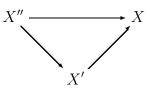
MATH 6112: ALGEBRA II HOMEWORK #4

Due: February 8, 2019

- 1. Let R be a ring. In the category (R mod) of (left) R-modules, show that every monic is the kernel of its cokernel, and every epi is the cokernel of its kernel. (Use the categorical notions of *kernel* and *cokernel* as defined in class.)
- 2. In the category $(R-\mathbf{mod})$, show that the (covariant and contravariant) Hom functors $\operatorname{Hom}_R(\cdot, M)$ and $\operatorname{Hom}_R(M, \cdot)$ are left exact.
- 3. Give examples of modules M showing that the functors $\operatorname{Hom}_{R}(\cdot, M)$ and $\operatorname{Hom}_{R}(M, \cdot)$ are not necessarily exact. (One example for each functor is enough.)
- 4. For m > 0, show that $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (m\mathbb{Z})$ is isomorphic to $\mathbb{Z}/m\mathbb{Z}$ as \mathbb{Z} -modules (abelian groups). Use this to construct an example showing that the functors $M \otimes_R (\cdot)$ and $(\cdot) \otimes_R M$ need not be left-exact.
- 5. Given a functor $F: \mathcal{C} \to \mathcal{S}$, say an object X of \mathcal{C} lies "over" an object T of \mathcal{S} if F(X) = T; similarly, a morphism $p: X' \to X$ lies over a morphism $f: T' \to T$ if F(p) = f.

A category fibered in groupoids (CFG) is a functor $\mathcal{C} \to \mathcal{S}$, which satisfies the following two axioms:

- (i) Given a morphism $T' \xrightarrow{f} T$ in \mathcal{S} and an object X of \mathcal{C} over T, there exists an object X' over T' together with a morphism $X' \xrightarrow{p} X$ in \mathcal{C} over f.
- (ii) Given $T'' \to T' \to T$ in \mathcal{S} , with $X' \to X$ in \mathcal{C} over $T' \to T$ and $X'' \to X$ over $T'' \to T$, there exists a unique morphism $X'' \to X'$ over $T'' \to T'$ so that



commutes.

Roughly speaking, these axioms say "fiber products (i) exist and (ii) are unique".

Now let S = (Top) be the category of topological spaces with continuous maps. Consider the category (Tri) defined as follows.

- An object is a continuous map $\pi: X \to T$, with a metric on fibers, $X \times_T X \to \mathbb{R}$, such that each fiber $X_t = \pi^{-1}(t)$ is isometric to a plane triangle in \mathbb{R}^2 .
- A morphism $(X' \to T') \to (X \to T)$ is commuting square of continuous maps

such that $X' \cong X \times_T T'$ (i.e., X' is homeomorphic to the fiber product).

There is an evident functor $(\mathbf{Tri}) \to \mathcal{S}$. (What is it on objects and morphisms??)

- (a) Show that $(\mathbf{Tri}) \to \mathcal{S}$ is a CFG.
- (b) Consider the topological space $\widetilde{T} = \{(a, b, c) \in \mathbb{R}^3 | a + b > c, a + c > b, b + c > a\} \subseteq \mathbb{R}^3$. Construct an object $\widetilde{X} \to \widetilde{T}$ of (**Tri**) whose fiber over (a, b, c) is a triangle with these side lengths. Explain why this is *not* a terminal object in (**Tri**). (Hint: imagine an equilateral triangle rotating 60° as it moves around a circle.)

This category (**Tri**) (the "category of triangles") is a prototypical example of the notion of a (topological) **stack**.

 $\mathbf{2}$