MATH 6112: ALGEBRA II HOMEWORK \#7

Due: March 4, 2019

1. Given a short exact sequence of R-modules

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

complete the construction of a short exact sequence of projective resolutions

$$
0 \rightarrow P_{\bullet}^{\prime} \rightarrow P_{\bullet} \rightarrow P_{\bullet}^{\prime \prime} \rightarrow 0
$$

as follows. Recall that we have chosen resolutions $\left(P_{\bullet}^{\prime}, d_{\bullet}^{\prime}\right)$ and $\left(P_{\bullet}^{\prime \prime}, d_{\bullet}^{\prime \prime}\right)$ for M^{\prime} and $M^{\prime \prime}$, and we set $P_{i}=P_{i}^{\prime} \oplus P_{i}^{\prime \prime}$. For $i>0$, the differentials should be defined as

$$
d_{i}\left(x^{\prime}, x^{\prime \prime}\right)=\left(d_{i}^{\prime} x^{\prime}+\theta_{i} x^{\prime \prime}, d_{i}^{\prime \prime} x^{\prime \prime}\right)
$$

for some $\theta_{i}: P_{i}^{\prime \prime} \rightarrow P_{i-1}^{\prime}$ fitting into a diagram

(Hint: Use the fact that d_{i}^{\prime} maps onto the kernel of d_{i-1}^{\prime}, and $-\theta_{i} d_{i+1}$ maps into this kernel, together with the lifting property of projective modules, to construct θ_{i+1}. Note that in the construction of θ_{1} in class the map d_{i}^{\prime} in the above diagram was replaced by a map $\alpha \epsilon^{\prime}: P_{0} \rightarrow$ M.)
2. Let R be a commutative PID. For a nonzero element $a \in R$, let $M=R /(a)$. For any R-module N, show that $\operatorname{Ext}_{R}^{1}(M, N) \cong N / a N$.
3. Fix the base ring $R=\mathbb{Z}$. For a group G and a G-module A, let $H^{n}(G, A)$ be defined via the explicit cochain complex $C^{\bullet}(G, A)$. Show that $H^{1}(G, A) \cong \operatorname{Ext}_{\mathbb{Z}[G]}^{1}(\mathbb{Z}, A)$. (Hint: use the exact sequence of $\mathbb{Z}[G]$-modules $0 \rightarrow K \rightarrow \mathbb{Z}[G] \rightarrow \mathbb{Z} \rightarrow 0$ to describe Ext ${ }^{1}$, as in class.)
4. Compute $H^{0}(G, A)$ and $H^{1}(G, A)$ for the following groups and modules.
(a) $G=\mathbb{Z} / 2 \mathbb{Z}$ acting trivially on $A=\mathbb{Z} / 2 \mathbb{Z}$. ("Trivial" means $g \cdot a=a$ for all g and all a.)
(b) $G=\mathbb{Z} / 2 \mathbb{Z}=\{ \pm 1\}$ acting by the sign representation on $A=$ $\mathbb{Z} / 3 \mathbb{Z}$.
(c) $G=\mathbb{Z} / n \mathbb{Z}=\left\{\mathrm{e}^{2 \pi i k / n} \mid k=0, \ldots, n-1\right\}$ acting by multiplication on $A=\mathbb{C}$ (the additive group of complex numbers).

