w0
] = D∗(1 × [Ωv]) = D∗Sv(yn, . . . , y1) = Sv(−y).)

Thus we have equality of the right-hand sides of (1) and (2), again modulo
the ideal of relations defining H∗(X × X). Since this is true for any suf-
ficiently large n, the stability property of Schubert polynomials (see [M])
implies that (1) holds as an equality of polynomials. �
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4. Schubert bundles in classical types

Flag varieties for classical groups generalize easily to flag bundles over an
arbitrary base Z. In this section, we will show how to rephrase the identity
(2) in this globalized setup, when Z is a nonsingular variety.

Let V → Z be a vector bundle of rank m, equipped with a bilinear form
〈 , 〉 : V ⊗ V → C. (The form should be zero for type A, symplectic for
type C, or nondegenerate symmetric for types B and D.) The flag bundle

Fl = Fl〈 , 〉(V ) → Z parametrizes all isotropic flags in V ; the fiber over
z ∈ Z is the classical isotropic flag variety for V (z). The flag bundle comes
with tautological flags of subbundles S• and quotient bundles Q•.

Assume for simplicity that V splits as a sum of line bundles, V = L1 ⊕
· · · ⊕ Lm, such that the flag E• given by Ek = L1 ⊕ · · · ⊕ Lk is isotropic.
(That is, 〈Ei, Em−i〉 = 0 for all i.) For each w ∈ W , the flag

Ew
• : (Lw(1) ⊂ Lw(1) ⊕ Lw(2) ⊂ · · · ⊂ Lw(1) ⊕ · · · ⊕ Lw(m) = V )

is also isotropic. Write Ẽ• = Ew0

• .
The Schubert bundle Ωw ⊆ Fl is defined as the locus

Ωw = {x | rk(Ep(x) → Qq(x)) ≤ #(i ≤ q |w(i) ≤ p)}.

Replacing E• with Ẽ•, we write Ω̃w for the opposite Schubert bundle. Finally,
we define the double Schubert bundle in Fl×Z Fl to be

Ωw = {x | rk(π∗
2Sp(x) → π∗

1Qq(x)) ≤ #(i ≤ q |w(i) ≤ p)}.

Note that locally on Z, we have

Ωw = {(g, h) ∈ Fl×Z Fl |h−1g ∈ Ωw}.

The globalization of Theorem 3.2 is the following:

Theorem 4.1. Let Fl → Z be a classical flag bundle on a nonsingular

variety Z. Then we have the following identity in H∗(Fl×Z Fl):

[Ωw] =
∑

v−1u=w

[Ωu] × [Ω̃w0 v w0
].

Proof. By the Leray-Hirsch theorem, the classes [Ωa], for a ∈ W , form a

basis for H∗(Fl) over H∗(Z); similarly, the classes [Ωa] × [Ω̃b] form a basis
for H∗(Fl ×Z Fl) over H∗(Z). If p : Fl → Z is the projection, the relative
Poincaré duality pairing is given by (α, β) = p∗(α · β), and the class dual to

[Ωa] is [Ω̃w0 a]. Therefore, it will suffice to prove an analogue of Proposition

3.1, i.e., to show that Ωw and Ω̃w0 u × Ωv are disjoint unless v−1u = w, in
which case they intersect transversally in a section of the bundle. In fact,
this follows from Proposition 3.1, since it can be done locally. �
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5. Equivariant cohomology

As an application of Theorem 4.1, consider the case where Z = BT is the
classifying space for a torus acting on Fl. Identifying T = (C∗)n, one can
take approximation spaces Zm = P

m × · · · × P
m (n factors). Let Li be the

tautological subbundle O(−1) on the ith factor, so we have flags Ew
• on Zm

as above. Then the formula gives

[Ωw]T =
∑

v−1u=w

[Ωu]T × [Ω̃w0 v w0
]
T
,(4)

where Ωw ⊂ Fl(n) × Fl(n), and Ωu and Ω̃w0 v w0
are the Schubert varieties

in Fl(n) defined in Section 1. Since the locus in Fl ×Z Fl whose class

is [Ωw]T is the degeneracy locus for the sequence π∗
2S• → π∗

1Q•, we have

[Ωw]T = Sw(x; y), where xi = cT
1 (ker(Qi → Qi−1)) and yi = cT

1 (Si/Si−1).
(That is, the x’s and y’s are ordinary Chern classes for the quotient and
subbundles on Fl, or equivalently, equivariant Chern classes for the bundles
on Fl.) Then Equation (4) yields the following identity for double Schubert
polynomials:

Sw(x; y) =
∑

v−1u=w

Su(x; t)Sv(−y; t).(5)
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