MATH 6112: ALGEBRA II HOMEWORK #1

Due: January 18, 2019

- 1. Let P be a partially ordered set. (See Jacobson, p. 13, where it is called a "pre-ordered set".) The *join* of two elements x and y is the (unique) element $x \lor y$ such that
 - (i) $x \leq x \lor y$,
 - (ii) $y \leq x \lor y$, and
 - (iii) if z is any element satisfying (i) and (ii), then $x \lor y \le z$.

That is, $x \vee y$ is the unique minimal element that is greater than or equal to both x and y. (Model example: P is the Boolean poset of all subsets of some fixed set, ordered by inclusion; join is set union.) (a) Give an example of a finite poset where joins do not exist.

- (b) Let \boldsymbol{P} be the category associated to P defined in class. Show that $x \lor y$ is a coproduct in \boldsymbol{P} (if it exists).
- (c) Give an example of a category in which all finite coproducts exist, but some infinite coproducts do not exist.
- 2. Show that initial and terminal objects in a category are unique up to unique isomorphism (if they exist).
- 3. Let C be a category with finite products and a terminal object. Recall (from class) that a group object is the data $(G, \cdot, \epsilon, \iota)$, where
 - (a) G is an object of \mathcal{C} ,
 - and the morphisms
 - (b) $G \times G \xrightarrow{\cdot} G$,
 - (c) $\star \stackrel{\epsilon}{\to} G$,
 - (d) $G \xrightarrow{\iota} G$

satisfy appropriate commutative diagrams expressing associativity, identity, and inverse properties.

If A is any object in C, show that a group object G endows the set Hom(A, G) with the structure of a group.

4. Write down the axioms for a *ring object* R in a category C, preferably in terms of commutative diagrams.