MATH 6112: ALGEBRA II HOMEWORK #10

Due: April 15, 2019

- 1. Show that $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$, where ζ_n is a primitive *n*th root of unity. But show that $\operatorname{Gal}(F(\zeta_n)/F)$ can be any subgroup of $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$, for appropriate choice of *F*. Give an example where $\{e\} \subsetneq \operatorname{Gal}(F(\zeta_n)/F) \subsetneq \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$.
- 2. Let k be a field of characteristic p > 0, and let E = k(t, u) be the field of rational functions in two (independent) variables. Consider the subfield $F = k(t^p, u^p)$. Show that E/F is finite, of degree p^2 , but there are infinitely many intermediate fields $F \subset K \subset E$.
- 3. Let E/F be a finite extension of degree [E:F] = n. Recall that the **trace** map is defined by

$$\operatorname{tr}_{E/F}(\alpha) = \operatorname{tr}(m_{\alpha}),$$

where $m_{\alpha}: E \to E$ is the *F*-linear map given by multiplication by α . Show that $\operatorname{tr}_{E/F}$ is the unique map satisfying:

- (i) tr: $E \to F$ is a homomorphism of additive groups.
- (ii) If $\alpha \in F$, then $\operatorname{tr}(\alpha) = n\alpha$.
- (iii) If $E = F(\alpha)$, and α has minimal polynomial $f = x^n + c_1 x^{n-1} + \cdots + c_n$, then $\operatorname{tr}(\alpha) = -c_1$.
- (iv) If $E \supseteq K \supseteq F$ is an intermediate field, then $\operatorname{tr}_{E/F} = \operatorname{tr}_{K/F} \circ \operatorname{tr}_{E/K}$. Deduce that if E/F is Galois, with group G, then

$$\operatorname{tr}_{E/F}(\alpha) = \sum_{\sigma \in G} \sigma(\alpha).$$

4. Prove the additive version of Hilbert 90: Let E/F be a cyclic extension of degree n, so $G = \operatorname{Gal}(E/F) \cong C_n$, and let $\sigma \in G$ be a generator. Then for any $\alpha \in E$, $\operatorname{tr}_{E/F}(\alpha) = 0$ if and only if there is $\beta \in E$ such that $\alpha = \beta - \sigma(\beta)$.