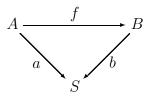
MATH 6112: ALGEBRA II HOMEWORK #2

Due: January 25, 2019

- 1. What is a group object in the category (**Grp**) of groups?
- 2. (a) Suppose categories \mathcal{C} and \mathcal{D} have finite products and terminal objects. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor which preserves finite products (so $F(A \times B) \cong F(A) \times F(B)$, compatibly with the projection morphisms) and preserves terminal objects (so $F(\star)$ is terminal in \mathcal{D} if \star is terminal in \mathcal{C}). Show that F preserves group objects, that is, if G is a group object in \mathcal{C} , then F(G) is naturally a group object in \mathcal{D} .

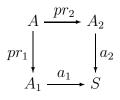
(b) Show that the fundamental group of a topological group is abelian. (You may assume the facts that $\pi_1(X \times Y, x \times y) = \pi_1(X, x) \times \pi_1(Y, y)$ for any pointed topological spaces X and Y.)

3. Given a category \mathcal{C} and an object S, the *slice category* \mathcal{C}_S is the "category of objects over S": an object of \mathcal{C}_S is a morphism $A \xrightarrow{a} S$ (in \mathcal{C}), and a morphism in \mathcal{C}_S is a commuting triangle



(of morphisms in \mathcal{C}). There is an evident functor $\mathcal{C}_S \to \mathcal{C}$, forgetting the morphism to S.

On the other hand, given objects A_1 and A_2 of \mathcal{C} and morphisms $a_i: A_i \to S$, a fiber product or pullback of A_1 and A_2 over S is an object A, equipped with morphisms $pr_i: A \to A_i$, making the diagram



commute, and universal with respect to this property. (If B is any other object with morphisms $f_i: B \to A_i$, commuting with the projections to S, then there is a unique morphism $f: B \to A$ so that $f_i = pr_i \circ f$.) As with products, a fiber product is unique up to unique isomorphism (if one exists).

Show that a fiber product of $a_i: A_i \to S$ (i = 1, 2) in C is the same as a product in C_S . (And interpret what "the same" means in this context.)

- 4. Let R_1 , R_2 , and S be rings, with ring homomorphisms $\varphi_i \colon R_i \to S$. Show that the fiber product of R_1 and R_2 over S exists in (**Ring**), the category of rings. (Give an explicit construction and verify the universal property.)
- 5. Let G and H be groups, with associated categories **G** and **H**. (Recall that these categories each have one object, and have morphisms in bijection with group elements.) Show that a functor $F: \mathbf{G} \to \mathbf{H}$ is the same as a group homomorphism $\varphi: G \to H$. Given two functors $F_1, F_2: \mathbf{G} \to \mathbf{H}$, show that a natural transformation $\eta: F_1 \Rightarrow F_2$ exists if and only if the corresponding homomorphiams φ_1, φ_2 are conjugate. (I.e., there exists $h \in H$ such that $\varphi_2(g) = h \cdot \varphi_1(g) \cdot h^{-1}$ for all $g \in G$.)