MATH 6112: ALGEBRA II HOMEWORK #6

Due: February 22, 2019

- 1. Show that any direct product of injective modules is injective.
- 2. (Baer's criterion) Show that a (left) *R*-module Q is injective if and only if any homomorphism from a (left) ideal \mathfrak{a} to Q can be extended to a homomorphism from R to Q.
- 3. An *R*-module *M* is *divisible* if for every nonzero $r \in R$, the endomorphism $m \mapsto r \cdot m$ is surjective. Check that the homomorphic image of a divisible module is again divisible.

If R is a domain, show that every injective R-module is divisible. Conversely, if R is a PID, show that every divisible module is injective. Conclude that \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are injective abelian groups.

4. Suppose $F: (R - \mathbf{mod}) \to \mathcal{A}$ is a right-exact functor to an abelian category \mathcal{A} . (If you like, you may assume $\mathcal{A} = (S - \mathbf{mod})$ for some ring S.) Show that there are natural isomorphisms $L_0F \cong F$. Similarly, if F is left-exact, show that R^0F and F are naturally isomorphic.