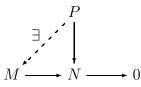
MATH 6112: ALGEBRA II HOMEWORK #5

Due: February 18, 2019

- 1. Show that the following are equivalent, for an *R*-module *P*:
 - (i) P satisfies the lifting property: given a surjective homomorphism $M \to N$ and a homomorphism $P \to N$, there is a lift $P \to M$ as in the diagram below.



- (ii) The functor $\operatorname{Hom}_R(P, \cdot)$ is exact.
- (iii) P is a direct summand of a free module. That is, there is an R-module Q, a free R-module F, and an isomorphism $P \oplus Q \cong F$.
- 2. If $e \in R$ is idempotent (i.e., $e^2 = e$), show that Re is a projective R-module.
- 3. For n > 1, show that the $M_n(R)$ -module R^n is projective, but not free. (If it helps, you may assume that R, and hence $M_n(R)$, is Noetherian, as well as the following fact about Noetherian rings A: if $A^a \cong A^b$, then a = b.)
- 4. Let

$$\cdots \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0$$

and

 $\cdots \to P'_2 \xrightarrow{d'_2} P'_1 \xrightarrow{d'_1} P'_0 \xrightarrow{d'_0} M' \to 0$

be projective resolutions. Show that a homomorphism $\varphi \colon M \to M'$ lifts to a homorphism $f_{\bullet} \colon P_{\bullet} \to P'_{\bullet}$ of complexes.

- 5. Let R be a commutative ring, and M an R-module.
 - (a) Let $S \subseteq R$ a multiplicative set. Show that $S^{-1}R \otimes_R M \cong S^{-1}M$ (as $S^{-1}R$ -modules).
 - (b) Let $\mathfrak{a} \subseteq R$ an ideal. Show that $(R/\mathfrak{a}R) \otimes_R M \cong M/\mathfrak{a}M$ as R-modules (and as $R/\mathfrak{a}R$ -modules).