MATH 6112: ALGEBRA II HOMEWORK \#1

Due: January 18, 2019

1. Let P be a partially ordered set. (See Jacobson, p. 13, where it is called a "pre-ordered set".) The join of two elements x and y is the (unique) element $x \vee y$ such that
(i) $x \leq x \vee y$,
(ii) $y \leq x \vee y$, and
(iii) if z is any element satisfying (i) and (ii), then $x \vee y \leq z$.

That is, $x \vee y$ is the unique minimal element that is greater than or equal to both x and y. (Model example: P is the Boolean poset of all subsets of some fixed set, ordered by inclusion; join is set union.)
(a) Give an example of a finite poset where joins do not exist.
(b) Let \boldsymbol{P} be the category associated to P defined in class. Show that $x \vee y$ is a coproduct in \boldsymbol{P} (if it exists).
(c) Give an example of a category in which all finite coproducts exist, but some infinite coproducts do not exist.
2. Show that initial and terminal objects in a category are unique up to unique isomorphism (if they exist).
3. Let \mathcal{C} be a category with finite products and a terminal object. Recall (from class) that a group object is the data $(G, \cdot, \epsilon, \iota)$, where
(a) G is an object of \mathcal{C},
and the morphisms
(b) $G \times G \rightarrow G$,
(c) $\star \stackrel{\epsilon}{\rightarrow} G$,
(d) $G \xrightarrow{\iota} G$
satisfy appropriate commutative diagrams expressing associativity, identity, and inverse properties.

If A is any object in \mathcal{C}, show that a group object G endows the set $\operatorname{Hom}(A, G)$ with the structure of a group.
4. Write down the axioms for a ring object R in a category \mathcal{C}, preferably in terms of commutative diagrams.

