MATH 6112: ALGEBRA II HOMEWORK #7

Due: March 4, 2019

1. Given a short exact sequence of R-modules

$$0 \to M' \to M \to M'' \to 0,$$

complete the construction of a short exact sequence of projective resolutions

$$0 \to P'_{\bullet} \to P_{\bullet} \to P''_{\bullet} \to 0$$

as follows. Recall that we have chosen resolutions $(P'_{\bullet}, d'_{\bullet})$ and $(P''_{\bullet}, d''_{\bullet})$ for M' and M'', and we set $P_i = P'_i \oplus P''_i$. For i > 0, the differentials should be defined as

$$d_i(x', x'') = (d'_i x' + \theta_i x'', d''_i x''),$$

for some $\theta_i \colon P''_i \to P'_{i-1}$ fitting into a diagram

(Hint: Use the fact that d'_i maps onto the kernel of d'_{i-1} , and $-\theta_i d_{i+1}$ maps into this kernel, together with the lifting property of projective modules, to construct θ_{i+1} . Note that in the construction of θ_1 in class the map d'_i in the above diagram was replaced by a map $\alpha \epsilon' \colon P_0 \to M$.)

- 2. Let R be a commutative PID. For a nonzero element $a \in R$, let M = R/(a). For any R-module N, show that $\operatorname{Ext}^{1}_{R}(M, N) \cong N/aN$.
- 3. Fix the base ring $R = \mathbb{Z}$. For a group G and a G-module A, let $H^n(G, A)$ be defined via the explicit cochain complex $C^{\bullet}(G, A)$. Show that $H^1(G, A) \cong \operatorname{Ext}^1_{\mathbb{Z}[G]}(\mathbb{Z}, A)$. (Hint: use the exact sequence of $\mathbb{Z}[G]$ -modules $0 \to K \to \mathbb{Z}[G] \to \mathbb{Z} \to 0$ to describe Ext^1 , as in class.)

- 4. Compute $H^0(G, A)$ and $H^1(G, A)$ for the following groups and modules.
 - (a) $G = \mathbb{Z}/2\mathbb{Z}$ acting trivially on $A = \mathbb{Z}/2\mathbb{Z}$. ("Trivial" means $g \cdot a = a$ for all g and all a.)
 - (b) $G = \mathbb{Z}/2\mathbb{Z} = \{\pm 1\}$ acting by the sign representation on $A = \mathbb{Z}/3\mathbb{Z}$.
 - (c) $G = \mathbb{Z}/n\mathbb{Z} = \{e^{2\pi i k/n} | k = 0, ..., n-1\}$ acting by multiplication on $A = \mathbb{C}$ (the additive group of complex numbers).