Positivity in the cohomology of flag bundles (after Graham)

Dave Anderson

December 15, 2007

In [Gr], Graham proves that the structure constants of the equivariant cohomology ring of a flag variety are positive combinations of monomials in the simple roots:

Theorem 1 ([Gr, Cor. 4.1]) Let \(X = G/B \) be the flag variety for a complex semisimple group \(G \) with maximal torus \(T \subset B \), and let \(\{ \sigma_w \in H^*_T X \mid w \in W \} \) be the basis of \((B\text{-invariant})\) Schubert classes. Let \(\{ \alpha_i \} \) be the simple roots which are negative on \(B \). Then in the expansion

\[
\sigma_u \cdot \sigma_v = \sum_w c_{uv}^w \sigma_w,
\]

the coefficients \(c_{uv}^w \) are in \(\mathbb{Z}_{\geq 0}[\alpha] \).

Graham deduces this from a more general result about varieties with finitely many unipotent orbits, which is proved using induction and a calculation in the rank-one case. (In fact, A. Knutson points out that Graham’s proof yields a stronger result: as a polynomial in all the negative roots, \(c_{uv}^w \) is a nonnegative combination of squarefree monomials.)

The goal of this note is to give a short, geometric proof of Graham’s positivity theorem, based on a transversality argument. Here I only discuss type \(A \), but other types work as well. (For a type-uniform version, a change of language is needed: one should replace vector bundles with corresponding principal \(G \)-bundles.)

Throughout, \(Fl \) denotes the variety of (complete) flags in \(\mathbb{C}^n \), and if \(V \to X \) is a vector bundle, \(Fl(V) \to X \) is the bundle of flags in \(V \).

Recall that for \(T' \cong (\mathbb{C}^*)^n \), we have \(BT' = (\mathbb{P}^\infty)^{\times n} \) and \(H^*_T Fl = H^*(ET' \times^{T'} Fl) = H^*Fl(E') \), where \(E' \) is the sum of the \(n \) tautological line bundles on \(BT' \). The **effective** action on \(Fl \) is by \(T \cong (\mathbb{C}^*)^n/\mathbb{C}^* \), and
the classifying space for this torus is $BT = (\mathbb{P}^\infty)^{\times n - 1}$. We will usually deal with the effective torus.

Let $\mathbb{P} = \mathbb{P}^m \times \cdots \times \mathbb{P}^m$ $(n - 1$ factors), with $m \gg 0$, and write $H^*\mathbb{P} = \mathbb{Z}[\alpha_1, \ldots, \alpha_{n-1}]$. (We always assume that m is large enough so that there are no relations in the relevant degrees.) Let $M_i = p_i^* (\mathcal{O}(-1))$ be the tautological bundle on the ith factor, and let $\alpha_i = -c_1(M_i)$. Note that the class of any effective cycle in $H^*\mathbb{P}$ is a positive polynomial in the α's.

Let

$$L_i = M_1 \otimes \cdots \otimes M_{i-1}$$

for $1 \leq i \leq n$ (so $L_1 = \mathcal{O}$ is the trivial line bundle), and let $E_i = L_1 \oplus \cdots \oplus L_i$. Thus we have a flag E_\bullet in $E = E_n$. Let \bar{E}_\bullet be the opposite flag, with $\bar{E}_i = L_n \oplus \cdots \oplus L_{n+1-i}$. In the flag bundle $p : \text{Fl}(E) \to \mathbb{P}$, with universal quotient flags Q_\bullet, we have Schubert loci

$$\Omega_w = \{ x \in \text{Fl}(E) \mid \text{rk}(E_p \to Q_q) \leq \#(i \leq q \mid w(i) \leq p) \}.$$ \hspace{1cm} (1)

Opposite Schubert loci $\bar{\Omega}_w = \Omega_w(\bar{E}_\bullet \to Q_\bullet)$ are defined similarly. We also have “Schubert cell bundles” Ω_w^c: these are affine bundles over \mathbb{P} which are open in the corresponding loci Ω_w, and are defined by replacing the inequality in (1) with an equality.

The classes $[\Omega_w]$ form a basis for $H^*\text{Fl}(E)$ over $H^*\mathbb{P}$, as w ranges over S_n. Writing

$$[\Omega_u] : [\Omega_v] = \sum_w c_{uw}^v [\Omega_w]$$

with $c_{uw}^v \in H^*\mathbb{P}$, our main result is the following:

Proposition 2 The polynomials c_{uw}^v are positive, that is, $c_{uw}^v \in \mathbb{Z}_{\geq 0}[\alpha_1, \ldots, \alpha_{n-1}]$.

This implies Graham’s positivity theorem (in this context), since \mathbb{P} approximates BT for m sufficiently large, and $\text{Fl}(E)$ approximates $ET \times^T \text{Fl}$, with $[\Omega_w]$ corresponding to the equivariant class σ_w. (See [Ed-Gr, §9].)

Remark 3 Since the equivariant Chow ring of [Ed-Gr] is defined via approximation spaces, one can view Proposition 2 as proving positivity in $A^*_T(G/B)$ (which is isomorphic to $H^*_T(G/B)$).

Proposition 2 is a consequence of a transversality statement:

Proposition 4 For any $u, v, w \in S_n$, there is a translate Ω_w' of Ω_w by the action of a connected algebraic group such that Ω_w' intersects Ω_u and $\bar{\Omega}_w$ properly and generically transversally.
To deduce Proposition 2, first note that the intersection $\Omega_u \cap \tilde{\Omega}_{w_0 w}$ is always proper and generically transverse. Thus Proposition 4 says that $\Omega'_{u} \cap (\Omega_u \cap \tilde{\Omega}_{w_0 w})$ is proper and generically transverse. By [F 11, Ex. (8.1.11)], this says that
\[
[\Omega_v] \cdot [\Omega_u] \cdot [\tilde{\Omega}_{w_0 w}] = [\Omega'_{u} \cap \Omega_u \cap \tilde{\Omega}_{w_0 w}].
\]
(Since $\Omega'_{u} = g \cdot \Omega_{v}$ for some g in a connected algebraic group, $[\Omega'_{u}] = [\Omega_{v}]$.) Using relative Poincaré duality (see e.g. [Fu 2 §A.6]), we have
\[
c^w_{uv} = p_*([\Omega_u] \cdot [\Omega_v] \cdot [\tilde{\Omega}_{w_0 w}]) = p_*([\Omega_u \cap \Omega'_{u} \cap \tilde{\Omega}_{w_0 w}]).
\]
This is an effective class in $H^* \mathbb{P}$, so Proposition 2 follows.

Proof of Proposition 4. This is essentially an application of Kleiman’s theorem. The endomorphism bundle
\[
\text{End}(E) = \bigoplus_{i,j} L_i^{-1} \otimes L_j
\]
\[
= \left(\bigoplus_{i<j} M_i \otimes \cdots \otimes M_{j-1} \right) \oplus \mathcal{O}^\oplus_{\mathbb{P}^n} \oplus \left(\bigoplus_{i>j} M_i^{-1} \otimes \cdots \otimes M_{i-1}^{-1} \right)
\]
has global sections in lower-triangular matrices, so the group B of (invertible) lower-triangular matrices acts on $\text{Fl}(E)$, fixing the flag \tilde{E}_\bullet and stabilizing $\tilde{\Omega}_{w_0 w}$. (Note that the entries of a matrix in B are global sections of the line bundles $M_i^{-1} \otimes \cdots \otimes M_{i-1}^{-1}$, i.e., multi-homogeneous polynomials. This is a connected group over \mathbb{C}, acting on a fiber $p^{-1}(x) \subset \text{Fl}(E)$ by first evaluating the sections at x.)

Now let $H = (GL_{m+1})^{(n-1)}$, and for $b \in B$, let b_x be the evaluation at $x \in \mathbb{P}$ (so the action of b on $p^{-1}(x)$ is by b_x). Consider the semidirect product $\Gamma = B \rtimes H$, given by $(h \cdot b \cdot h^{-1})_x = b_{h^{-1}x}$. (This action of H on B is just the usual action of H on global sections of the equivariant vector bundle $\text{End}(E)$. Alternatively, one could take Γ to be the subgroup of $\text{Aut}(\text{Fl}(E))$ generated by the images of B and G via the homomorphisms corresponding to their respective actions.) As a semidirect product of connected groups, Γ is a connected algebraic group. We claim that the locus $\Omega'_{w_0 w}$ is homogeneous for the action of Γ. Indeed, B acts transitively on each fiber of $\tilde{\Omega}_{w_0 w}$, and the action of H on $\text{Fl}(E)$ induces a transitive action on the set of fibers of $\tilde{\Omega}_{w_0 w}$. (The line bundles L_i are equivariant for H, so H preserves the flag \tilde{E}_\bullet, and therefore acts on $\tilde{\Omega}_{w_0 w}$.)
Finally, note that $Ω_u$ and $\tilde{Ω}_{w_0 w}$ intersect transversally, as do $Ω_v$ and $\tilde{Ω}_{w_0 w}$. The proposition follows from Lemma 5 below, taking $U = Ω_u$, $V = Ω_v$, and $W = \tilde{Ω}_{w_0 w}$, with their stratifications by Schubert loci. q.e.d.

Lemma 5 Let X be a nonsingular variety over a field of characteristic 0, with an action of a connected algebraic group $Γ$. Let $U, V, W ⊂ X$ be subvarieties with stratifications

$$U_0 ⊂ \cdots ⊂ U_ℓ = U,$$

$$V_0 ⊂ \cdots ⊂ V_m = V,$$

$$W_0 ⊂ \cdots ⊂ W_n = W,$$

with each stratum $U_i \setminus U_{i-1}$ nonsingular. Assume also that $Γ$ acts on W, with each stratum $W_i \setminus W_{i-1}$ a disjoint union of homogeneous spaces.

If $U_i \setminus U_{i-1}$ meets $W_k \setminus W_{k-1}$ transversally for all i, k, and similarly for $V_j \setminus V_{j-1}$ and $W_k \setminus W_{k-1}$, then there is an element $g ∈ Γ$ such that $g \cdot V$ meets $U \cap W$ properly and generically transversally.

This can be deduced from results found in [Sp]; see also [Si] for a vast generalization. The proof of this version is quite short, so we give it here.

Proof. Applying Kleiman’s theorem (cf. [Ha, III.10.8]) to the pairs $(U_i \setminus U_{i-1} ∩ W_k \setminus W_{k-1})$ and $(V_j \setminus V_{j-1} ∩ W_k \setminus W_{k-1})$ inside the homogeneous space $W_k \setminus W_{k-1}$, we can choose $g ∈ Γ$ such that each intersection

$$(U_i \setminus U_{i-1} ∩ W_k \setminus W_{k-1}) \cap g \cdot (V_j \setminus V_{j-1} ∩ W_k \setminus W_{k-1})$$

$$= (U_i \setminus U_{i-1} ∩ W_k \setminus W_{k-1}) \cap (g \cdot V_j \setminus g \cdot V_{j-1} ∩ W_k \setminus W_{k-1})$$

is transverse, so the intersection $U \cap W \cap g \cdot V$ is proper and generically transverse. q.e.d.

Remark 6 All that is required in the proof of Proposition 4 are the facts that P is homogeneous for the action of an algebraic group H, and L_i are H-equivariant line bundles such that $L_i^{-1} \otimes L_j$ is globally generated for $i > j$.

Remark 7 To recover the result that for (type A) equivariant Schubert calculus, the structure constants c_{uv}^w are in $\mathbb{Z}_{≥0}[t_2 - t_1, \ldots, t_n - t_{n-1}]$, let $P' = (\mathbb{P}^n')^×n$ and choose a map $φ : P' → P$ such that $φ^* M_i = M_i' \otimes (M_i'_{i+1})^{-1}$, where M_i' is the tautological bundle on the ith factor of P', with $t_i = c_1(M_i')$. (Note that $φ$ will not be holomorphic!)
The T'-equivariant class of a Schubert variety (for $T' = (\mathbb{C}^*)^n$) can be identified with the class of the locus $\Omega_w(E'_\bullet \to Q_\bullet) \subset \text{Fl}(E')$, where $E'_i = M'_1 \oplus \cdots \oplus M'_i$ is a flag of bundles on \mathbb{P}'. Since this is $\varphi^{-1}\Omega_w$, the equivariant structure constants are $\varphi^*c^{uv}_w$, which are positive in the variables $\varphi^*\alpha_i = t_{i+1} - t_i$.

Remark 8 The naive choice of flag, with $F_i = M_1 \oplus \cdots \oplus M_i$, does not work: The bundle $\text{End}(F)$ has only diagonal global sections, so the corresponding loci Ω_o^w are not homogeneous. This explains why one does not see positivity over \mathbb{P}'.

Acknowledgements. This note was inspired by William Fulton’s lectures on equivariant cohomology [Fu2], and I thank him, as well as Allen Knutson and Ezra Miller, for comments on the manuscript. Thanks also to Sue Sierra for interesting discussions, and for bringing [Sp] to my attention. Finally, I am grateful for the hospitality of Mathematics Department at Columbia University.

References

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109

E-mail address: dandersn@umich.edu