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1. Show that the following are equivalent, for an R-module P :
(i) P satisfies the lifting property: given a surjective homomor-

phism M → N and a homomomorphism P → N , there is a lift
P → M as in the diagram below.

P
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∃

✛

N
❄

✲ 0
(ii) The functor HomR(P, ·) is exact.
(iii) P is a direct summand of a free module. That is, there is an R-

module Q, a free R-module F , and an isomorphism P⊕Q ∼= F .

2. If e ∈ R is idempotent (i.e., e2 = e), show that Re is a projective
R-module.

3. For n > 1, show that the Mn(R)-module Rn is projective, but not
free. (If it helps, you may assume that R, and hence Mn(R), is
Noetherian, as well as the following fact about Noetherian rings A:
if Aa ∼= Ab, then a = b.)
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be projective resolutions. Show that a homomorphism ϕ : M → M ′

lifts to a homorphism f• : P• → P ′

•
of complexes.

5. Let R be a commutative ring, and M an R-module.
(a) Let S ⊆ R a multiplicative set. Show that S−1R⊗RM ∼= S−1M

(as S−1R-modules).

(b) Let a ⊆ R an ideal. Show that (R/aR) ⊗R M ∼= M/aM as
R-modules (and as R/aR-modules).


